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Abstract

The dynamics of fluids deep in stellar interiors is a subject that bears many similarities with

geophysical fluid dynamics, with one crucial difference: the Prandtl number. The ratio of the

kinematic viscosity to the thermal diffusivity is usually of order unity or more on Earth, but is

always much smaller than one in stars. As a result, viscosity remains negligible on scales that

are thermally diffusive, which opens the door to a whole new region of parameter space, namely

the turbulent low Péclet number regime (where the Péclet number is the product of the Prandtl

number and the Reynolds number). In this review, I focus on three instabilities that are well

known in geophysical fluid dynamics, and have an important role to play in stellar evolution,

namely convection, stratified shear instabilities, and double-diffusive convection. I present what is

known of their behavior at low Prandtl number, highlighting the differences with their moderate

and high Prandtl number counterparts.

I. INTRODUCTION

A. Stellar structure and evolution (abridged)

Stars have long fascinated human beings, but our modern understanding of stellar struc-

ture and evolution is only about 100 years old. By and large, the vast majority of stars are

almost spherical balls of gas in quasi-hydrostatic and thermal equilibrium, the combination

of which dictates their structure. Nuclear reactions in the high-density stellar core heat the

plasma to extremely high temperatures, therefore maintaining the enormous hydrostatic

pressure needed to prevent the star from collapsing gravitationally. The heat is transported

from the core to the stellar surface either by radiative diffusion or convection (whichever

is most efficient), and from there is radiated into space for us to observe. A star’s spec-

trum can provide a wealth of information about its structure. The spectrum itself is usually

quite close to that of a black body, therefore revealing the star’s surface temperature. The

luminosity depends on the star’s emitting surface area, which can be used to measure its

radius. Often, individual emission or absorption lines are also observed on top of the black-

body spectrum. Their wavelength can reveal the composition of the surface layers of the

star, while their width can provide information on the surface gravity and (in some cases)

rotation or magnetic fields.
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Of course, stars are not exactly in a steady state, since the nuclear reactions required to

heat up the core gradually change their internal composition. However, these reactions are

usually much slower than the thermal evolution timescale, which is why a quasi-static model

is appropriate. The most common nuclear fusion reaction transforms hydrogen into helium

(but others can also take place depending on the temperature and density within the core).

This reaction is extremely stable and slow, and sets the star’s aging rate. The star reaches

its end-of-life phase after exhausting all the hydrogen in the core. As such, its lifespan

is sensitively dependent on the inward flux of hydrogen fuel into the core, from advection

by large-scale flows or small-scale turbulent mixing for instance. Note that while these

flows can rarely be directly measured, indirect evidence of their presence can sometimes be

found in the star’s spectrum. Indeed, the same fluid dynamical processes that fuel the core

also transport various nuclear fusion or fission products and by-products (such as lithium,

beryllium, boron, carbon, nitrogen, oxygen and their respective isotopes) from the core back

to the surface, that can be detected spectroscopically.

Through this highly abridged description of stellar structure and evolution (see, e.g.

[1, 2] for more detail), we see that modeling stars relies on accurately accounting for both

microphysical and macrophysical transport processes. Statistical mechanics, nuclear physics

and quantum mechanics are required to model the plasma’s equation of state, compute the

nuclear reaction rates, and quantify radiative diffusion coefficients for heat transport. Fluid

mechanics, on the other hand, is required to model heat and chemical transport by convection

as well as any other possible source of turbulence in convectively stable regions. Thanks

to historical events of the 1930s-1970s, scientific understanding of microphysical processes

involved in nuclear reactions and radiative heat transport are very well understood. The fluid

dynamics of stellar evolution, however, remains relatively poorly constrained in comparison.

B. Stellar fluid dynamics

Today, the general consensus is that many of the remaining discrepancies between stel-

lar models and observations can be attributed to inadequate or missing prescriptions for

turbulent transport. Turbulence in stars arises from two classes of instabilities: thermal

convection on the one hand, and all other instabilities of stably stratified fluids on the other

hand (see, e.g. the graduate textbooks by Stix [3] for the solar interior, and by Kato and
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Fukue [4] for stars more generally). Convection is by far the most important fluid dynam-

ical process in stars. As discussed above, it transports heat outward, and in many cases

forces the stratification to become almost adiabatic, thus setting the density structure of

the star (and therefore its size, given a certain mass). Almost all stars contain a region

that is convectively unstable; assuming a chemical composition that is close to solar, lower

mass stars (M? . 0.4M�) are fully convective, solar-type stars (0.4M� < M? < 1.3M�)

have an outer convection zone surrounding a stably stratified core, intermediate mass stars

(1.3M� . M? . 10M�) have a convective core surrounded by a stably stratified envelope,

and higher mass stars can even have multiple convective regions. As such, convection was,

for the longest time, the only dynamical process accounted for in all stellar evolution models.

Outside of convective regions, by contrast, many different kinds of instabilities can oc-

cur. Double-diffusive instabilities, for example, are commonly invoked; these can be of the

fingering kind, in regions that are stably stratified in temperature, but unstably stratified

in composition, or of the oscillatory or layered kind, in regions that are unstably stratified

in temperature but stably stratified in composition (see the reviews [5] and [6]). Centrifu-

gal instabilities and shear instabilities are also likely prevalent, since stars are known to be

the seat of substantial differential rotation (see the review by Zahn [7] for instance). By

contrast, other fluid instabilities that are commonly studied in geophysics, such as the baro-

clinic instability and many others, are much less often discussed – not because they are not

important, but rather, because they have not yet been appreciated by the stellar community

(with some exceptions, see [8] for instance). Instead, the focus has been to better understand

the vast range of possible magnetohydrodynamic instabilities (see the review by Mestel [9]),

such as the various types of Tayler instabilities [10, 11], joint instabilities of magnetic fields

and differential rotation (e.g. [12, 13]), and magnetic buoyancy instabilities [14, 15]. In

what follows I shall therefore focus only on three types of instabilities that are of interest

to both the geophysical and astrophysical communities: convection, shear instabilities, and

double-diffusive instabilities, and ask the simple question: how do these differ between the

different settings?

To answer this simple question, one needs to appreciate the similarities and differences

between stellar fluids and geophysical fluids. The main difference is not the compressibility

of the plasma, or its composition. In fact, deep in stellar interiors, fluid flows are sufficiently

slow as to be almost incompressible, and the mean free path of photons is sufficiently short

4



that radiative transfer can be approximated by a diffusion term in the heat equation. As

such, ignoring magnetic fields (although see Section VI), the governing equations for stel-

lar fluid dynamics deep below the surface are actually identical to those typically used in

atmospheric dynamics, namely

∂u

∂t
+ u · ∇u = − 1

ρm
∇p̃+ αT T̃ gez + ν∇2u, (1)

∇ · u = 0, (2)

∂T̃

∂t
+ u · ∇T̃ + βTw = κT∇2T̃ , (3)

where u = (u, v, w) is the velocity field, ρm is the mean density of the fluid, p̃ is the pressure

perturbation away from hydrostatic equilibrium, T̃ is the temperature perturbation away

from radiative equilibrium, αT is the coefficient of thermal expansion, g is gravity, ν is

the kinematic viscosity, βT = dTrad/dz + g/cp is the potential temperature gradient (where

dTrad/dz is the temperature gradient the star would have if it were in radiative equilibrium

and cp is the specific heat at constant pressure), and κT is the thermal diffusivity. This set of

equations was formally derived by Spiegel and Veronis [16], and generalizes the Boussinesq

approximation to weakly compressible fluids. It is valid as long as the height of the stellar

region modeled is much smaller than the local density scaleheight, and the flow velocities are

much smaller than the local sound speed. Close to the surface, both the sound speed and the

density scaleheight become quite small, and the approximation is not valid. Further down

in the interior, however, the density scaleheight is similar to the star’s radius and the sound

speed increases rapidly with the increasing temperature, so the Spiegel-Veronis-Boussinesq

approximation holds.

I would therefore argue that, other than the presence/absence of topography and magnetic

fields, the only really fundamental difference between stellar and geophysical fluid dynamics

is the Prandtl number Pr = ν/κT , which is typically of order unity or larger in geophysical

flows, but is asymptotically small in stellar interiors. This is because radiative diffusion

greatly increases thermal transport but only adds a small contribution to momentum trans-

port, so κT � ν in stars, and Pr ranges between 10−9 and 10−5 at most1. With Pr = O(1)

or Pr � 1, a turbulent flow is always close to adiabatic (i.e. thermally non-diffusive). When

Pr � 1 on the other hand, thermal diffusion can become important even when viscosity

1 Except in cases where the plasma is degenerate, which is a much less frequent situation. Even then,

Pr ∼ 10−2.
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is negligible, and this fundamentally changes the nature of fluid instabilities and associated

turbulence, as I demonstrate below. As such, there is no reason to expect that any of the

well-accepted models for turbulent transport in geophysical flows apply in stellar interiors,

and as I shall demonstrate, almost none of them do. This is particularly true for the three

types of instabilities highlighted earlier, namely convection, double-diffusive convection, and

shear instabilities.

In what follows, I will first briefly introduce historically-relevant ideas about thermal

convection at low Prandtl number in Section II, before moving on to instabilities of stably

stratified regions. Since the latter often (but not always) have a low Péclet number (where

the Péclet number is the ratio of the thermal diffusive timescale to the thermal advection

timescale), it is this property rather than the low Prandtl number that defines their behavior,

as shown in Section III. Section IV then discusses in turn both vertical and horizontal shear

instabilities, and Section V summarizes our work on double-diffusive instabilities, in both

cases at low Prandtl number. Section VI provides a very brief discussion on the need

to include rotation and magnetic fields when modeling astrophysical flows, and Section VII

concludes with a reflection on the importance of multidisciplinary work, and the fundamental

role that the Woods Hole Geophysical Fluid Dynamics (GFD) summer program has played

in transforming the field of stellar fluid dynamics.

II. THERMAL CONVECTION AT LOW PRANDTL NUMBER

As discussed earlier, thermal convection is the only fluid dynamical process that is ac-

counted for in all modern stellar evolution models. The standard model for convection in

stars is called ”mixing-length theory”, and in its present form originated from the work of

Erika Böhm-Vitense [17]. The model is, at heart, very simple. In the bulk of the convection

zone, a rising or sinking parcel of fluid is assumed to travel coherently for one mixing length

l before disintegrating and mixing its heat content with the background. The convective

potential temperature flux carried by the parcel is Fconv ∼ vconvl|βT | (noting that βT < 0

for convective regions), where the parcel velocity is estimated by balancing its kinetic and

potential energy, to be vconv ∼
√
αTg|βT |l2. Combining the two leads to

Fconv ∼
√
αTgl

2|βT |3/2. (4)
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By introducing a Rayleigh number based on the mixing length l as Ral = αT |βT |gl4/(κTν),

we see that

Fconv ∼ −(RalPr)
1/2βTκT = (RalPr)

1/2 βT
dTrad/dz

Fdiff , (5)

where Fdiff = −κTdTrad/dz is the diffusive temperature flux. This implies that, within the

context of the mixing-length model for stellar convection, the Nusselt number (i.e. the ratio

of convective to diffusive fluxes) scales as

Nu ∼ (RalPr)
1/2. (6)

Mixing-length theory has been used by stellar astrophysicists for over sixty years to model

stellar convection, with the mixing length l usually chosen to be a fraction of the local

pressure scaleheight. Additional physics are invoked to constrain the pre-factors, deal with

complex boundary conditions and implement the convective flux prescription (4) in stellar

evolution codes, but these do not modify the main result substantially.

Meanwhile, around the same time as Vitense’s work, Priestley [18] and Malkus [19] were

attacking the problem of heat transport in Rayleigh-Bénard convection (i.e. thermal con-

vection between two parallel plates held at different temperatures, RBC hereafter), with

geophysical applications in mind. Both independently came to the conclusion that the Nus-

selt number in RBC should scale as

Nu ∼ Ra1/3, (7)

where here

Ra =
αT |βT |gH4

κTν
, (8)

and H is the distance between the plates. Priestley’s derivation relies on dimensional anal-

ysis, while Malkus’ treatment assumes that the turbulence would organize itself in such a

way as to maximize the heat transport. A similar scaling law was obtained again later by

Howard [20], who considered the stability of the thermal boundary layers near the plates.

At a cursory glance, laboratory experiments (see e.g. [21]) seem to provide evidence for the

1/3 power law for RBC at least for Rayleigh numbers up to 1014, albeit for fluids that have

an O(1) Prandtl number. Whether the Nu vs Ra scaling deviates from this law above 1014

or not is currently controversial [22, 23].

As a young astrophysicist in the 1950s, Edward Spiegel was keenly interested in convec-

tion, which was the subject of his PhD thesis. Encouraged by George Batchelor to meet
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Willem Malkus, Spiegel rapidly realized that the geophysical community was leaps and

bounds ahead of the astrophysical community in terms of understanding and modeling tur-

bulent flows. He then began to collaborate with many in that field (co-founding the Woods

Hole GFD program with Stommel, Malkus, Veronis, Stern, Howard, and Keller), and in the

process became one of the very first astrophysicists to apply modern (rigorous, nonlinear)

fluid dynamical techniques to the study of astrophysical flows.

Being aware of both Vitense’s and Malkus’ work, Spiegel noted that they were incom-

patible at low Prandtl number, and concluded that Malkus’ theory does not apply in that

limit [24]. Instead, he proposed that Nu ∝ (RaPr)1/2 in that case (while not explicit, this

scaling is implied in [25]), which can easily be recovered using the domain scale H for the

mixing length l in Vitense’s argument, see (6). A similar result (with additional logarithmic

corrections in Ra) was obtained by Kraichnan [26] in the limit of very low Prandtl number

and very high Rayleigh number, assuming that the thermal boundary layer near the rigid

wall is turbulent instead of being laminar. Today, the Nu ∝ Ra1/2 law has become known

as the Ultimate Regime in RBC and is discussed in both low and moderate Pr limits. Ex-

perimentally, the Ultimate Regime has been rather elusive. Laboratory experiments at low

Prandtl number are notoriously difficult, and achieving very high Rayleigh numbers is a se-

rious engineering challenge. However, recent works appear to validate the Ultimate Regime

scaling, in RBC with rough boundaries (for which the boundary layer becomes turbulent

at lower Rayleigh numbers, see [27]) and in internally-heated convection (where the heat

source is detached from the boundaries, see [28–30]). Whether this scaling would emerge in

standard RBC at low Prandtl number remains to be determined.

In an attempt to attack the problem more formally Spiegel [24] proposed the first asymp-

totic model for convection at very low Prandtl number using an expansion of the Spiegel-

Veronis-Boussinesq equations in the limit of Pr � 1 (see also [31]). Considering a fluid flow

between two parallel horizontal plates held at fixed temperatures Tm+∆T/2 and Tm−∆T/2,

separated by a distance H, he non-dimensionalized equations (1)-(3) using the unit length

H, the unit time H2/ν (which is the viscous timescale across the domain), the unit velocity
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ν/H and the unit temperature (κTν)/(αTgH
3), to get

∂û

∂t
+ û · ∇û = −∇p̂+ Pr−1T̂ez +∇2û, (9)

∇ · û = 0, (10)

∂T̂

∂t
+ û · ∇T̂ −Raŵ = Pr−1∇2T̂ , (11)

where Ra is given by (8), recalling that βT < 0 for RBC. Spiegel then assumed that one may

expand each of the dependent variables as a power series in the Prandtl number, namely

T̂ = T̂0 + PrT̂1 + ..., (12)

û = û0 + Prû1 + ... . (13)

Substituting this in (9)-(11), we have, order by order,

T̂0 = 0, (14)

∂û0

∂t
+ û0 · ∇û0 = −∇p̂+ T̂1ez +∇2û0, (15)

−Raŵ0 = ∇2T̂1, (16)

assuming that û0 remains O(1) in the Pr expansion.

These reduced equations, if valid, clearly show that the dynamics of low Prandtl number

thermal convection must be fundamentally different from those of standard Pr = O(1)

convection. First and foremost, (14) shows that temperature fluctuations must be small,

namely O(Pr), which implies that this type of convection cannot affect the background

temperature profile to lowest order. This finding is consistent with the reduced expression

for the temperature equation (16), in which the convective heat flux (which would normally

arise from nonlinearities in the temperature equation) is absent at this order. Taken together,

we see that the mechanism usually thought to be responsible for the saturation of RBC at

Pr = O(1) (i.e. the modification of the linear background temperature profile by the

convective flux into one which has a reduced gradient in the core of the fluid, and an

enhanced gradient in thin thermal boundary layers, see, e.g. [32]), cannot operate here.

Instead, the nonlinear saturation must proceed through the only remaining nonlinearities,

which are in the momentum equation. As such, it is clear that Malkus’ theory for heat

transport in RBC [19], which relies on arguments of maximization of the convective flux,

cannot apply within the context of the low Prandtl number approximation. This is also

true for Howard’s model [20], which relies on the presence of diffusive thermal boundary
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layers surrounding an almost adiabatic region – this is not possible here, since the mean

stratification must remain almost linear.

Going back to the asymptotic equations, solving for T̂1 and substituting it back into the

momentum equation (15) leads to

∂û0

∂t
+ û0 · ∇û0 = −∇p̂−Ra∇−2ŵ0ez +∇2û0. (17)

This shows that the only relevant input parameter characterizing the flow in the low Prandtl

number approximation is the Rayleigh number Ra, independently of the Prandtl number.

Dominant balance between the nonlinear terms and the buoyancy term (for a more rigorous

approach, see Spiegel [24]) implies that the typical nondimensional flow velocity ŵrms should

be proportional to Ra in this limit. Moreover, since T̂ = PrT̂1 = −RaPr∇−2ŵ, we then find

that the typical temperature fluctuations T̂rms should be proportional to Ra2Pr. Finally,

these can be used to estimate a Nusselt number as

Nu ∼ ŵrmsT̂rms
RaPr−1

∝ (RaPr)2, (18)

(see also [26, 33]).

Spiegel [24], however, immediately realized that there are serious limitations to the appli-

cability of the low Prandtl number equations, when applied to thermal convection. Indeed,

this scaling law appears to be at odds with the existence of a formal upper bound to the

Nusselt number of the form Nu < CRa1/2 (uniformly in Pr), see [34, 35]. This implies that

equation (18) must break down at large Ra, and as discussed by Spiegel, this is indeed the

case. To see why, recall that the low Prandtl number approximation is only valid provided

the velocities are o(Pr−1). Since ŵrms ∝ Ra, it follows that we need Ra = o(Pr−1), while at

the same time satisfying Ra > Rac ∼ O(103), the critical threshold for the onset of convec-

tion. This means that unless Pr is really minuscule, the regime of applicability of Spiegel’s

low Prandtl number approximation for thermal convection is very limited. Once Ra becomes

O(Pr−1) or larger, the approximation breaks down, and one presumably recovers the mixing

length theory scaling Nu ∝ (RaPr)1/2 [25].

As such, it remains unclear whether Spiegel’s low Prandtl number approximation [24]

is useful to model stellar convection. And yet, the legacy of his asymptotic approach to

studying low Prandtl number fluids lives on, with once crucial modification – as discussed

below.
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III. LIGNIÈRES’ LOW PÉCLET NUMBER APPROXIMATION

One of the main reasons for the limited applicability of Spiegel’s low Prandtl number

equations for thermal convection is that turbulent velocities rapidly become very large as the

Rayleigh number increases, hence invalidating the assumption that these should be o(Pr−1)

in (13). In 1999, Francois Lignières independently rediscovered these equations, but further

noted that they should remain valid for a much wider range of parameter space when applied

to model the dynamics of stably stratified fluids, where an increase in stratification tends to

lower the turbulent velocities. Crucially, he also argued that the correct expansion parameter

ought to be the Péclet number instead of the Prandtl number [36]. This is perhaps obvious

in hindsight: if the goal of the expansion is to neglect the convective terms in the thermal

energy equation, then the latter must be smaller than the desired dominant balance in the

equation, namely that between the advection of the background potential temperature, and

diffusion. For this to be the case, the ratio between the convective term u · ∇T̃ and the

diffusion term κT∇2T̃ must be small, so we need

Pet =
Urmsl

κT
� 1, (19)

where Urms is the rms velocity of the flow, and l here is the typical scale of the turbulent

eddies. Lignières’ derivation of the low Péclet number approximation therefore begins with

normalizing equations (1)-(3) using Urms as the velocity scale, l as the flow scale, and βT l as

the temperature scale (assuming βT > 0 this time since the fluid is stably stratified), which

leads to

∂û

∂t
+ û · ∇û = −∇p̂+BT̂ez +Re−1

t ∇2û, (20)

∇ · û = 0, (21)

∂T̂

∂t
+ û · ∇T̂ + ŵ = Pe−1

t ∇2T̂ , (22)

where B = N̄2l2/U2
rms is a buoyancy parameter (the square of an inverse Froude number),

and N̄ =
√
αTβTg is the usually-defined buoyancy frequency associated with the background

stratification. Assuming, in the same spirit as Spiegel [24], that

T̂ = T̂0 + PetT̂1 + ..., (23)

û = û0 + Petû1 + ..., (24)
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then, order by order, we have

T̂0 = 0, (25)

∂û0

∂t
+ û0 · ∇û0 = −∇p̂+BPetT̂1ez +Re−1

t ∇2û0, (26)

ŵ0 = ∇2T̂1. (27)

As in Spiegel [24], Lignières finds that the lowest order temperature fluctuations must be

zero (see 25), which demonstrates that the turbulence cannot cause any large deviations of T

from the background state. Consistent with that, the convective terms again disappear from

the thermal energy equation (27). This approximation is only valid provided û0 ∼ O(1), but

crucially, this condition is now implicitly satisfied from the non-dimensionalization selected.

We then have, successively,

û = û0, (28)

T̂1 = ∇−2ŵ0 = ∇−2ŵ, (29)

∂û

∂t
+ û · ∇û = −∇p̂+BPet∇−2ŵez +Re−1

t ∇2û. (30)

This shows that the temperature and the velocity fluctuations are again intimately related

to one another. Crucially, this causes a reduction in the dimensionality of parameter space

whereby B and Pet only ever appear together. As such, stratified flows at low turbulent

Péclet number only depend on two quantities: the product BPet, and the turbulent Reynolds

number Ret. Going back to the original dimensional system, we have

βTw = κT∇2T̃ , (31)

and so the low Péclet number approximation leads to

∂u

∂t
+ u · ∇u = − 1

ρm
∇p̃+

N̄2

κT
∇−2wez + ν∇2u, (32)

∇ · u = 0, (33)

showing that the dimensional combination of parameters N̄2/κT must always appear to-

gether. As I demonstrate below, this has fundamental consequences for the dynamics of

fluid instabilities in stably stratified, low Péclet number regions of stars, notably shear in-

stabilities, and double-diffusive instabilities.
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IV. STRATIFIED SHEAR INSTABILITIES

Shear is as omnipresent in stars as it is in the Earth’s oceans and atmosphere. It exists

on a huge range of scales and can take many forms, depending on its source. On the largest

scales, the source of shear (in radiative zones) is almost always the star’s differential rotation,

which in turn comes from angular momentum conservation and transport by large-scale

flows. It could also be driven by the thermal wind (i.e. horizontal gradients of temperature

driving shear along the star’s rotation axis), by tidal torques (if the star has a companion)

or by magnetic torques. On intermediate scales, shear can be driven by meridional flows

or large-scale internal waves. Until the 1980s, direct observational evidence for stellar shear

was scarce; instead, its presence was generally inferred from stellar evolution models, which

predict the development of substantial radial shear from angular momentum conservation as

the star’s core and envelope differentially expand and shrink. That has dramatically changed

since the advent of helioseismology and more recently, asteroseismology, which now allow us

to measure (or at least, estimate) the internal rotation profile of the Sun [37] and quite a

few other stars (see the review by Aerts et al. [38]), see Figure 1. From these measurements,

we know that stars exhibit both radial and latitudinal rotational shear [39]. In what follows,

I shall therefore address both the effects of vertical and horizontal shear, ignoring for now

the effects of rotation and magnetic fields – even though these are likely quite crucial to a

complete understanding of the dynamics of stellar shear instabilities (see Section VI for a

short discussion of their effects).

A. Vertical shear

1. Context

Vertical shear instabilities are an important source of diapycnal mixing in stratified geo-

physical flows, and have been studied in this context for over a hundred years. As laid out by

Richardson [41], the excitation and sustainability of turbulent perturbations to a stratified

shear flow simply depends on the local energetics. If the kinetic energy transferred from the

mean flow to the perturbations during a mixing event is larger than their potential energy

cost, then the turbulence can be maintained. Otherwise, the perturbations must eventually
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increasing stellar age
10

FIG. 1. Left: Angular rotation rate in the solar interior, in nHz, measured using helioseismology.

Figure adapted from Larson and Schou [40]. Right: Envelope and core rotation rates of stars,

measured using asteroseismology, as a function of surface gravity, which is a proxy for stellar age.

Figure adapted from Aerts et al. [38].

decay. This is controlled by the local gradient Richardson number

J =
N2

S2
, (34)

where N is the buoyancy frequency associated with the local total vertical potential tem-

perature gradient βT + dT̃ /dz, and S is the absolute value of the local vertical shearing

rate. Richardson [41] argued that the quantity J must drop below a certain threshold of

order unity for turbulent perturbations to be maintained. While his argument was based

on energetics, and can therefore be viewed as a statement on the nonlinear stability of the

flow, Miles [42] and Howard [43] later formally proved that a necessary condition for linear

instability of adiabatic perturbations in a unidirectional stratified shear flow is that J should

drop below 1/4 somewhere in the fluid. Both approaches thus point to the fact that one

needs

J < Jc where Jc ∼ O(1) (35)

for shear instability. It is important to note, however, that the adiabaticity of the perturba-

tions is a key assumption of both Richardson’s nonlinear argument, and Miles and Howard’s

linear argument. As demonstrated by Townsend [44], radiative losses can relax this criterion,
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by reducing the relative buoyancy of the perturbations compared with the background, and

therefore reducing their potential energy cost. More precisely, he showed that provided the

thermal adjustment timescale of the perturbations to the background is fast enough (i.e.

provided Sttherm � 1 where ttherm is the cooling / heating timescale of the perturbations),

then the new criterion for instability should be

J < O

(
1

Sttherm

)
, (36)

instead of J < O(1). This Richardson-Townsend criterion thus allows for instability for

J � 1 provided ttherm � S−1.

Meanwhile, and until the 1970s, vertical shear instabilities in stars had been given very

little attention, presumably for two reasons. First, since shear on the largest scales is usually

due to the star’s differential rotation, the latter can hardly be ignored. When accounted for,

rotation can either stabilize or destabilize the large-scale shear, while driving a variety of cen-

trifugal instabilities depending on the direction of the angular momentum gradient [45–48].

As such, much of the focus of research in those days was on centrifugally-driven instabili-

ties, rather than on pure shear instabilities. Second, the typical values of the Richardson

number derived from stellar evolution calculations are usually exceedingly large, ranging

from 104 and up. This is not entirely surprising: very roughly, if the shear is due to dif-

ferential rotation then S ∼ γΩ? where γ is a small number (otherwise, the star would have

counter-rotating regions, which is rather unlikely). Then, assuming N ' N̄ (recall that N̄

characterizes the mean stratification),

J ' N̄2

S2
∼ g

ρ̄

|∂ρ̄/∂r|
γ2Ω2

?

∼ g

γ2rΩ2
?

∼ v2
esc

γ2v2
rot

, (37)

where ρ̄(r) is the background radial density profile, vesc =
√

2gr is the gravitational escape

velocity at a radius r, and vrot = rΩ? is the linear velocity associated with the star’s rotation

at the same position. We need vrot � vesc for the star to be gravitationally bound, and since

γ must be small, J is always very large. With the standard Richardson criterion in mind, it

was therefore thought that shear instabilities would not be relevant in stellar interiors.

2. Zahn’s stability criterion for diffusive shear instabilities

This perception changed, however, primarily thanks to Jean-Paul Zahn. Zahn was an

astrophysicist with broad interests in stellar hydrodynamics, who worked in New York with

15



Spiegel in the late 1960s before moving back to France. While Spiegel’s primary interest was

convection, Zahn was more interested in the dynamics of stellar radiative zones, including

small-scale turbulent mixing as well as transport by large-scale flows. Following Townsend’s

work on the effect of radiative losses on stratified shear flows in the atmosphere, Spiegel and

Zahn [49] proposed that similar processes may be relevant in stellar interiors. Zahn [7] (see

also [50, 51]) quantified this idea by arguing that since stellar interiors are optically thick,

the thermal adjustment timescale ttherm should be related to the thermal diffusivity κT and

the characteristic size l of perturbations as

ttherm =
l2

κT
. (38)

Using this in (36), Zahn obtained

J < O
( κT
Sl2

)
→ JPel < O(1) provided Pel � 1, (39)

where Pel = Sl2/κT is the Péclet number based on the local shear and the eddy scale l.

Naively, one may therefore argue that by taking l to be as small as possible, Pel � 1 and

JPel < O(1) can always be satisfied. This would suggest that any amount of shear could

become unstable. However, this is not the case: Zahn further noted that perturbations

cannot be so small as to become viscously controlled. He therefore also required that the

Reynolds number based on the same eddy scale should be greater than a certain threshold

for instability, which he estimated to be O(1000) based on available laboratory experiments

at the time. Mathematically,

Rel =
Sl2

ν
> Rec ∼ O(103). (40)

Combining the two yields the requirement that

JPel
Rel

< O(Re−1
c )→ JPr < (JPr)c, (41)

where (JPr)c ∼ O(10−3). We therefore see that, according to Zahn’s criterion [7], stratified

shear instabilities can exist for fairly large J in the low Prandtl number environments of

stellar interiors. Taking Pr ∼ 10−6, for instance, instabilities should be present up to

J ∼ 103.

It is important to note, however, that Zahn’s argument does not derive from any rigor-

ous linear stability analysis; instead, it can be viewed on a par with Richardson’s original
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discussion of the energetics of stratified turbulence. As such, it is particularly important to

check its validity. Its form, however, is not unexpected when viewed from the perspective

of the low Péclet number asymptotic equations [36], which are relevant here since Zahn

explicitly assumes that Pel � 1. Indeed, looking at equation (32), we see that the only rel-

evant dimensional parameters and groups of parameters are ν and the combination N̄2/κT ,

together with the amplitude S of the background shear2. The only way to create a non-

dimensional quantity involving the Richardson number N2/S2 (noting that N ' N̄ in the

low Péclet number limit) using the available dimensional parameters is (N̄2/κT )(S2/ν)−1,

which is indeed JPr.

It took 40 years, however, for technological advances in high-performance computing to

enable the scientific community to test Zahn’s theory. Even today, computational limitations

(especially in 3D, which is necessary for a reliable test) force us to use simulation parameters

that are very far from those of stellar interiors (where Pr � 1 and Re � 1). The first

attempt at testing Zahn’s theory using DNS was presented by Prat and Lignières [52] (see

also [53, 54]) for the case of a homogeneous shear flow. Later, we attacked the same problem

using different model setups: Garaud and Kulenthirarajah [55] studied the stability of a

stratified Kolmogorov flow (i.e. sinusoidal flow) driven by a body force, while Garaud et al.

[56] considered a stratified plane Couette flow (see Figure 2). Remarkably, all of these

studies came to the same conclusion: in the limit where the turbulent Péclet number is

small, turbulence cannot be sustained if JPr > 0.007 everywhere in the flow. The same

result was obtained using both the standard equations at low Péclet number, and the low

Péclet number (LPN) asymptotic equations (32). The agreement in the stability threshold

identified in these very different kinds of DNS is quite remarkable, and fully validates Zahn’s

criterion [7] for stratified shear instabilities at low Péclet number. However, whether this

criterion still applies for all low Prandtl number flows, including those that have a large

outer scale Péclet number Pe (where Pe = S̄L2/κT , with L a measure of the width of the

shear layer and S̄ is its mean shear) as Zahn originally intended, remains an open question.

A completely independent formal approach to the question was also proposed in [57]

(based on the Woods Hole GFD summer program project of Tobias Bischoff, who was a fel-

low in 2013), where we used energy stability arguments to demonstrate that for sufficiently

2 Since the eddies are supposedly small, they can only know about the background shear rather than other

large-scale properties of the flow

17



 1

 10

 100

0.000001 0.000010 0.000100 0.001000 0.010000

D
tu

rb
 J

 / 
κ T

J Pr

ReC = 4 x 104

ReC = 6 x 104

ReC = 9 x 104

ReC = 1.2 x 105

N
u C
-1
	

FIG. 2. Left: Volume-rendered snapshot of the nondimensional vertical velocity field in a simulation

of stratified plane Couette flow using the LPN approximation. Adapted from Figure 2 of Garaud

et al. [56]. Right: Measurements of the nondimensional turbulent diffusivity (expressed as a Nusselt

number) for a passive scalar in the same simulations, as a function of JPr measured in the bulk

of the shear layer. Note how the turbulence disappears as JPr → (JPr)c ' 0.007. Figure created

from the data presented in Garaud et al. [56].

large Reynolds number, any perturbation to a low Péclet number Kolmogorov flow must

decay unless JPr < (JPr)E, where (JPr)E ∼ O(1) is a constant. This criterion has the

same form as Zahn’s criterion (41), albeit with a constant that is O(1) on the right-hand

side instead of ∼ 0.007. Note that the energy stability argument begins with the LPN

approximation (32), rather than the standard equations (1)-(3). Indeed, using the stan-

dard equations would only provide an energy stability criterion that is independent of the

Richardson number. This is because it is always possible to initialize the flow with pertur-

bations that locally reduce the stratification to the point where J drops below 1, which then

permits the development of shear instabilities. By contrast, the LPN approximation does

not allow substantial modification of the background stratification (see Section III) and in-

stead imposes a very tight constraint between the vertical velocity field and the temperature

fluctuations. This constraint restricts the parameter space of allowable perturbations, and

therefore provides an energy stability bound that depends on the stratification.
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3. Zahn’s model for vertical mixing by vertical shear instabilities

Later on, Zahn became interested in quantifying the rate of mixing by shear-induced

turbulence in stellar interiors [58]. In this now classical 1992 paper, he put forward a simple

model for the turbulent mixing coefficient D for vertical shear instabilities (this derivation

could equally apply to a turbulent compositional diffusivity, or a turbulent viscosity). To

do so, he first noted that, from a dimensional perspective,

D ∝ Sl2, (42)

where l is the typical size of energy-bearing eddies in the turbulent flow and S is the local

shearing rate (recall that S is positive by definition). As we saw earlier, perturbations on

a scale l can grow provided JPel < O(1), so Zahn suggested one should use the largest

possible value of l for which this statement holds. This quantity is now known as the Zahn

scale and satisfies

J
Sl2Z
κT
∼ O(1)→ lZ ∼

√
κTS

N̄2
. (43)

It is not difficult to see that this is in fact the only lengthscale that can be constructed from

the dimensional groups N̄2/κT and S (ignoring viscosity), so the form of lZ should not come

as a surprise. It is, however, strikingly different from the lengthscale often associated with

high Reynolds number stratified turbulence in geophysical flows, namely U/N̄ [59, 60]; see

more on this later. Using lZ in (42), we obtain

D ∝ Sl2Z = CZ
κT
J
, (44)

where CZ is a constant of order unity. This estimate should hold as long as lZ is much

smaller than other available characteristic scales of the fluid, say L, (such as, e.g. the local

density scaleheight, or the scaleheight of the background shear, etc.), and as long as the flow

is indeed unstable, that is when JPr < (JPr)c (see equation 41). This stability criterion,

incidentally, can now easily be shown to be equivalent to lZ > lν , where lν is the scale

below which viscous effects become important, i.e. the scale for which Reν = Sl2ν/ν = Rec

(see equation 41). As such, (44) should be valid as long as there is a separation of scales

satisfying

lν � lZ � L. (45)

There have been several attempts at comparing Zahn’s turbulent mixing prescription with

DNS, notably by Prat and Lignières [53], Prat et al. [54], and Garaud et al. [56]. Most of these
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focussed on cases where the outer scale Péclet number is small, ensuring that the turbulence

is in the low Péclet number regime. The comparison between theory and experiments is

numerically challenging, because the condition (45) requires a very large dynamical range to

be satisfied. In fact, it is not entirely clear that any of the DNS presented to date actually

reach such a clear separation of scales, but at least those at the highest available Reynolds

numbers have L > 20lν , and therefore approach it. For sufficiently high Reynolds numbers,

the turbulent diffusivities measured by Prat et al. [54], and Garaud et al. [56] are again

remarkably consistent, despite using very different model setups. For all simulations at low

Péclet number where (45) is satisfied, (44) holds with CZ ∼ O(0.1). This is a tentative

result, however, that will need to be confirmed with simulations at much higher Reynolds

number, of O(106) at least, see [56]. It is also interesting to note that in all of the DNS

performed in which both are measured, the turbulent diffusivity for a passive scalar and the

turbulent viscosity are consistent within 10 or 20 percent – in other words, the turbulent

Schmidt number is close to one. As such, when valid, Zahn’s model (44) should provide a

good order magnitude estimate for both the turbulent diffusivity and the turbulent viscosity

in stars (assuming rotation and magnetic fields can be ignored, which is not necessarily the

case, see Section VI).

4. Stellar implications

In summary, there seems to be a wealth of evidence in favor of Zahn’s stability criterion

(41) for low Péclet number vertical shear flows in stars. There is also tentative evidence that

his model for turbulent mixing by vertical shear instabilities (44) may apply for low Péclet

number flows, although simulations with a much larger dynamical range will be required

to establish whether this result is robust. However, it remains to be determined whether

the stability criterion and the turbulent mixing prescription are valid more generally for all

shear flows at low Prandtl number as originally proposed in Zahn [7] and Zahn [58].

From a stellar perspective, this current restriction on the applicability of Zahn’s models

to low Péclet number shear layers is unfortunate. Indeed, it is not possible to compute the

turbulent Péclet number without knowing the actual eddy size, and the latter cannot be

observed. As a result, we do not know, simply from observations, whether the flow satisfies

the LPN approximation or not (which is a necessary condition for Zahn’s models to apply).
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At best, we can compute the outer scale Péclet number Pe based on the observed shear and

use it as an upper limit to the turbulent Péclet number. But as discussed by Garaud and

Kulenthirarajah [55], with reasonable assumptions on the amplitude of the shear, Pe is likely

very large in stars (see equation (57) below for a quantitative estimate), except perhaps in

the outer layers of the most massive stars, where κT can be in excess of 1015cm2/s. Deep

in the interior of solar-type or intermediate mass stars, for instance, Pe is of the order of

105 − 108 so Zahn’s models cannot be safely applied (yet). In order to do so, one would

need to demonstrate that small-scale perturbations to the large-scale shear can always be

excited nonlinearly, which would then result in a much lower turbulent Péclet number. This

is an open question that remains to be addressed, and will require simulations in much wider

computational domains and at much higher Reynolds number than presently available.

Even assuming that Zahn’s estimate (44) holds generally for any low Pr flow, the gen-

eral conclusion is that vertical shear instabilities are not a particularly important source of

turbulent mixing in stars, for two reasons. First, combining the criterion JPr < 0.007 with

Pr ∼ 10−6 implies that J cannot be larger than about 104 for instability to occur. While

some stellar shear layers do indeed satisfy this (e.g. the solar tachocline has N̄2 ∼ 10−6s−2

and S̄ ∼ 10−5s−1, so on average J ∼ 104), this is uncommon for the reasons discussed in

Section IV A. Secondly, even if the flow is unstable according to (41), we have

D ' CZ
(JPr)c

(JPr)c
JPr

ν ' 10
(JPr)c
JPr

ν (46)

using the estimated numerical values of CZ ∼ O(0.1) and (JPr)c ∼ O(0.01). As such,

unless JPr � (JPr)c, the turbulent viscosity is predicted to be only one or two orders

of magnitude larger than its microscopic counterpart. The same is true for the turbulent

diffusivity of a scalar field, since the microscopic compositional diffusivity is usually of the

same order as ν. As such, we are forced to conclude that stratified vertical shear instabilities

in low Prandtl number stellar fluids are not a substantial source of turbulent transport for

momentum or composition.

21



B. Horizontal shear

1. Context

The effect of horizontal shear on mixing in stratified fluids is much less straightforward

than that of vertical shear, but the two are not unrelated. Consider for instance a uni-

directional, vertically invariant, horizontal shear flow of the form U(y)ex, where ex is the

streamwise direction, and y is the spanwise direction. A two-dimensional (2D) perturbation

to this flow, which takes the form of horizontal motions only, is unaffected by stratification.

As such, this 2D perturbation will be linearly unstable provided U(y) satisfies the standard

criteria for 2D, unstratified shear instabilities (see, e.g. [61]). One may therefore argue

that horizontal shear instabilities are much easier to trigger than vertical shear instabilities.

However, the same 2D motions cannot cause any vertical mixing, so the latter must result

from 3D perturbations, which are, by contrast, directly affected by the stratification. The

goal is therefore to understand how these 3D motions are driven, what form they take, and

how much diapycnal mixing they can cause.

On Earth, evidence for vertical mixing in (mostly) horizontal shear flows is quite clear

from both laboratory experiments [62–65] and numerical experiments [60, 66]. In all cases,

small-scale vertical shear is an essential component of the process, and can appear for a

variety of reasons, either because the driving mechanism for the horizontal motions is not

vertically invariant, or because 3D modes of instability are also excited [64, 66, 67]. In itself,

this vertical shear might not be sufficient to trigger vertical shear instabilities, because

the gradient Richardson number constructed using the shear and the mean background

stratification remains very large. However, by virtue of non-monotonic buoyancy flux laws

[68, 69], the stratification crucially rearranges itself to contain alternating regions that are

more weakly and more strong stratified, respectively – as a set of layers and interfaces. The

weaker stratification within the layers locally decreases the gradient Richardson number

below unity, allowing the flow to become turbulent. The turbulence, in turn, mixes the

layers and maintains the interfaces so the process is essentially self-sustaining [70].

It has been shown both experimentally, theoretically and numerically, that in the limit

where viscosity is negligible, the thickness of these layers scales as Uh/N̄ , where Uh is the

r.m.s. amplitude of the horizontal flow (see, e.g. [59, 60, 62–64]). This scaling is again
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not surprising: in geophysical environments where viscosity is negligible, so is the thermal

diffusivity since Pr ∼ O(1) or larger, and the only available dimensional parameters of the

system are the characteristic scale of the horizontal flow L, the amplitude of this flow Uh

(or, the horizontal shear Sh ∼ Uh/L, depending on the model setup), as well as the mean

stratification N̄ . The only lengthscale that can be constructed from Uh and N̄ independently

of L is Uh/N̄ .

From the discussions presented in Section III, however, it is quite clear that a pathway

to turbulence involving the formation of layers and interfaces is prohibited at low Péclet

number, since the background stratification cannot be modified in that limit. Furthermore,

since the relevant dimensional parameter is N̄2/κT (rather than N̄ and κT separately), the

quantity Uh/N̄ cannot be the appropriate lengthscale for low Péclet number flows, as we

already found in the case of vertical shear (see Section IV A 3). In other words, the dynamics

of horizontal shear instabilities in stars must be quite different from those on Earth.

The first model for turbulent mixing induced by horizontal shear instabilities in stellar

interiors was proposed by Zahn, in the same 1992 paper that introduced the mixing coeffi-

cient for vertical shear instabilities [58]. Zahn argued that the presence of horizontal shear

would drive primarily 2D motions, which rapidly decouple in the vertical direction owing

to the very low plasma viscosity. These now layerwise horizontal motions become unstable

to diffusive vertical shear instabilities when their characteristic vertical scale lv drops below

the Zahn scale, i.e. when lv =
√

κTS
N̄2 , where here S = Uh/lv. Solving for lv yields the new

scaling

lv =

(
κTUh
N̄2

)1/3

, (47)

which is (again) the only lengthscale that can be constructed from the dimensional quantities

Uh and N̄2/κT (see Section III; here, the low Péclet number approximation is implicit since

the vertical shear instabilities are assumed to be diffusive). Zahn further assumed that the

amplitude of the horizontal motions can be obtained from the viscous dissipation rate ε

using the usual Kolmogorov scaling ε ∝ U3
h/lv, ultimately leading to the conclusion3 that

lv =

(
κT ε

1/3

N̄2

)3/8

and Uh =

(
κT ε

3

N̄2

)1/8

. (48)

Lignières [71] recently provided an alternative explanation for this scaling, which may feel

more familiar to geophysical fluid dynamicists. In high Péclet number flows, he recalls, the

3 Note that Zahn never explicitly wrote lv and Uh as such, but it can be inferred from his calculation.
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effects of stratification begin to affect the turbulence above the Ozmidov scale lO, which is

the scale at which the eddy turnover timescale l/u(l) equal the buoyancy timescale N̄−1.

Below the Ozmidov scale, the turbulence satisfies the usual Kolmogorov scaling relating the

dissipation rate to the turbulent spectrum ε ∝ u(l)3/l. Together,

lO
u(lO)

= N̄−1 and ε =
u3(lO)

lO
⇒ lO =

( ε

N̄3

)1/2

. (49)

For low Péclet number flows, on the other hand, Lignières argues that this argument needs

to be modified to account for the fact that the buoyancy timescale is no longer N̄−1, but

(by dimensional analysis) κT/N̄
2l2. Equating this with the eddy turnover timescale, with

the same constraint from the energy dissipation rate, he defines a modified Ozmidov scale

lOM as

lOM
u(lOM)

=
κT

N̄2l2OM
and ε =

u3(lOM)

lOM
⇒ lOM =

(
κT ε

1/3

N̄2

)3/8

. (50)

This recovers (48), as mentioned earlier, and provides insight into the balance of timescales

required in deriving lv.

Zahn [58] then used the derived lengthscale and velocity amplitude to compute a vertical

turbulent mixing coefficient, which is

D ∝ lvUh ∝
(κT ε
N̄2

)1/2

. (51)

This predicted scaling is interesting, because it only depends on the stratification as N̄−1,

compared with the mixing coefficient for vertical shear instabilities, which scales as N̄−2. As

such, it is possible that horizontal shear instabilities may actually provide a more efficient

source of mixing in stars than vertical shear instabilities in the limit of strong stratification.

2. Direct Numerical simulations of horizontal shear instabilities at low Prandtl number

Having worked on the problem of vertical shear instabilities for a few years, I decided to

tackle the more complicated problem of horizontal shear instabilities in 2018. By chance,

Colm-cille Caulfield and I were both planning to attend the GFD program that sum-

mer. Caulfield has done extensive work on stratified turbulence with application to the

oceanographic context, and had recently studied stratified horizontal Kolmogorov flows at

Pr ∼ O(1) [66]. Together with GFD fellow Laura Cope, we extended that work to the low

Pr limit, which paved the way to a comprehensive analysis of Zahn’s model for turbulent
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mixing by horizontal shear flows in stars. As we discovered [72, 73] the story is substantially

more complicated than Zahn foresaw.

As a natural continuation of prior work [55, 66], we studied the dynamics of horizontal

Kolmogorov flows in a vertically-stratified fluid. The governing equations are given by (1)-

(3), with the addition of a body force of the form F = F0 sin(ksy)ex to drive the horizontal

shear. Using a non-dimensionalization based on the outer scale of the flow k−1
s , the predicted

amplitude of the horizontal flow Uh =
√
F0/ρmks, and the temperature scale k−1

s βT , we

arrive at equations very similar to (20)-(22), with B = N̄2/U2
hk

2
s , Ret replaced by an outer

scale Reynolds number Re = Uh/νks and Pet replaced by an outer scale Péclet number

Pe = Uh/κTks. Note that the quantity Uh turns out to be a good estimate for the horizontal

rms velocity, hence the choice to keep the same notation as in the previous section. For

typical parameters of the interiors of main sequence stars of a few solar masses or less, Re,

Pe and B are all much larger than one, with Pe = PrRe � Re [73]. For the outer layers

of very high mass stars, by contrast, Re� 1 while Pe < 1 [55]. These estimates show that

both Pe� 1 and Pe < 1 regimes are relevant in stellar contexts.

As predicted by Zahn [58], in Cope et al. [72] we found that the mean horizontal flow

rapidly becomes unstable to quasi-2D perturbations, that take the form of vertically mod-

ulated horizontal meanders. These decoupled meanders induce some vertical shear, that

can become unstable and cause vertical mixing, depending on the stratification. For weakly

stratified flows, the turbulence behaves as if temperature was a passive scalar, and is unaf-

fected by stratification. For more strongly stratified flows, both vertical eddy size and rms

vertical velocity are reduced by the stratification, while the horizontal rms velocities remain

essentially unaffected (see Figure 3). For even more strongly stratified flows, the vertical

shear between the meanders is progressively stabilized, first intermittently, and then en-

tirely. Beyond this qualitative picture, however, the results are sensitively dependent on the

emergent turbulent Péclet number of the vertical fluid motions, given by Pet = wrmslv/κT ,

where wrms is the vertical rms velocity and lv is the vertical eddy scale. This is irrespective

of Pe, although we always have Pet = (wrms/Uh)(lvks)Pe < Pe.

In the limit where Pet � 1 and the flow is strongly stratified (B > 1),

lv ∝ B−1/3k−1
s and wrms ∝ B−1/3Uh, (52)
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FIG. 3. Snapshots of the horizontal (left) and vertical (right) velocity field in a simulation of

horizontal shear flow at Re = 600, Pe = 0.1, B = 6000, discussed in Cope et al. [72]. The

meanders of the horizontal flows are visible on the left, and generate substantial shear, that drives

vertical shear instabilities on small scales (right).

independently of Re or Pe, see [73]. This would then imply a turbulent mixing coefficient

D ∝ lvwrms ∼ B−2/3k−1
s Uh ∝

(
N̄2

U
7/2
h k

1/2
s

)−2/3

, (53)

so D ∝ N̄−4/3, which decays a little faster than Zahn’s prediction (51), but not as fast as the

mixing coefficient for vertical shear instabilities (44). In addition, this kind of turbulence

appears to be capable of inducing a non-negligible heat flux (compared with the diffusive

flux), estimated to be [73]

FT ∝ −
Uh
Bks

βT ∝ −
U3
hks
αTg

. (54)

Note that the heat flux is downward in stably stratified fluids, and usually has the opposite

sign to the conducted (radiative) flux since the temperature gradient T0z is negative in stars.

To my knowledge, these scalings are different from any other proposed to date, but nat-

urally arise from a dominant balance between nonlinear terms and forcing in the horizontal

component of the momentum equation, hydrostatics in the vertical direction, and a bal-

ance between the nonlinear terms u · ∇T̃ and the background advection term βTw in the

temperature equation (see [73] for detail). The fact that the vertical eddy scale in (52) is

not given by Uh/N̄ , for instance, is particularly surprising since in this limit both Reynolds
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and Péclet numbers are relatively large, and one may expect geophysically-relevant scaling

arguments such as those of Brethouwer et al. [60] to apply. However, it is worth noting that

the Uh/N̄ scaling is formally only applicable when the buoyancy Reynolds number defined

as Reb = ε/νN̄2 is very large, and it is likely that the present simulations (for which Reb

ranges from 3 to 20 in the regime of interest) are not in that limit yet. As such, these results

remain to be confirmed in the future.

From (52), we see that the turbulent Péclet number Pet = wrmslv/κT must decrease with

decreasing Pe or increasing B. The critical Pet = 1 transition occurs when B ∝ Pe3/2,

irrespective of Re (or the Prandtl number). When Pet � 1, the flow dynamics are well

represented by the LPN approximation, and depend only on Re and the product BPe,

for the reasons described in Section III. Various dynamical regimes exist, including a low

Péclet number stratified turbulence regime, an intermittent regime, and a viscous regime,

each following a distinct set of scaling laws discussed by Cope et al. [72]. In the turbulent

low Péclet number stratified regime, for instance, the vertical eddy size and vertical r.m.s.

velocity scale as

lv ∝ (BPe)−1/3k−1
s , and wrms ∝ (BPe)−1/6Uh, (55)

leading to a turbulent mixing coefficient

D ∝ lvwrms ∝ (BPe)−1/2k−1
s Uh ∝

(
N̄2

U3
hksκT

)−1/2

. (56)

These scalings can be explained from a dominant balance between nonlinear terms and

forcing in the horizontal component of the momentum equation (as before), nonlinear terms

and buoyancy force in the vertical component of the momentum equation, and finally, the

LPN balance in the thermal energy equation. We find that they do recover Zahn’s prediction

(51) assuming that the viscous dissipation ε is given by the Kolmogorov scaling U3
hks (which

remains to be determined). We therefore confirm that D ∝ N̄−1 in this regime, suggesting

that mixing can remain important even when the stratification is strong.

For very large values of B, finally, the vertical shear gradually becomes more stable,

and the volume fraction of the domain occupied by turbulent flow decreases [see 72, for

more detail]. Instead, viscously dominated flow structures emerge, with a vertical scale

proportional to Re−1/2. Vertical mixing in that regime is essentially negligible.
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3. Stellar implications

Using values of κT , N̄ , Uh and ks that are somewhat typical4 of the deep interiors of Main

Sequence stars with masses around 1M�, we have

Re = 1014

(
Uh

104cm/s

)(
k−1
s

1011cm

)(
ν

10cm2/s

)−1

,

P e = 108

(
Uh

104cm/s

)(
k−1
s

1011cm

)(
κT

107cm2/s

)−1

,

B = 108

(
Uh

104cm/s

)−2(
k−1
s

1011cm

)2(
N̄

10−3s−1

)2

, (57)

so that, in the high Pet regime,

D ∝ 1029/3

(
Uh

104cm/s

)7/3(
k−1
s

1011cm

)−1/3(
N̄

10−3s−1

)−4/3

cm2/s, (58)

while in the low Pet regime

D ∝ 107

(
Uh

104cm/s

)3/2(
N̄

10−3s−1

)−1(
κT

107cm2/s

)1/2(
k−1
s

1011cm

)−1/2

cm2/s. (59)

We see that in both cases, unless Uh � 104cm/s, D is significantly larger than the micro-

scopic viscosity ν ' 10cm2/s (and the microscopic diffusivity for a chemical tracer, which

is of the same order of magnitude), suggesting that horizontal shear instabilities in either

regime could be a substantial source of vertical mixing in stars, just as it is in the ocean

and in the atmosphere on Earth. Of course, these results do not yet account for the effects

of rotation or magnetic fields which are expected to be important in stars (see Section VI

and, e.g. [58, 73] for a discussion of these effects).

In summary, we saw that a small Prandtl number is very favorable to the development

of shear instabilities in strongly stratified fluids because it allows for the existence of a

new regime which is both almost inviscid yet also thermally diffusive, i.e. such that Pel =

PrRel � 1 � Rel on some lengthscales l. In this regime, thermal diffusion reduces the

stabilizing effects of stratification and the instability can thrive, albeit at small scales. This

conclusion, as we shall now see, applies to double-diffusive instabilities as well.

4 Aside from the mean horizontal flow velocity Uh, which can vary significantly, the typical values of κT and

N̄ do not change too much over the interior of the star, except perhaps close to the edge of the convection

zone where N̄ → 0. These values do not change much with stellar mass either, in the range ∼ 0.5M� to

∼ 10M�; the value of ks is taken to be of the order of 2π over the stellar radius, which does not change

too much either.
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V. DOUBLE-DIFFUSIVE INSTABILITIES

A third group of instabilities that are of interest to both astrophysical and geophysical

communities are double-diffusive instabilities. These were discovered by Stommel et al. [74]

and Stern [75], in the context of their research in physical oceanography. Stern [75] realized

that because the density of seawater depends on both temperature and salinity, which diffuse

at very different rates, two new kinds of instabilities exist that can destabilize a statically

stable density stratification (even more were discovered later, e.g. [76, 77]). More generally,

the same is true of any fluid whose density depends on multiple components that diffuse

at different rates. The simplest model setup that supports double-diffusive instabilities is

that of an unbounded fluid with a background potential temperature gradient βT and a

background salinity (or any slow diffusing compositional field C) gradient βC (see [78, 79]).

The dimensional equations governing the fluid are as in (1)-(3), with the added contribution

of the compositional perturbations C̃ to the buoyancy field, and a second advection diffusion

equation:

∂u

∂t
+ u · ∇u = − 1

ρm
∇p̃+ (αT T̃ − αCC̃)gez + ν∇2u, (60)

∇ · u = 0, (61)

∂T̃

∂t
+ u · ∇T̃ + βTw = κT∇2T̃ , (62)

∂C̃

∂t
+ u · ∇C̃ + βCw = κC∇2C̃, (63)

where αC = ρ−1
m (∂ρ/∂C)T , and κC is the compositional diffusivity. For salt water, the

diffusivity ratio τ = κC/κT = O(0.01).

Stern [75] discovered the so-called fingering instability based on the experiment of Stom-

mel et al. [74]. This form of double-diffusive convection can take place when temperature

(or, more generally, the most rapidly diffusing scalar) is stably stratified while salt (or, the

more slowly diffusing scalar) is unstably stratified. Stern argued that a small vertically

displaced parcel of fluid would rapidly equilibrate thermally with its surroundings. This

reduces the stabilizing impact of the temperature stratification (as it did for the diffusive

shear instabilities) and allows in this case the unstable salinity gradient to drive what is

essentially haline convection, albeit on small scales. In a footnote, Stern [75] also mentioned

that a related oscillatory instability would exist when the stratifications are reversed, namely

when temperature is unstably stratified, while salinity is stably stratified. Indeed, in the
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absence of the temperature field, a vertically displaced parcel of fluid would merely excite

stable internal gravity waves in the stably-stratified salinity field. However, in a destabiliz-

ing temperature gradient, the diffusive thermal adjustment of the parcel with the ambient

temperature provides an additional source of buoyancy that serves to gradually amplify the

oscillation (see, e.g. Figure 1 of [5]). The linear instability theory for this oscillatory type

of double-diffusive convection was presented by Walin [80]. Double-diffusive instabilities in

their various forms (see more on this later) are thought to be significant sources of diapycnal

mixing in the tropical ocean, where fingering takes place, and in the polar oceans, where

the oscillatory instability and its subcritical manifestations take place [79].

Double-diffusive instabilities were introduced to the astrophysical community in the early

1960s, with the GFD program playing a central role in disseminating the ideas5. In stars,

helium and/or other heavier atomic species play the role of salt, while the ionized hydrogen

plasma plays the role of the ambient fluid. The fingering instability takes place in stably

stratified radiative zones in the presence of an unstable compositional gradient, that could be

caused either by material falling onto the surface of the star from accreting planets or from a

more evolved binary companion, or created in situ by some nuclear reactions. The instability

was, to my knowledge, first invoked as a possible mixing mechanism in stars by Ulrich [82],

although reference to it in the astrophysical literature dates back to the work of Goldreich

and Schubert [48], who discovered a double-diffusive version of centrifugal instabilities and

noted its strong analogy with the thermohaline problem. The oscillatory instability on the

other hand takes place in regions of the star close to a convective core, where nuclear fusion

reactions can create a stabilizing compositional gradient. It was first discussed in the stellar

context by Kato [83] and Spiegel [84], who realized its connection with a related problem in

stellar astrophysics called semiconvection [85].

I have recently reviewed the topic of double-diffusive instabilities at low Prandtl number in

two different venues (the reader is referred to [5] for a review addressed to fluid dynamicists,

and to [6] for a review addressed to stellar astrophysicists). Rather than repeating what can

be found elsewhere, I shall therefore focus here on describing the main differences between

high and low Prandtl number double-diffusive systems, while garnering insight from what

5 Willem Malkus, who worked on the problem early on, introduced fingering instabilities to his colleague

Peter Goldreich at UCLA. Goldreich attended GFD in 1966. Spiegel also introduced fingering instability

to his colleague Sylvie Vauclair in the 1970s, who went to on discuss their importance in planet formation

[81]. Meanwhile, Spiegel and Kato were interested in the oscillatory double-diffusive problem, with Kato

and Walin both fellows of the GFD program in 1964.
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we have just learned about low Péclet number flows.

A. Fingering instabilities

Using a linear stability analysis, Stern [75] established that the criterion for linear insta-

bility to fingering convection depends on the so-called density ratio

R0 =
αTβT
αCβC

. (64)

A fluid is fingering-unstable provided

1 < R0 <
κT
κC

= τ−1. (65)

Note that the fluid is unstable to multi-component convection when R0 ≤ 1, and linearly

stable if R0 > τ−1. The linear stability bound is sharp, and coincides with the energy

stability bound [86, 87]. In stars, the diffusivity ratio is usually very small, and notably

smaller than the kinematic viscosity, so τ < Pr � 1. Fingering convection can therefore

take place over a huge range of density ratios [88].

Regardless of the Prandtl number, the typical lengthscale associated with the fingering

instability is usually of the order of

d =

(
κTν

αT |βT |g

)1/4

, (66)

which is the scale on which the thermal Rayleigh number would be equal to one. In the

ocean, the fingers initially develop as thin columns of fluid (hence their name), with alter-

nating warm/salty water flowing down, and cold/fresh water flowing up. The growth rate

of fingering modes λfing is the solution of a cubic equation (see, e.g. Radko 2013, equation

2.2), and must usually be computed numerically. The velocity field within the fingers grows

exponentially until a secondary shearing instability develops and disrupts them, causing

saturation. As discussed by Radko and Smith [89] in the geophysical context, and Brown

et al. [90] in the astrophysical context (see also [91]), it is possible to predict the vertical

velocity within the fingers at saturation, wfing, simply by requiring a balance between the

primary fingering growth rate, and the secondary (parasitic) shear instability growth rate.

Indeed, prior to the saturation of the primary instability, the flow field associated with

the developing fingers is purely vertical, and varies sinusoidally in the horizontal direction on
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the characteristic lengthscale d. The growth rate of the shear instability between the fingers

λshear depends on the amplitude of the vertical flow speed wfing, and can be computed

by linear stability analysis [89]. Setting λfing = Kλshear(wfing) then provides an implicit

equation for the finger velocity at saturation, wfing. The constant K is finally estimated by

fitting the model predictions to the data. The Radko & Smith model was very successful in

predicting the fingering fluxes measured in DNS for a wide range of density ratios, Prandtl

number, and diffusivity ratios.

For geophysically-relevant values of Pr, and density ratio of order unity, both DNS and

laboratory experiments agree that the turbulent temperature flux can be up to two orders

of magnitude larger than the diffusive flux, while the salinity flux can be up to four orders

of magnitude larger than the diffusive flux. In the light of what we saw earlier, this implies

that the thermal Péclet number is large, and that the instability can, in principle, drive the

formation of layers and interfaces. This is in fact exactly what happens: for low density

ratios, fingering convection is now known to drive the formation of thermohaline staircases,

which are stacks of well-mixed fully convective layers separated by thin fingering interfaces.

Observed in the ocean [92–94], and in laboratory experiments [95, 96] the process by which

these layers form was finally clarified by Radko [97] (see also [98]), who discovered a new

mean-field instability he called the γ−instability, driven by an imbalance between the tur-

bulent salt and temperature fluxes (see [79] for a review of all processes that lead to the

formation of layers in oceanographic double-diffusive convection). These thermohaline stair-

cases are particularly important for diapycnal mixing in the tropical ocean, where they are

observed to significantly increase vertical transport compared with regions where fingering

convection alone takes place [99].

As R0 increases, the turbulent fluxes of temperature and salinity decrease, and eventually

drop to zero at R0 = 1/τ . For salt water, the turbulence is already very weak (and the

thermal Péclet number is small) beyond R0 ' 20. Based on what we learned in Section III

one may then naturally propose a reduced model for fingering convection using the LPN

approximation [36]. Replacing the temperature equation with its approximate form (31),
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we then have

∂u

∂t
+ u · ∇u = − 1

ρm
∇p̃+

(
N̄2

κT
∇−2w − αCgC̃

)
ez + ν∇2u, (67)

∇ · u = 0, (68)

∂C̃

∂t
+ u · ∇C̃ + βCw = κC∇2C̃. (69)

These reduced equations were in fact formally derived by Radko [100] and Xie et al. [101], us-

ing asymptotic expansions of the governing equations for fingering convection near marginal

stability (i,e. as R0 → τ−1). However, DNS demonstrate that the region of validity of these

equations can be much larger than what the asymptotic theory suggests (e.g. for salt water

it is valid for R0 as low as ∼ 20, rather than in the strict limit R0 → 100).

Meanwhile, in the low Prandtl number limit of stars, Brown et al. [90] noted that several

simplifications to the Radko and Smith [89] model can be made. First, it is possible to

solve the cubic for the fingering growth rate analytically using an asymptotic expansion for

Pr, τ � 1, leading to the estimate that

λfing '
√
Pr

R0

κT
d2

+O(Pr) (70)

in most of the unstable range except near marginal stability, where λfing drops to zero.

Secondly, since viscosity is negligible on the fingering scale (again because Pr � 1), the shear

instability growth rate λshear is independent of ν and can be shown purely on dimensional

grounds to be proportional to wfingd
−1. Equating the primary and parasitic instability

growth rates as before, we find that

wfing ∝ dλfing '
√
Pr

R0

κT
d

when Pr � 1. (71)

From that, we can estimate a Péclet number based on the basic finger properties, to be

Pefing =
dwfing
κT

'
√
Pr

R0

. (72)

Note that a much more detailed asymptotic analysis can be found in Brown et al. [90] if

required. Since Pr is small and R0 is always larger than one (and can be very large indeed),

we see that fingering convection at low Prandtl number always has Pefing � 1 at all values

of the density ratio. This implies, in particular, that (67)-(69) are always a good description

of fingering convection in stars. It also implies that thermocompositional staircases cannot
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spontaneously form from the basic fingering instability in that case, since low Péclet number

flows cannot modify the background temperature profile significantly. This conclusion was

already reached by Traxler et al. [102], and further quantified by Garaud et al. [103], by

performing a detailed analysis of Radko’s mean-field theory [97] applied to low Prandtl

number fingering convection. However, as demonstrated above, we can arrive at the same

inevitable conclusion using very simple dimensional arguments.

The fact that thermocompositional staircases cannot naturally arise in low Prandtl num-

ber fingering convection has important implications for stellar structure and evolution. On

the one hand, this means that the theory of Brown et al. [90] is sufficient to estimate

turbulent mixing by fingering convection in stars. This implies that the turbulent mixing

coefficient, for low to moderate values of R0, is

Dfing ∝ wfingd ' Cfing

√
Pr

R0

κT for R0 � τ−1, (73)

where the constant Cfing was estimated by Brown et al. [90] to be approximately equal to

10 [see also 6]. This formula recovers the functional form of the original model proposed by

Ulrich [82] and is actually quite close in both form and magnitude to the model of Kippen-

hahn et al. [104]. The mixing coefficient obtained, just as in the case of shear instabilities, is

an appropriate estimate for both the turbulent viscosity and the turbulent diffusivity of the

scalar C [105] (except in the limit R0 → τ−1, where equation (73) is not valid). For values

of R0 and Pr appropriate for stellar interiors, Dfing ranges from one to three orders of mag-

nitude larger than the microscopic counterparts ν and κC (which are of the same order of

magnitude, roughly). This has implications, for instance, for observations of the abundance

of various chemical species at the surface of Red Giant Branch stars, of planet-bearing stars

and of some metal-rich White Dwarf stars (see the review by [6] and references therein for

more detail).

B. The oscillatory regime

Walin [80] established that the criterion for linear instability to the so-called oscillatory

double-diffusive convection (ODDC hereafter; this term was apparently coined by Spiegel)

is

1 < R−1
0 <

ν + κT
ν + κC

=
Pr + 1

Pr + τ
. (74)
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The quantity R−1
0 is referred to as the ”inverse density ratio”. Here the fluid is unstable to

multi-component convection when R−1
0 ≤ 1, and linearly stable if R−1

0 > (ν + κT )/(ν + κC).

Note how, in contrast with the fingering case, viscosity now affects the linear stability

threshold.

For salt water, where Pr ∼ O(10), that threshold is very close to one, so the range of

inverse density ratios for linear instability is almost negligible. However, as shown by Veronis

et al. [106] (see also [107]), there exists a subcritical branch of instability that persists for

R−1
0 � (ν + κT )/(ν + κC). Physically speaking, this is easy to understand: any finite

amplitude perturbation that locally reduces the stable salt stratification can allow thermal

convection to develop more easily6. Ultimately, the fluid develops one or more convective

layers, separated by stably stratified diffusive interfaces. This is the more common form

taken by this instability in geophysical flows, as demonstrated in laboratory experiments

by Turner [108], Linden and Shirtcliffe [109] and numerical experiments by Carpenter et al.

[110]. Thermohaline staircases associated with a stable salt stratification and an unstable

temperature stratification are also well documented in the polar oceans and in volcanic lakes

[111, 112]. These staircases typically have an underlying inverse density ratio ranging from

2 to 10, which is stable according to (74).

At low Prandtl number, viscosity is negligible on the scales over which thermal diffusion is

effective, which means that the marginal stability threshold for the linear oscillatory double-

diffusive instability is very large (R−1
0 ∼ O(τ−1) ∼ 106 or larger, as in the fingering case).

As such, this instability is dynamically relevant, by contrast with the geophysical context

where it is not. Almost any region that has an unstable potential temperature gradient

can therefore be the seat of ODDC, even when the stabilizing compositional stratification

is extremely strong [83, 84].

The nonlinear saturation of the primary instability in ODDC remains an open question.

Ad-hoc models for the turbulent compositional flux induced by ODDC were proposed by

Stevenson [113] and Langer et al. [114], but neither appear to fit recent DNS results of Mirouh

et al. [115] (see [6] for a comparison). For low inverse density ratios, my former graduate

student Ryan Moll demonstrated in his MS Thesis that a model similar to the Brown et al.

[90] model for fingering convection (i.e. equating the primary instability growth rate to

6 Note that several other linear instability mechanisms can also interact with ODDC to give rise to layering,

such as the one identified by Radko [77].
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the growth rate of parasitic shear instabilities) can explain the turbulent flux data. At

larger inverse density ratios, however, this model does not work and largely under-predicts

the turbulent fluxes. The instability appears to saturate instead through the generation

and interaction with large-scale shearing modes (often called ”jets”), as demonstrated by

Paparella et al. [116] (another GFD project) using a truncated modal analysis, and by Moll

et al. [117] using 3D DNS. It is interesting to note that in the same limit thermal diffusion

becomes dominant, so the truncated model (67)-(69) is expected to be a good approximation

for the dynamics of the system. To my knowledge, this has not been explored yet. In short,

a comprehensive theory of the nonlinear saturation of ODDC is still lacking, but several

encouraging avenues exist that ought to be further investigated.

An important outcome of the numerical experiments performed by my research group

over the years, starting with the exploratory work of Rosenblum et al. [118], is the discovery

that ODDC at low R−1
0 undergoes a spontaneous transition to layered convection through

Radko’s γ-instability (see above). The γ-instability takes place whenever the ratio γ of

the total buoyancy flux due to compositional transport, to the total buoyancy flux due

to temperature transport, is a decreasing function of R−1
0 . As demonstrated by Mirouh

et al. [115], the range of inverse density ratios for which this is the case increases as the

Prandtl number and diffusivity ratio both decrease, suggesting that layered double-diffusive

convection should be prevalent in stellar interiors (see the reviews [5, 6]), especially in the

vicinity of convective cores [119].

Wood et al. [120] and Moll et al. [121] performed a series of DNS of ODDC in the layered

regime, at low Prandtl number. We found that in a staircase composed of multiple layers

with roughly equal heights L, subject to a mean potential temperature stratification βT and a

mean compositional stratification βC (so the potential temperature and compositional jumps

across each interface are ∆T = |βTL| and ∆C = |βCL|, respectively), the Nusselt number

is proportional to (RaLPr)
1/3, where RaL is the layer-based thermal Rayleigh number

RaL =
αT |βT |gL4

κTν
. (75)

The heat flux might also depend more weakly on the inverse density ratio and the diffusivity

ratio, but the available data is too limited to conclusively propose any scaling (see figure 4).

This scaling law is consistent with the notion that, in the absence of solid boundaries (and

their associated viscous boundary layers), the heat flux should become independent of Pr
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for asymptotically low Pr.

N
u	

RaLPr	

FIG. 4. Left: Snapshots of the compositional perturbations C̃ in a DNS of ODDC at R−1
0 = 1.15,

Pr = τ = 0.3, presented in Wood et al. [120], at two instants in time, showing the formation

of layers and their subsequent mergers. Right: Nusselt number as a function of RaLPr in many

different DNS of ODDC at varying R−1
0 , Pr and τ , showing the scaling Nu ∝ (RaLPr)

1/3. Figure

adapted from Garaud [5].

The simulations of Wood et al. [120] and Moll et al. [121] are still preliminary, but are

the only ones to my knowledge to study layered double-diffusive convection at low Prandtl

number in the absence of solid boundaries (which do not exist in stars). Simulations in a

bounded domain (between solid plates) were presented by Biello [122], Zaussinger and Spruit

[123] and Zaussinger and Kupka [124], and behave quite differently, which is expected.

Generally speaking, much more remains to be done to understand and fully characterize

layered double-diffusive convection a low Prandtl number. Taller and wider computational

domains, as well as significantly higher resolution, will be needed to probe a larger region of

parameter space in terms of Pr, τ , R−1
0 and layer height, to confirm or challenge the scaling

laws proposed by Wood et al. [120]. It also would be particularly interesting to see whether

one eventually recovers the Ultimate Regime of convection as RaL increases. Finally, note

that the simulations of Wood et al. [120] at low R−1
0 suggest that thermocompositional

staircases are not a stable configuration in the long term, because individual layers have

a tendency to merge over time until a single fully convective layer remains (see figure 4).

Whether this is an artifact of the boundary conditions used, or a genuine property of layered

double-diffusive convection, needs to be established.
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The answer to these questions have important implications for stellar and planetary

astrophysics. Layered double-diffusive convection in the vicinity of the convective cores

of intermediate and high-mass stars, as demonstrated by Moore and Garaud [119], helps

transport hydrogen into the core, which, as mentioned in Section I, fuels its nuclear reactions,

prolongs the lifetime of the star, and increases the size of the core prior to its end-of-life stage

(supernova or red giant). This in turn impacts the ultimate redistribution of metal-enriched

material in the host galaxy, with implications for star formation and cosmology. In the

interior of giant planets, Moll et al. [121] (see also [125, 126]) showed that the presence or

absence of double-diffusive layers can control the rate at which the convective envelope erodes

the primordial rocky or water-rich core. Again, this has potentially observable consequences,

and needs to be taken into account in models of the formation and evolution of planets. More

examples of the importance of ODDC in astrophysics are discussed in Garaud [6].

VI. MAGNETIC FIELDS AND ROTATION

Before concluding, a few remarks are perhaps in order. It was my goal in this review to

present a few instabilities that are of particular interest to both geophysical fluid dynamicists

and to the stellar astrophysics community, while emphasizing fundamental differences in the

emergent turbulence that are due solely to the fluid’s Prandtl number. In choosing to focus

on a few selected topics only, I have had to ignore many others that also play an important

role in both stars and in the Earth’s oceans, atmosphere, and/or molten interior. These

include, in no specific order, topics such as centrifugal instabilities, large-scale meridional

circulations, gravity waves and Rossby waves, penetrative convection, and the generation of

magnetic fields by dynamo action (among others). More importantly, I have neglected to

include the effects of rotation and magnetic fields on the three types of instabilities discussed

in this review. This choice was made for pedagogical purposes, but by doing so I have vastly

oversimplified the physics to the point that many of the results presented cannot be directly

applied to model stellar interiors. In what follows, I provide a very brief glimpse into the

various ways in which rotation and magnetic fields can change the results presented in the

previous sections.
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A. Rotation

All astrophysical and geophysical systems are rotating to a greater or lesser degree, and

rotation needs to be taken into account whenever the Rossby number of the flow, defined

as Ro = U/LΩ (where U and L here are the characteristic velocity and lengthscale of the

dominant eddies, respectively, and Ω is the local rotation rate), is of order unity or lower.

Conservation of angular momentum in an inviscid rotating system strongly constrains the

range of dynamics allowed. On the one hand, gradients of angular momentum can have a

stabilizing or destabilizing effect on certain types of perturbations, and therefore constrain

both the linear and nonlinear development of instabilities. On the other hand, the Taylor-

Proudman constraint forces all components of a very low Rossby number flow to be invariant

along the rotation axis, so the resulting turbulent dynamics become almost two-dimensional.

The effect of rotation on all three kinds of instabilities discussed in this review is generally

relatively well understood at Pr ∼ O(1), but, to my knowledge, there are very few instances

in which the regime combining Ro < 1 and Pr � 1 has been considered.

Significant progress has recently been made in improving our understanding of the im-

pact of rotation on Rayleigh-Bénard convection at Pr ∼ O(1), thanks to a combination of

numerical experiments and laboratory experiments, as well as the development of reduced

asymptotic models (see reviews of the topic in e.g. [127, 128]). A key result of the last

decade is the identification of a new rotationally-constrained, yet fully-turbulent convective

regime, that emerges past the onset of convective instability. In this regime, the Nusselt

number scales as Nu ∝ Prγ(RaE4/3)α, where E = ν/2ΩH2 is the Ekman number, and

α and γ are two exponents that depend on the nature of the system boundaries (no slip

vs. stress free). Whether this regime exhibits similar scaling laws at low Prandtl number

remains to be established, and it will be interesting to see whether some of Spiegel’s [24]

asymptotic arguments apply for rotating convection.

Relatively little is known about the effects of rotation on double-diffusive instabilities

at low Prandtl number (although there are some preliminary studies [129, 130]), with one

notable exception, which is the Goldreich-Schubert-Fricke (GSF) instability [48, 131]. The

GSF instability is a doubly-diffusive centrifugal instability (where the angular-momentum

gradient is destabilizing, and the thermal stratification is stabilizing) that is increasingly

recognized as an important source of angular momentum transport in stars. It bears many
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similarities with fingering convection, and has recently been studied in depth by Barker,

Jones and Tobias [132, 133]. By nature, the GSF instability exists only when the Prandtl

number is small, and, in two dimensions, is an almost exact analog of the fingering instability.

As such, it lends itself well to some of the asymptotic arguments and reduced modeling

described in Section V A.

Finally, to my knowledge there has not yet been any systematic analysis of the influence of

rotation on the nonlinear development of stratified shear instabilities (vertical or horizontal)

at low Prandtl number. Linear stability analyses demonstrate the existence of several modes

of instability (including, depending on the model setup, baroclinic modes, GSF modes, and

shearing modes that are rotationally constrained, see for instance [134, 135]). The recent

MS thesis of my former student Eonho Chang, which is currently under preparation for

publication, presents a preliminary analysis of the nonlinear development of low Péclet

number vertical shear instabilities in the presence of rotation, and their interaction with

centrifugal instabilities. His work reveals the existence of several different parameter regimes,

depending on the relative strengths of the rotation and the stratification, including some

that are, respectively, rotationally-dominated, shear-dominated, or controlled by the GSF

instability, and some that exhibit quasi-periodic excursions from one regime to the other.

Since many of these regimes are likely relevant to stellar evolution, we will need to dedicate

time and resources in the future to better characterize and quantify their properties.

B. Magnetic fields

Magnetic fields are not thought to be relevant in the dynamics of the Earth’s oceans

and atmosphere, but are fundamentally important in stellar interiors. Indeed, the very high

conductivity of the plasma usually implies that all but the smallest-scale or weakest fluid

motions have a large magnetic Reynolds number, which in turn implies that the flow can

exponentially amplify magnetic fields by dynamo action (see, e.g. [136] and the excellent

recent lecture by François Rincon [137]). The energy of the magnetic field usually grows to

reach some fraction of the total turbulent kinetic energy of the flow and the Lorentz force

becomes dynamically significant, modifying the properties of the turbulence in a way that

saturates the dynamo instability. We therefore see that, by nature, magnetic fields neces-

sarily play a leading-order role in turbulent stellar plasmas, and should never be ignored: if
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a dynamo is excited, then the transport properties of the turbulence (momentum transport,

heat transport, compositional transport) are likely affected by the field.

Convective dynamos are by far the most widely-discussed types of stellar dynamos, and

are usually the source of a star’s observable magnetic field [9]. Since convection draws its

energy from the unstable stratification (a finite reservoir of potential energy), and since the

field is amplified by converting kinetic energy into magnetic energy, the dynamo process

might naturally be expected to reduce the efficiency of convective heat transport somewhat.

However, Yan et al. [138] recently showed that the effect is fairly small, and that the presence

of a small-scale dynamo does not seem to affect the Nu(Ra) scaling law of hydrodynamic

convection. This likely explains why the standard mixing length theory of Böhm-Vitense

(see Section II) is generally quite successful at modeling stellar convection, despite ignoring

magnetic fields entirely. It is worth noting, however, that saturation of the convective in-

stability in Spiegel’s asymptotically low Prandtl number regime [24] is due to the turbulent

stresses in the momentum equation (rather than convective fluxes in the temperature equa-

tion, which is the more classic scenario). As such, the dynamo field may influence the heat

flux much more significantly in the limited region of parameter space where his equations

are valid, namely Rac < Ra� Pr−1, see Section II.

For instabilities taking place in stellar radiative zones (e.g. stratified shear instabilities

and double-diffusive instabilities), one needs to distinguish between the impact of the small-

scale dynamo field generated locally by the turbulence resulting from the instability itself,

and the impact of a large-scale ”external” magnetic field that exists independently of the

instability. These two cases are quite different, as the former only affects the nonlinear

development of the instability, while the latter can also impact its initial exponential growth.

Relatively little is known so far about the impact of magnetic fields on double-diffusive

instabilities in stars. From the perspective of linear theory, a large-scale externally imposed

magnetic field quenches perturbations that vary along the direction of the field, but leaves

those that are invariant along the field free to grow normally [139]. As such, the fastest-

growing modes in both fingering and ODDC instabilities are unaffected. Beyond linear

theory, however, the story becomes a lot more complex. To my knowledge, there is no

published study on the impact of magnetic fields on ODDC, so the question remains entirely

open. In the fingering case, on the other hand, recent work by Peter Harrington and I [140]

has demonstrated that the presence of a large-scale vertical magnetic field (i.e. aligned
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with gravity) can actually enhance vertical compositional transport by fingering convection,

because it suppresses the parasitic instabilities that normally saturate the fingers. However,

it is not clear what would happen if the external field were inclined, or in the absence of an

externally imposed large-scale field. The question of momentum transport by magnetized

fingering convection also remains to be addressed.

Finally, studying (or even merely reviewing) the interaction between an externally im-

posed magnetic field and stratified shear instabilities is a momentous task, owing to the

large dimensionality of parameter space. As mentioned in Section I, instabilities arising

from the combination of magnetic fields and shear can take many different forms depending

on the model geometry. A perhaps more approachable question would be to quantify the

impact of a locally-generated dynamo field on the transport properties of the shear-induced

turbulence presented in Section IV, but to my knowledge, even that still remains an out-

standing question. Small-scale turbulence seems to be able to drive a small-scale dynamo

in stellar radiative zones provided the turbulence is sufficiently strong (i.e. the magnetic

Reynolds number Rm = UL/η is sufficiently large, where η is the magnetic diffusivity) and

sufficiently three-dimensional [141]. This dynamo field can therefore quite plausibly affect

the predicted turbulent mixing coefficients discussed in Section IV. As a matter of fact,

there is a growing amount of evidence suggesting that the Maxwell stresses associated with

the small-scale dynamo sometimes have a tendency to oppose the Reynolds stresses of the

turbulence, even when the field saturates substantially below equipartition (see, e.g. [142]

for evidence in 2D β-plane simulations with a weak mean field and [143, 144] in 3D simula-

tions of magnetized rotating convection in a spherical shell). As such, the results presented

in Section IV on momentum transport in low Prandtl number stratified turbulence are most

likely not applicable in magnetized plasmas.

VII. PERSPECTIVE: THE IMPORTANCE OF MULTIDISCIPLINARY PRO-

GRAMS

As we discovered, an asymptotically small Prandtl number causes various instabilities

that are common in stellar interiors to behave very differently from their geophysical,

moderate-to-high Prandtl number counterparts. As such, the field of stellar fluid dynamics is

a goldmine of interesting projects for young scientists, especially thanks to high-performance
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computing. And yet, it remains the case today that most stellar astrophysicists do not re-

ceive a rigorous training in fluid dynamics, and so these enticing projects are just waiting

to be investigated by those who do.

In this respect, I cannot overstate the fundamental role that multidisciplinary science

programs, such as the Woods Hole Geophysical Fluid Dynamics summer program (GFD),

have played in moving the field of stellar astrophysics forward. The modern view of stel-

lar fluid dynamics presented in this paper began with a meeting between Ed Spiegel and

Willem Malkus, which eventually led to Spiegel’s participation as one of the seven founding

members of GFD. The program founders believed in the importance of multidisciplinary

research, around the central themes of applied mathematics and fluid dynamics, and GFD

was never just about geophysical flows. They continued to invite, year after year, many of

the foremost astrophysical fluid dynamicists, as well as aspiring graduate students and post-

docs in astrophysics, to join them for a summer or more. The early years welcomed giants

of the field, such as my advisors Douglas Gough and Nigel Weiss, as well as Steven Balbus,

Peter Goldreich, Andy Ingersoll, Bob Stein, Jean-Paul Zahn, and many others. They went

on to use these more rigorous fluid dynamical approaches in their own research on stellar

and planetary fluid dynamics, and in turn inspired their postdocs and students (including

myself) to do the same.

Despite this, stellar fluid dynamics has remained a fairly marginal aspect of stellar as-

trophysics, not least because fluid motions in stars (other than the Sun) are quite difficult

to observe. As such, the validity of a turbulent mixing prescription, or of a model for wave-

induced transport or for large-scale flows, can only be tested indirectly by studying their

impact on the few observable surface properties of the star (e.g. chemical species abundances

or surface rotation rate, among others). Since these properties depend on a combination of

many different processes, some known and others most likely unknown, it is rarely possible

to disentangle their contributions. Thankfully, asterosexismology, combined with precision

astrometry and data science, are slowly beginning to change this status quo, and stellar

astrophysics will need to adapt accordingly by finally accepting that stars are fluid objects

that are at least as dynamically complex as our own Earth’s oceans and atmosphere.
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