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We use linear stability analysis to demonstrate how to stabilize multi-layer radial Hele-Shaw and
porous media flows with a time-dependent injection rate. Sufficient conditions for an injection
rate that maintains a stable flow are analytically derived for flows with an arbitrary number of
fluid layers. We show numerically that the maximum injection rate for a stable flow decreases
proportional to t−1/3 for t � 1 regardless of the number of fluid layers. However, the constant of
proportionality depends on the number of layers and increases at a rate that is proportional to the
number of interfaces to the two-thirds power. Therefore, flows with more fluid layers can be stable
with faster time-dependent injection rates than comparable flows with fewer fluid layers, even when
the additional layers are very thin. We also show that for unstable flows, which may be required in
order to inject a given amount of fluid in a fixed amount of time, an increasing injection rate is less
unstable than a constant or decreasing injection rate, and that the inclusion of more fluid layers can
overcome poor injection strategies.

I. INTRODUCTION

There are many applications in which one fluid displaces another fluid in a porous medium including oil recovery,
hydrology, filtration, and fixed bed regeneration in chemical processing. In the case that the displacing fluid is less
viscous than the displaced fluid, the interface between the fluids is unstable and viscous fingering ensues. In some of
the aforementioned applications, several fluids with favorable properties are used in succession to displace the resident
fluid in the porous medium. An example of this is chemical enhanced oil recovery (EOR) in which various tertiary
displacement processes are employed in order to contain this instability to a meaningful level before breakthrough
(see [1–3]). Shah and Schechter [4] describes in detail many of the processes involved in ASP-flooding, a type of
chemical EOR, that lead to improved oil recovery. Slobod and Lestz [5] experimentally studied the effect of two types
of flooding processes on stabilization in a Hele-Shaw cell. The first flooding process involved the use of a sequence
of polysolutions (polymer mixed with an aqueous phase) having different constant viscosities with stepwise jumps in
viscosity at each of the fronts that are positive in the direction of displacement. The study resulted in significant
stabilization of the fingering instability.

In what follows, we consider the case in which the injected fluids are all immiscible. In some EOR flooding schemes,
it is possible that an aqueous phase based liquid is displacing a different aqueous phase liquid. In such a case, a
thin layer of spacer fluid of some non-aqueous phase liquid (NAPL) between such miscible phases can be used to
ensure immiscibility [6]. Alternatively, the injected fluid layers themselves can alternate between aqueous phases and
NAPL’s.

Viscous fingering in porous media flows [7] is often studied using the Hele-Shaw model in which there is a sharp
interface between immiscible fluids. The influence of heterogeneity in porous media is non-trivial and is difficult to
account for with the Hele-Shaw model. Therefore, the Hele-Shaw model is more directly relevant to homogeneous
porous media. A linear stability analysis of viscous fingering within the Hele-Shaw model was first performed by
Saffman and Taylor [8]. They studied the case in which the fluid moves linearly and orthogonal to a planar interface.
We refer to this flow configuration as rectilinear flow. An appropriate model for flow near an injection or production
well is radial flow. The stability of radial Hele-Shaw flows was first studied by Bataille [9] and Wilson [10] and was
later developed further by Paterson [11].

There are several different strategies that have been used to control or minimize the viscous fingering instability.
One class of techniques involves adjusting the geometry of the classical Hele-Shaw cell. An example is the tapered
Hele-Shaw cell in which the plates are not parallel but instead there is a gradient in the gap thickness. The effects
of the tapered cell on the instability of the interface has been studied analytically, numerically, and experimentally
in the rectilinear [12–16] and radial [15, 17–20] geometries. Other modifications to the classical Hele-Shaw cell that
impact the stability include rotating the cell [21–24], using an elastic membrane in place of one of the rigid plates
[25–29], and changing the gap width over time [30–32]. Another class of techniques used to control the interfacial
instability is to alter the properties of the fluids. This includes the use of variable viscosity fluids [33–35], chemically
reactive fluids [36] and non-Newtonian fluids [37, 38].
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In controlling the instability of Hele-Shaw and porous media flows, one of the simplest parameters to control is the
rate at which fluid is injected. Thomé et al. [39] studied Hele-Shaw flow in a sector geometry in order to bridge the
gap between rectilinear and radial flow. They showed that a self-similar finger can grow in the sector geometry with
an injection rate proportional to t−1/3. This was further studied in the sector geometry by Brener et al. [40], Ben
Amar et al. [41], and Combescot and Ben Amar [42]. The t−1/3 injection rate was studied numerically in the radial
geometry by Li et al. [43]. They showed analytically that the wave number of the most unstable wave (and hence the
number of fingers) can be made constant in time by using the t−1/3 injection rate. Through numerical experiments,
they demonstrated that the limiting shape of the interface is found to be independent of the initial conditions. Zheng
et al. [31] studied a class of time-dependent control strategies of which the t−1/3 injection rate is a special case.
The validity of the t−1/3 injection rate for producing self-similar solutions has also been explored numerically in the
context of miscible flows [44] and a time-dependent gap width [20].

Another avenue of research involving time-dependent injection rates is attempting to minimize or completely sup-
press the viscous fingering instability. In the case of miscible flow in the quarter five-spot geometry, Chen and Meiburg
[45] found that starting with a slow constant injection rate and then smoothly increasing the injection rate resulted
in greater recovery (in the context of EOR) than a constant injection rate with the same average rate. Yuan and
Azaiez [46] found that a piecewise constant injection scheme could reduce the fingering instability in comparison to
a constant injection scheme for miscible flows in a rectilinear geometry. This came after Dias et al. [47] had shown
that a similar strategy could reduce the size of fingers in the case of immiscible flow in a radial geometry. Also in the
context of immiscible radial flow, Dias et al. [48] studied the optimal injection policy for a given average injection
rate and found that a linearly increasing injection rate approximates the optimal injection rate. Huang and Chen [49]
verified the success of a linearly increasing injection rate for a broader range of parameters than [48] and showed that
these results do not hold for miscible flow. Going a step further than this is completely stabilizing the flow using a
time-dependent injection rate. Beeson-Jones and Woods [50] found the maximum possible time-dependent injection
rate for a stable radial Hele-Shaw flow.

Increasing the number of fluid layers can also be an effective means of controlling viscous fingering. This strategy
is motivated by the various flooding schemes used in chemical EOR. However, there have been relatively few stability
studies on flows with more than two fluid layers. Of the existing studies, the majority are in the rectilinear geometry.
Daripa [51] studied three-layer rectilinear Hele-Shaw flows and derive a formula for a critical value of the viscosity of
the middle layer fluid that minimizes the bandwidth of unstable waves. Daripa also formulated the stability problem
for rectilinear Hele-Shaw flows with an arbitrary number of fluid layers [52]. In that paper, the Rayleigh quotient and
some inequalities are used to derive upper bounds on the growth rate of instabilities. Cardoso and Woods [53] studied
three-layer flows in both the rectilinear and radial flow geometries. For radial flows, they considered flows in which the
inner interface is stable and used the linear theory to predict the number of drops formed when the interfaces meet.
Ward and White [54] performed experiments for three-layer radial flows in which a liquid composes the intermediate
layer between two gases. Thus, in contrast to [53], the outer interface is stable. White and Ward [55] followed up this
work by considering the same problem with a non-Newtonian fluid in the intermediate layer. Gin and Daripa [56]
were the first to do a linear stability analysis of multi-layer (i.e. more than two-layer) radial flows in which all of the
interfaces are unstable. They studied flows with an arbitrary number of fluid layers. Beeson-Jones and Woods [50]
studied three-layer radial flow and used linear stability to find the optimal value of the viscosity of the intermediate
fluid in order to inject fluid at the fastest rate possible while maintaining a stable flow. Recently, Anjos and Li [57]
performed a weakly nonlinear analysis of three-layer radial flows. This was followed up by nonlinear simulations of
three-layer radial flow by Zhao et al. [58].

With all the different types of control strategies described above, it is important to study the interplay between
them. Some notable examples of studies that have looked at the interaction between multiple control strategies
include Dias and Miranda [59], who studied radial flows in a tapered Hele-Shaw cell in which the gap width is time-
dependent, and Morrow et al. [20] who studied a wide variety of control strategies including time-dependent injection,
time-dependent gap width, and tapered and rotating Hele-Shaw cells. In the present work, we consider the interplay
between time-dependent injection strategies and the use of more than two fluid layers. To date, this has only been
studied in a limited capacity. Time-dependent injection was considered for multi-layer flow by Ward and White [54]
and White and Ward [55]. These works were experimental and, as previously stated, involved three-layer flows in
which only one interface was unstable. The only known analytical study of time-dependent injection for multi-layer
flow is Beeson-Jones and Woods [50]. Again, this work only considers three-layer flow and the only time-dependent
control strategy considered is completely stabilizing the flow. Therefore, there is a need to study how time-dependent
injection schemes impact flows with more than three layers and how these strategies change as additional fluids are
added. Examining time-dependent injection strategies for flows with more than three layers is the main thrust of this
paper. In what follows, we derive a dynamical system governing the linearized motion of interfaces for an arbitrary
number of fluid layers. In contrast to the previous work that considers radial flows with an arbitrary number of
fluid layers [56], the formulation in the present work can be used to solve for the motion of each individual interface.
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FIG. 1: The basic solution for (N+2)-layer flow. The radius of the outermost interface is RN .

We then study the maximum injection rate which results in a stable Hele-Shaw flow with an arbitrary number of
interfaces. We provide analytically derived bounds on this injection rate and numerically investigate how it changes
with the number of fluid layers. Additionally, we numerically investigate two different time-dependent injection
strategies and demonstrate that a monotonically increasing injection rate is less unstable than a comparable constant
or monotonically decreasing injection rate.

The paper is laid out as follows. In §II, the stability problem is formulated for multi-layer Hele-Shaw flows with
an arbitrary number of fluid layers. The maximum time-dependent injection rate that stabilizes a multi-layer flow is
analyzed in §III. We provide analytically derived bounds on this injection rate and investigate limiting cases. In §IV,
we numerically investigate how the maximum injection rate for a stable flow changes with the number of fluid layers.
We also show numerically that the results of [48] about optimal injection strategies extend to multi-layer flows and
that multi-layer flows can overcome even bad injection strategies. Concluding remarks are given in §V.

II. PRELIMINARIES

Consider a radial source flow consisting of (N + 2) regions of incompressible, immiscible fluid in a Hele-Shaw cell.
By averaging across the gap, we may consider two-dimensional flow in polar coordinates, Ω := (r, θ) = R2. The least
viscous fluid with viscosity µi is injected into the center of the cell at injection rate Q. The most viscous fluid, with
viscosity µo, is the outermost fluid. There are N internal layers of fluid with viscosity µj for j = 1, . . . , N where
µi < µj < µo for all j. The fluid flow is governed by the following equations

∇·um = 0, ∇ pm = −µm
κ

um, for r 6= 0, (1)

where κ = b2/12, and b is the width of the gap of the Hele-Shaw cell. The governing equations hold within each
fluid layer and the subscript m = i, 1, 2, ..., N, o denotes the fluid region (where i denotes the innermost layer and o
denotes the outermost layer). In what follows, we omit this subscript for quantities or equations that apply to all fluid
layers and when it will not cause confusion in order to simplify the notation. The first equation (1)1 is the continuity
equation for incompressible flow, and the second equation (1)2 is Darcy’s law [60]. Initially, the fluids are separated
by circular interfaces with radii R = Rj(0), j = 0, ..., N , where Rj(t) are the positions of the interfaces at time t, and
Tj are the corresponding interfacial tensions. This set-up is shown in Fig. 1.

The equations admit a simple basic solution in which all of the fluid moves outward radially with velocity u :=
(ur, uθ) = (Q/(2πr), 0). The interfaces remain circular and move outward with velocity Q/(2πRj(t)). The pressure,
p = p(r), may be obtained by integrating equation (1)2.

We scale the variables using the characteristic length RN (0), the characteristic interfacial tension TN , and the
characteristic viscosity µo. The characteristic injection rate Qref is the injection rate at which a single interface at
RN (0) with interfacial tension TN and for which a fluid with viscosity µo is displaced by an inviscid fluid becomes
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unstable to a disturbance with wave number 2 (see [50]). Therefore,

Qref =
12πκTN
RN (0)µo

, (2)

Q∗ =
Q

Qref
, (3)

r∗ =
r

RN (0)
, (4)

µ∗ =
µ

µo
, (5)

t∗ =
12κTN
R3
N (0)µo

t, (6)

u∗ =
R2
N (0)µo

12κTN
u, (7)

p∗ =
RN (0)

12TN
p, (8)

T ∗ =
T

TN
. (9)

In these dimensionless variables, equation (1) becomes

∇∗ · u∗ = 0, ∇∗p∗ = −µ∗u∗, for r∗ 6= 0, (10)

and the velocity of the basic solution is u∗ = (Q∗/(2r∗), 0). With a slight abuse of notation, we drop the stars
below for convenience. We perturb the basic solution (ur, uθ, p) by (ũr, ũθ, p̃). Since equations (10) are linear, the
disturbances satisfy the same equations. Therefore,

∂ũr
∂r

+
ũr
r

+
1

r

∂ũθ
∂θ

= 0,
∂p̃

∂r
= −µũr,

1

r

∂p̃

∂θ
= −µũθ. (11)

We use separation of variables and assume that the disturbances are of the form

(ũr, ũθ, p̃) = (f(r), τ(r), ψ(r))g(t)einθ. (12)

Using (12) in equation (11) yields the following ordinary differential equation for f(r):(
r3f ′(r)

)′ − (n2 − 1
)
rf(r) = 0. (13)

The above equation is exact since there has been no linearization in its derivation.
Next we derive the boundary conditions for this equation from linearization of the dynamic interfacial boundary

conditions. Let the disturbance of the interface located at Rj(t) be given by Ajn(t)einθ. The linearized kinematic
interface conditions are given by

dAjn(t)

dt
= f(Rj)g(t)−Ajn(t)

Q

2R2
j

. (14)

The linearized dynamic interface condition (see equation (10) in [56]) at the innermost interface located at R = R0 is{
f(R0)(µi − µ1) +R0

[
µi(f

−)′(R0)− µ1(f+)′(R0)
]}
g(t)

=

{
Qn2

2R2
0

(µ1 − µi)−
T0
12

n4 − n2

R3
0

}
A0
n(t).

(15)

The linearized dynamic condition at the outermost interface located at R = RN is{
f(RN )(µN − 1) +RN

[
µN (f−)′(RN )− (f+)′(RN )

]}
g(t)

=

{
Qn2

2R2
N

(1− µN )− 1

12

n4 − n2

R3
N

}
ANn (t).

(16)
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For any intermediate interface at R = Rj , the dynamic condition is{
f(Rj)(µj − µj+1) +Rj

[
µj(f

−)′(Rj)− µj+1(f+)′(Rj)
]}
g(t)

=

{
Qn2

2R2
j

(µj+1 − µj)−
Tj
12

n4 − n2

R3
j

}
Ajn(t).

(17)

Note that the dynamic interfacial condition on a three-dimensional interface involves two curvatures. Here, this would
mean including the curvature in the thin dimension in the dynamic interfacial condition. This curvature arises due
to contact line effects. In what follows, we have neglected this curvature effect with the assumption that contact line
effects on the stability results are insignificant. This is done in most stability analyses of Hele-Shaw flows. However,
Homsy [61] has addressed how to modify the dynamic boundary condition for Hele-Shaw flows in order to account
for contact line effects.

Using the fact that f(r) is a solution to the differential equation (13), the dynamic interface condition (15) at the
innermost interface becomesµi − µ1

(
R0

R1

)2n
+ 1(

R0

R1

)2n
− 1

 f(R0)g(t) + 2µ1

(
R0

R1

)n−1
(
R0

R1

)2n
− 1

f(R1)g(t) = F0A
0
n(t), (18)

where

F0 =
Qn

2R2
0

(µ1 − µi)−
T0
12

n3 − n
R3

0

. (19)

Similarly, the dynamic interface condition (16) for the outermost interface reduces to1− µN

(
RN−1

RN

)2n
+ 1(

RN−1

RN

)2n
− 1

 f(RN )g(t) + 2µN

(
RN−1

RN

)n+1

(
RN−1

RN

)2n
− 1

f(RN−1)g(t) = FNA
N
n (t), (20)

where

FN =
Qn

2R2
N

(1− µN )− 1

12

n3 − n
R3
N

, (21)

and the dynamic interface conditions at the intermediate interfaces are−µj
(
Rj−1

Rj

)2n
+ 1(

Rj−1

Rj

)2n
− 1
− µj+1

(
Rj
Rj+1

)2n
+ 1(

Rj
Rj+1

)2n
− 1

 f(Rj)g(t)

+ 2µj

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

f(Rj−1)g(t) + 2µj+1

(
Rj
Rj+1

)n−1
(

Rj
Rj+1

)2n
− 1

f(Rj+1)g(t)

=FjA
j
n(t),

(22)

where

Fj =
Qn

2R2
j

(µj+1 − µj)−
Tj
12

n3 − n
R3
j

, j = 1, . . . , N − 1. (23)

Equations (18), (20), and (22) can be written as a system of equations of the form

M̃N (t)

 f(R0)g(t)
...

f(RN )g(t)

 =

 F0A
0
n(t)
...

FNA
N
n (t)

 ,
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where M̃N (t) is the (N + 1)× (N + 1) tridiagonal matrix with entries indexed by i, j = 0, ...N given by

(
M̃N (t)

)
00

= µi − µ1

(
R0

R1

)2n
+ 1(

R0

R1

)2n
− 1

,
(
M̃N (t)

)
01

= 2µ1

(
R0

R1

)n−1
(
R0

R1

)2n
− 1

(
M̃N (t)

)
j,j−1

= 2µj

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

,

(
M̃N (t)

)
j,j

= −µj

(
Rj−1

Rj

)2n
+ 1(

Rj−1

Rj

)2n
− 1
− µj+1

(
Rj
Rj+1

)2n
+ 1(

Rj
Rj+1

)2n
− 1

,

(
M̃N (t)

)
j,j+1

= 2µj+1

(
Rj
Rj+1

)n−1
(

Rj
Rj+1

)2n
− 1

,

(
M̃N (t)

)
N,N−1

= 2µN

(
RN−1

RN

)n+1

(
RN−1

RN

)2n
− 1

,
(
M̃N (t)

)
N,N

= 1− µN

(
RN−1

RN

)2n
+ 1(

RN−1

RN

)2n
− 1

.

(24)

Combining this system of equations with the linearized kinematic interface conditions yields the dynamical system
governing the evolution of interfacial disturbances for multi-layer flows.

d

dt

 A0
n(t)
...

ANn (t)

 = MN (t)

 A0
n(t)
...

ANn (t)

 , (25)

where

MN (t) = M̃−1N (t)

 F0 . . . 0
...

. . .
...

0 . . . FN

− Q

2


1
R2

0
. . . 0

...
. . .

...
0 . . . 1

R2
N

 (26)

For the particular case of N = 1 (i.e. three-layer flow), the matrix M̃1 is a 2 × 2 matrix and can be easily inverted
and plugged into equation (26) to obtain the matrix M1(t) with entries indexed by i, j = 0, 1 given by

(
M1(t)

)
00

=

{
(1 + µ1)− (1− µ1)

(
R0

R1

)2n}
F0

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

− Q

2R2
0

,

(
M1(t)

)
01

=
2µ1

(
R0

R1

)n−1
F1

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

,

(
M1(t)

)
10

=
2µ1

(
R0

R1

)n+1

F0

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

,

(
M1(t)

)
11

=

{
(µ1 + µi) + (µ1 − µi)

(
R0

R1

)2n}
F1

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

− Q

2R2
1

.

(27)

Note that these entries are time-dependent because the radii R0 and R1 are time-dependent as well as possibly the
injection rate Q. Hence the matrix M1(t) is time-dependent. Accounting for differences in notation and scaling, this
matrix agrees with the one derived in [50].



7

III. MAXIMUM INJECTION RATE FOR A STABLE FLOW

Traditionally, the injection rate Q for a radial Hele-Shaw flow is taken to be constant. However, in the formulation
above, the injection rate can be a function of time. There have been many studies that have explored the implications
of using a strategically chosen time-dependent injection rate (see for example [50], [48], [43], and [31]). Almost all of
these studies are for two-layer flows with the exception of [50] which considers three-layer flows. In this section, we
extend some of these results to flows with an arbitrary number of layers. In particular, we explore the time-dependent
maximum injection rate for which a particular flow is stable. This is important for many applications including oil
recovery in which it is beneficial to stabilize the flow, but it is also cost effective to inject as fast as possible.

A. Two-layer flow

In order to set the stage for time-dependent injection rates for flows with many fluid layers, we very briefly review
a result that has already been established for two-layer flow in [50]. The maximum dimensionless injection rate for
which the disturbance with wave number n is stable, which comes from setting the two-layer growth rate equal to
zero and solving for the injection rate Q, is

QM (n) =
1

6R

n
(
n2 − 1

)
n(1− µi)− (1 + µi)

. (28)

The maximum time-dependent injection rate for which the flow is stable, which we denote by QM , is found by taking
the minimum of equation (28) over all values of n. It follows from inspecting equation (28) that R · QM will be
constant over time. By conservation of mass, the injection rate Q(t) is proportional to dR2/dt. It then follows that
R · dR2/dt is constant or dt is proportional to R2dR. Upon integration, R(t) is proportional to t1/3. Hence, the
injection rate QM is proportional to t−1/3 since R ·QM is constant.

B. Three-layer Flow

We now wish to obtain a result analogous to equation (28) but for multi-layer flows. The strategy described above
for two-layer flow does not work in this case because Q cannot be isolated when setting the equation for the maximum
growth rate for three-layer flow equal to zero. Additionally, the fact that QM (n) is proportional to t−1/3 relies on the
fact that R ·QM (n) is constant (i.e. all time-dependent terms can be moved to one side of equation (28)). This cannot
work for three-layer flows because the growth rates depend on the radii of both interfaces (R0 and R1). Therefore,
instead of seeking an exact expression for QM (n) we look for bounds that ensure stability of the flow.

We start by considering three-layer flow. By Gershgorin’s Circle Theorem, both of the eigenvalues of M1 will have
a negative real part if the terms on the diagonal are negative and greater in absolute value than the off-diagonal terms
in the same row. This condition is satisfied if the following two inequalities hold

Q

2R2
0

≥

{
(1 + µ1)− (1− µ1)

(
R0

R1

)2n}
F0 + 2µ1

(
R0

R1

)n−1
F1

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

,

Q

2R2
1

≥

{
(µ1 + µi) + (µ1 − µi)

(
R0

R1

)2n}
F1 + 2µ1

(
R0

R1

)n+1

F0

(µ1 − µi)(1− µ1)
(
R0

R1

)2n
+ (µ1 + µi)(1 + µ1)

.

(29)

Recall from equations (19) and (21) that both F0 and F1 depend on Q. By using (19) and (21) in equation (29) and
solving for Q, the following condition on the injection rate is obtained which is sufficient to ensure that the eigenvalues
of M1 have negative real parts.

Q ≤ min{G0(n), G1(n)}, (30)
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where

G0 =
T0

6R0

(n3 − n)D0

nD1 −D2
, (31)

G1 =
1

6R1

(n3 − n)D3

nD4 −D2
, (32)

D0 = (1 + µ1) + 2µ1T
−1
0

(
R0

R1

)n+2

− (1− µ1)

(
R0

R1

)2n

, (33)

D1 = (1 + µ1)(µ1 − µi) + 2µ1(1− µ1)

(
R0

R1

)n+1

− (1− µ1)(µ1 − µi)
(
R0

R1

)2n

, (34)

D2 = (1 + µ1)(µ1 + µi) + (1− µ1)(µ1 − µi)
(
R0

R1

)2n

, (35)

D3 = (µ1 + µi) + 2µ1T0

(
R0

R1

)n−2
+ (µ1 − µi)

(
R0

R1

)2n

, (36)

D4 = (1− µ1)(µ1 + µi) + 2µ1(µ1 − µi)
(
R0

R1

)n−1
+ (1− µ1)(µ1 − µi)

(
R0

R1

)2n

. (37)

Therefore, the maximum injection rate for which a disturbance with wave number n is stable, QM (n), is bounded
below by the right-hand side of equation (30):

QM (n) ≥ min{G0(n), G1(n)}. (38)

Considering all wave numbers, the maximum injection rate, QM , for which the flow is stable satisfies

QM ≥ min
n∈N
{min{G0(n), G1(n)}} . (39)

Note that the only terms in the expressions for G0 and G1 that are time-dependent are R0 and R1. As time increases,
the interfaces come closer to each other and R0/R1 → 1 as t → ∞. Therefore, from equations (31) and (32),
G0 ∝ 1/R0 and G1 ∝ 1/R1 as t→∞. This is precisely the relationship between Q and R in equation (28). Therefore,
if the injection rate is chosen such that Q = G0 or Q = G1 then Q ∝ t−1/3 for t� 1.

1. Limiting Cases

We now investigate the condition (30) in the limit when the intermediate layer is very thin (R0/R1 → 1). Note that
as fluid is injected for any three-layer Hele-Shaw flow, the average distance between the interfaces, R1−R0, decreases
with time. Therefore, even if the interfaces are initially far apart, the intermediate layer will eventually become thin.
In the limit as R0/R1 → 1, equation (31) becomes

lim
R0
R1
→1

G0(n) =
1

6R0

(n3 − n) (T0 + 1)

n(1− µi)− (1 + µi)
. (40)

Likewise,

lim
R0
R1
→1

G1(n) =
1

6R1

(n3 − n) (T0 + 1)

n(1− µi)− (1 + µi)
. (41)

Since we are considering the limit as R0/R1 → 1, it is also true that R0 → R1. If we denote R := R1, then

lim
R0
R1
→1

G0(n) = lim
R0
R1
→1

G1(n) =
1

6R

(n3 − n) (T0 + 1)

n(1− µi)− (1 + µi)
,

and the condition (30) becomes

Q ≤ 1

6R

(n3 − n) (T0 + 1)

n(1− µi)− (1 + µi)
. (42)
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After some algebraic manipulation, this condition becomes

Qn

2R2

1− µi
1 + µi

− Q

2R2
− (T0 + 1)

1 + µi

(n3 − n)

12R3
≤ 0. (43)

The term on the left-hand side is precisely the two-layer growth rate for a single interface with interfacial tension
T0 + 1 (in dimensional variables this is T0 + T1, the sum of the interfacial tensions of the two interfaces). This is
the same thin-layer limit that was found for the exact three-layer growth rate in [56]. The thin-layer limit can also
be inferred from physical considerations. The jump in pressure across the two interfaces in the thin layer limit is
the sum of the pressure jumps across each of the interfaces since the intermediate layer fluid is non-existent. This is
also reflected in equation (43) due to the absence of the viscosity µ1 of the intermediate layer fluid. This explains,
in combination with Laplaces law of surface tension, that the effective interfacial tension must be the sum of the
interfacial tensions of two interfaces.

Using a similar analysis of the thick-layer limit (R0 << R1) for n > 2, a disturbance with wave number n is stable
if the injection rate Q is such that

Qn

2R2
0

µ1 − µi
µ1 + µi

− Q

2R2
0

− T0
µ1 + µi

(n3 − n)

12R3
0

≤ 0, (44)

and

Qn

2R2
1

1− µ1

1 + µ1
− Q

2R2
1

− 1

1 + µ1

(n3 − n)

12R3
1

≤ 0. (45)

Equation (44) is the condition that the inner interface is stable according to its two-layer growth rate, and equation
(45) is the condition that the outer interface is stable according to its two-layer growth rate. Therefore, as expected, in
the limit of a thick intermediate layer the interfaces are decoupled and the flow is stable if each interface is individually
stable.

C. Multi-layer Flow

We now find sufficient conditions on the injection rate to stabilize a flow with an arbitrary number of fluid layers.
The approach used for three-layer flows in §III B which uses Gershgorin’s circle theorem can be adapted to flows
with four or more layers by calculating the corresponding matrix MN . However, in order to avoid inverting an
(N + 1) × (N + 1) matrix, we adopt a different approach. In [56, p.22], upper bounds are found on the real part of
the growth rate for flows with N internal layers. This upper bound is the maximum of N + 1 expressions, each of
which has terms that pertain to the parameter values at one of the interfaces. From examining the upper bound, it
can be seen that a disturbance with wave number n will be stable if Ej ≤ 0 for j = 0, 1, ..., N . Using a dimensionless
version of the upper bounds in [56], the relationship between Ej and Fj (see equations (19), (21), and (23)) is

E0 = nR2
0F0 −

Qn

2
µi, Ej = nR2

jFj , for j = 1, ..., N − 1, EN = nR2
NFN −

Qn

2
. (46)

Ej ≤ 0 for all j if

Q ≤ min

{
1

6R0

T0n(n2 − 1)

n(µ1 − µi)− µi
, min
j=1,...,N−1

1

6Rj

Tj(n
2 − 1)

µj+1 − µj
,

1

6RN

n(n2 − 1)

n(1− µN )− 1

}
. (47)

Therefore, a lower bound on the maximum stable injection rate QM is given by

QM ≥ min
n∈N

{
min

{
1

6R0

T0n(n2 − 1)

n(µ1 − µi)− µi
, min
j=1,...,N−1

1

6Rj

Tj(n
2 − 1)

µj+1 − µj
,

1

6RN

n(n2 − 1)

n(1− µN )− 1

}}
. (48)

Notice the similarity between the terms in (48) and the expression for two-layer flows given by equation (28).
The above approach can be used to obtain a bound on a stable injection rate for three-layer flows. However, the

approach taken in §III B using Gershgorin’s Circle theorem generally produces sharper bounds. This is because the
effects of the interfaces have been decoupled in equation (48). Because the motion of the interfaces is inherently
coupled, any bound that decouples them will not be a sharp bound.
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FIG. 2: (color online). Plots of the maximum stable injection rate vs time for two-layer flow (solid line) and
three-layer flow (dashed line) as well as the lower bound for stabilization derived from Gershgorin’s Circle Theorem

and given by equation (39) (dotted line). The values of the parameters are µi = 0.2, µo = 1, T = 1, R(0) = 1 for
two-layer flow and µi = 0.2, µ1 = 0.6, µo = 1, T0 = T1 = 1, R0(0) = 0.8, R1(0) = 1 for three-layer flow.

IV. NUMERICAL RESULTS

In this section, we first numerically explore the maximum injection rate for a stable flow. Then we consider injection
strategies that reduce instabilities for a given average injection rate by numerically integrating the dynamical system
(25) to compute the motion of the interfaces within the linear theory and calculating the growth rates of interfacial
disturbances. This system has a large parameter space. The parameters involved in the problem include the viscosities
of each fluid, the interfacial tension of each interface, the injection rate, the initial positions of the interfaces, and the
amplitude and wave numbers of the initial perturbations of the interfaces. In this work, we focus on the injection rate.
We have tested many values for the other parameters and have chosen values that exhibit behavior that is typical
across parameter space. The values of the parameters are given in the various figure captions below.

All time-stepping is performed using the Dormand-Prince method via MATLAB’s ode45, and the maximum injec-
tion rate for a stable flow is found by using MATLAB’s built-in fzero command to solve for the value of Q for which
the maximum growth rate is zero.

A. Maximum Injection Rate for a Stable Flow

In this section we investigate the maximum value of the injection rate that results in a stable flow, which is denoted
QM . This was studied analytically in §III. For two-layer radial flow, the maximum stable injection rate for a given
wave number n and radius R of the circular interface is given exactly by the expression (28). QM is found by taking
the minimum value over all integer wave numbers.

For flows with three or more layers, a lower bound on QM is calculated by minimizing the expression (39) or (48)
over all integer values of n and with the initial positions of the interfaces Rj(0). Then the interfacial positions Rj(∆t)
at the next time step ∆t are calculated using this injection rate and the process is repeated. To find QM exactly for
three-layer flow (see Fig. 2), an additional calculation is needed. There is no analytical expression for the maximum
stable injection rate for given values of n, R0, and R1 analogous to equation (28). Therefore, we use the expression
for σ+(t) given in [56]. A root-finding method is used to find the value of Q such that σ+(t) = 0. A similar procedure
is employed for flows with more than three layers, but the maximum growth rate is calculated numerically from the
matrix Mn(t) in equation (26).

The maximum injection rate for which a certain two-layer flow is stable is given by the solid line in Fig. 2. As a
comparison, the maximum stable injection rate is calculated for a three-layer flow in which the outer interface starts
in the same position as the interface for two-layer flow, the viscosity of the inner and outer layers are the same as
the two-layer flow, and the intermediate layer has a viscosity which is greater than the inner layer and smaller than
the outer layer. This is the dashed line in Fig. 2. Note that the three-layer flow is stable for a much larger injection
rate due to the fact that the viscosity jumps at the interfaces are smaller. Also included in Fig. 2 is the lower bound
on the maximum stable injection rate given in equation (39). This is the dotted line in Fig. 2. Note that for these
particular values of the parameters, this bound, while not strict, allows for a significant increase in the injection rate
over two-layer flow.
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FIG. 3: (color online). Plots of the maximum stable injection rate vs time for two-layer flow (solid line) and
three-layer flow (dashed line) as well as the lower bound (39) for three values of R0. The values of the parameters

are µi = 0.2, µo = 1, T = 1, R(0) = 1 for two-layer flow and
µi = 0.2, µ1 = 0.6, µo = 1, T0 = T1 = 1, R0(0) = 0.7, 0.8, 0.9, R1(0) = 1 for three-layer flow.

(a) (b)

FIG. 4: (color online). Plots of the maximum stable injection rate vs time for flows with two through six fluid
layers. Plot (a) uses the lower bound given by equation (48) for flows with three or more layers while plot (b) shows

the actual maximum stable injection rate. The values of the parameters are µi = 0.2, µo = 1, Tj = 1 for all j,
R0(0) = 0.6, and RN (0) = 1. The interfaces are equally spaced at time t = 0 in all cases and the viscous jumps are

the same at all interfaces.

In oil recovery applications, it is often expensive to include a more viscous intermediate fluid instead of just using
water to displace oil. Therefore, it would be economically advantageous if a minimal amount of fluid could be used
in the intermediate layer of a three-layer flow if it still allows the flow to be stabilized at a faster injection rate. This
behavior is investigated in Fig. 3. The solid line is the maximum stable injection rate for two-layer flow using the
same parameters as in Fig. 2. This flow is compared with three-layer flows for which the inner interface is initially at
R0(0) = 0.7, 0.8, 0.9. Notice that as the middle layer becomes thinner, the maximum stable injection rate decreases.
Recall from §III B 1 that in the limit of an infinitely thin middle layer, the flow will be stable when Q satisfies (42).
The injection rate obtained by taking the minimum value of Q over all n from equation (42) is also plotted against
time as “thin-layer limit” in Fig. 3. Equation (42) is the same condition as the stable injection rate for two-layer flow
but with effective interfacial tension T0 + T1. Therefore, a three-layer flow with a very thin intermediate layer will be
stable for faster injection rates than the corresponding two-layer flow as long as the sum of the interfacial tensions in
the three-layer flow is greater than the interfacial tension of the two-layer flow. Note that this does not depend on
the viscosity of the intermediate fluid. The fact that the middle layer can be very thin leads to the conclusion that
the use of a thin layer of spacer fluid with desirable properties can be a viable injection strategy.

We next compare estimates of the maximum stable injection rates using the lower bound (48) in order to explore
how the bound changes as the number of layers increases. Recall that (48) gives a lower bound on the maximum
stable injection rate for a flow with (N + 2) layers (or N internal layers). This bound was computed for flows with
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FIG. 5: (color online). Plot of the maximum stable injection rate vs time for three-layer flow (solid line) as well as
the lower bound derived from Gershgorin’s Circle Theorem (see equation (39)) and the decoupled lower bound (see

equation (48)). The values of the parameters are µi = 0.2, µ1 = 0.6, µo = 1, T0 = T1 = 1, R0(0) = 0.8, R1(0) = 1.

three, four, five, and six layers and plotted in Fig. 4a. For comparison, the maximum injection rate which results in a
stable flow is plotted for two-layer flow (see equation (28)). For all flows with more than one interface, the innermost
interface has an initial position of R0(0) = 0.6 and the other interfaces are evenly spaced at time t = 0. For all flows,
the innermost fluid has a viscosity of µi = 0.2, the outermost fluid has a viscosity of µo = 1, and the viscosities of all
intermediate layers are chosen so that the viscous jump at each interface is the same. All interfaces have the same
interfacial tension. In general, the addition of more fluid layers increases the lower bound on the maximum stable
injection rate. Intuitively, this is because the jumps at the interfaces are smaller when there are more layers of fluid.
The one exception is three-layer flow which has a larger lower bound than four-layer flow for short time. This is due
to the fact that for three-layer flow, the lower bound on the maximum stable injection rate only includes the first and
last term of equation (48), which has a different structure than the intermediate terms. For flows with four or more
layers and these parameter values, the intermediate terms produce the minima.

In addition to considering approximations to the maximum stable injection rate from lower bounds as discussed
above, we also numerically compute the exact maximum stable injection rate for multi-layer flows. For these compu-
tations, a root finding algorithm is used to find the value of Q that results in the maximum eigenvalue of the matrix
MN (defined in (26)) being zero. Fig. 4b shows the maximum stable injection rates for flows with two, three, four,
five, and six layers. The parameters used are the same as in Fig. 4a. A comparison of Figs. 4a and 4b shows that
the increase in the maximum stable injection rate from using additional layers of fluid is much greater than what is
suggested by the lower bounds. This is especially true for short times. For example, for these values of the parameters
the maximum stable injection rate at time t = 0 is more than 16 times greater for six-layer flow than it is for two-layer
flow.

A comparison of Figs. 4a and 4b shows that the lower bounds given by equation (48) are crude. There is the
potential to find analytical bounds which are sharper. In particular, the three-layer lower bound (39) found using
Gershgorin’s Circle Theorem gives a sharper bound than (48). One reason that the bound given by equation (39) is
better is because the interfaces remain coupled whereas in the bounds given by (48) the interfaces have been decoupled.
A bound for which the interfaces are coupled has the ability to account for interactions between the interfaces and
therefore has the potential to be a sharper bound. Fig. 5 shows a comparison of the two bounds. The solid curve
shows the exact value of the maximum stable injection rate for the same three-layer flow considered in Fig. 2. The
dashed line is the lower bound given by equation (39) and the dotted line is the lower bound given by equation (48).
The difference between the two bounds is stark.

Recall from Section III A that Beeson-Jones and Woods [50] showed that for two-layer flow (i.e. single interface),
the maximum stable injection rate scales like t−1/3 for t� 1. This also holds true for flows with multiple interfaces.
For flows with 1 through 30 interfaces, we calculated the maximum stable injection rate from t = 0 to t = 100. For a
subsample of these cases, the maximum stable injection rates are shown on a log-log scale in Fig. 6a. As in Fig. 4b,
the initial position of the innermost interface is R = 0.6 and the initial position of the outermost interface is R = 1.
The interfaces are equally spaced and the viscous jumps at the interfaces are all the same with µi = 0.2 and µo = 1.
The interfacial tension is 1 for every interface. Note that after an initial period of time, all curves are linear with
the same slope. For each curve, we fit an exponential function of the form Q(t) = Ctα for t ≥ 10. In all cases,
the exponent of the best fit exponential function is approximately α = −1/3, which matches with the analytically
obtained scaling law for the single interface case. However, the constant C increases with the number of interfaces.
The values of C are plotted versus the number of interfaces on a log-log scale in Fig. 6b. The line of best fit through
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(a) (b)

FIG. 6: (color online). Plot (a) is the maximum stable injection rate versus time for several different numbers of
interfaces on a log-log scale. Each curve is of the form Q(t) = Ct−1/3 for t� 1. Plot (b) shows C versus the number
of interfaces on a log-log scale. The values of the parameters are µi = 0.2, µo = 1, Tj = 1 for all j, R0(0) = 0.6, and
RN (0) = 1. The interfaces are equally spaced at time t = 0 in all cases and the viscous jumps are the same at all

interfaces.

the points is shown in the figure and has slope 2/3. Therefore, if NI is the number of interfaces, C ∝ N
2/3
I . Thus

Q(t) ∝ N2/3
I t−1/3 for t ≥ 10.

This relationship between C and NI can be understood in the following way. First, notice that the maximum
stable injection rate for flow with a single interface is independent of the interfacial tension T (see equation (28)).
However, the interfacial tension is part of both the characteristic injection rate and the characteristic time scale. The
dimensionless injection rate Q∗ is proportional to 1/T and the dimensionless time t∗ is proportional to T . Therefore,
since Q∗(t∗) ∝ (t∗)−1/3,

Q(t)

T
∝ (Tt)−1/3 =⇒ Q(t) ∝ T 2/3t−1/3.

Recall from Section III B 1 that when there are two interfaces, they will eventually be very close together. In that
limit, the maximum stable injection rate reduces to a term that is identical to a single interface maximum stable
injection rate but with interfacial tension equal to the sum of the interfacial tensions of the two interfaces. Therefore,
if both interfaces have the same interfacial tension, the maximum stable injection rate with two interfaces will be
greater than the comparable single interface flow by a factor of 22/3. For NI interfaces, the long-time behavior is the
same as the single interface case where the single interface has interfacial tension equal to the sum of the NI interfacial

tensions. Therefore, if all of the interfaces have the same interfacial tension we would expect that Q(t) ∝ N2/3
I which

agrees very well with the results of Fig. 6a. We further verified this by looking at the maximum stable injection
rate for t � 1 for flows with different numbers of interfaces, but where the sum of the interfacial tensions remained
constant. In that case, the maximum stable injection rate converged to Ct−1/3 for the same constant C for any
number of interfaces because the thin-layer limits are all the same.

In summary, the injection rate for a stable flow increases at a rate proportional to the number of interfaces to the
two-thirds power at large time t � 1. However, at earlier times the number of interfaces can increase the maximum
stable injection rate by a much greater amount.

B. Optimizing stability for a fixed mean injection rate

In the previous section, we considered the maximum injection rate for a fully stable flow. However, in practical
situations there may be some time constraint that does not allow for a slow enough injection rate to fully stabilize
the flow. Another approach to the problem is to consider the case in which a certain amount of fluid needs to be
injected in a fixed amount of time. The question is which time-dependent injection rate Q(t) will have the smallest
growth rate of instabilities and minimize the effects of viscous fingering. It may appear from the previous section
that a decreasing injection rate of the form Q(t) ∝ t−1/3 would be optimal. However, Dias et al. [48] showed that
for a single interface, the optimal injection rate is approximated by an injection profile which increases linearly with
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(a) (b)

FIG. 7: The maximum growth rate σmax versus time for two-interface flows with (a) a relatively low constant
injection rate Q = 15, and (b) a relatively high constant injection rate Q = 200 . The values of the other parameters

are µi = 0.2, µ1 = 0.6, µo = 1, T0 = T1 = 1, R0(0) = 0.5, and RN (0) = 1.

t. We propose that this strategy is also effective for multi-interface flows for the following intuitive reasoning. Fig. 7
shows the maximum growth rate σmax for two flows that both have two interfaces and share the same parameters.
The only difference is that the flow represented by Fig. 7a has a low constant injection rate Q = 15 for which the
flow is initially stable and near the maximum stable injection rate during the duration of time that is plotted, and
the flow represented by Fig. 7b has a high constant injection rate Q = 200 which is unstable for all time. Note that
the slow flow in Fig. 7a has a maximum growth rate that increases with time while the fast flow in Fig. 7b has a
maximum growth rate that decreases with time. Therefore, from Fig. 7a it makes sense that finding the maximum
stable injection rate, which corresponds to enforcing σmax = 0, results in a decreasing injection rate. Namely, a slow
flow with constant injection rate would become unstable over time, as in Fig. 7a, and therefore a decrease in injection
rate is required to maintain stability. However, Fig. 7b shows that for an unstable flow, injecting more quickly at the
beginning would lead to instabilities growing very quickly initially. Therefore, it makes sense to inject more slowly at
the beginning and gradually increase the injection rate in order avoid the initial behavior of Fig. 7b.

We now demonstrate the effect of a variable injection rate on the motion of the interfaces according to the linear
theory. In all of the results that follow, the parameters are chosen so that the jump in viscosity is the same across
each interface and the unperturbed interfaces are initially evenly spaced. Fig. 8a shows the results for a three-layer
flow with a constant injection rate in which the interfaces are initially disturbed with white noise. The top plot shows
the maximum growth rate over time (solid blue curve) and the injection rate (dashed red curve). The bottom plot
shows the positions of the interfaces according to the linear theory at the beginning time t = 0 (solid blue curves), an
intermediate time t = 0.0125 (dashed red curves), and at the final time t = 0.025 (dotted magenta curves). Fig. 8b
shows the results for a three-layer flow with the same parameters except that the injection rate is linearly increasing,
but with the same average injection rate as the constant injection flow in Fig. 8a. Notice that the maximum growth
rate of disturbances for the linearly increasing injection rate is less than that of the constant injection rate and
therefore the interfaces at the final time have a smaller disturbance. This effect is even stronger if more fluid layers
are added. A comparable four-layer flow is shown in Fig. 8c. The injection rate for this four-layer flow is linearly
increasing and the flow is even less unstable than the three-layer flow with linearly increasing injection rate. Although
not shown, the maximum growth rate is even smaller if more fluid layers are added.

An interesting feature of Fig. 8b is that the curve which represents the maximum growth rate σmax versus time is
not a smooth curve. This is because σmax(t) is the maximum growth rate over all integer values of the wave number n
at time t. The curve has a discontinuous derivative with respect to time when the wave number of the most unstable
wave, which we denote nmax, changes. Fig. 9 shows nmax versus time. The times that nmax changes correspond to
the places where σmax has a jump in its derivative.

The effectiveness of controlling the viscous fingering instability by adding additional fluid layers becomes evident
when considering a sub-optimal injection strategy. Fig. 10 shows results that are the same as those in Fig. 8 except
that the variable injection strategies use a decreasing injection rate proportional to t−1/3. Fig. 10a is the same constant
injection flow that is shown in Fig. 8a. We repeat it for convenience. Fig. 10b is a three-layer flow with a decreasing
injection rate chosen so that the average injection rate is the same as the constant injection flow. Notice that in this
case the variable injection rate causes the maximum growth rate to increase and the disturbances of the interfaces
at later times are larger than the comparable constant injection flow. The decreasing injection rate is clearly a bad
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(a) (b) (c)

FIG. 8: (color online). The top row shows the maximum growth rate σmax versus time and the injection rate Q
versus time, and the bottom row shows the positions of the interfaces at the beginning, middle, and end time for (a)

a constant injection rate with two interfaces, (b) a linearly increasing injection rate with two interfaces, and (c) a
linearly increasing injection rate with three interfaces. The values of the parameters are µi = 0.2, µo = 1,

T0 = T1 = 1, R0(0) = 0.5, and RN (0) = 1.

FIG. 9: Plot of the wave number nmax of the most unstable wave vs time for three-layer flow with a linearly
increasing injection rate. The values of the parameters are the same as Fig. 8b

(µi = 0.2, µ1 = 0.6, µo = 1, T0 = T1 = 1, R0(0) = 0.5, R1(0) = 1).

strategy. However, the addition of more fluid layers can help stabilize the flow, even with this bad injection strategy.
Fig. 10c shows a four-layer flow with a decreasing injection rate. With the addition of only one more fluid, the flow
is less unstable than the three-layer flow with a constant injection rate. This demonstrates the using additional fluid
layers, even a modest number, is a viable injection strategy even when the injection rate is chosen naively.

In this section, we numerically investigated two different time-dependent injection strategies. First, we considered
the maximum injection rate for which the flow is stable. We found that for any number of fluid layers, the maximum
stable injection rate is decreasing and proportional to t−1/3 for t � 1. Additionally, the fluid can be injected faster
while maintaining stability if the number of layers increases due to the sum of the interfacial tensions increasing.
However, when considering a scenario in which the flow cannot be stabilized, for example when a certain amount of
fluid must be injected in a given short amount of time, an increasing injection rate leads to a less unstable flow than
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(a) (b) (c)

FIG. 10: (color online). The top row shows the maximum growth rate σmax versus time and the injection rate Q
versus time, and the bottom row shows the positions of the interfaces at the beginning, middle, and end time for (a)
a constant injection rate with two interfaces, (b) a decreasing injection rate with two interfaces, and (c) a decreasing

injection rate with three interfaces. The values of the parameters are µi = 0.2, µo = 1, T0 = T1 = 1, R0(0) = 0.5,
and RN (0) = 1.

a constant or decreasing injection rate. Regardless of the injection strategy, adding even one extra layer of fluid can
significantly affect the stability.

V. CONCLUSION

In this paper, linear stability analysis is used to explore several different time-dependent injection strategies that
can be used to control the instability of multi-layer immiscible Hele-Shaw and porous media flows. In applications
like oil recovery, it can be advantageous to inject fluid as quickly as possible while maintaining a stable flow. For
two-layer flows, the maximum injection rate for which a disturbance with a particular wave number is stable is given
in [50]. A similar condition is found in the present work for three-layer flows by using Gershgorin’s circle theorem.
By using upper bounds derived in [56], a sufficient condition on the injection rate to ensure stability is found for a
flow with an arbitrary number of fluid layers.

The maximum injection rate for a stable flow is then explored numerically. It is found that flows with more fluid
layers can be stable with faster injection rates than comparable flows with fewer fluid layers, even when the intermediate
fluid layers are very thin. It is shown that for flows with an arbitrary number of fluid layers the maximum stable
injection rate is proportional to t−1/3 for t� 1 with the constant of proportionality being proportional to the number
of interfaces raised to the two-thirds power. We also show that when a certain amount of fluid must be injected in
a fixed amount of time, an increasing injection rate can produce a less unstable flow than a comparable constant or
decreasing injection strategy. Finally, we demonstrate that the addition of even a modest number of additional fluids
can overcome even a poor injection strategy.

There are several important future directions of study. This paper contains theoretical results based on linear
theory. Since the linear theory may fail after some time or at some length scale, it is necessary to perform physical
experiments as well as full numerical simulations in order to explore the nonlinear effects. As evidenced by [58], which
is a numerical study of three-layer flow with constant injection, these studies are likely to be very interesting, and
may be even more so when the injection rate is time-dependent or the number layers is increased. The findings can
be non-trivial and can provide insights into the physics of such multi-interfacial flows. There is also room within the
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linear theory to further explore the interfacial morphology and interactions between the interfaces, especially when
the number of interfaces is large. Finally, it would be interesting to analyze the stability of multi-layer radial flows
with time-dependent injection in non-standard geometries, such as in tapered Hele-Shaw cells, or when the gap width
is time-dependent. The effects of different geometries would significantly alter the spectral problem which governs
the growth of disturbances.
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Appendix A: Derivations

In this section, we give full derivations of the equations in §II. The equations of motion are given by equation (1),
which can be written as

∂ur
∂r

+
ur
r

+
1

r

∂uθ
∂θ

= 0,
∂p

∂r
= −µ

κ
ur,

1

r

∂p

∂θ
= −µ

κ
uθ, for r 6= 0. (A1)
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Recall the scaling given by equations (2)–(9):

Qref =
12πκTN
RN (0)µo

, Q∗ =
Q

Qref
, r∗ =

r

RN (0)
, µ∗ =

µ

µo
,

t∗ =
12κTN
R3
N (0)µo

t, u∗ =
R2
N (0)µo

12κTN
u, p∗ =

RN (0)

12TN
p, T ∗ =

T

TN
.

From these scalings, the following substitutions can be derived.

Q = QrefQ
∗ =

12πκTNQ
∗

RN (0)µo
, (A2)

r = RN (0)r∗, (A3)

∂

∂r
=

∂

RN (0)∂r∗
, (A4)

µ = µoµ
∗, (A5)

∂

∂t
=

12κTN
R3
N (0)µo

∂

∂t∗
, (A6)

u =
12κTN
R2
N (0)µo

u∗, (A7)

p =
12TN
RN (0)

p∗, (A8)

Tj = TNT
∗
j . (A9)

Using (A3), (A4), and (A7) in equation (A1)1,

12κTN
R2
N (0)µo

∂u∗r
RN (0)∂r∗

+
12κTN
R2
N (0)µo

u∗r
RN (0)r∗

+
1

RN (0)r∗
12κTN
R2
N (0)µo

∂u∗θ
∂θ

= 0.

Dividing by the constant (12κTN )/(R3
N (0)µo) yields

∇∗ · u∗ :=
∂u∗r
∂r∗

+
u∗r
r∗

+
1

r∗
∂u∗θ
∂θ

= 0. (A10)

Plugging (A4), (A5), (A7), and (A8) into equation (A1)2,

12TN
RN (0)

∂p∗

RN (0)∂r∗
= −µoµ

∗

κ

12κTN
R2
N (0)µo

u∗r .

Dividing by the constant 12TN/R
2
N (0) gives

∂p∗

∂r∗
= −µ∗u∗r . (A11)

Plugging (A3), (A5), (A7), and (A8) into equation (A1)3,

1

RN (0)r∗
12TN
RN (0)

∂p∗

∂θ
= −µoµ

∗

κ

12κTN
R2
N (0)µo

u∗θ.

Dividing by the constant 12TN/R
2
N (0) yields

1

r∗
∂p∗

∂θ
= −µ∗u∗θ. (A12)

Equations (A10)–(A12) can be collectively written as

∇∗ · u∗ = 0, ∇∗p∗ = −µ∗u∗, for r∗ 6= 0, (A13)
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The original equations admit a simple basic solution in which all of the fluid moves outward radially with velocity
u := (ur, uθ) = (Q/(2πr), 0). The interfaces remain circular and move outward with velocity dRj/dt = Q/(2πRj(t))
for j = 0, ..., N . Using equations (A2), (A3), and (A7), the basic solution u∗ in the scaled variables satisfies

12κTN
R2
N (0)µo

u∗ =
12πκTNQ

∗

2πR2
N (0)µor∗

.

Dividing by the constant 12κTN/(R
2
N (0)µo) gives

u∗ =
Q∗

2r∗
. (A14)

Equation (A3) implies that Rj(t) = RN (0)R∗j (t
∗) for all j. Using this along with equations (A2) and (A6), the circular

interfaces of the basic solution move outward radially with velocity dR∗j/dt
∗ which satisfy

12κTN
R2
N (0)µo

dR∗j
dt∗

=
12πκTNQ

∗

2πR2
N (0)µoR∗j

.

Dividing by 12κTN/(R
2
N (0)µo) gives

dR∗j
dt∗

=
Q∗

2R∗j
. (A15)

For notational convenience, we drop the stars below.
We perturb the basic solution (ur, uθ, p) by (ũr, ũθ, p̃) where the disturbances are assumed to be small. We plug

these into equations (A13) and only keep terms that are linear with respect to disturbances. Since equations (A13)
are, in fact, linear, the disturbances satisfy the same equations. Therefore,

∂ũr
∂r

+
ũr
r

+
1

r

∂ũθ
∂θ

= 0,
∂p̃

∂r
= −µũr,

1

r

∂p̃

∂θ
= −µũθ. (A16)

We use separation of variables and assume that the disturbances are of the form

(ũr, ũθ, p̃) = (f(r), τ(r), ψ(r))g(t)einθ. (A17)

Using (A17) in equation (A16)1,

f ′(r)g(t)einθ +
1

r
f(r)g(t)einθ +

in

r
τ(r)g(t)einθ = 0.

Simplifying,

f ′(r) +
1

r
f(r) +

in

r
τ(r) = 0,

and therefore,

τ(r) =
i

n
(f(r) + rf ′(r)). (A18)

Next, we use (A17) in equation (A16)3 which yields,

in

r
ψ(r)g(t)einθ = −µτ(r)g(t)einθ.

Simplifying,

ψ(r) =
irµ

n
τ(r). (A19)

Using equation (A18) in equation (A19),

ψ(r) = −rµ
n2

(f(r) + rf ′(r)). (A20)
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We now cross-differentiate the pressure equation, (A16)2 and (A16)3. Taking ∂
∂θ of (A16)2 and ∂

∂r of (A16)3 yields

∂2p̃

∂r∂θ
= −µ∂ũr

∂θ
,

∂2p̃

∂θ∂r
=

1

r

∂p̃

∂θ
− rµ∂ũθ

∂r
.

Setting these equal gives

−µ∂ũr
∂θ

=
1

r

∂p̃

∂θ
− rµ∂ũθ

∂r
. (A21)

We use the ansatz (A17) in equation (A21) and get

−i µ nf(r)g(t)einθ =
in

r
ψ(r)g(t)einθ − rµτ ′(r)g(t)einθ.

Using equations (A18) and (A19),

−i µ nf(r) = −µ i
n

(f(r) + rf ′(r))− rµ i
n

(2f ′(r) + rf ′′(r)).

With some algebraic manipulation, we get the following ordinary differential equation for f(r):(
r3f ′(r)

)′ − (n2 − 1
)
rf(r) = 0. (A22)

The above equation is exact since there has been no linearization in its derivation.
Next we derive the boundary conditions for this equation from linearization of the kinematic and dynamic interfacial

boundary conditions. Let the disturbance of the interface located at Rj(t) be given by ajn(t, θ) = Ajn(t)einθ. The
linearized kinematic interface conditions (see Appendix A 1) are given by

∂ajn
∂t

= ũr(Rj)− ajn
Q

2R2
j

, (A23)

where ũr is continuous at r = Rj . Here, the interface condition has been taken at the linearized position r = Rj .
Using ajn = Ajn(t)einθ and the ansatz (A17) in (A23),

dAjn(t)

dt
= f(Rj)g(t)−Ajn(t)

Q

2R2
j

. (A24)

The linearized dynamic interface condition (see Appendix A 1) at the innermost interface located at R = R0 is{
p̃+(R0)− a0n

Qµ1

2R0

}
−
{
p̃−(R0)− a0n

Qµi
2R0

}
=
T0
12

a0n +
∂2a0n
∂θ2

R2
0

,

where T0 is the interfacial tension of the inner interface and the superscripts “+” and “−” denote the limits from
above and below, respectively. Using a0n = A0

n(t)einθ and the ansatz (A17),{
ψ+(R0)g(t)einθ −A0

n(t)einθ
Qµ1

2R0

}
−
{
ψ−(R0)g(t)einθ −A0

n(t)einθ
Qµi
2R0

}
=
T0
12

1− n2

R2
0

A0
n(t)einθ.

Using (A20),

− R0µ1

n2

(
f(R0) +R0(f+)′(R0)

)
g(t)−A0

n(t)
Qµ1

2R0

+
R0µi
n2

(
f(R0) +R0(f−)′(R0)

)
g(t) +A0

n(t)
Qµi
2R0

=
T0
12

1− n2

R2
0

A0
n(t).

After some algebraic manipulation,{
f(R0)(µi − µ1) +R0

[
µi(f

−)′(R0)− µ1(f+)′(R0)
]}
g(t)

=

{
Qn2

2R2
0

(µ1 − µi)−
T0
12

n4 − n2

R3
0

}
A0
n(t).

(A25)
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The linearized dynamic condition at the outermost interface located at R = RN is{
p̃+(RN )− aNn

Q

2RN

}
−
{
p̃−(RN )− aNn

QµN
2RN

}
=

1

12

aNn +
∂2aNn
∂θ2

R2
N

,

where TN is the interfacial tension of the outermost interface. Using aNn = ANn (t)einθ and the ansatz (A17),{
ψ+(RN )g(t)einθ −ANn (t)einθ

Q

2RN

}
−
{
ψ−(RN )g(t)einθ −ANn (t)einθ

QµN
2RN

}
=

1

12

1− n2

R2
N

ANn (t)einθ.

Using (A20),

− RN
n2

(
f(RN ) +RN (f+)′(RN )

)
g(t)−ANn (t)

Q

2RN

+
RNµN
n2

(
f(RN ) +RN (f−)′(RN )

)
g(t) +ANn (t)

QµN
2RN

=
1

12

1− n2

R2
N

ANn (t).

After some algebraic manipulation,{
f(RN )(µN − 1) +RN

[
µN (f−)′(RN )− (f+)′(RN )

]}
g(t)

=

{
Qn2

2R2
N

(1− µN )− 1

12

n4 − n2

R3
N

}
ANn (t).

(A26)

For any intermediate interface at R = Rj , the dynamic interface condition is{
p̃+(Rj)− ajn

Qµj+1

2Rj

}
−
{
p̃−(Rj)− ajn

Qµj
2Rj

}
=
Tj
12

ajn +
∂2ajn
∂θ2

R2
j

,

where Tj is the interfacial tension of the interface at R = Rj . Using ajn = Ajn(t)einθ and the ansatz (A17),{
ψ+(Rj)g(t)einθ −Ajn(t)einθ

Qµj+1

2Rj

}
−
{
ψ−(Rj)g(t)einθ −Ajn(t)einθ

Qµj
2Rj

}
=
Tj
12

1− n2

R2
j

Ajn(t)einθ.

Using (A20),

− Rjµj+1

n2

(
f(Rj) +Rj(f

+)′(Rj)
)
g(t)−Ajn(t)

Qµj+1

2Rj

+
Rjµj
n2

(
f(Rj) +Rj(f

−)′(Rj)
)
g(t) +Ajn(t)

Qµj
2Rj

=
Tj
12

1− n2

R2
j

Ajn(t).

After some algebraic manipulation,{
f(Rj)(µj − µj+1) +Rj

[
µj(f

−)′(Rj)− µj+1(f+)′(Rj)
]}
g(t)

=

{
Qn2

2R2
j

(µj+1 − µj)−
Tj
12

n4 − n2

R3
j

}
Ajn(t).

(A27)

Recall that f(r) satisfies equation (A22). Solutions of (A22) are of the form

f(r) =


Ki,1r

n−1 +Ki,2r
−(n+1), r < R0

Kj,1r
n−1 +Kj,2r

−(n+1), Rj−1 < r < Rj , j = 1, ..., N

Ko,1r
n−1 +Ko,2r

−(n+1), r > RN .
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In order to ensure that the disturbances go to zero as r → ∞ and to avoid a singularity at r = 0, we require that
Ki,2 = 0 and Ko,1 = 0. Therefore,

(f−)′(R0) =
(n− 1)f(R0)

R0
, (f+)′(RN ) = − (n+ 1)f(RN )

RN
. (A28)

The solution to (A22) for Rj−1 < r < Rj can also be written as

f(r) =

[
f(Rj)

(
Rj−1

Rj

)n−1
− f(Rj−1)

] (
r

Rj−1

)−n−1
+
[
f(Rj−1)

(
Rj−1

Rj

)n+1

− f(Rj)
] (

r
Rj

)n−1
(
Rj−1

Rj

)2n
− 1

, (A29)

for j = 1, ..., N . Taking a derivative of this function and evaluating at Rj−1 and Rj ,

(f+)′(Rj−1) =
n

Rj−1

f(Rj−1)

[(
Rj−1

Rj

)2n
+ 1

]
− 2f(Rj)

(
Rj−1

Rj

)n−1
(
Rj−1

Rj

)2n
− 1

− f(Rj−1)

Rj−1
,

(f−)′(Rj) = − n

Rj

f(Rj)

[(
Rj−1

Rj

)2n
+ 1

]
− 2f(Rj−1)

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

− f(Rj)

Rj
.

(A30)

Using (A28)1 and (A30)1 with j = 1 in the interface condition (A25),f(R0)(µi − µ1) + µi(n− 1)f(R0)

−µ1n

f(R0)

[(
R0

R1

)2n
+ 1

]
− 2f(R1)

(
R0

R1

)n−1
(
R0

R1

)2n
− 1

+ µ1f(R0)

 g(t)

=

{
Qn2

2R2
0

(µ1 − µi)−
T0
12

n4 − n2

R3
0

}
A0
n(t).

Simplifying, nµif(R0)− µ1n

f(R0)

[(
R0

R1

)2n
+ 1

]
− 2f(R1)

(
R0

R1

)n−1
(
R0

R1

)2n
− 1

 g(t)

=

{
Qn2

2R2
0

(µ1 − µi)−
T0
12

n4 − n2

R3
0

}
A0
n(t).

After further algebraic manipulation,µi − µ1

(
R0

R1

)2n
+ 1(

R0

R1

)2n
− 1

 f(R0)g(t) + 2µ1

(
R0

R1

)n−1
(
R0

R1

)2n
− 1

f(R1)g(t) = F0A
0
n(t), (A31)

where

F0 =
Qn

2R2
0

(µ1 − µi)−
T0
12

n3 − n
R3

0

. (A32)
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Using (A28)2 and (A30)2 with j = N in the interface condition (A26),

f(RN )(µN − 1)− µNn
f(RN )

[(
RN−1

RN

)2n
+ 1

]
− 2f(RN−1)

(
RN−1

RN

)n+1

(
RN−1

RN

)2n
− 1

−µNf(RN ) + (n+ 1)f(RN )

 g(t)

=

{
Qn2

2R2
N

(1− µN )− 1

12

n4 − n2

R3
N

}
ANn (t).

Simplifying,

−µNn
f(RN )

[(
RN−1

RN

)2n
+ 1

]
− 2f(RN−1)

(
RN−1

RN

)n+1

(
RN−1

RN

)2n
− 1

+ nf(RN )

 g(t)

=

{
Qn2

2R2
N

(1− µN )− 1

12

n4 − n2

R3
N

}
ANn (t).

After further algebraic manipulation,

1− µN

(
RN−1

RN

)2n
+ 1(

RN−1

RN

)2n
− 1

 f(RN )g(t) + 2µN

(
RN−1

RN

)n+1

(
RN−1

RN

)2n
− 1

f(RN−1)g(t) = FNA
N
n (t), (A33)

where

FN =
Qn

2R2
N

(1− µN )− 1

12

n3 − n
R3
N

. (A34)

For the intermediate interfaces, we use (A30) in the interface condition (A27),

f(Rj)(µj − µj+1)

− nµj
f(Rj)

[(
Rj−1

Rj

)2n
+ 1

]
− 2f(Rj−1)

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

− µjf(Rj)

−nµj+1

f(Rj)

[(
Rj
Rj+1

)2n
+ 1

]
− 2f(Rj+1)

(
Rj
Rj+1

)n−1
(

Rj
Rj+1

)2n
− 1

+ µj+1f(Rj)

 g(t)

=

{
Qn2

2R2
j

(µj+1 − µj)−
Tj
12

n4 − n2

R3
j

}
Ajn(t).
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Simplifying, −nµj
f(Rj)

[(
Rj−1

Rj

)2n
+ 1

]
− 2f(Rj−1)

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

−nµj+1

f(Rj)

[(
Rj
Rj+1

)2n
+ 1

]
− 2f(Rj+1)

(
Rj
Rj+1

)n−1
(

Rj
Rj+1

)2n
− 1

 g(t)

=

{
Qn2

2R2
j

(µj+1 − µj)−
Tj
12

n4 − n2

R3
j

}
Ajn(t).

After further algebraic manipulation,−µj
(
Rj−1

Rj

)2n
+ 1(

Rj−1

Rj

)2n
− 1
− µj+1

(
Rj
Rj+1

)2n
+ 1(

Rj
Rj+1

)2n
− 1

 f(Rj)g(t)

+ 2µj

(
Rj−1

Rj

)n+1

(
Rj−1

Rj

)2n
− 1

f(Rj−1)g(t) + 2µj+1

(
Rj
Rj+1

)n−1
(

Rj
Rj+1

)2n
− 1

f(Rj+1)g(t)

=FjA
j
n(t),

(A35)

where

Fj =
Qn

2R2
j

(µj+1 − µj)−
Tj
12

n3 − n
R3
j

, j = 1, . . . , N − 1. (A36)

1. Linearized Interface Conditions

First we derive the linearized interface conditions in the original dimensional variables. Then we will apply the
scaling given by equations (2)–(9) to obtain them in dimensionless form.

Let the disturbance of the interface located at Rj(t) be given by ajn(t, θ). Therefore, the radial position of the
interface is η(t, θ) = Rj(t) + ajn(t, θ). The kinematic condition is given by

Dη

Dt
= u · n̂, r = η(t, θ), (A37)

where D/Dt denotes the material derivative, u := (ur, uθ) is the velocity in polar coordinates, and n̂ denotes the unit
vector which is normal to the interface. Using that η(t, θ) = Rj(t) + ajn(t, θ), the left-hand side of this equation can
be rewritten as

Dη

Dt
=
dRj(t)

dt
+
Dajn
Dt

=
Q

2πRj
+
∂ajn
∂t

+
uθ
r

∂ajn
∂θ

. (A38)

The unit normal vector is given by

n̂ =
(1,− 1

r
∂η
∂θ )√

1 +
(

1
r
∂η
∂θ

)2 . (A39)

Using equations (A38) and (A39), the kinematic condition (A37) is

Q

2πRj
+
∂ajn
∂t

+
uθ
r

∂ajn
∂θ

=
ur − uθ

r
∂η
∂θ√

1 +
(

1
r
∂η
∂θ

)2 , r = η(t, θ), (A40)
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We expand each term that depends on r in a Taylor series about r = Rj . In order to do so, we first recall that the
velocity of the basic solution is (Q/(2πr), 0) and the disturbance of the velocity is (ũr, ũθ). Therefore, the components
of velocity are

ur =
Q

2πr
+ ũr, uθ = ũθ. (A41)

Using this expression for ur and that η(t, θ) = Rj(t) + ajn(t, θ), we get the following expression for ur(η)

ur(η) = ur(Rj) + ajn
∂ur
∂r

(Rj) +O(|ajn|2)

=
Q

2πRj
+ ũr(Rj) + ajn

∂

∂r

(
Q

2πr

)∣∣∣∣
r=Rj

+ ajn
∂ũr
∂r

(Rj) +O(|ajn|2).

Keeping only terms that are linear with respect to disturbances,

ur(η) =
Q

2πRj
+ ũr(Rj)− ajn

Q

2πR2
j

. (A42)

Likewise, the Taylor series expansion for uθ(η) about r = Rj is

uθ(η) = uθ(Rj) + ajn
∂uθ
∂r

(Rj) +O(|ajn|2)

= ũθ(Rj) + ajn
∂ũθ
∂r

(Rj) +O(|ajn|2).

Keeping only linear terms,

uθ(η) = ũθ(Rj). (A43)

Plugging (A42) and (A43) into (A40),

Q

2πRj
+
∂ajn
∂t

+
ũθ(Rj)

r

∂ajn
∂θ

=

Q
2πRj

+ ũr(Rj)− ajn
Q

2πR2
j
− ũθ(Rj)

r
∂ajn
∂θ√

1 +
(

1
r
∂ajn
∂θ

)2 , r = η(t, θ),

where we used that ∂η/∂θ = ∂ajn/∂θ. Linearizing with respect to the disturbances and canceling like terms leads to
the linearized kinematic interface condition

∂ajn
∂t

= ũr(Rj)− ajn
Q

2πR2
j

. (A44)

Next, we derive the linearized dynamic interface condition. The dynamic interface condition is

[p] = −Tj∇ · n̂, r = η(t, θ), (A45)

where [p] denotes the jump in pressure across the interface and Tj denotes the interfacial tension. Let pb denote the
pressure of the basic solution and p̃ denote the disturbance of the pressure so that p = pb + p̃. Using a Taylor series
expansion about r = Rj , the pressure is given by

p(η) = p(Rj) + ajn
∂p

∂r
(Rj) +O(|ajn|2)

= pb(Rj) + p̃(Rj) + ajn
∂pb
∂r

(Rj) + ajn
∂p̃

∂r
(Rj) +O(|ajn|2).

We wish to evaluate the term [p] := limr→η+ p(r) − limr→η− p(r). We denote the pressure in the fluid region imme-
diately inside the interface as p− and the pressure in the fluid region immediately outside the interface as p+. Then
using the Taylor series expansion above,

[p] = lim
r→R+

j

{
p+b (r) + p̃+(r) + ajn

∂p+b
∂r

(r) + ajn
∂p̃+

∂r
(r) +O(|ajn|2)

}
− lim
r→R−

j

{
p−b (r) + p̃−(r) + ajn

∂p−b
∂r

(r) + ajn
∂p̃−

∂r
(r) +O(|ajn|2)

}
.
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We then linearize this equation and use from (A1)2 that ∂pb/∂r = −(Qµ)/(2πκr) to get

[p] = lim
r→R+

j

{
p+b (r) + p̃+(r)− ajn

Qµ(r)

2πκr

}
− lim
r→R−

j

{
p−b (r) + p̃−(r)− ajn

Qµ(r)

2πκr

}
. (A46)

Note that for the basic solution, the interface is circular with radius r = Rj , and therefore ∇ · n̂ = 1/Rj . Plugging
this into the dynamic interface condition (A45),

[pb] = − Tj
Rj
.

Using this in equation (A46),

[p] = lim
r→R+

j

{
p̃+(r)− ajn

Qµ(r)

2πκr

}
− lim
r→R−

j

{
p̃−(r)− ajn

Qµ(r)

2πκr

}
− Tj
Rj
. (A47)

Using equation (A39) for the unit normal vector, the curvature of the interface is

∇ · n̂ =
1

r

∂

∂r

 r√
1 +

(
1
r
∂η
∂θ

)2
+

1

r

∂

∂θ

− 1
r
∂η
∂θ√

1 +
(

1
r
∂η
∂θ

)2


=
1

r


1√

1 +
(

1
r
∂ajn
∂θ

)2 +

1
r2

(
∂ajn
∂θ

)2
(

1 +
(

1
r
∂ajn
∂θ

)2) 3
2

−
1
r
∂2ajn
∂θ2√

1 +
(

1
r
∂ajn
∂θ

)2 +

1
r2

(
∂ajn
∂θ

)2
∂2ajn
∂θ2(

1 +
(

1
r
∂ajn
∂θ

)2) 3
2

 ,

where we again used that ∂η/∂θ = ∂ajn/∂θ. Linearizing with respect to the disturbances,

∇ · n̂ =
1

r
− 1

r2
∂2ajn
∂θ2

∣∣∣∣
r=Rj+a

j
n

.

We can expand this into a Taylor series about the point r = Rj to get

∇ · n̂ =
1

Rj
− ajn
R2
j

− 1

R2
j

∂2ajn
∂θ2

+O(|ajn|2).

Again, we keep only terms which are linear with respect to the disturbances. Using this equation and (A47) in the
interface condition (A45), we get

lim
r→R+

j

{
p̃+(r)− ajn

Qµ(r)

2πκr

}
− lim
r→R−

j

{
p̃−(r)− ajn

Qµ(r)

2πκr

}
− Tj
Rj

= −Tj

(
1

Rj
− ajn
R2
j

− 1

R2
j

∂2ajn
∂θ2

)
,

which simplifies to

lim
r→R+

j

{
p̃+(r)− ajn

Qµ(r)

2πκr

}
− lim
r→R−

j

{
p̃−(r)− ajn

Qµ(r)

2πκr

}
= Tj

ajn +
∂2ajn
∂θ2

R2
j

. (A48)

The equations (A44) and (A48) are the linearized kinematic and dynamic interface conditions.
We now apply the scaling (2)-(9) in order to obtain the linearized interface conditions in dimensionless form. Note

that since ajn is a radial disturbance to the interface, equation (A3) implies that

ajn = RN (0)(ajn)∗, (A49)

where (ajn)∗ denotes the dimensionless disturbance. For the linearized kinematic condition, we use equations (A2),
(A3), (A6), (A7), and (A49) in equation (A44) to get

12RN (0)κTN
R3
N (0)µo

∂(ajn)∗

∂t∗
=

12κTN
R2
N (0)µo

ũ∗r(R
∗
j )−RN (0)(ajn)∗

(
12πκTN
RN (0)µo

)(
Q∗

2πR2
N (0)(R∗j )

2

)
.
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Dividing by the constant 12κTN/(R
2
N (0)µo) gives

∂(ajn)∗

∂t∗
= ũ∗r(R

∗
j )− (ajn)∗

Q∗

2(R∗j )
2
. (A50)

For the linearized dynamic interface condition, using equations (A2), (A3), (A5), (A8), (A9), and (A49) in equation
(A48) yields

lim
r∗→(R∗

j )
+

{
12TN
RN (0)

(p̃∗)+(r)−RN (0)(ajn)∗
(

12πκTN
RN (0)µo

)(
Q∗µoµ

∗(r)

2πκRN (0)r∗

)}
− lim
r∗→(R∗

j )
−

{
12TN
RN (0)

(p̃∗)−(r)−RN (0)(ajn)∗
(

12πκTN
RN (0)µo

)(
Q∗µoµ

∗(r)

2πκRN (0)r∗

)}

= TNT
∗
j

RN (0)(ajn)∗ +RN (0)
∂2(ajn)

∗

∂θ2

R2
N (0)(R∗j )

2
.

After some algebraic manipulation,

lim
r∗→(R∗

j )
+

{
12TN
RN (0)

(p̃∗)+(r)− 12TN
RN (0)

(ajn)∗
Q∗µ∗(r)

2r∗

}
− lim
r∗→(R∗

j )
−

{
12TN
RN (0)

(p̃∗)−(r)− 12TN
RN (0)

(ajn)∗
Q∗µ∗(r)

2r∗

}

=
TN

RN (0)
T ∗j

(ajn)∗ +
∂2(ajn)

∗

∂θ2

(R∗j )
2

.

Dividing by 12TN/RN (0),

lim
r∗→(R∗

j )
+

{
(p̃∗)+(r)− (ajn)∗

Q∗µ∗(r)

2r∗

}
− lim
r∗→(R∗

j )
−

{
(p̃∗)−(r)− (ajn)∗

Q∗µ∗(r)

2r∗

}

=
T ∗j
12

(ajn)∗ +
∂2(ajn)

∗

∂θ2

(R∗j )
2

.

(A51)

We drop the stars in (A50) and (A51) for convenience and arrive at the dimensionless linearized kinematic and
dynamic interface conditions

∂ajn
∂t

= ũr(Rj)− ajn
Q

2R2
j

, (A52)

lim
r→R+

j

{
p̃+(r)− ajn

Qµ(r)

2r

}
− lim
r→R−

j

{
p̃−(r)− ajn

Qµ(r)

2r

}
=
Tj
12

ajn +
∂2ajn
∂θ2

R2
j

. (A53)


