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We present results of torque and velocity measurement of a 40-cm spherical Couette flow exper-
iment with rough boundaries and compare them with previous work done for smooth boundaries.
Spherical Couette flows in liquid metals are a suitable candidate for generating magnetic dynamo
states in the laboratory. However, previous work in our 3-m spherical Couette flow experiment and
numerical simulation have shown that an enhancement of the poloidal flows and the helicity are
likely required to lower the threshold to achieve dynamo action. Finke and Tilgner [Phys. Rev. E
86, 016310 (2012)] suggested roughening the inner sphere boundary by adding baffles in order to
achieve these goals. We perform hydrodynamic studies of the effect of three baffle designs: straight
(symmetric) and two types of chevron-like (asymmetric) baffles. In addition, we test the effect of
baffle height with two variants: 5% and 10% radius height. We observe important differences in the
dimensionless torque as a function of the Reynolds and Rossby numbers for these different configu-
rations and explore an asymmetry in the torque with asymmetric baffles. Velocity measurements in
both the equatorial and the meridional planes show an effective enhancement of the equatorial jet
and the poloidal flows when adding baffles and two different flow topologies for asymmetric baffles in
concordance with the torque measurements. Results point to one of the chevron-like baffle designs
as a promising upgrade that we will use in our 3-m experiment to effectively increase our chances
of obtaining dynamo action.

I. INTRODUCTION

Rotating flows are ubiquitous in nature: planets, stars,
and galaxies exhibit highly turbulent rotating flows in
their oceans, atmospheres, and cores. Spherical Couette
flows, which are flows between two concentric spheres
that rotate differentially, are a useful model to study ro-
tating turbulence, particularly in the context of plane-
tary cores [1–3]. Shear forces at the boundaries, and
Coriolis forces due to the global rotation drive and shape
the motion of the fluid between the spheres, similarly
to the more widely explored cylindrical Taylor-Couette
flows [2, 4–8]. The fluid dynamics resulting from these
forces can be used to model various complex phenomena
that occur in nature. An example of these phenomena is
the self-sustained magnetic field generation seen in many
planets due to rotating turbulence of their liquid metal
cores, known as the dynamo effect.
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Dynamo magnetic field generation can be thought of as
a competition between Faraday induction and dissipation
due to electrical resistance. The former drags, stretches,
twists and amplifies the magnetic field, while the lat-
ter transforms the electric currents into heat at smaller
scales. Even though dynamos have been simulated and
studied numerically before [9–13], there is a global at-
tempt to replicate Earth-like magnetic field dynamos in
the laboratory [14–17], particularly with realistic turbu-
lence that cannot be achieved by current simulations.

At the University of Maryland we built a 3-meter di-
ameter spherical Couette experiment (3-m) [14, 18, 19],
which despite matching many parameters of the Earth’s
core, has not yielded a magnetic dynamo. The exper-
iment has shown an amplification of the magnetic field
in the azimuthal direction up to 8 times the externally
applied magnetic fields, and amplification of 10− 30% in
the radial direction [14].

Theoretical dynamo studies [20, 21] indicate that elec-
trically conductive flows can drag and stretch the exter-
nal magnetic field back into the original applied direction,
closing the loop for the feedback process. The amplifica-
tion of the field observed in the 3-m experiment in the
radial direction is evidence of this effect. Flows in the
meridional directions ((r, θ)) of the experiment may be
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responsible for dragging the field into this direction (see
Fig. 1 and section II). In Couette flows, energy and an-
gular momentum are injected into the fluid through the
boundary layers. Adding roughness to the inner sphere
changes the boundary layer from viscous-coupling to fully
pressure-dominated [22–24], which provides a more effec-
tive transfer of angular momentum to the fluid and could
favor injection of flow in the meridional directions.

Numerical work by Finke and Tilgner [24] examines
this directly. In their work, a rough inner sphere, mod-
eled using a body force, was simulated numerically. They
found that such body force increases the coupling be-
tween the inner sphere and the fluid, resulting in a
stronger equatorial jet, therefore increasing the poloidal
flows. This new configuration lowers the threshold in the
parameter space for achieving dynamo action by a fac-
tor of approximately five. In order to better examine
this process before performing long-lasting modifications
in the 3-m experiment, we decided to work in a smaller
water experiment to study the hydrodynamical proper-
ties of spherical Couette flows with and without rough
boundaries.

In the present study we a built a 40-centimeter di-
ameter spherical Couette experiment filled with water.
To add roughness we test baffles attached to the inner
sphere from pole to pole, in a similar way as done pre-
viously in Taylor-Couette flows [6, 23]. Additionally, we
try several heights and shapes of baffles to contrast their
different effects on the dynamics of the flows. Results
include torque measurements from the inner motor as a
function of Reynolds and Rossby numbers (Section VA),
and velocimetry using particle tracers and Particle Image
Velocimetry (PIV) in both the equatorial and meridional
planes (Section VB). One of the goals is to extrapolate
these results into the parameter space of the 3-m experi-
ment to guide its redesign; however, we found important
properties in the dynamics of rough spherical Couette
flows and compared them with previous numerical sim-
ulations and experiments, including in Taylor-Couette
flows.

These results will allow us to plan modifications in our
3-m experimental setup, not only regarding inner motor
power specifications but also final baffle design to move
us effectively closer to the dynamo threshold.

II. BACKGROUND

In this section we describe in more detail the dynamo
process and list some of the previous laboratory dynamo
experiments including more details about the 3-m exper-
iment and forthcoming plans.

The process of dynamo magnetic field generation is
a competition between amplification due to Faraday in-
duction and dissipation. The dissipation processes act
on both the fluid velocity and the magnetic field. They
are determined respectively by the momentum diffusiv-
ity ν (kinematic viscosity) and the magnetic diffusiv-

(a) (b) (c) (d) (e)

FIG. 1: Schematic representation of the alpha-omega
dynamo. An applied external magnetic field (blue ar-
rows) (a) gets stretched by a differential rotation (b)
in the azimuthal direction of the experiment (c), then
turbulent and helical flows (d) twist the magnetic field
lines back in the direction of a dipole (e), which is the
direction of the original applied magnetic field (a), clos-
ing the cycle for the amplification process. Adapted
from a diagram in [25].

ity η (inversely proportional to the electrical conduc-
tivity). The ratio of these two numbers is known as
the magnetic Prandtl number Prm = ν/η, and is small
for all liquid metals. The Reynolds numbers are also
important for understanding the magnetic field gener-
ation. The fluid Reynolds number quantifies the ratio
of inertial forces to momentum diffusion Re = UL/ν,
where U and L are a characteristic velocity and length
scales in the experiment. The magnetic Reynolds num-
ber quantifies the ratio of Faraday induction to magnetic
diffusion Rm = UL/η (see section IV). The magnetic
Prandtl number is also the ratio of these two numbers:
Prm = Rm/Re.

Numerical simulations show a threshold in Rm and
Re for dynamo generation in spherical Couette flows
[21, 24]. For the Prm of liquid metals (around 10−5)
high Reynolds numbers are required. Such conditions
can only be achieved in experimental models, since nu-
merical simulations tend to require Prm ∼ 1, and thus
lack realistic levels of turbulence.

Dynamos have been found in the laboratory in re-
stricted geometries like the ones of Riga [26] and Karl-
suhe [27]. These successes proved theoretical predictions
about a self-excitation in the magnetic field due to a well
organized flow, and motivated the search of dynamos in
less confined, more Earth-like geometries and turbulence
like in spherical Couette flows. Spherical experiments
attempting Earth-like dynamos and exploring magneto-
turbulence include the one in Madison at the University
of Wisconsin, USA [15] and the DTS spherical Couette
flow in Grenoble, France [16, 17]. Other experiments,
like the Von Karman sodium experiment [28] and the
DRESDYN experiment in Dresden, Germany [29] use a
cylindrical geometry. The former successfully achieved a
dynamo using ferromagnetic impellers as main driver of
the flow.

The 3-meter diameter spherical Couette experiment
at the University of Maryland is intended to mimic the
aspect ratio of the Earth’s core of Γ = ri/ro = 0.35,
where ri = 0.51 m and ro = 1.46 m are the inner
and outer sphere radii of the experiment. The bound-
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aries of both spheres are currently smooth with only a
characteristic roughness due to the unpolished stainless
steel material from fabrication. The 3-m experiment ap-
proximately matches Earth’s magnetic Reynolds num-
bers of Rm ≈ 900, Re ≈ 109, and works with liquid
sodium, which has a Prm ≈ 10−5. An external dipolar
or quadrupolar magnetic field can be applied by electro-
magnets in the axial direction, with an intensity up to
200 Gauss at the center of the experiment. Dynamo ac-
tion may be excited by the turbulent flows between the
spheres. The re-alignment of the field lines in the origi-
nally applied direction would then happen, either at the
forcing scale or at the dissipative scales of the flow, al-
lowing the completion of the feedback process amplifying
and sustaining the original magnetic field.

One fundamental model for this process is known as
the αω-dynamo [30–32] shown schematically in Fig 1: a
magnetic field is stretched in the azimuthal direction due
to shear forces in the form of differential rotation (Ω-
effect) and then twisted back into the meridional direc-
tions due to the helical component of the turbulence (α-
effect). For the purpose of this paper, we interpret merid-
ional flows as an indicator of the strength of the three-
dimensional poloidal flows. The turbulence responsible
for the α-effect can be connected with the vorticity of
the meridional flows, which combined with the azimuthal
flows responsible for the Ω-effect, give rise to helicity. The
total helicity is defined as H =

∫
V
u·(∇×u) dV, where u

is the velocity vector, and the integral is performed over
the fluid volume. In the αω-dynamo then, the helicity is
dominated by the vorticity from the poloidal/meridional
flows:

H ≈

∫
V

uϕ · (∇× um) dV =

∫
V

uϕωϕ dV, (1)

where the subindexes ϕ and m stands for azimuthal direc-
tion and the meridional plane respectively, and ω = ∇×u

is the vorticity.

Many authors have elaborated on the key role played
by the helicity in dynamo action. In particular, Naka-
jima and Kono [33] proposed that maximizing helicity is
strongly correlated with the efficiency of a flow in produc-
ing dynamo action. Love and Gubbins [34] and Khalzov
et al. [35] commented on the connection between helic-
ity and the ratio of poloidal to rotational motion and its
influence on the dynamo instability. Further studies sup-
port these notions in different flows and geometries [36–
41]. Previous results in the 3-m experiment indicated a
substantial Ω-effect but a limited α-effect [14]. Hence,
increasing the meridional flows and their vorticity, to-
gether with the azimuthal flows, would be an effective
way of achieving more helical flows in the experiment,
thus enhancing the α-effect.

(a)

(b)

(e)

(d)

(c)

(i)

(h)(g)

(f)
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FIG. 2: Schematic of the 40-cm experiment. (a) 12 cm
diameter inner sphere with straight baffles. The baffle
height adds 5% or 10% to the inner sphere radius. (b)
40 cm diameter acrylic outer sphere filled with water.
(c) 1 cm diameter inner shaft. (d) 3 kW inner motor.
(e) 2.23 kW outer motor. (f) Gear belt. (g) Cylindrical
lens for laser sheet. (h) 6 W NdYVO4 continuous laser.
(i) High-speed camera positioned for measurements in
the equatorial plane. (k) Polystyrene particles dispersed
in the water.

(a) Smooth (b) Straight (c) Chevron (d) Alpha

FIG. 3: Four types of inner spheres were tested in the
40-cm experiment. The two rotation directions for (c)
and (d) are called wedge mode and scoop mode.

III. EXPERIMENT DESCRIPTION

The experiment shown in Fig. 2 consists of two inde-
pendently rotating spheres with Γ = ri/ro = 0.35. The
40-cm diameter outer sphere is made of two 5-mm thick
acrylic shells bolted together at the equator using a rub-
ber gasket seal, and is rotated by a motor using a gear
belt. The 14-cm diameter inner sphere is connected di-
rectly to a motor using a shaft that sits on a bearing
in the bottom of the outer sphere. Once assembled, the
outer sphere is filled with water at about 20◦C. Very ex-
tended running times are avoided to reduce changes in
temperature: only ±2◦C were detected, which implies
around 0.5% change in kinematic viscosity of the water.
This is negligible compared to the experiment systematic
uncertainty associated with the friction in the motor (see
section VA).

The inner spheres with baffles were 3D-printed from
PLA plastic with baffles whose height was 5% and 10%
of the inner sphere radius. Three baffle designs are tested
in both heights: straight baffles from pole to pole (Fig.
3b), chevron shaped baffles with a curve given by θ =
ϕ in spherical coordinates on the surface of the sphere
(Fig. 3c) and a hybrid of straight and chevron baffles
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as shown in Fig. 3d, which will be called alpha baffles
for the rest of this work. The motivation for this design
is to test an asymmetric baffle model more amenable to
fabrication than the chevron shaped baffles. With these
chevron and alpha designs we aim to break one symmetry
of the experiment (ϕ → −ϕ). For smooth and straight
design, reversing the rotation direction of both spheres
gives the same flow states, whereas reversing both for
chevron and alpha designs should yield distinct states.
We call these two different modes of operation for each
of the asymmetric designs wedge and scoop. This causes
an effective doubling of the parameter space as we will
discuss in section IVB.

For the smooth inner sphere, the maximum rotation
rate was 50 Hz for the inner sphere and 5 Hz for the
outer sphere. We record the current and voltage in the
inner motor, calculate the power with these two values
and use the rotation rate to derive the power and torque:
Pi = Ωi ·τi, where Pi is the power, Ωi is the inner sphere
angular velocity and τi is the torque from the inner mo-
tor. Optical sensors are used to measure the frequency
for both motors. The main source of torque error is the
friction from the bearings and in the motors. Runs at
very low rotation rate are performed to estimate the fric-
tion error in the experiment. A run with air instead of
water was also performed to examine the error in the
torque at high rotation rates.

For the velocimetry measurements a 6 W laser, station-
ary in the laboratory frame of reference, passes through
a cylindrical lens to create a laser sheet. When measure-
ments of the equatorial plane are performed the laser
sheet hits the sphere in a parallel plane to the equator a
few millimeters above it to avoid being occluded by the
flange and gasket seal. Polyethylene fluorescent particles
of 75-106 µm diameter are added to the water to allow
particle image velocimetry (PIV) techniques [42]. High
speed videos at 1000 frames per second (fps) are used
to record the particle motions in 1-s intervals. Several
videos of the same parameters are performed and aver-
aged.

To compensate for the spherical aberration due to the
change in the refraction index between water and air,
a calibration measurement is done as follows: (i) with
the camera in the same position as it was for the mea-
surements, a metallic square mesh of known spacing is
placed in the equatorial and meridional planes respec-
tively. (ii) The sphere is filled with water and pictures
of both planes are taken. (iii) A non-linear calibration
curve is fitted to the data, which allows us to transform
from pixel position in the videos, to radial and angular
position in spherical coordinates. In spite of this calibra-
tion, spherical aberration makes measurements unavail-
able near the outer sphere boundary as well as near the
shaft and inner sphere boundary due to laser reflections
which locally saturate the camera. More details about
the velocity measurements will be discussed in section
VB.

FIG. 4: Inverse Ekman and Reynolds number param-
eter space for experiments (40-cm, 3-m), simulations
(Wicht [43]) and the Earth [44]. A solid line for Ro = 1
is shown for reference. The dotted line indicates the
equatorial jet instability regime as observed by Wicht.
The dashed line indicates the maximum torque line for
a smooth inner sphere observed in the present work and
in Zimmerman et al. [14]

IV. DIMENSIONLESS PARAMETERS

A. Flow Dimensionless Parameters

We define the fluid and magnetic Reynolds numbers
as:

Re =
|Ωi − Ωo|(ri − ro)

2

ν
, Rm =

|Ωi − Ωo|(ri − ro)
2

η
(2)

where Ωi is the angular frequency of the inner sphere,
Ωo the angular frequency of the outer sphere, ri and ro
are the inner and outer radii respectively. The value for
ri does not include the baffles height. The kinematic
viscosity ν is taken as 1.1 × 10−6 m2/s for water [45]
and 0.71 × 10−6 m2/s for sodium [46]. The magnetic
diffusivity η is 0.079m2/s for sodium [46].

The dimensionless parameter used to characterize the
differential rotation is the Rossby number:

Ro =
(Ωi − Ωo)

Ωo

. (3)

This also indicates the ratio of inertial to Coriolis forces.
We also define the Ekman number as:

E =
ν

Ωo(ri − ro)2
. (4)

This indicates the ratio of viscous to Coriolis forces. For
the 3-m experiment we achieve E ≈ 10−9, a relatively
small number for a laboratory experiment, though still
larger than that for the Earth’s E ≈ 10−15 [44].

B. Parameter Space

In Fig. 4 we compare the parameter space for the
40-cm, 3-m experiment and a numerical simulation by
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FIG. 5: Schematic of the doubling of the parameter
space (Ωo,Ωi) by breaking the symmetry of the in-
ner sphere with respect to the rotation direction. The
Finke and Tilgner [24] parameter space corresponds to
the vertical axis. In (a) an inversion with respect to the
origin results in the same states, making this plane to
be symmetric to inversion through the origin. In (b),
an inversion results in different, yet unknown, states.
State labels for (a) come from prior studies in the 3-m
system [14]. State labels in (b) are for illustrative pur-
poses only.

Wicht [43]. The simulation by Finke and Tilgner [24] is
performed with a stationary outer sphere so Ro = ∞ or
E−1 = 0, and does not appear in this figure.

In Fig. 5 we see a representation of the differences in
the parameter space due to an asymmetric baffle design
like the chevron or alpha baffles (see Fig. 3c). Chang-
ing the rotation direction of the inner sphere Ωi, changes
the leading edge shape of the baffles that engages with
the fluid. We called these two different directions wedge
mode and scoop mode, as indicated in Fig. 5. These
two modes are expected to change the hydrodynamics of
the resulting flows, hence giving rise to different states,
in a similar way that changes in the angle of attack in
aerodynamics result in different lift and drag forces for
planes [47]. Doubling the parameter space and creating
different types of spherical Couette flows may result in
increasing our ability to find a dynamo in the 3-m experi-
ment. An initial understanding of the effects of these two
modes and its comparison with symmetric baffle designs
is then a crucial goal of the present work.

V. RESULTS

The basic driving mechanisms in the experiment are
the rotation rates of the inner and outer spheres. Equiv-
alently, we can use Reynolds and Rossby numbers as in-
dependent control parameters: the former measures the
turbulence due to the differential rotation, and the latter
measures the importance of the overall rotation. These
parameters have been previously used to map the dy-
namics of Taylor and spherical Couette flows [14, 48].

We separate the results in two sections: first, we show
torque as a function of Reynolds and Rossby numbers.
Then, we show particle image velocimetry (PIV) results
performed in both the equatorial and meridional planes
to examine flow differences for each baffle design.

1.0

1.0

smooth

straight 10%

chevron scoop 10%

chevron wedge 10%

straight 5%

chevron scoop 5%

chevron wedge 5%

alpha scoop 5%

alpha wedge 5%

0.5 2.0

2.0

3.0

0.5

FIG. 6: Dimensionless torque from the inner motor
versus Reynolds number with stationary outer sphere
(Ro = ∞) for all baffle designs. A power law of the
form G∞ = bRea + c was fitted to each data set.
Values a, b and c are listed in Table I. Dotted, dashed
and solid curves indicate no baffle, 10% and 5% baffle
height designs respectively. Smooth design error bars
are shown for reference and apply for all curves.

A. Torque Measurements

We define the dimensionless torque as:

G =
τ

ρν2ri
, (5)

where τ is the dimensional torque, ρ the fluid density,
ν the kinematic viscosity and ri the inner sphere radius.
Similarly, we define G∞ as the dimensionless torque when
Ro = ∞; i.e., when the outer sphere is stationary. This
parameter will be important later when we use it to nor-
malize the dimensionless torque as a function of differen-
tial rotation.

1. Reynolds number dependence

The Reynolds number dependence of the dimensionless
torque with a stationary outer sphere (G∞(Re)) is shown
in Fig. 6 for all three baffle designs (as well as no baf-
fles: smooth) and two baffle heights in the 40-cm experi-
ment. We distinguished between scoop and wedge modes
in both the chevron and alpha designs. As expected, the
10% baffles present a higher torque than the 5% ones.
Additionally, we see that wedge mode (see Fig. 5b) gen-
erates more torque than scoop for both baffle heights and
both asymmetric designs (chevron and alpha). The rea-
son for this will become clearer when we examine the
velocimetry data in section VB 2.

We have fitted a power law of the form G∞ = bRea +
c to the dimensionless torque over the entire range of
Reynolds numbers measured. The resulting coefficients
are shown in Table I. We interpret the constant c as a
torque due to friction in the shaft’s contacts, the motors
and the bearings. As it was done for previous works in
3-m [14], this value c was used as total length of the error
bars for each plot since at higher rotation rates it does
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FIG. 7: Same for Fig. 6 but we extrapolate the power
laws of the 40-cm experiment to higher Reynolds num-
bers in order to compare with 3-m experiment torque
data from Zimmerman et al. [14] (stars). Dotted,
dashed and solid curves indicate no baffles, 10% and
5% baffle height designs respectively. For clarity, we
only show error bars for smooth in 40-cm and for the
3-m experiment.

not change significantly and it is still the biggest source
of uncertainty.

The exponent a, approaches a = 2 (the Kolmogorov
scaling) asymptotically for increasing Reynolds number
in shear-driven turbulence, as shown in [5, 6]. In Table
I we observe that for the 40-cm experiment, runs with
baffles have higher exponents a than the smooth design,
indicating that a tripped boundary layer and pressure
drop across the baffles are improving the angular mo-
mentum transport. This is well documented by van den
Berg et al. [6] and Zhu et al. [22] in which they showed
in a Taylor-Couette experiment how wall roughness facil-
itates transport until the Kolmogorov scaling (in which
viscosity dependence is eliminated) is reached, leading
to purely pressure drop dominated flows. It is also im-
portant to mention that before the Kolmogorov scaling
regime where the exponent converges to 2, there is a tran-
sition region where the exponent could be higher than 2
for an intermediate range of Reynolds numbers as is well

TABLE I: Power law fit of the form G∞ = bRea + c of
the plots in Figs. 6 and 7 and Taylor-Couette flows in

[48].

Experiment a b c

3-m (Γ = 0.35)[14] 1.89 0.003 3.3× 10
10

Smooth 1.58 0.044 2.6× 10
9

Straight 10% 1.77 0.18 2.8× 10
9

Chevron scoop 10% 1.80 0.11 3.1× 10
9

Chevron wedge 10% 1.95 0.0093 3.3× 10
9

Straight 5% 1.74 0.16 2.4× 10
9

Chevron scoop 5% 1.81 0.047 2.6× 10
9

Chevron wedge 5% 1.89 0.012 2.7× 10
9

Alpha scoop 5% 2.11 0.00068 2.7× 10
9

Alpha wedge 5% 2.17 0.00035 3.2× 10
9

Taylor-Couette (Γ = 0.72) [48] 1.85 0.03 1.0× 10
8

known in boundary layer theory for the case for rough
boundary pipe flows. See for instance [49].

The prefactor b in Table I is a geometry-dependent fric-
tion factor associated with the gap between the sphere
boundaries as indicated by [14] and it is expected to be
lower for wider gaps. The radius ratio for Earth-like
spherical Couette is Γ = ri/ro = 0.35 and for Taylor-
Couette used in [48] Γ = 0.7245. We would expect the
prefactors b in the 40-cm experiment to be of the same
order of 3-m, since the radius ratio is the same, but this
is not the case. They all vary between the values of 3-
m and Taylor-Couette, straight being higher than scoop,
and scoop higher than wedge in each baffle configuration
and size. Also, the prefactors in 10% baffles are higher
on average than the 5% baffles (except for wedge 10%),
which is consistent with [14].

We extrapolate these power laws into the parameter
space of the 3-m experiment, (Fig. 7) to estimate torque
and power demands from these baffle designs, which are
important design data. First, we notice that the power
law for the smooth case seems to align with that of the
3-m experiment at high Re; although the slope is smaller,
the magnitude is very close relative to the other projec-
tions. This might indicate that the inner sphere of the
3-m experiment is already affected by its slight rough-
ness that is higher than that of the smooth sphere of the
40-cm. It might also indicate that for the parameters
in the 40-cm experiment we have not reached the same
regime observed in the power law for 3-m. [14]. This is
consistent with the fact that the exponent a is the lowest
among all the designs in 40-cm.

We can see in Fig. 7 that the extrapolated torque for
all 10% baffles is approximately 8 times bigger than 3-m
at Re ≈ 3.0 × 107, which is the highest Re recorded for
this measurement in 3-m. Also, the extrapolated torque
for the chevron and straight 5% baffles at this Re is 4
times bigger than 3-m. Nevertheless, the 5% height al-
pha baffles show the highest torque projection among all
of them, even compared to the 10% baffles. Since the fit-
ting exponent a is greater than 2 at the 40-cm Reynolds
number, it is expected that the projection into 3-m pa-
rameter space may be overestimated.

Even though we only have three data points, there
seems to be linear proportionality between the torque
and the height of the baffles at high Re. This is not the
case for Taylor-Couette flows discussed in [23] where the
relation between these two parameter seems to be closer
to quadratic. A linear dependence is consistent with the
increase of surface area of the baffles. However, more
measurements for different heights of baffles would be re-
quired for a better understanding of the dependence in
spherical Couette flows.

2. Rossby number dependence

When we differentially rotate both spheres, the Corio-
lis forces shape the flow, significantly changing the states.
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FIG. 8: Rossby number dependence of the measured
inner sphere torque. The magnitude of the torque at a
given Ro and Re is normalized by G∞(Re), the torque
expected at that Reynolds number if the outer sphere
were not rotating. Error bars for straight 10% are
shown in the range of bistable states are representative
for all baffles Ro−1 > 0.6. The dashed line indicates the
location of the peak for maximum relative dimension-
less torque in the 40-cm experiment with smooth inner
sphere.

The Rossby number (defined in section IV) characterizes
the differential rotation and from past work determines
which dynamical state is observed. In order to isolate
the dependence of the dynamics on the Rossby number,
we normalize the dimensionless torque by G∞. Previous
work by Zimmerman et al. [14] and Paoletti and Lath-
rop [48] found that the torque, for both Taylor-Couette
and spherical Couette flows, can be factorized at high
Reynolds number (Re ≈ 106) as

G(Ro,Re) = f(Ro)G∞(Re), (6)

where G∞(Re) is the torque with outer sphere stationary,
i.e. Ro = ∞. Then G/G∞ is a function of Ro only, and
the torque G scales like G∞(Re) for a fixed Ro 6= ∞.

The form of G/G∞(Re) in Fig. 8 is similar to the one
in 3-m [14] and in Taylor-Couette flows [48]. The main
difference is the amplitude and location of the peaks for
maximum relative torque. For 10% chevron scoop and
10% straight baffles the amplitude is more than three
times the scaled peak torque in the 3-m system (see Ta-
ble II for actual values). This shows a much stronger
forcing for differential rotation relative to a stationary
outer sphere and indicates that the coupling between the
spheres is significantly higher with baffles. We can also
see that the amplitude of the peak for chevron wedge
is the lowest of the 10% baffle designs. This same pro-
portion between these designs prevails for straight and
chevron 5%; however, the amplitude changes. This indi-
cates a lower coupling with lower baffle height, a similar
result to that of Taylor-Couette flows [22]. Less obvious
are the reasons for the difference in torque between wedge
and scoop modes for the same baffle design: the peak am-
plitude for scoop mode is higher than wedge mode. The

TABLE II: Location and amplitude of the maxima in
Fig. 8 and Taylor-Couette flows in [48].

Experiment G/G∞ Ro−1

3-m (Γ = 0.35) [14] 1.20 -0.05
Smooth 1.04 -0.07
Straight 10% 2.86 -0.25
Chevron scoop 10% 3.10 -0.25
Chevron wedge 10% 2.27 -0.21
Straight 5% 2.21 -0.16
Chevron scoop 5% 2.13 -0.16
Chevron wedge 5% 1.77 -0.14
Alpha scoop 5% 2.53 -0.14
Alpha wedge 5% 2.23 -0.16
Taylor-Couette (Γ = 0.72) [48] 1.25 -0.25

same behavior happens for alpha baffles of 5% height, but
if compared to the other 5% models, it is higher than all
of them. Additionally, alpha scoop 5% is even higher
than chevron wedge 10%. This suggests a more effective
coupling at the expense of less absolute torque, i.e., a
smaller G∞ for the case of alpha baffles.

Another interesting feature is the location of the rela-
tive torque maxima, as can be seen in Table II. It moves
to lower inverse Rossby numbers as we increase baffle
height. This is expected as indicated in [14, 50] where a
reduction in the gap would imply an amplification of the
fluid engagement, or coupling between the boundaries.
With this, a lower rotation rate in the inner boundary is
required to match the fluid drag and angular momentum
transferred to the fluid from the outer boundary, corre-
sponding to a reduction in the inverse Rossby number.
This reduction of the gap also explains why this max-
imum is located at lower values for spherical Couette
versus Taylor-Couette flows. The location of the max-
imum also changes for wedge versus scoop modes. All of
these differences suggest a very rich dynamics happening
for different models of baffles that required more than
global measurements (like torque) to be described, and
that motivated the velocimetry studies in section VB.

For Ro > 0 we observed bistable states that happen
between 0.6 < Ro−1 < 1 in Fig. 8 in the region that also
sees a large increase torque. The same behavior happens
for all baffle designs. These results are similar in location
and amplitude to bistable states in the 3-m experiment
that are characterized in more detail in [18]. The time dy-
namics can be described as a spontaneous jump between
two torque values: a slow decay into the lower torque
state (named L) followed by a jump into a higher torque
state (H). The timing between these states, and the time
spent in each one of them, as reported in [14, 18], depends
highly on the Rossby number. This bi-stability was more
evident in torque fluctuations with baffles relative to the
smooth design, presumably because the engagement of
the boundaries with the flow is higher.
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FIG. 9: Radial velocity in the equatorial plane for all
baffle designs. In color map: azimuthal average of the
velocity in the radial direction, normalized by the tan-
gential velocity at the inner sphere equator, as a func-
tion of the normalized radius (left vertical axis) for dif-
ferent Rossby number (horizontal axis). Warm colors
mean velocity in the direction outward from the inner
sphere and cool colors inward. The symbols show the
radial average of each of the columns in the color plot
(indicated in the right vertical axis) as a function of
Ro−1. The vertical dashed lines indicate the location
of the maximum relative torque G/G∞ for each baffle
design.

B. Velocimetry

In this section we will show results of the velocime-
try measurements performed using PIV techniques in the
equatorial and meridional plane of our 40-cm spherical
Couette apparatus. For the velocimetry in the equato-
rial plane, we focused on the dependence of the velocity
as a function of radius since, by symmetry, we expect cer-
tain invariance of the velocity field as a function of the
azimuthal angle ϕ. For our study, we only focused on
time averages, so wave motion was not analyzed in our
measurements, although the presence of waves in spheri-
cal Couette setup is well known (see for example [51–53]).
For the meridional plane we inspected the dynamics at
constant Rossby numbers corresponding to the maximum
G/G∞ for reasons we will explain in the next section.

Recordings of 1 s of duration were performed using a

FIG. 10: Azimuthal velocity in the equatorial plane for
all baffle designs. In color map: azimuthal average of
the velocity in the azimuthal direction, normalized by
the tangential velocity at the inner sphere equator, as a
function of the normalized radius (left vertical axis) for
different Rossby number (horizontal axis). Cool colors
mean velocity in the opposite direction of the rotation
of the inner sphere and warm colors mean moving in
the same direction. The symbols show the radial aver-
age of each of the columns in the color plot (indicated
in the right vertical axis) as a function of Ro−1. The
vertical dashed lines indicate the location of the maxi-
mum relative torque G/G∞ for each baffle design.

high speed camera at 1000 Hz. The rotation rate of the
inner sphere is between 10-15 Hz around the maximum
torque area for all the baffle designs, which means 10-15
rotations of the inner sphere per each 1-s movie taken.

1. Equatorial Plane

The dimensionless torque measurements in section VA
show very different dynamics for each design as a func-
tion of Ro−1, mainly by the location and amplitude of
the maximum relative torque peak (see Fig. 8). This
point of maximum relative torque has shown the highest
amplification of magnetic field in the cylindrical radial
direction [14] for the liquid sodium flows. We performed
velocimetry for a range of Ro values around the peak
with Re ≈ 106. We normalized the velocities by the tan-
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gential velocity of the inner sphere at the equator, Ωiri,
where ri is the radius of the inner sphere, and Ωi its an-
gular frequency. We also define the normalized radius as
ρ = (r − ri)/l, where l = ro − ri = 12 cm is the gap
between the spheres.

In Fig. 9 and Fig. 10 we show color plots of the nor-
malized radial velocity as a function of the normalized
radius ur(ρ) and the normalized azimuthal velocity as a
function of the normalized radius uϕ(ρ). We have also
shown in each graph the average velocity only as a func-
tion of Ro−1. Additionally, the location of the maxima
relative torque for each baffle design (shown in Fig. 8
and listed in Table II) is indicated with a dashed line on
each of the plots. Since on average the bistable states
occur on a time scale bigger than the camera recording
time lapse, we have omitted velocity measurements for
the Ro where bistability occurs.

Looking at the smooth case first, we notice that the
velocity in the azimuthal direction (see Fig. 10) is much
higher on average than the radial velocity (see Fig. 9).
Near the region of maximum torque the azimuthal ve-
locity reaches a minimum and there is an equatorial jet
radially outward. This equatorial jet strengthens as we
approach to the maximum torque peak. The radial ve-
locity seems irregular and fluctuating in comparison to
the azimuthal component. This could be due to the low
values of the radial velocities compared to the azimuthal
velocities, or because of dynamics that are longer term
than our 1 s measurements. The Rossby number for the
formation of this jet coincides with the Rossby number
for the peak of highest amplification of the radial mag-
netic field in the 3-m system, which reinforces the im-
portance of the mean flows in the amplification process
[24].

For the straight 10% baffles, we see a significant in-
crease in the maximum relative radial velocity with re-
spect to the smooth design. This is by itself a very impor-
tant result: baffles have increased the coupling between
the inner sphere and the fluid, resulting in a better radial
transfer of angular momentum. We reiterate that the
normalization is by the tangential velocity of the inner
sphere at the equator, so this increase is not related to the
angular velocity of the spheres, rather to the interaction
between its boundary and the flow. The equatorial jet
seems more stable and uniform here than in the smooth
design, and we can see that it spreads out through the
entire radius at the peak of maximum torque.

If we compare this last result with Wicht [43] in Fig.
4, we see that the Rossby number for the equatorial jet
instability (dotted line) coincides with the Rossby num-
ber of maximum torque (dashed line) in the parameter
space. We show one Reynolds number in the color plots
of this section. Measurements done for different Re con-
firm that the Rossby number for the maximum torque
peak does not change significantly with Re for any of the
baffle designs.

For the chevron scoop mode with 10% baffle height,
we see that the general behavior and intensities are very

similar to straight 10% baffles although the equatorial
jet seems more uniform when changing Rossby numbers
around the maximum torque peak. This might be due
to the baffle orientation: if you see Fig. 5, scoop mode
orientation pushes the fluid into the equatorial plane due
to the inclination of the baffles. Additional data in fa-
vor of this hypothesis will be shown in section VB 2. A
similar result as in the previous plots is seen for the az-
imuthal velocity: a lower uϕ for the maximum G/G∞

and an inner-sphere-dominated dynamics in this region.

For the chevron wedge mode with 10% baffle height,
we can see (Fig. 9) that now the radial profile is different
from previous ones: the equatorial jet has very low inten-
sity and has spread in the radial direction. It also looks
non-uniform and there is a negative inward flow around
Ro−1 ≈ −0.5. This shows a different dynamics for this
mode, with a less stable equatorial jet and time scales
slower than 1 s for this regime.

A possible explanation for the lower radial amplitudes
is again the orientation of the baffles that now, in wedge
mode, push the velocity upward from the equator in the
direction of the poles, causing a narrower and weaker
equatorial jet. This might be the reason that the absolute
torque of the wedge mode is higher than scoop mode (Fig.
6): the orientation of the blades pulls the fluid in the
negative radial direction at the equator, creating pressure
gradient unfavorable for the equatorial jet that happens
due to centrifugal forces. This competition between a
centrifugal force and a negative pressure gradient requires
more torque in the inner motor, causing the difference in
the absolute torque plots.

We now proceed to compare specifically 10% baffles
with 5% for the chevron shape, in the second to last row
of Fig. 9 and Fig. 10. There the velocity profiles are very
similar between both baffles heights but the amplitudes
are smaller for the 5% height; hence, the coupling has
reduced with respect to the 10% baffle design as expected.
For wedge mode, the negative circulation and irregularity
in the radial flow is again present, and for chevron scoop
5% we also see a well formed and stable equatorial jet
around the maximum torque region.

Finally for alpha baffles, the results have the same
characteristic peak at maximum torque for the radial ve-
locity with similar amplitudes to the chevron 5% cases,
except for the wedge mode, where we can see now a clear
jet being formed. Although it seems to be more unsta-
ble than the alpha scoop mode, which is consistent with
previous wedge baffle results. We can also observe an
inward flow in the radial plot around Ro−1 = −0.5 as it
was observed for chevron wedge 10%. For the azimuthal
velocity similar behavior to the other baffles and modes
is observed, although now the values near the maximum
torque, i.e. at the minimum azimuthal velocity, seem
to be greater than previous chevron 5% cases, imply-
ing that the coupling with the inner sphere is stronger.
There seems to be a mismatch between the torque peak
(dashed vertical line) and the minimum for azimuthal
velocity for alpha baffles. A similar phenomenon was re-
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FIG. 11: Spherical radial component of the velocity
field (ur) in the meridional plane (r/ro, θ) normalized
by the tangential speed in the inner sphere at the equa-
tor, for different baffle designs and modes. We nor-
malize the radial coordinate by the radius of the outer
sphere r/ro. Warm colors are outward radial flows, and
cold colors are inward radial flows.

ported by Zimmerman et al. [14] in the 3-m experiment,
where they noticed that the minimum of Ω-effect, i.e., a
minimum on the gradient of azimuthal velocity, is offset
from the torque maximum peak.

Besides the different dynamics observed for wedge and
scoop mode in both chevron and alpha designs, the afore-
mentioned features inspired the results obtained in the
next section: near this maximum torque region, the
azimuthal velocity reaches a minimum. According to
Holme [36] the poloidal shear is at a maximum where
the toroidal shear is close to zero, which is consistent with
our observations. This motivated us to perform measure-
ments in the meridional plane; a task we thought would
be very difficult to achieve due to the the high velocities
that rotating fluid experiments normally have in the az-
imuthal direction, i.e. the direction of rotation. With
these low azimuthal velocities at the maximum torque
region, a laser sheet in the meridional plane could illu-
minate particles for enough time to be captured by the
high speed camera.

2. Meridional Plane

We now present results of the velocity field in the
meridional plane (ϕ = const.) at a fixed Rossby num-
ber equal to the corresponding maximum torque for each
baffle design (refer to Table II). Due to the low veloci-
ties in the azimuthal direction at this particular region,
as shown in the previous section, we could have particle
tracks long enough to be detected by the high speed cam-
era. It is important to mention that this still brings a cut-
off for the maximum velocity we can measure: assuming
the width of the laser is 3 mm, the camera records at 1000
fps and that we discard tracks shorter than 4 frames, the
maximum speed we can detect is around 1 m/s, which is

FIG. 12: Meridional component of the velocity field
(uθ) in the meridional plane (r/ro, θ) normalized by
the tangential speed in the inner sphere at the equator,
for different baffle designs and modes. We normalize
the radial coordinate by the radius of the outer sphere
r/ro. Warm color are flows from the north pole toward
the equatorial plane, and cold colors are toward the
pole.

close to the maximum speed we measured on the merid-
ional plane but high enough to not saturate the plots.

Since we fixed Ro, we did a sweep for different
Reynolds numbers to compare the difference in the dy-
namics. Averages between different Reynolds numbers
were performed over the normalized velocity fields only
for those states in which the dynamics was similar
enough; in our case, for 1 × 106 < Re < 2 × 106. Al-
though we only show results for the 5% baffle height de-
signs in this section, we expect 10% meridional plots to
behave similarly but with higher relative velocities given
our results comparing 5% and 10% torque and equatorial
velocity measurements in previous sections.

In Fig. 11 we can see the spherical radial component
of the velocity field (ur) in the meridional plane, as a
function of r and θ, for each baffle design. First, we no-
tice a clear increase in the velocities with straight baffles,
the equatorial jet is stronger by a factor of approximately
2 in the bulk of the jet, and there is a broader area of
inward flow, or recirculation, above it. The main kinetic
energy is stored at the equatorial jet [24, 54], so this in-
crease is by itself a favorable result for dynamo action.
If we now take a look at the results for the chevron de-
sign, we notice that scoop and wedge mode show different
topologies. The radial flows in the chevron scoop mode
are similar to smooth and straight with an equatorial jet
that is more intense than the smooth case but with less
meridional circulation than the straight case. If we now
take a look at the chevron wedge mode, we notice the
equatorial jet is much weaker here, even weaker than the
smooth case, but there is more inward flow above the
equatorial jet. This is consistent with the torque plots in
Fig. 8 where chevron wedge 5% requires less torque to
run at constant speed at maximum Rossby than chevron
scoop 5%. It also agrees with the equatorial plots in Fig.
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FIG. 13: Local time average azimuthal vorticity nor-
malized by the inner angular frequency in the merid-
ional plane (r/ro, θ) for different baffle designs and
modes. We normalize the radial coordinate by the ra-
dius of the outer sphere r/ro. Negative values point out
of the page.

9 that show this difference in the equatorial plane in-
tensities. A very similar result can be observed for the
meridional component of the velocity field of the baffle
designs mentioned above (smooth, straight and chevron)
in Fig. 12: an increase of the intensities when baffles
are added specially with straight baffles and a different
topology in the flows for chevron scoop and wedge.

Alpha baffles combine the stronger coupling observed
in the straight baffles case, with the change in the topolo-
gies due to an asymmetric design (see Fig. 3d). The re-
sults are very promising: we can see that the topology
and intensities of the scoop mode are very similar to the
straight baffles case. For the wedge mode now the equa-
torial jet in Fig. 11 is much wider and intense than the
chevron wedge mode, with values that are on the same
order of magnitude as the scoop mode, with a stronger
recirculation. For the meridional flows we now notice a
negative region above the equatorial planes, which indi-
cates that the flow is going upward in the bulk of the jet,
creating a different topology than the scoop mode. We
also notice a thinner recirculation layer near the outer
sphere boundary and the shaft. Those recirculation lay-
ers likely extend into the region outside the measure-
ment volume. These topologies in the flows are consistent
with the interpretation given before about the orientation
of the blades and the direction of the flow transported:
scoop modes push the flow in the direction of the equato-
rial plane, amplifying its intensity; however, wedge mode
takes it out of the equatorial plane and together with the
centrifugal forces, transfers the energy into the merid-
ional directions. With the alpha baffle designs, we will
gain similar coupling as with straight baffles while dou-
bling the parameter space like with chevron baffles. This
is important for future design considerations in the 3-m
experiment.

As mentioned before, the vorticity in the meridional
plane, combined with the flows in the azimuthal direc-

tion indicate the helicity of the flows in the meridional
planes. Figure 13 shows the local vorticity of the flows
in the meridional plane for all the baffle designs. The re-
gion around the equator for straight, chevron scoop and
alpha scoop with respect to the smooth design, shows
a significant increase compared to other regions of the
meridional plane. Additionally, the region of high vor-
ticity is wider for chevron wedge and alpha wedge and
it is located now at a latitude above the equator, show-
ing even a positive vorticity in the region adjacent to the
inner sphere at the equator level. This positive vortic-
ity region is more evident for alpha wedge mode, and is
consistent with the meridional flows in Fig. 12 that show
a negative meridional velocity in this region. Such re-
distribution of the vorticity can be favorable for dynamo
action [33], by increasing the α-effect in the 3-m experi-
ment and hence reducing the critical magnetic Reynolds
number for dynamo action [34, 37, 38]. Additionally, ac-
cording to some authors [55] having a gradient of helicity
is an important ingredient for dynamo generation. With
alpha wedge baffles we would have a configuration that
allows us to explore this effect in the 3-m experiment.

The properties for the vorticity generated by alpha baf-
fles, combined with the highest values for the averaged
azimuthal velocity shown in section VB 1, suggest that
the alpha design generates the most promising flows for
achieving an enhancement of the helicity in the 3-m ex-
periment.

VI. CONCLUSIONS

We present results on torque scaling and velocimetry of
spherical Couette flows with rough boundaries and com-
pare them with previous work done for smooth bound-
aries. For roughening the inner sphere boundary we stud-
ied four designs of baffles: smooth (no baffles), straight,
chevron and alpha baffles (Fig. 3) with 5% and 10% of
radius height. We observed different power laws in the di-
mensionless torque as a function of the Reynolds number
(Fig. 6) for these different configurations and identified a
difference in the torque for counter-clockwise and clock-
wise rotation of the inner sphere with chevron and alpha
baffles due to their asymmetry. Additionally, the torque
increases with increased baffle height for three different
heights (including smooth case), and it shows a linear de-
pendence rather than a quadratic one, as was reported for
Taylor-Couette flows [23]. For the Rossby dependence of
the torque, we observed a significant increase in the nor-
malized differential torque when adding baffles, which in-
dicates an increase in the angular momentum transport
(Fig. 8). The location of the maximum torque peak also
changes, not only with the baffle height but also when
comparing wedge mode with scoop mode in the case of
chevron and alpha baffles. This is evidence of the change
in the dynamics of the flows for these two modes. Ve-
locimetry in the equatorial plane (Fig. 9) shows a fully
extended equatorial jet that reaches the outer bound-
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ary when the torque reaches its maximum relative value.
This location in the parameter space matches the equato-
rial jet instability observed by Wicht [43]. In this region,
the azimuthal velocity is at its minimum value through-
out all the Rossby numbers measured. This region of
maximum normalized torque seems to be a good can-
didate for the generation of dynamo action in the 3-m
experiment, since it has shown maximum radial ampli-
fication of the applied magnetic field [14]. Velocimetry
measurements of the meridional section at this maximum
torque Rossby number showed a significant amplification
of the poloidal flows and these results are in agreement
with previous equatorial velocimetry measurements (Fig.
11 and Fig. 12). A difference in the topology of the flows
generated was observed in both the equatorial and merid-
ional sections. The results from this work may be useful
for understanding the changes in the dynamics that will
occur in the 3-m experiment when the final modifications
are performed. The torque scaling information (Fig. 7)
in particular will be fundamental for deciding on the ra-
dial height of the baffles and the motor specifications that
will be needed to achieve the Rossby and Reynolds num-
bers of interest, which are at least as high as the current

configuration in the 3-m experiment. The enhancement
of the flows by a more effective coupling with the inner
sphere in both the equatorial and the meridional plane,
together with the two different flow topologies observed
when adding alpha baffles, seem to be a promising op-
tion for our 3-m experiment to effectively increase our
chances of obtaining magnetic dynamo action; not only
by increasing the radial velocity and the helicity injected
into the flow but also by doubling our available parameter
space.
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