
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Numerical investigation of multistability in the unstable
flow of a polymer solution through porous media

Manish Kumar, Soroush Aramideh, Christopher A. Browne, Sujit S. Datta, and Arezoo M.
Ardekani

Phys. Rev. Fluids 6, 033304 — Published 25 March 2021
DOI: 10.1103/PhysRevFluids.6.033304

https://dx.doi.org/10.1103/PhysRevFluids.6.033304


Numerical investigation of multistability in the unstable flow of a polymer solution
through porous media

Manish Kumar,1 Soroush Aramideh,1 Christopher A. Browne,2 Sujit S. Datta,2 and Arezoo M. Ardekani1

1Department of Mechanical Engineering, Purdue University,
585 Purdue Mall, West Lafayette, Indiana 47907 USA

2Chemical and Biological Engineering, Princeton University, Princeton, NJ 08544

The flow of viscoelastic polymeric fluids through porous media is common in industrial applica-
tions such as oil recovery and ground water remediation. Polymeric stresses can lead to an elastic
induced instability of the flow. Here, we numerically study the flow of a polymeric fluid in a channel
consisting of multiple diverging and converging physical constraints, mimicking the pore bodies and
throats of an ordered porous medium. Inertial stresses here are negligible, and instead the flow is
dominated by elasticity and viscosity; their relative effects are characterized by the Weissenberg
number. There is a critical Weissenberg number below which eddies appear on the top and the
bottom of each pore. Above the critical Weissenberg number, eddies form in different regions of the
pores and multiple distinct unstable flow structures occur. The stretched polymeric chains inside
the pore facilitate eddy formation, whereas relaxed chains lead to eddy free regions. We quantify the
eddy area and correlations between the flow patterns of different pairs of pores, as well as polymeric
stress and pressure drop across the tortuous channel to better understand the mechanism behind
the observed flow patterns.

I. INTRODUCTION

Polymers can impart elastic properties to fluids, producing non-Newtonian spatiotemporal flow features [1–5]. Under-
standing polymer flow in porous media is of particular importance for enhanced oil recovery (EOR)[6] and groundwater
remediation [7, 8], where polymer additives have improved the displacement of trapped nonaqueous liquids for collec-
tion downstream [9–14]. The flow of viscoelastic mucus through arrays of pillars (2D porous media) is also important
for the transport of gametes and embryos in the reproductive track [15] and the trapping of inhaled dust particles in the
airways of lungs [16]. In confined geometries, the surrounding porous matrix strongly affects the spatial and temporal
features of the flow [17–21]. For example, the presence of polymers can induce strong velocity fluctuations, locally
increasing viscous forces, and subsequently promoting the displacement of trapped liquids [22–26]. Understanding
the spatiotemporal details of these flow fluctuations is important for effective EOR and groundwater remediation, but
also for other emerging applications such as controlling mixing and flow in lab-on-a-chip devices, filtration [27], and
extrusion of polymeric resins during 3-D printing [28, 29]. However, the onset of flow instabilities and the resulting
flow features are highly sensitive to polymer properties, flow geometry, and imposed flow conditions [30–32]. This
sensitivity challenges experimental observations, leaving many open questions on how to control the flow structure
for fluid recovery [1, 23, 24, 33–39].

Between the solid grains of a porous matrix are large bodies of fluid-filled void space, connected to neighboring
pore bodies by relatively small throats. These bodies and throats are often modeled with a series of expansions and
constrictions [17, 40–42]. Upstream of constrictions, persistent recirculating eddies often form [43–48] to minimize
the extensional stresses associated with polymer chain alignment [49–53]. Polymers are elongated by these curved
streamlines, relaxing on a characteristic timescale λ. For sufficiently high shear rates γ̇, polymers are advected faster
than they relax, producing strong flow fluctuations at high Weissenberg numbers Wi ≡ λγ̇ [54–58]. This fluctuating
flow is sometimes called “elastic turbulence” because its features are often reminiscent of traditional inertial turbulence
[55–57], despite the absence of inertia, characterized by arbitrarily small Reynolds numbers Re� 1.

Microfluidic experiments have revealed a variety of complex spatiotemporal flow features produced by these insta-
bilies [45, 46, 59–75]. However, in 3-D porous media—like those encountered in EOR and groundwater remediation—
the role of higher connectivity, elevated disorder, and successive pores are expected to significantly alter the flow
[21, 33, 34, 76–82]. In particular, the accumulation of stresses as polymers traverse successive pores can produce
spatial variation in the dominant flow features [43, 44, 63, 64, 83, 84]. In the interesting case of dense pores, polymers
are advected faster than they relax, kinetically trapping polymers within each pore. Surprisingly, this trapping can
produce a bistability in the flow, where each pore switches stochastically between two distinct flow structures: an
eddy-dominated structure, and an eddy-free structure [47]. The emergence of multiple persistent flow structures is
consistent with some theoretical predictions [45, 85, 86], and is hypothesized to occur when polymers within a pore are
locally kinetically trapped in an extended or coiled conformation respectively, and hence when polymers’ advection
time scale is smaller than relaxation time scale. However, the details of how these structures arise are unclear, and the
role of spatial and temporal correlations between pore-scale flow structures are still largely unknown. Despite advances
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in imaging single-polymer conformations [2, 64, 87–94], microscopic flow details remain hard to access experimentally
in highly unstable flow.

Here, we uncover the underlying physical mechanisms of this multistability using numerical simulations. We are
able to directly probe the local stress fields, elucidating the physical mechanisms underlying flow structures. We
further observe a new, relatively rare flow structure, where eddies transiently appear in the center of pores, prompting
new experimental investigations. Finally, we probe spatial correlations on shorter time scales and longer length scales
than possible experimentally, showing that weak positive correlations in flow structures can persist for many pores.
These results help elucidate how the local accumulation of extensional stresses contribute to the formation of various
persistent flow structures in unstable polymer solution flow. Understanding and controlling these multistable flow
structures may aid the application of these flows to EOR, groundwater remediation, lab-on-a-chip devices, filtration,
and 3-D printing technologies.

II. PROBLEM SETUP

FIG. 1: The geometry used for numerical simulations. D = 1.6 mm is the diameter of the pillar and W = 2 mm is
the width of the channel. The region enclosed with the square box depicts a sample pore.

In this work, we investigate the flow of viscoelastic fluid though a pore constriction array by performing two dimen-
sional numerical simulations. The geometry used in the simulation to investigate the elastically-induced instability is
a channel of width W with wall-centered pillar obstructions with diameter D (Fig. 1). The center-to-center separation
of these pillars in the x-direction is varied from ls = W for 10 closely spaced pores (Fig. 1) to ls = 8W for two widely
spaced pore throats (Fig. 5a). We also study the flow behavior in a single pore throat channel made of a single
pair of wall-centered pillars (Fig. 2a). The Reynolds number (Re) and Weissenberg number (Wi) are the relevant
dimensionless numbers. Re represents the ratio of inertial to viscous stresses and is given as Re = ρUtLt/η, where
η is zero-shear rate viscosity, ρ is fluid density, Ut is the average fluid velocity through the throat of the pore and
length scale Lt is the half-width of the pore throat [95]. Wi represents the ratio of elastic to viscous stresses and has
been defined as Wi = N1/2τw, where N1 is the first normal stress difference and τw is the shear stress. To estimate
Wi, we use a planar rectilinear flow of a shear-thinning fluid obeying the FENE-P constitutive model through a slit
of width same as the width of pore throat [95] and calculate Wi corresponding to the shear stress at the wall of the
channel [96]. We use the time required to inject a single pore throat volume fluid as the characteristic time scale,
tpv = Vpv/Q, where Vpv = DW − πD2/4 is the pore throat volume per unit depth and Q is the volumetric flow rate
per unit depth of the channel.

III. GOVERNING EQUATIONS

The transient flow behavior of the incompressible fluid is governed by the conservation of mass and momentum:

∇ · u = 0, (1)

ρ

(
∂u

∂t
+ u · ∇u

)
= −∇p+∇ · τ , (2)
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where u, p and τ are the flow field, pressure field and total stress tensor, respectively. The stress tensor τ consists
of solvent stress τs and polymeric stress τp, τ = τs + τp. The solvent stress tensor, τs, can be obtained as τs =
ηs(∇u+∇uT ), where ηs is the solvent viscosity. We use the FENE-P constitutive equation to calculated the polymeric
stresses [76, 97]:

τp +
λ

f

∇
τ p =

aηp
f

(∇u +∇uT )− D

Dt

(
1

f

)
[λτp + aηpI], (3)

where λ is the relaxation time of the polymer, ηp is the polymeric contribution to zero-shear rate viscosity η = ηs+ηp,

I is identity tensor and D
Dt is the material derivative. Function f is given as:

f(τp) =
L2 + λ

aηp
tr(τp)

L2 − 3
, (4)

where a = L2/(L2 − 3) and parameter L2 = 3R2
0/R

2
e measures the extensibility of the polymer chains [96, 97]. R0 is

the maximum allowable length of the polymeric chain and Re characterizes the equilibrium length of the chain. A
typical range of the parameter L2 found in the literature for FENE-P model is 10-1000 [76, 95, 97, 98] and FENE-P
model reduces into an Oldroyd-B constitutive model in the limit of L2 →∞. Operator ∇ used in equation 3 represents
the upper convective time derivative and is given by:

∇
τ p =

Dτp
Dt
− τp · ∇u−∇uT · τp. (5)

The numerical simulations are performed using a finite volume model using an open-source framework OpenFOAM
[99] integrated with RheoTool [100]. The equations are discretized using the finite volume method and the log-
conformation approach has been used to calculate the polymeric stress tensor with higher accuracy and robustness.
The relation between the polymeric stress tensor and conformation tensor is given as:

τp =
ηp
λ

(feΘ − aI), (6)

where Θ is the logarithm of conformation tensor. The details of the numerical methodologies and the code validations
can be found here [100, 101]. In our simulations, we change the relaxation time (λ) from 0.02s to 0.5s to change
Wi, while keeping ρ = 1 kg/m3, ηp = 0.99 Pa.s, ηs = 0.01 Pa.s, L2 = 625 and volumetric flow rate per unit depth
of the channel Q = 16.8 mm2/s constant throughout the study. The width of the pore throat is 2Lt = 0.4 mm and
the average fluid velocity through the pore throat (Ut) is given as Ut = Q/2Lt = 42 mm/s. These parametric values
of fluid lead to Wi ≈ 10− 47. The Deborah number (De = λUt/ls) can also be defined for 2-throats and 10-pores
channels. De ranges from 0.05− 1.3 for 2-throats channels and 0.42− 10.5 for 10-pores channels in the present study.
The polymer chains do not have sufficient time to relax before reaching to the next pore in 10 closely placed pores
as De > 1 for cases with Wi > 18 and hence the interactions among the pores are expected. The effect of inertia
in our study is negligible as Re is very small, Re ∼ 10−5. The elasticity number, El = Wi/Re ∼ 106, can be defined
to characterise the relative importance of elasticity and inertia. In the present study, the elastic forces dominate
over the inertia as El(∼ 106) is very large. Therefore, the effect of the change in elastic modulus of fluid due to the
change in λ does not have any significant effect on the results. We use tpv as the characteristic time scale in the
present study. tpv = 0.07s is constant due to the fixed flow rate. We performed simulations for dimensional time
t∗max = 1.0 s, which corresponds to tmax = t∗max/tpv ≈ 14 and varies from t∗max/λ = 50 at Wi = 10 to t∗max/λ = 2 at
Wi = 47. t∗ is dimensional time and t = t∗/tpv is dimensionless time. The flow converges to steady state for t > 0.2
at Wi = 0.3 (almost Newtonian fluid) and for fluctuating flows instability becomes fully developed for t > 1 (see
Appendix, VII A). We use time interval t = 2− 14 to calculate the statistics. Here, the maximum simulation time
(tmax ≈ 14) is sufficient for the convergence of the statistics. We use 1/tpv to scale the frequency and viscous stress
ηUt/Lt to normalize polymeric stresses and pressure. In the next section, we study the flow field and elastic-induced
instability in the above mentioned geometry (Fig. 1) for three different cases: a single pore throat (Sec. IV A), two
widely separated pore throats (Sec. IV B) and ten closely spaced pores (Sec. IV C).

IV. RESULTS AND DISCUSSION

A. Single pore throat

To investigate the polymeric flow instability in the porous media, we start our study with a relatively simple
geometry. Therefore, first we consider a channel with a single pore throat and study the dynamics of polymeric fluid
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(a) (b)

(c) (d)

FIG. 2: (a) The streamlines depicting the eddies formation in the upstream of a single throated channel at Wi = 26.
The contour represents the trace of polymeric stress tensor in the channel. (b) x-component of velocity along the
length of channel close to the wall (at a distance ∆y/W = 0.015 from the wall, where ∆y is the height of first grid
element next to the wall). (c) The instantaneous and time-averaged length of eddies at different Wi in the upstream
of a single pore channel. The time is non-dimensionalized with time scale tpv. (d) Power spectral density (PSD) of
the normalized eddies’ length (Leddy/W). Frequency is normalized with 1/tpv.

flow in the channel. Eddies appear upstream of the throat (supplementary video 1). At Wi < Wicr these eddies form in
both top and bottom regions. However, above a threshold Wi strong spatial and temporal fluctuations in flow velocity
occur, leading to fluctuations in the position of eddies. Fluctuations are largely suppressed downstream of the pore
throat, and eddy formation is weak [46, 47]. We can link these flow features to underlying polymer conformations by
computing the polymeric stress tensor (Fig. 2a). The trace of polymeric stress tensor (tr(τp)) physically represents the
elongation of the polymeric chains in the solution, where the higher value of trace corresponds to the larger stretching
of the chains. In the high stress regions polymer chains are highly stretched, obstructing the fluid flow crossing the high
stress regions and facilitating the flow separation (i.e., formation of eddies). In the upstream, the streak of large tr(τp)
are detached from the wall and goes into the middle of the constriction, indicating high polymer elongation, which
drives eddy formation upstream of the constriction. The low value of tr(τp) within the upstream eddy indicates that
eddy formation reduces polymer stress (Fig. 2a). Polymeric chains inside the channel in the downstream of the throat
are relaxed as the high polymeric stress regions occur close to the walls (Fig. 2a), which facilitates the divergence of
the flow inside the channel and makes downstream region eddy free. Downstream of the constriction there appear to
be waves of higher polymer extension being advected further downstream. To quantify the length of eddies (Leddy)
upstream of the throat, we plot x-component of velocity (Ux) at a distance ∆y/W = 0.015 (∆y is the height of first
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grid element next to the wall) away from the wall (Fig. 2b). Leddy is the length measured from the first stagnation
point (left most of the throat) to the start of the throat (i.e. x = 0). Thus, Leddy covers all the upstream eddies shown

in Fig. 2a. If eddies appear on both top and bottom regions, Leddy = max(Ltop
eddy,L

bottom
eddy ). We have plotted Leddy in

the upstream of the pore throat at different Wi (Fig. 2c). The instantaneous length of eddies fluctuates with time.
However, the time-averaged length of eddies along with the intensity of fluctuations increases as Wi increases (Fig.
2c). These findings are consistent with the experimental observations [43, 45, 47, 48, 50–53, 68, 83, 102–105].

The power spectral density (PSD) of the normalized instantaneous eddy length depicts the strength of variations
of Leddy at different frequencies (Fig. 2d). The dimensionless frequency spectrum of the fluctuation of Leddy is in the
range of 0-9 (Fig. 2d). The PSD of smaller frequencies is larger than that of higher frequencies. The PSD of larger
frequencies increases with Wi, which shows the increase of temporal fluctuations of Leddy with Wi. We also study
the statistics of Leddy at different Wi in a single throated channel (Fig. 3a and 3b). The probability distribution of
eddies’ length (Leddy) shows that the range of Leddy increases with Wi (Fig. 3a). We have plotted the mean (µ) and
standard deviation (σ) of normalized eddies’ length (Leddy/W) to further quantify the range of eddies’ length (Fig.
3b). The standard deviation monotonically increases with Wi, however the slope of σ changes between Wi = 26− 30.
Therefore, we define Wicr = 28± 2 as the onset of instability in a single throated channel. Fig. 3b also shows that
the mean (µ) of Leddy increases with Wi. Wicr based on the change in the slope of σ is simply a choice made that
does not influence any of the interpretations, and a different choice made by defining Wicr as the change in the slope
of µ gives similar Wicr values.

(a) (b)

FIG. 3: (a) Probability density function of dimensionless eddy length (Leddy/W) in a single throated channel. (b)
Mean (µ) and standard deviation (σ) of normalized eddies’ length.

B. Two widely separated pore throats

After analyzing the flow dynamics in a channel with a single pore throat, we consider a channel with two widely
separated pore throats (ls = 8W) (video 2). The eddies in front of each throat are unstable and the strength of
fluctuations increases with Wi (Fig. 4). Similar to the single throat channel, the detachment of a streak of large
tr(τp) from the wall leads to eddy formation in the upstream of each throat, whereas high tr(τp) close to the wall
corresponds to eddy free region downstream of the throat (Fig. 5a). We also observe the waves of higher polymer
extension being advected further downstream of each throat. We do not find any strong correlation between the
length of eddies in the upstream of pore throats (Fig. 5b). However, we note that the time-averaged length of eddies
upstream of first pore throat is slightly larger than that of the second pore throat (Fig. 4). To quantify instantaneous
correlation between Leddy of first and second throat, we define a correlation function f1,2 as:

f1,2 = 1− 2|(Leddy)1 − (Leddy)2|
max((Leddy)1, (Leddy)2)

, (7)
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(a) (b) (c)

FIG. 4: The instantaneous and time-averaged length of eddies in the upstream of throat-1 and throat-2 at different
Wi of a double throated channel. Time is normalized with volumetric flow time scale tpv.

(a)

(b) (c)

FIG. 5: (a) Streamlines and trace of polymeric stress tensor in a channel with two throats at Wi = 34. (b) The
correlation between instantaneous eddy lengths of throat-1 and throat-2 at Wi = 34 in a channel of two pore
throats. (c) Instantaneous f1,2 and time-average < f1,2 > value of the correlation function between the eddy of
throat 1 and throat 2 at Wi = 34.

where f1,2 → 1 corresponds to similar eddies upstream of both throats, whereas f1,2 → −1 implies maximum difference
between the length of eddies (Fig. 5c). The polymeric stress relaxation downstream of the first throat (except in the
region very close to the wall, where the polymer is strongly stretched) can hinder the eddy formation upstream of the
second throat (Fig. 5a). Due to large separation between the throats (De < 1), the effect of the first throat on the
eddy formation upstream of the second throat is small. This encourages the study of closely located throats (De > 1),
where high polymeric stress regions formed by one throat can easily interact with that of neighboring throat. As
Wi is increased, the enhanced stretching of polymers leads to the formation of longer eddies. The difference between
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the average length of eddies upstream of first and second throats also increases with Wi (Fig. 4), because the high
polymeric stress region downstream of first throat has stronger impact on the eddies upstream of second throat as Wi
increases.

(a) (b) (c)

FIG. 6: Power spectral density of normalized eddies’ length (Leddy/W) at (a) Wi = 26, (b) Wi = 34 and (c) Wi = 42.

We have also plotted the power spectral density of the normalized eddy length in Fig. 5 to visualize the fluctuations
frequency spectrum. Similar to the single throated channel, the PSD of Leddy in the double-throated channel also
increases with Wi, which corresponds to an increase in the fluctuations of Leddy with Wi. Fig. 7a depicts the
probability density function (PDF) of eddies’ length in the channel of two widely separated throats. We quantify the
standard deviation (σ) and mean (µ) of Leddy in Fig. 7b. Both, σ and µ increase with Wi. We consider Wicr = 28± 2
as the threshold of the instability as the slope of σ changes between Wi = 26− 30.

(a) (b)

FIG. 7: (a) Probability density function of dimensionless eddy length in two widely separated throats channel. (b)
Mean (µ) and standard deviation (σ) of normalized eddies’ length.

C. Ten closely located pores

The study of single and double throated channels reveal the eddy formation on the upstream of the throat and the
eddy free region downstream of the throat. These two contradictory behaviors compete in the region enclosed between
closely located throats (i.e., pores) and determine the flow pattern inside the pore. Here, we study the dynamics of
flow of the polymeric fluid inside 10 identical closely (ls = W) interconnected pores (Fig. 1). For a Newtonian fluid,
stable eddies appear on the top and bottom of each pore (Appendix, VII B). At Wi < Wicr, the flow of polymeric fluid
inside the pores forms eddies on the top and bottom of each pore (see supplementary video 3), whereas at Wi > Wicr,
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(a)

(b)

FIG. 8: (a) Instantaneous streamlines in a channel of 10 closely interconnected pores at Wi = 18 and dimensionless
time, t ≈ 6. (b) Instantaneous streamlines in a channel of 10 closely interconnected pores at Wi = 34 and
dimensionless time, t ≈ 10.

the eddy on the top as well as bottom of the pores collapse and reform (supplementary video 4). At Wi = 18(< Wicr),
all the pores in the channel have a similar eddy pattern (Fig. 8a). Fig. 8b depicts the snapshot of streamlines across
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the pores at Wi = 34(> Wicr). The pattern of polymeric fluid flow inside the pore at Wi = 34 can be divided into 4
distinct types (Fig. 8b): (1) eddies on both top and bottom regions of pore (i.e., pore 8), (2) eddy free bottom region
of pore (i.e., pore 7), (3) eddy free pore (i.e., pore 9) and (4) eddy free top region of pore (i.e., pore 6). These patterns
are unstable and interchange frequently (video 4). Often the size of eddies at Wi > Wicr, when the eddies appear
on both top and bottom of the pore (pore type-1), is different (i.e., pore 2). These coherent flow structures (i.e.,
multi-stability) (Fig. 8b), that are persistent in time despite the underlying unstable flow, have been also reported in
experiments [47].

FIG. 9: The snapshot of the trace of polymeric stress tensor at (a) Wi = 18, t ≈ 6 and (b) Wi = 34, t ≈ 10. These
plots of trace of polymeric stress correspond to the streamlines shown in Fig. 8a and Fig. 8b, respectively.

The flow structure in each pore is closely coupled to the underlying polymeric stress field, which controls the local
rheology. For the flow at Wi = 18 < Wicr, the two regions of high polymeric stress in the top and bottom of the pore
correspond to the regions where the flow separated from the wall to form eddies (Fig. 8a and 9a). The polymer stress
profile is similar among the pores at Wi < Wicr (Wi = 18), therefore we see a similar flow pattern in different pores.
At Wi > Wicr, both the polymeric stress field and the velocity field are unstable and vary between pores (Fig. 8b and
9b). The multi-stability of the flow pattern inside the pores at Wi = 34 (Fig. 8b) can be explained with the help of
corresponding high polymeric stress regions shown in Fig. 9b. There are two high stress regions in the middle of the
eighth pore, which coincide with the formation of eddies on the top and the bottom of the pore. Everywhere inside
the ninth pore, the polymeric chains are unstretched (i.e., the high stress regions only occur close to the walls), and
hence the flow diverges in this pore and we do not see any eddy. High polymeric stress occurs in the top region of
the seventh pore, therefore an eddy appears only in the top region of the pore and the bottom region is eddy free.
Conversely, there is a high stress region in the bottom region of the sixth pore, and therefore the eddy forms only in
the bottom region of the pore. Thus, the stretched polymeric chains inside the pore lead to eddy formation, while
coiled chains lead to eddy free regions. This explanation also holds for the other pores in Fig. 8b. Similarly, a streak
of high stress has been observed in the wake of a confined cylinder in a complex fluid [75, 84]. The asymmetric flows
of polymeric fluids in cross-slot geometries also exhibit streaks of high stress [106–109].

Now, we study the time dependent behavior of an individual pore. We quantify the area occupied by eddies on the
top and bottom regions of the second pore separately (Fig. 10a). At Wi < Wicr, we always observe eddies on both the
top and bottom regions of the pore (Fig. 10a). Whereas, the size of both eddies is constant at Wi = 0.3 (Appendix,
VII B). To visualize the time dependent behavior of high polymeric stress regions, we plot the contours of trace of
polymeric stress tensor across the channel at the center of the second pore (i.e., along the red line shown in the inset of
Fig. 10a) in Fig. 10b. The peak value of the trace of polymer stress tensor corresponds to the flow-separation region
(i.e., the distance from the wall of the channel, where streamlines separate from the main flow and form a closed
streamline to make eddies ). The contour of the trace of polymer stress also has two distinct regions well inside the
pore where the maximum value of polymer stress tensor occurs, which further supports the presence of two distinct
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(a) (b)

(c) (d)

FIG. 10: (a) The ratio of eddy to pore area for “pore 2” as a function of time at Wi = 18. Aeddy is the area of
eddies in a particular half region of the pore, while Apore is the total area of the pore. The streamlines inside the
pore represent the flow pattern at Wi = 18. (b) The contour of the trace of polymeric stress tensor across the
channel at the center of the pore (i.e., along the red line shown in the inset of Fig. 10a). (c) The ratio of eddy to
pore area for “pore 2” as a function of time at Wi = 34. The snapshots of streamlines inside the pore represent the
flow pattern at specific time indicated by red solid circles. (d) The contour of the trace of the polymer stress tensor
across the channel at the center of the pore. The upper limit of time in these plots (t = 9.5) corresponds to
t∗/λ = 13.4 for Wi = 18 and t∗/λ = 3.3 for Wi = 34.

regions where flow separation takes place (Fig. 10b).

The flow pattern inside the pore is transient at Wi > Wicr and each pore can exhibit all 4 kinds of flow patterns
discussed earlier. The area of eddies, whether it is in the top region or bottom region of the pore, fluctuates (Fig.
10c). The transition from one flow pattern to another can be easily seen in Fig. 10c. There are eddies on the top
as well as bottom regions of the pore in the beginning of the simulation (flow pattern type-1), but the area of eddies
is not identically equal and the difference between the area of eddies increases with time. Eventually, the eddy in
the bottom of the pore completely disappears and a new flow state with an eddy only on the top region of the pore
(type-2) emerges. Next, both eddies disappear and the pore becomes completely eddy free (type-3). Finally, the eddy
in the bottom region of the pore again reappears and it leads to the formation of a different flow state inside the pore,
where the top region of the pore is eddy free and bottom region has eddy (type-4). Thus, the flow patterns of the
polymeric fluid inside the pore are transient. Other pores in the channel also exhibit similar transitions, though the
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switching between flow states does not show any clear pattern. As Wi (> Wicr) increases, the distinct flow structures
change even more frequently.

The time dependent flow patterns inside the pore at Wi > Wicr (Fig. 10c) can be explained using the trace of
polymeric stress tensor across the channel at the center of the pore (Fig. 10d). Part-I of Fig. 10d depicts that there
are two distinct regions, approximately equidistant from the walls, where maximum values of the trace of polymer
stress occur. This distribution of stress corresponds to a pattern where both top and bottom regions of the pore have
eddies (pore type-1 in Fig. 10c). Part-II has a single region inside the pore with peak value of trace of polymer stress
and it lies on the top region of the pore. The local peak value of trace of polymer stress in the bottom region of
the pore lies close to the wall and is much smaller than the global maximum. This stress distribution represents the
pattern where top region of the pore has an eddy and bottom region of the pore is eddy free (type-2 in Fig. 10c). In
part-III, the streaks of peak tr(τp) in both top and bottom regions of the pore are close to the walls and their peak
values are much smaller than the global maximum of tr(τp)(Fig.10d). In this case, the pore exhibits an eddy free flow
state (type-3 in Fig. 10c). Part-IV also has a single region where maximum value of trace of polymer stress occurs,
but it lies on the bottom region of the pore. This stress distribution leads to the pattern where bottom region of the
pore has an eddy and the top region of the pore is eddy free (type-4 in Fig. 10c). Fig. 10d also shows that the eddy
free flow state (type-3) exists for a shorter time compared to other flow states.

(a) (b) (c)

FIG. 11: (a) Instantaneous f5,6 and time-average < f5,6 > values of the correlation function between pore 5 and pore
6 at Wi = 34. (b) The time average value of correlation function for different pairs of the pores at Wi = 34. (c) The
value of < fi,j >, further averaged across the pores of the same separation, as a function of pore separation at
different Wi.

We study the correlation between the area of eddies for different pairs of pores. To quantify the correlation between
the area of eddies of two pores, we modify the correlation function ( equation 7) fi,j as:

fi,j = 1− 2|(Aeddy/Apore)i − (Aeddy/Apore)j |
max((Aeddy/Apore)i, (Aeddy/Apore)j)

. (8)

The value of correlation function fi,j varies from +1 in the case where both the pores have similar eddy pattern to −1
in the case where one pore has an eddy and the other is eddy free. The value of fi,j varies with time for any given pair
of pores, which indicates the transient nature of the correlation between the pores (Fig. 11a). Therefore, the pattern
of eddies inside the pores exhibits both positive and negative correlations. We use the time average of fi,j (< fi,j >)
to study the statistics of the correlations between the eddies of two pores in a long time. Figure 11b depicts the time
average value of fi,j for different pairs of pores at Wi = 34. There is a relatively stronger positive correlation between
the eddies’ area of the nearby pores and the correlation weakens as the separation between the pores increases.
Conversely, we also notice a relatively weak correlation between pore-8 and pore-9 (< f8,9 >= 0.17) and relatively
strong correlation between pore-1 and pore-8 (< f1,8 >= 0.6) at Wi = 34 (Fig. 11b). To further investigate the effect
of Wi and the pores’ separation on the correlation, we plot� fi,j � as the function of pore separation at different Wi,
where� fi,j � is the value of < fi,j > averaged across the pores of the same separation (Fig. 11c). At Wi < Wicr, the
correlation between the flow patterns inside the pores is stronger compare to Wi > Wicr and � fi,j � monotonically
decreases as the separation between the pores increases. For Wi > Wicr, irrespective of separation between the pores,
the correlation is weak (i.e., � fi,j � < 0.5) (Fig. 11c).

We have also plotted the probability distribution of the area occupied by eddies inside each individual pore in the
channel of 10 closely located pores at different Wi (Fig. 12a). The value of Aeddy/Apore ranges 0.1-0.25 at Wi = 18,
whereas it varies from 0.0 (eddy free pattern) to 0.5 at Wi = 47. The eddy does not disappear in either regions of
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(a) (b)

FIG. 12: (a) PDF of the ratio of eddies to pore area (Aeddy/Apore) at different Wi for a channel of 10 closely located
pores. Aeddy represents total area occupied by eddies in an individual pore and Apore is the total area of the pore.
Above a threshold Wi, there appears to be multistability, and the eddy areas take on a broad range of values. (b)
Mean (µ) and standard deviation (σ) of normalized eddies’ area.

the pore at Wi < Wicr, while often it disappears at Wi > Wicr. Thus, the area of eddies and flow pattern inside the
pores are highly predictable for Wi < Wicr, but not at Wi > Wicr. We have calculated the standard deviation (σ) and
mean (µ) of Aeddy/Apore in Fig. 12b to quantify the fluctuation of eddies’ area. The standard deviation of eddies’
area increases with Wi for Wi > Wicr and the onset of the increase of σ lies between Wi = 18− 22. Therefore, we
consider Wicr = 20± 2 as the critical Wi of the multistability. The threshold Wi, above which multistability appears,
for the channel of 10 closely located pores (Wicr = 20± 2) (Fig. 12b) is smaller than the channel with single or
two widely separated throats (Wicr = 28± 2) (Fig. 3b and 7b). When the pores are closer to each other, the onset
of multistability arises at lower Wi, due to the advection of polymer stress between the pores. Similar observation
was reported in experiments [47]. We have also noticed that sometime eddies appear even at the center of the pore
with/without eddies on the top or bottom region of the pore at Wi > Wicr ( Fig. 13). This behavior has not been
reported in prior experimental studies.

The pressure drop of the flow inside the porous media is an important macroscopic property due to practical
application in the field of oil recovery [6] and ground water remediation [7, 8]. To understand the spatial distribution
of pressure, we have plotted the contours of dimensionless pressure (p) in Fig. 14a for the flow field shown in Fig.
8b (i.e., Wi = 34, t ≈ 10). We have also plotted the pressure profile along the centerline of the channel (i.e, red solid
line in Fig. 14a) (Fig. 14b) and at the center of the pore along the width (i.e., dashed yellow line in Fig. 14a) (Fig.
14c). The pressure inside the channel does not decrease monotonically due to the converging-diverging geometry of
the channel (Fig. 14b). For the cross-section at the center of an individual pore, the pressure is maximum at the
centerline (i.e., y = 0) of the channel (Fig. 14c). Instantaneous pressure drop across the channel along the centerline
(∆p in Fig. 14a) is transient due to instability and the fluctuation intensifies as Wi increases (Fig. 15a). We calculate
the time averaged pressure drop (< ∆p >) along with fluctuations across the channel for a fixed volumetric flow
rate at different Wi (Fig. 15b). The instability inside the pores facilitates the flow and lowers the hydrodynamic
drag, which leads to a smaller pressure drop across the channel as Wi increases (Fig. 15b). To further understand
the mechanism of hydrodynamic drag reduction with increasing Wi, we calculate the pressure drop across individual
pores along the centerline of the channel (specially, pore-8 and pore-9 as depicted in Fig. 14a) for the flow state shown
in Fig. 8b. The pressure drop across an eddy free pore is smaller than the pressure drop across the pore with eddies
(Example: ∆ppore−9 = 3.45 for pore-9 shown in Fig. 8b and ∆ppore−8 = 4.6 for pore-8 shown in Fig. 8b). Because,
the eddy free pore has larger apparent width involve in the net volumetric flow (i.e., fluid circulates inside an eddy
and does not contribute in any net volumetric flow) and the pressure drop in the channel is inversely related to its
apparent width. The presence of eddy free pores at Wi > Wicr leads to smaller pressure drop across the channel, in
contrast with a channel at Wi < Wicr where all the pores have eddies. We have also calculated the pressure drop in
single and double throated channels for the length same as the channel of 10 pores. The pressure drop in the single
as well as double throated channel is much smaller due to lesser constriction and it also decreases with Wi due to
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FIG. 13: Eddies at the center of the pore at Wi = 34. (a) Eddy at the center as well as the top and bottom regions
of the pore. Here, the eddy at the center persists in two pores. (b) Eddies at the center and the top region of the
pore, while bottom region is eddy free. (c) Eddies only at the center of the pore. Top and bottom regions are eddy
free.

instability (Fig. 15b).

V. CONCLUSIONS

We numerically study the flow of a polymeric fluid in channels consisting of converging and diverging physical
constraints. We use channels with a single pore throat, two widely separated pore throats and ten closely separated
pores to study an elastic-induced flow instability at different Wi. The channels with either a single pore throat or two
widely separated pore throats have unstable eddies in the upstream of the pore throats whose average length (Leddy)
increases with Wi. In the case of 10 closely placed pores, eddies appear on both top and bottom regions of the pores
at Wi < Wicr, whereas the flow exhibits 4 distinct types of patterns inside the pores at Wi > Wicr. The eddies on
both the top and bottom regions of the pores regularly collapse and reform at Wi > Wicr. This behavior of eddies
leads to flow patterns where eddies appear in either one region, both regions, or neither region of the pore (eddy
free). The high polymeric stress region inside the pore induces eddy formation, whereas the high stress region close
to the walls leads to eddy collapse. There is a positive correlation between the eddy areas of neighboring pores in
the long-time statistics, but this correlation weakens as the separation between the pores increases. The correlation
between the pores also weakens as Wi increases. The eddy free pores also lead to reduced hydrodynamic drag across
the channel at Wi > Wicr. Disorder of the porous media is expected to play a large role in altering the instability,
and would be an interesting parameter to consider in a future study [59, 82].
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(a)

(b) (c)

FIG. 14: Dimensionless pressure for the flow field shown in Fig. 8b (i.e., Wi = 34, t ≈ 10): (a) The contours of
pressure field inside the channel. (b) Pressure along the centerline of the channel (i.e. red solid line in Fig. 14a). (c)
Pressure across the channel at the center of the pore (i.e. dashed yellow line in Fig. 14a).
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VII. APPENDIX

A. Start up transient flow

We use pressure drop (∆p) across the channel along the centerline as a simple metric to characterize the transient
start up flow. The flow reaches steady state for t > 0.2 at Wi = 0.3 (almost Newtonian fluid) (Fig. 16a). For
fluctuating flows, the meaning of fully developed flow is that fluctuating quantities have a well-defined mean. The
instability becomes fully developed for t > 1 as ∆p fluctuates around a mean for t > 1 (Fig. 16b).
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(a) (b)

FIG. 15: (a) Instantaneous and time averaged pressure drop across the channel of 10 pores at Wi = 34. (b)
Averaged pressure drop (< ∆p >) across the channels at different Wi.

(a) (b)

FIG. 16: (a) Dimensionless pressure drop across the channel along the centerline at Wi = 0.3 (almost Newtonian
fluid). Flow converges to steady state for t > 0.2. (b) Dimensionless pressure drop across the channel along the
centerline at Wi = 18, 34. Fully developed instability occurs for t > 1.

B. Eddy area at Wi = 0.3 (almost Newtonian fluid)

C. Flow of non-shear thinning fluid (FENE-CR) inside the pores

We have also performed a simulation for non-shear thinning model (FENE-CR) at relaxation time λ = 0.2s, viscosity
ratio β = ηs/(ηs + ηp) = 0.01, L2 = 625 and volumetric flow rate per unit depth of the channel Q = 16.8 mm2/s. These
parameters lead to Wi = 16.4 for FENE-CR model [111]. This model also exhibits multistability similar to FENE-P
model (Fig. 18). Fig. 18a shows eddy free flow state. Fig. 18b has eddy only on the bottom region of the pore and
top region is eddy free. Fig. 18c has eddies on both top and bottom region of the pore, whereas Fig. 18d represents
the flow state where eddy appears only on the top region of the pore and bottom region is eddy free. Non-shear
thinning fluid (FENE-CR) also exhibits the flow state wherein the eddy appears at the center of the pore (Fig. 18e).
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FIG. 17: The area of eddies on the top and bottom of “pore-2” at Wi = 0.3.

FIG. 18: Instantaneous streamlines in a channel of 10 closely interconnected pores at Wi = 16.4 for FENE-CR
constitutive model.
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