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We study the sub-grid scale characteristics of a vorticity-transport-based approach
for large-eddy simulations. In particular, we consider a multi-dimensional upwind
scheme for the vorticity transport equations and establish its properties in the under-
resolved regime. The asymptotic behavior of key turbulence statistics of velocity gra-
dients, vorticity, and invariants is studied in detail. Modified equation analysis indi-
cates that dissipation can be controlled locally via non-linear limiting of the gradient
employed for the vorticity reconstruction on the cell face such that low numerical
diffusion is obtained in well-resolved regimes and high numerical diffusion is realized
in under-resolved regions. The enstrophy budget highlights the remarkable ability of
the truncation terms to mimic the true sub-grid scale dissipation and diffusion. The
modified equation also reveals diffusive terms that are similar to several commonly
employed sub-grid scale models including tensor-gradient and hyper-viscosity mod-
els. Investigations on several canonical turbulence flow cases show that large-scale
features are adequately represented and remain consistent in terms of spectral energy
over a range of grid resolutions. Numerical dissipation in under-resolved simulations
is consistent and can be characterized by diffusion terms discovered in the modified
equation analysis. A minimum state of scale separation necessary to obtain asymptotic
behavior is characterized using metrics such as effective Reynolds number and effective
grid spacing. Temporally-evolving jet simulations, characterized by large-scale vorti-
cal structures, demonstrate that high Reynolds number vortex-dominated flows are
captured when criteria is met and necessitate diffusive non-linear limiting of vorticity
reconstruction be employed to realize accuracy in under-resolved simulations.
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I. INTRODUCTION

Coherent structures are prominent in a wide range of turbulent flows including jets [1, 2], wakes [3, 4], and at-
mospheric flows [5, 6]. The critical characteristics of such flows are defined to a large extent by the dynamics of
dominant coherent structures, pointing to large-eddy simulation (LES) as an ideal candidate model. In classical LES,
a scale-separation is performed typically via a low-pass filter, and a sub-grid scale model is imposed to represent the
impact of the unresolved scales on the resolved scales. In practice, the sub-grid scale model provides a pathway for
energy to dissipate from the resolved scales because physical dissipation mechanisms (i.e., viscous dissipation at the
Kolmogorov scale) are unresolved. However, the accuracy of LES at high Reynolds numbers is significantly influenced
by discretization errors [7–10], as these errors can be of a similar magnitude as the sub-grid scale model in practical
scenarios. Despite this fundamental obstacle, functional [11–18] and structural [19–25] LES sub-grid scale models are
actively developed and applied to practical flows with varying degrees of success.

An alternate view eschews the explicit modeling of sub-grid scales and instead focuses on tailoring numerical dissi-
pation in the underlying discretization errors. Monotone integrated LES (MILES), first proposed by Boris et al. [26],
utilizes functional reconstruction of the convective fluxes in a monotonicity-preserving finite volume scheme to inte-
grate the effects of the sub-grid scale on the resolved scale. Results from similar numerical methods also were observed
by Youngs [27] around the same time. A more broadly-defined methodology, referred to as implicit LES (ILES), re-
quires a careful consideration of discretization errors. Typically, ILES employs a certain class of numerical methods,
most notably monotonic upwind finite volume methods such as piece-wise parabolic [28], MPDATA [29], total vari-
ation diminishing [30] and flux-corrected transport [31], which have implicit dissipation mechanisms [26, 32, 33]. In
practice, ILES methods are employed on inertially dominated (e.g., high Reynolds number) dynamics and regularize
the under-resolved scales similar to the way in which shock-capturing, non-oscillating finite volume schemes use weak
solutions and satisfy the entropy condition.

Thorough analysis of the schemes reveals the errors are often similar in form to certain sub-grid scale models [34].
However, the form of the discretization errors does not necessarily has to be similar to a sub-grid scale model provided
the dissipation acts on the high wavenumber range. Drikakis et al [35] characterized the effect of numerical resolution
on the dissipation into two categories: a) When the solution is well-resolved and an adequate distinction between the
start of the inertial range and the dissipation scales exists, the numerical dissipation should not influence the large
scales, and the eddies interacting with the largest scales should be reasonably resolved. The separation of scales should
not depend on the form of the dissipation; b) The second category involves inadequate numerical resolution, which
is often confronted in engineering applications. Given an inadequate separation between the large and dissipative
scales, the numerical scheme should be designed to mimic the impact of dissipation on the large scales. Many ILES
solution fall under this category including isotropic turbulence [30, 36, 37], geophysical flows [29, 38], jets [26, 39, 40]
and channel flows [40].

In many vortex-dominated problems, especially those in which the vorticity distribution is compact [41–43] the
vorticity-velocity formulation of the Navier–Stokes equations has the potential to be advantageous in comparison
to the pressure-velocity form [44, 45]. Despite the use of a wide array of Eulerian [46, 47], Lagrangian [48, 49]
and mixed numerical implementations [50, 51] of the vorticity transport equations, modeling of unresolved dynamics
remains an outstanding issue. Further, while ILES has been prominently utilized in the context of the velocity-
pressure formulation, the authors are not aware of literature investigating implicit sub-grid scale characterizations for
schemes using the vorticity-velocity formulation. The goal of this work is to explore how tailored numerical schemes
of vorticity-velocity formulation are suitable and can be characterized for ILES.

The vorticity-velocity formulation of the incompressible vorticity transport equations (VTE), obtained by applying
the curl operator to the momentum equations. While there is an increase to six (three vorticity and three veloc-
ity) variables compared to four (three velocity and one pressure) variables in three dimensions, the formulation is
advantageous in flows with compact vorticity distributions typical of vortex-dominated flow, as the potential flow
regions do not need to be part of the computational domain. In Eulerian methods, accurate boundary conditions can
be developed [43, 44, 52], allowing for efficient simulations in a compact domain. Further, the Poisson equation for
pressure, normally a stiff equation, is replaced by the kinematic velocity-vorticity relationship.

Numerical schemes [48, 53, 54] using the Lagrangian description of the flow field have seen considerable success
and have applied the LES methodology through development of vorticity sub-grid scale models [49, 55]. Both Refs.
[49, 55] introduced eddy-viscosity type sub-grid scale models for the vorticity-velocity formulation using the Lagrangian
description. However, Lagrangian frameworks are not optimal for a wide range of turbulent flows. Furthermore, a
priori tests of forced homogeneous, isotropic turbulence in Ref. [55] reveal that both vorticity convection and vortex
stretching contribute to sub-grid scale dissipation, but the dissipation due to vortex stretching is inadequately captured
by the sub-grid scale model. On the other hand, relatively few Eulerian vorticity numerical schemes have been
developed [46, 56, 57]. Recently developed upwind finite volume methods for the VTE [45, 47, 58] have been shown to
efficiently capture and preserve vortical structures with relatively coarse resolution (a few grid cells spanning vortex
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cores). Consistent integration of both the vorticity convection and vortex stretching terms is a prominent feature of
schemes in Refs. [45, 58]. While these schemes fit into the philosophy of ILES, an understanding of their sub-grid
scale behavior has not been established in the context of turbulent flows.

Margolin et al. [34] used modified equation analysis to examine leading order diffusive and dispersive error terms.
Based on a Taylor series representation, the modified equation is the effective partial differential equation satisfied
by the numerical method. Their work specifically addresses finite volume approaches, and thus volume-averaged
filtering. The leading terms in the modified equation are used to elucidate the dissipative effects on the large resolved
scales. As the numerical resolution of the scheme increases, the dissipation should focus on a narrowing range of
high wavenumbers and not impact the large scales. Several studies [30, 36] emphasized the calculation of an effective
viscosity or Reynolds number for a given grid resolution with resolved features. Since the filter and dissipation
are based on the grid resolution, it is imperative to understand whether there is a sufficient separation of resolved
and dissipation scales. A minimum state of scale separation is necessary to reproduce high Reynolds numbers flows
with asymptotic turbulence statistics [36, 59]. In this work, we will examine the utility of a finite volume scheme
for the VTE [45, 58], characterizes its ILES properties and provide a methodology to estimate effective Reynolds
numbers. This particular formulation has a number of features pertinent for ILES: Consistent integration of vorticity
convection and vortex stretching terms, promoting stability and accuracy and the ability to represent and preserve
sharp gradients. Rigorous characterization of the sub-grid scale behavior in canonical turbulent flows enables the use
of VTE-based schemes in complex vortex-dominated turbulent flows such as in rotorcraft and wind turbine wakes.

We begin the study by introducing the governing and filtered equations in Sec. II. We provide a description of the
numerical scheme and analyze the implicit sub-grid scale model in Secs. III and IV, respectively. We detail the results
of numerical experimentation of canonical turbulence flows in Sec. V. Finally, we conclude our work and provide
details for future studies in Sec. VI.

II. GOVERNING AND FILTERED EQUATIONS

We employ the vorticity-velocity formulation of the Navier-Stokes equations obtained by applying the curl operator
to the incompressible mass and momentum equations. In compact index notation, the unsteady, three-dimensional
incompressible VTE are as follows (i, j = 1, 2, 3):

∂ωi
∂t

+
∂

∂xj
(ujωi − uiωj) = fi +

1

Re

∂2ωi
∂xj∂xj

, (1)

where ui is the velocity and ωi = εijk∂uk/∂xj is the vorticity, the curl of the velocity where εijk is the Levi-Civita

tensor. fi is the curl of the body force and Re = UL
ν is the Reynolds number defined by a characteristic velocity scale

U , characteristic length L, and kinematic viscosity ν. The inviscid fluxes in Eqn. (1) can be rewritten in quasi-linear
form as follows:

∂ωi
∂t

+A1
∂

∂x1
ωi +A2

∂

∂x2
ωi +A3

∂

∂x3
ωi = 0, (2)

where the eigenvalues of matrix A1 are λ1 = {0, u1, u1}, A2 are λ2 = {u2, 0, u2}, A3 are λ3 = {u3, u3, 0}. The
eigenvector matrices Ri for Ai are

R1 =

u1 0 0
u2 1 0
u3 0 1

 , R2 =

1 u1 0
0 u2 0
0 u3 1

 , R3 =

1 0 u1
0 1 u2
0 0 u3

 . (3)

These equations are degenerate in a hyperbolic sense. As an example, if any component of u equals zero, then the
eigenvectors are linearly dependent. This presents difficulties for construction of stable upwind schemes. This is
similar to ideal magneto-hydrodynamics, for which Godunov [60] suggested the addition of a symmetrizing term.
Following this idea and Ref. [58], an additional term is included to stabilize the governing equations. The equations
are thus modified in the form

∂ωi
∂t

+
∂

∂xj
(ujωi − uiωj) + ui

∂ωj
∂xj

= fi +
1

Re

∂2ωi
∂xj∂xj

, (4)

Included with the VTE due to the incompressible assumption, is the solenoidality of both the velocity and vorticity
fields:

∂ui
∂xi

=
∂ωi
∂xi

= 0. (5)
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We refer to Eqn. (4) as the modified VTE because the final term on the LHS is an additional term, which is
proportional to the divergence of vorticity. Analytically, the term is zero (Eqn. (5)), but numerically, this stabilizes
the hyperbolic system of equations. The modification in Eqn. (4) stabilizes the equations with eigenvalues λi =
{ui, ui, ui} and the eigenvectors of the canonical basis vector for R3 [58]. A similar modification is used in the
magneto-hydrodynamic equations to enforce a divergence-free magnetic field [61], however, in our context we employ
the modification for numerical stability.

The vorticity-velocity formulation in three dimensions has six unknowns. While the three vorticity variables are
obtained through the VTE, a supplemental equation is needed to obtain the velocity induced by the vorticity. The
vorticity-velocity relationship is written in the form of a Poisson equation as follows:

∂2ui
∂xj∂xj

= −εijk
∂ωk
∂xj

. (6)

II.1. The Filtered vorticity transport equations

By spatial filtering the VTE in Eqn. (4), we obtain the following filtered VTE:

∂ω̃i
∂t

+
∂

∂xj
(ũjω̃i − ω̃j ũi) + ũi

∂ω̃j
∂xj

= f̃i +
1

Re

∂2ω̃i
∂xj∂xj

− ∂τij
∂xj

, (7)

where ·̃ indicates the spatial filtering or a resolved quantity and the τij is the sub-grid scale (SGS) vorticity stress
due to the filtering operation. We note that filtering is not performed through an explicit filter function, and we
assume that the filtering operation and the derivatives commute. The grid cell of the mesh at a size ∆ is an implicit
physical-space sharp cut-off filter where the velocity and vorticity fluctuations can only be resolved at a size greater
than ∆. The SGS torque, the divergence of the SGS vorticity stress, which accounts for the unresolved velocity and
vorticity fluctuations, is defined as

∂τij
∂xj

=
∂

∂xj
[(ũjωi − ũjω̃i)− (ũiωj − ũiω̃j)] +

[
˜
ui
∂ωj
∂xj
− ũi

∂ω̃j
∂xj

]
. (8)

The SGS torque term is composed of three different terms: 1.) the vorticity transport by unresolved velocity fluc-
tuations, 2.) the unresolved vortex stretching, and 3.) the unresolved contributions for the vorticity divergence
modification in Eqn. (4). Unlike previous LES schemes for the VTE [49, 55] where there is not an additional vorticity
divergence term, the SGS vorticity stress tensor is not purely anti-symmetric. Here, we attempt to rearrange the SGS
terms. The first two terms in Eqn. (8) can be combined into a single anti-symmetric tensor as follows:

(τij)a = (ũjωi − ũjω̃i)− (ũiωj − ũiω̃j) . (9)

However, the third term introduced through the vorticity divergence modification cannot be readily decomposed into
an SGS vorticity stress tensor and as such it remains a separate term of the SGS torque:(

∂τij
∂xj

)
d

=
˜
ui
∂ωj
∂xj
− ũi

∂ω̃j
∂xj

. (10)

However, through manipulation, this term can be rewritten as follows:

∂ (τij)m
∂xj

=

(
∂ω̃jui
∂xj

− ∂ω̃j ũi
∂xj

)
−
(
ω̃jsij − ω̃j s̃ij

)
, (11)

where sij = 1
2 (∂jui + ∂iuj) is the strain rate. We can obtain another two portions of the SGS terms. The first

divergence modification contains terms that are similar to the third and fourth terms in Eqn. (9):

(τij)d = ũiωj − ũiω̃j (12)

While the other term contains the strain rate:

∂ (τij)s
∂xj

= −
(
ω̃jsij − ω̃j s̃ij

)
. (13)

The practical purpose of these terms in the LES methodology is to provide a pathway of energy transfer between the
resolved scales to the unresolved (sub-grid) scales, which is enabled by ensuring additional dissipation.
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u1∆t u1∆t u1∆t

u2∆t u2∆t

xi− 1
2 ,j

xi+ 1
2 ,j

xi− 1
2 ,j

xi+ 1
2 ,j

xi− 1
2 ,j

xi+ 1
2 ,j

= +

Flux F1 G2

FIG. 1. Sketch of multi-dimensional scheme using both normal F1 and transverse G2 fluxes .

III. MULTI-DIMENSIONAL UPWIND FINITE VOLUME

We employ a multi-dimensional upwind finite volume approach to numerically integrate the VTE. This approach,
within the philosophy of the ILES, is similar to Lax-Wendroff-like schemes where upwind differences are corrected by
second-order transverse flux corrections to produce a solution that is second-order accurate in space and time. Our
multi-dimensional scheme is solved in a series of dimensional sweeps. The total flux across a cell face in each direction
is the sum of several fluxes accounting for both normal and transverse directional fluxes. A simplified two-dimensional
flux is demonstrated in Fig. 1. The updated vorticity is computed as shown (for clarity vectors are shown in bold
and ·̃ removed from all variables):

ωn+1
i,j,k = ωni,j,k −

∆t

∆x1

[(
(F l1)ni+ 1

2 ,j,k
− (F r1 )ni− 1

2 ,j,k

)
−
(

(G1)ni+ 1
2 ,j,k
− (G1)ni− 1

2 ,j,k

)]
− ∆t

∆x2

[(
(F l2)ni,j+ 1

2 ,k
− (F r2 )ni,j− 1

2 ,k

)
−
(

(G2)ni,j+ 1
2 ,k
− (G2)ni,j− 1

2 ,k

)]
− ∆t

∆x3

[(
(F l3)ni,j,k+ 1

2
− (F r3 )ni,j,k− 1

2

)
−
(

(G3)ni,j,k+ 1
2
− (G3)ni,j,k− 1

2

)]
,

(14)

where n is the time iteration and i, j, k are the indices of the grid cell centers in three directions. The flux functions
F l,F r are normal directional (with respect to the cell faces) fluxes and are obtained by solving a generalized Riemann
problem developed for the VTE [58]. In order to account for the fluxes traveling oblique to the cell faces while
simultaneously increasing numerical stability and accuracy, transverse fluxes are included. The transverse directional
flux functions G are computed using the flux-based wave propagation approach [45]. All flux functions are stored at
the cell faces. Note that both left and right normal flux functions F li and F ri , respectively, are stored at each cell
face, while a single transverse flux function Gi is stored at each cell face.

First, we detail the normal directional fluxes F li ,F
r
i , which are determined by allowing the vorticity to be

discontinuous at the cell face. The sharp discontinuity-capturing scheme can be beneficial for simulating turbulence
that is dominated by large coherent structures. In flows such as these, regions that are dominated by coherent
structures can be efficiently captured by compact vorticity variables. On the other hand, in under-resolved turbulence
regions, the scheme adds additional numerical dissipation (more discussion on this in section IV).

The solution to the generalized Riemann problem for vorticity, which is allowed to be discontinuous across the cell
face, begins by reconstructing the vorticity stored at the cell center on the cell face. For simplicity, we will focus
on the Riemann problem at cell face (i + 1/2, j, k) and translated to x1 = 0. The initial condition for the Riemann
problem is

ω0(x1, 0) =

{
ωL +

(
x1 + 1

2∆x

)
sL, if x1 < 0

ωR +
(
x1 − 1

2∆x

)
sR, if x1 > 0

, (15)

where (·)L at i, j, k, (·)R is at i+ 1, j, k, ∆x is the cell size, s is the slope of the vorticity. Achieving second order accu-
racy via slope reconstruction is beneficial in maximizing the separation of scales for ILES. In areas of smooth vorticity
a second-order accurate central difference can be used, however, as with most second-order accurate discontinuity-
capturing schemes, an appropriate slope needs to be used, and a limiter is employed. A limiter reduces the slope
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calculation to a first-order accurate difference and effectively adds numerical diffusion.
Integrating the vorticity transport equations, equation (4), with the vorticity reconstruction, equation (15), over

the space
[
− 1

2∆x,
1
2∆x

]
× [0,∆t], where ∆t is the time step, a left moving flux F l1 and right moving flux F r1 are

obtained at the cell face as follows (F r,l2 and F r,l3 follow similarly):

F l1 =

{
u1ω̂

L − uω̂L1 + 1
2us

L
1 ∆x, if u1 ≥ 0

u1ω̂
R − uω̂R1 + 1

2us
R
1 ∆x + u

[
1
2

(
sL1 − sR1

)
u1∆t+

(
ω̃L1 − ω̃R1

)]
, if u1 < 0,

(16)

F r1 =

{
u1ω̂

L − uω̂L1 − 1
2us

R
1 ∆x − u

[
1
2

(
sL1 − sR1

)
u1∆t+

(
ω̃L1 − ω̃R1

)]
, if u1 ≥ 0

u1ω̂
R − uω̂R1 − 1

2us
R
1 ∆x, if u1 < 0,

(17)

where for conciseness, additional vorticity reconstruction variables are created:

ω̂L = ωL +
1

2
sL (∆x − u1∆t) , ω̂R = ωR − 1

2
sR (∆x + u1∆t) , ω̃L1 = ωL1 +

1

2
sL1 ∆x, ω̃R1 = ωR1 −

1

2
sR1 ∆x.

Next, we detail the computation of the transverse fluxes. In this scheme we pursue a flux-based wave decomposition
introduced in Ref. [62], where the flux difference, F l − F r, is rewritten as a linear combination of eigenvectors. This
choice is motivated because the solution to the generalized Riemann problem is known, is linearly independent in
each direction, and can be used directly without costly manipulations. In this implementation, the fluxes, F l1 and F r1 ,
only need to be computed once (per time-step), and the transverse fluxes are evaluated with that solution. The flux
difference is decomposed into f -waves Zp, the flux wave, as follows:

F l − F r =

m∑
p=0

βprp ≡
m∑
p=1

Zp, (18)

and

β = R−1
(
F l − F r

)
, (19)

where the eigenmatrix R is simply the identity matrix [45].
From Eqn. (19) and the eigensystem, we obtained a simple relationship for the f -waves Zp = F l − F r exactly.

The relationship allows for the multi-dimensional wave propagation corrections to be implemented equivalently to a
three-dimensional advection equation described in Ref. [63] if the f -waves are normalized by the eigenvalues λi.

In a multi-dimensional problem, the fluxes propagate in the transverse x2- and x3-direction depending on the wave
speed given by the eigenvalues of the Jacobian, which are exactly the velocities ui at the cell face. The transverse fluxes
are implemented by using the f -waves and transverse velocity at the grid cell (i, j, k) and updating the transverse fluxes
in surrounding cells. The most important transverse fluxes are the two-dimensional fluxes given by the following:

(G2)nI,J− 1
2 ,k

= −1

2

∆t

∆x1
u2Z1,

(G3)nI,j,K− 1
2

= −1

2

∆t

∆x1
u3Z1,

(20)

where n is the time step iteration and the indices for the grid cell influenced by the transverse flux are given by

I =

{
i, if u1 > 0
i− 1, if u1 < 0

, J =

{
j + 1, if u2 > 0
j, if u2 < 0

, K =

{
k + 1, if u3 > 0
k, if u3 < 0

.

Additional transverse fluxes are employed, which account for three-dimensional fluxes as well as higher-order cor-
rections. For a detailed implementation see Foti and Duraisamy [45].

IV. MODIFIED EQUATION ANALYSIS

In the following, we present the modified equation analysis (MEA) for the multi-dimensional generalized Riemann
problem-based upwind finite volume scheme. MEA analysis was first proposed in Ref. [64] and subsequently used
to characterize the unresolved scales for ILES [32, 34]. The intuition is that in certain classes of numerical methods,
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the effects of the unresolved scales can be represented by the truncation error of the discretization. This analysis
must be carefully exploited when considering high Reynolds number turbulent flows discretized with upwind finite
volume schemes. Slope limiting with a multi-dimensional scheme yields a complex, nonlinear scheme. In particular,
the dissipation is proportional to the multi-dimensional interfacial wave jumps. It must also be recognized that in
under-resolved flows, the leading order terms may not necessarily be the best approximator of the truncation terms.
Due to the complexity of including the exact form of the slope limiter employed in the vorticity reconstruction in the
scheme, two limiting cases of the modified equation are analyzed: 1.) the vorticity at the cell interface is smooth and
a second-order central difference can be employed, and 2.) the vorticity at the cell interface is discontinuous and a
limiter switches the slope to a first-order upwind difference.

The procedure to develop the modified equation begins with expanding the scheme with Taylor series expansions
[33, 64]. For example, the scheme in Eqn. (14) contains the following, which can be substituted with a series expansion:

ωn+1
i − ωni

∆t
=
∂ωi
∂t

+
∆t

2

∂2ωi
∂t2

+
∆t2

6

∂3ωi
∂t3

+O(∆t3), (21)

where n is the vorticity at t and n + 1 is the vorticity at t + ∆t. Similarly, all terms in the flux functions in Eqns.
(16), (17), (20) can be substituted with Taylor series expansions in terms of vorticity as a function of time t or space
x. The accumulation of all expansions in the scheme can be manipulated to include terms in Eqn. (4) as follows:

∂ωi
∂t

+
∂

∂xj
(ujωi − uiωj) + ui

∂ωj
∂xj

= ν
∂2ωi
∂xj∂xj

+ Tij , (22)

where Tij is the term that includes all second-order accurate and higher terms from the series expansions not included in
the VTE. The remainder is manipulated to substitute temporal derivative terms with spatial terms using the governing
equations. As such, the remainder Tij is a complex function that contains many high order spatial derivatives of the
vorticity and velocity. In the philosophy of ILES, the leading order terms in the expansion term Tij are related to the
SGS vorticity stress Rij due to truncation as follow:

Tij =
∂

∂xj
Rij +O(∆3

x). (23)

Tij acts as an implicit sub-grid scale model, which is completely dependent on resolved variables. Note that there
is a distinction between the SGS vorticity stress Rij due to truncation and theoretical SGS vorticity stress τij due
to filtering. In what follows we demonstrate that by changing the form of the slope employed in the vorticity recon-
struction on the cell face, the modified equation can be tailored.

First, we examine terms that remain after the VTE is subtracted from the Taylor series expansion of the scheme in
smooth regions and a second-order accurate central difference is employed, i.e. sl1 = 1/(2∆x) (ω(x+ ∆x)− ω(x−∆x)).
In turbulent flows in which we are interested, a smooth spatial region of vorticity often corresponds to a resolved (or
nearly resolved) region dominated by a large-scale coherent vortical structure.

In the modified equation analysis, the lowest order remaining terms are second-order accurate terms in space and
are considered to have the largest influence on the scheme. Moreover, these terms can be collected to implicitly
provide a model for the SGS torque. Eqn. (24) shows the second-order accurate terms that make up the implicit SGS
torque. For clarity in presentation, only the x1 and x2 directions are shown (j = 1, 2); however, the third x3 direction
follows the same form:

∂R1j

∂xj
= ∆2

1

(
1

12
u1
∂3ω1

∂x31
− 1

4
u1
∂3ω1

∂x31
− 1

8

∂2u1
∂x21

∂ω1

∂x1
+

1

12
u2
∂3ω1

∂x32
− 1

4
u1
∂3ω2

∂x31
− 1

8

∂2u2
∂x22

∂ω1

∂x2

)
,

∂R2j

∂xj
= ∆2

2

(
1

12
u1
∂3ω2

∂x31
− 1

4
u2
∂3ω1

∂x32
− 1

8

∂2u1
∂x21

∂ω2

∂x1
+

1

12
u2
∂3ω2

∂x32
− 1

4
u2
∂3ω2

∂x32
− 1

8

∂2u2
∂x22

∂ω2

∂x2

)
,

(24)

where ∆i is the grid cell size in the ith direction. All terms are dispersive (containing odd-ordered derivatives of
vorticity) in nature indicating that in smooth regions where a second-order central difference is used, there are no
second-order accurate implicit diffusive terms (even-ordered derivatives of vorticity), which can act as numerical routes
for implicit SGS dissipation. We take a closer look at the diagonal terms (∂1R11 and ∂2R22) of the SGS torque to
obtain some insight into the effects of the modification of the vorticity transport equations and the effect of the
anti-symmetric and non-symmetric SGS terms (due to Eqn. (9) and Eqn. (10), respectively).

By rewriting terms in Eqn. (24) that are associated with the diagonal terms of Rij , an anti-symmetric part of the
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SGS torque associated with Eqn. (9), ∂jR
a
ij , can be formed and shown to be equal to zero in the following:

∂Ra11
∂x1

=
1

12
∆2
xu1

∂3ω1

∂x31
− 1

12
∆2
xu1

∂3ω1

∂x31
= 0,

∂Ra22
∂x2

=
1

12
∆2
xu2

∂3ω2

∂x32
− 1

12
∆2
xu2

∂3ω2

∂x32
= 0.

(25)

The remaining leading order terms can collected into the following:

∂Rd11
∂x1

= −1

6
∆2

2u1
∂3ω1

∂x31
− 1

8
∆2

1

∂2u1
∂x21

∂ω1

∂x1
,

∂Rd22
∂x2

= −1

6
∆2

1u2
∂3ω2

∂x32
− 1

8
∆2

2

∂2u2
∂x22

∂ω2

∂x2
,

(26)

where ∂jR
d
ij is due to the modification term added to the vorticity transport equation. Terms associated with the

off-diagonals of Rij contain dispersive terms. This modified equation of the scheme near a smooth vorticity field shows
that there is a limiting case that can be used to reduce the amount of numerical dissipation added by the numerical
method, which can control the sub-grid scale dissipation and energy transfer.

The next limiting case employs a limiter to reduce the order of the slope in regions in which vorticity gradients may
be very large. In numerical simulations of turbulence, large gradients and discontinuities arise in under-resolved regions
of the flow where gradients caused by eddies the size of the grid cell or larger cannot be smoothed by smaller scale
eddies that are physically present in the flow but are not numerically captured. Towards this end, a forward/backward
difference is employed. For example, the slope of the vorticity is calculated as sl1 = 1/∆x (ω(x1)− ω(x1 −∆x)). These
eddies transfer energy in a turbulent flow, and the reduction in order of the slope essentially introduces diffusion into
the solution in order to maintain non-oscillatory behavior. The lowest-order terms remaining from the modified
equation are shown in the following (again we limit the result to two dimensions for clarity but the x3-direction has
the same form):

∂R1j

∂xj
=

∆1

2
u1
∂2ω1

∂x21
+ ∆2

1

(
−1

8

∂2u1
∂x21

∂ω1

∂x1
− 1

6
u1
∂3ω1

∂x31

)
+

∆1

2
u2
∂2ω1

∂x22
+ ∆2

1

(
−1

8

∂2u2
∂x22

∂ω1

∂x2
+

1

4

∂u2
∂x2

∂2ω1

∂x22
− 1

4

∂u1
∂x1

∂2ω2

∂x21
+

1

3
u2
∂3ω1

∂x32
− 1

2
u1
∂3ω2

∂x31

)
,

(27)

∂R2j

∂xj
=

∆2

2
u1
∂2ω2

∂x21
+ ∆2

2

(
−1

8

∂2u1
∂x21

∂ω2

∂x1
+

1

4

∂u1
∂x1

∂2ω2

∂x21
− 1

4

∂u2
∂x2

∂2ω1

∂x22
+

1

3
u1
∂3ω2

∂x31
− 1

2
u2
∂3ω1

∂x32

)
+

∆2

2
u2
∂2ω2

∂x22
+ ∆2

2

(
−1

8

∂2u2
∂x22

∂ω2

∂x2
− 1

6
u2
∂3ω2

∂x32

)
,

(28)

which include a single first-order accurate in space term and several second-order accurate terms. We can readily see
that this case includes both diffusive and dispersive terms for vorticity. This indicates that limiting the slope of the
vorticity is necessary to add diffusive terms to include dissipation to solve turbulent flows through an ILES. As with
the first limiting case, a few of the terms in Eqn. (27) can be rewritten to show a zero diagonal of an anti-symmetric
portion of the SGS torque in the following:

∂Ra11
∂x1

= ∆2
1

(
1

4

∂u1
∂x1

∂2ω1

∂x21
− 1

4

∂u1
∂x1

∂2ω1

∂x21
+

1

3
u1
∂3ω1

∂x31
− 1

3
u1
∂3ω1

∂x31

)
= 0. (29)

Similarly, terms can be rearranged in ∂2R
a
22 = 0 and ∂3R

a
33 = 0. The rest of the terms in the diagonals are accumulated

in the part of the SGS torque corresponding to the introduction of the vorticity divergence term modification, which
includes a first-order accurate diffusive term.

The analysis reveals that each component in the SGS vorticity stress tensor Rij contains diffusive terms. In the
following we select terms from Eqn. (27) to explore how the diffusion is present in the SGS vorticity stress tensor and
its similarity to well-known SGS models. We emphasize that similarities to explicit SGS models are employed to just
enhance our understanding of the ILES dissipation. In complex turbulent flows, the process of limiting the slope and
multi-dimensionality can affect the actual leading terms of the modified equation such that they may not precisely
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mimic the action of explicit SGS models. We show that three separate diffusive SGS vorticity stress mechanisms are
present in the modified equation and can be summed as follows:

Rij = Rgij +Rhij +Rtij . (30)

The first term is constructed as follows:

∂Rg12
∂x2

= −1

8
∆2

2

∂2u2
∂x22

∂ω1

∂x2
+

1

4
∆2

2

∂u2
∂x2

∂2ω1

∂x22
, (31)

We can manipulate the terms by introducing another dispersion term and integrating the SGS torque to obtain a
single form for the off-diagonal elements in the SGS vorticity stress tensor, which can be written in index notion as
follows:

Rgij =
1

4
∆2 ∂uj

∂xk

∂ωi
∂xk

, (32)

where ∆ is the grid spacing in the ith direction. The form of the Eqn. (32) can be readily seen as a term similar to
tensor-gradient models [15, 65, 66] for the sub-grid scale. These models have been shown to be not overly dissipative
and are often paired with an eddy viscosity model [65, 66]. They also provide both dissipation and backscatter, an
important aspect of turbulence, which is not possible in eddy viscosity-type models. However, when employed alone,
the tensor-gradient model can be unstable [66].

An alternate form for the numerical dissipation can be explored with another group of dispersive and diffusive terms
as shown in the following:

∂Rh12
∂x2

= −1

2
∆2

2u2
∂3ω1

∂x32
− 1

4
∆2

2

∂u1
∂x2

∂2ω1

∂x22
, (33)

where these terms again can be manipulated and integrated. The second numerical dissipation term for the SGS
vorticity stress has the form :

Rhij = −1

4
∆2uj

∂2ωi
∂xk∂xk

. (34)

This term has the form that is similar to hyper-viscosity models [49, 67], which have the form of (−1)n+1∇2nu, where
n > 1. Ref. [67] used the hyper-viscosity model for the SGS stress tensor with ∇2s̃ij , which was added to a standard
Smagorinsky model and motivated by SGS dissipation of enstrophy. Hyper-viscosity models with increasing n have
less effect on dissipation and ‘bottleneck’ effects shown on the turbulence spectra [68]. However, paired with the
tensor-gradient model, it may provide less dissipation than is observed with standard mixed models.

With these two terms, all of the diffusive terms in the modified equation and SGS torque are accounted except
for the single first-order diffusive term, which appears in both the diagonal and non-diagonal elements of the SGS
vorticity stress tensor. This term can be integrated to show another form of the numerical dissipation:

Rtij =
1

2
∆uj

∂ωi
∂xj

. (35)

These terms show that in the limit of a slope reconstruction with a first-order slope, there are several modes for
additional numerical diffusion that can be used to increase the energy transfer from the resolved scales to the sub-grid
scales and add dissipation.

The two limiting cases for the present scheme show that the dissipation of the scheme can be controlled using
well-designed limiters for specific flows. The present scheme is developed to conserve coherent vortical structures
in flows. When regions of the flow field are dominated by large coherent structures, which are not subject to the
inertial range energy transfer determined by the SGS stresses, the vorticity tends to be smooth and less implicit
dissipation is included. However, in regions of small-scale vortical structures where the flow field is under-resolved
and discontinuities in the vorticity are present, the dissipation needs to be increased to account for the energy transfer
to the sub-grid scales. This formulation provides a plausible framework to simulate large-scale features of turbulent
flows without providing dissipation at all flow scales, a common problem for Smagorinsky-like explicit methods.

V. NUMERICAL EXPERIMENTATION

In this section, we discuss results obtained through numerical experimentation of several canonical flows of turbu-
lence in a periodic box. We investigate a Taylor-Green vortex in Sec. V.1, forced isotropic turbulence in Sec. V.2,
and a temporally evolving jet in Sec. V.3. All simulations employ the multi-dimensional wave propagation approach
described above.
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V.1. Taylor-Green vortex

The Taylor-Green vortex is a well-studied flow field [69–71], which encompasses large structures, transition, and
decaying turbulence, and is used to assess the ability of the scheme to capture the complexities of vortex stretching
and breakdown using under-resolved grids [36, 72, 73]. The test case is used to demonstrate how the present scheme
can be employed to emulate the dominant sub-grid scales, most importantly dissipation, from the initial conditions
of large coherent structures through a transition to turbulence at high Re. The initial velocity flow field for the
Taylor-Green vortex is given by

u1(x1, x2, x3) = u0 cos(kx1) sin(kx2) cos(kx3)

u2(x1, x2, x3) = −u0 sin(kx1) cos(kx2) cos(kx3) (36)

u3(x1, x2, x3) = 0

where u0 = 1 is the velocity scale and k0 = 1 is the length scale of the flow field. Using these scales, the Re =
u0/νk0 = 1/ν, where ν is the dynamic viscosity specified for each simulations. Simulations are designed in a periodic
cube with length 2π with a uniform grid. We start by exploring how well the scheme captures the pertinent physics
at Re = 1600 with a non-dissipative second-order central difference (referred to as no-limiter) and a high dissipative
limiter, the minmod limiter. The first limiter is directly related with the results from the modified equation in section
IV. On the other hand, the modified equation for the first-order backward slope detailed in section IV is only similar
to the minmod limiter because the minmod limiter chooses between first-order backward and forward differences and
removes slopes where the backward and forward differences have opposite slopes.

Figure 2 shows the energy spectra of simulations at several grid resolutions (N = 64, 128 and 256) at two time
instances tu0k0 = 5, during the transition to turbulence as the large-scale structures are breaking down, and tu0k0 =
10, near the maximum dissipation. Additionally, a spectral method solver [21] is employed to provide direct numerical
simulation (DNS) comparisons. The DNS employs 256 spectral modes to fully resolve the flow. In Fig. 2(a), the low
wavenumber region of the energy spectra in all simulations is able to be captured accurately compared the DNS results
from the spectral method regardless of the slope limiter employed. The decline in energy in the spectrum for each
simulation corresponds to the grid resolution where the lowest resolution begins to fall off at lowest wavenumbers.
This is expected for the under-resolved simulations. The highest resolution case, while using the same number of
degrees of freedom as the DNS, approaches the DNS solution but has slightly less energy in inertial range modes. Test
cases that employ the minmod limiter have lower energy in modes starting near a wavenumber k/k0 = 10 compared
to the no-limiter limiter. It becomes noticeable in the lower resolution test cases at lower wavenumbers, however,
they all occur in the inertial range. This is due to the dissipative nature of the minmod limiter, which allows for more
implicit dissipation especially in modes that have a wavenumber comparable to the inverse size of the grid cell, 1/∆x.
Figure 2(b) shows similar behavior for the energy spectra; however, the lowest grid resolution cases show an increased
energy at low wavenumbers. This can be attributed to the evolution of the flow at this grid resolution because the
number of necessary modes needed to provide an acceptable solution are higher than the number of modes resolved.

The Taylor-Green vortex is simulated as several higher Re = 2000, 3000, 5000, and an inviscid case, Re = ∞, in
order to investigate the scheme in cases where the impact of viscosity is low or, in the case of Re = ∞, nonexistent.
Figures 3(a) and (b) show the energy spectra of each Re case at tu0k0 = 5 and tu0k0 = 10, respectively, at two
different grid resolutions. All simulations show similar low and high wavenumber behavior for all Re at particular grid
resolution. All cases regardless of Re or grid resolution, the largest scales are similar. In fact, the Reynolds number
has little effect on the low wavenumbers, while at the high wavenumbers, the energy in these modes increase with Re.
This is due to the diminishing effects of the viscosity. However, the spectra clearly show that the scheme provides a
pathways for energy dissipation because there is no build up of energy in high wavenumber modes.

Next, we focus on the dissipation spectra of the simulations, which is directly obtained from the vorticity flow
field. Figure 4(a) shows the dissipation spectra at tu0k0 = 5 has several low wavenumber peaks that are well captured
by all simulations with N = 128 or 256 while there is lower dissipation in most modes for the N = 64 simulations.
Overall, compared to the energy spectra, the dissipation spectra is well captured at all wavenumbers especially for
the N = 256 test cases. This is an indication that these simulations can accurately resolve most of the dissipation.
Near the peak dissipation at tu0k0 = 10, Fig 4(b) shows that grid resolution and the slope limiter start to have more
effect on the resolved dissipation. The N = 256 no-limiter case dissipation spectrum is very comparable to the DNS
dissipation spectrum at most wave numbers, while the minmod limiter test case at the same resolution reveals that
it can only capture the dissipation spectra at lower wavenumbers. A general trend shows that the no-limiter cases
have slightly higher dissipation modes. This is an indication that the no-limiter test cases can resolve slightly more
dissipation compared to the minmod limiter, but we need to investigate further. While the no-limiter can capture
slightly more dissipation, it also does not add any numerical dissipation on the order of ∆2

x, so it may not be able
to dissipate sufficient energy. The minmod case shows slightly lower dissipation modes in the spectra, but there is
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FIG. 2. Energy spectra E(k) of simulations at several under-resolved grid resolutions at Re = 1600 at (a) tu0k0 = 5 and (b)
tu0k0 = 10. Red: no-limiter, Black: minmod limiter. The magenta dotted line is the energy spectra from DNS results.

numerical dissipation that is not accounted for in this metric.
The total dissipation, including numerical dissipation, ε = dK/dt, where K = 1

2 〈uiui〉 (〈·〉 indicates averaged
over the computational domain) is the kinetic energy, is integrated over the entire domain and recast into a non-
dimensional form, ε∗ = ε/k0u

2
0. Figure 5(a) shows the temporal evolution of the dissipation for the N = 256 test cases

where both the no-limiter and minmod limiter cases provide reasonable results compared to the DNS dissipation,
which is filtered using several sharp-cutoff spectral filters with widths including ∆ = 2∆x, 4∆x, and 8∆x. The filtered

DNS dissipation ε̃ is the temporal derivative of the filtered kinetic energy k̃. The filtered kinetic energy is obtained
by integrating over all wavenumbers in the sharp-cutoff spectral filtered energy spectrum with different filter widths
obtained from the DNS at each time step. While there are some discrepancies the peak dissipation is captured
reasonably well for both cases and is comparable to the DNS filtered solution at ∆ = 2∆x. Figure 5(b), which shows
the total dissipation for the N = 128 cases, reveals that the minmod limiter case out performs the no-limiter case. The
minmod limiter case can reasonably capture the peak dissipation, which is comparable to the N = 256 cases and the
filtered DNS dissipation at ∆ = 4∆x. Figure 5 (c) shows total dissipation for the N = 64 test cases. Neither results
are as reasonable as the higher resolution cases indicating that very under-resolved cases may be overly dissipative in
certain regimes such as near the maximum dissipation of the Taylor-Green vortex. On the other hand, the numerical
dissipation in a regime of strong coherent vortex interaction at short times or decaying turbulence at long times are
more reasonably captured in very under-resolved cases. However, this low resolution case demonstrates evidence of
SGS backscatter present in numerics as the numerical dissipation becomes negative around tu0k0 = 15. These results
as well as the dissipation spectra indicate that when the flow is reasonably under-resolved, the numerical dissipation
is necessary. The adequacy of the resolution will be explored below and is imperative to understand when employing
ILES in general. In our scheme, the numerical dissipation has a form that is qualitatively similar to physically devised
models, an aspect that offers insight in understanding the implicit SGS dissipation mechanisms.

Simulations at several higher Re = 1600, 2000, 3000, 5000, and ∞ reveal the effects of the numerical dissipation
with diminishing viscosity for N = 128 and N = 64 in Figs. 6(a) and (b), respectively. For the N = 128 between
the initial condition and maximum dissipation (0 < tu0k0 < 9), all cases share a similar numerical dissipation. The
extrema are amplified by the increasing Re, which suggests that viscosity plays a role in smooth the dissipation. The
effects at Re = ∞ shows the largest discrepancies between the ILES cases and the DNS and suggest that including
some physical viscosity dissipation helps stabilize the scheme. Figure 6(b) shows the N = 64 cases with increasing
Re. The cases corroborate the findings in Fig. 5(c) that a severely under-resolved case does not necessarily capture
the dissipation well for all cases. This will be further explored in further below.
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FIG. 3. Energy spectra E(k) of simulations at several under-resolved grid resolutions N = 128 (solid line) and N = 64 (dashed
line) at Re = 1600, 2000, 3000, 5000, and ∞ at times (a) tu0k0 = 5 and (b) tu0k0 = 10.

FIG. 4. Dissipation spectra E(k) from the resolved vorticity of simulations at several under-resolved grid resolutions at Re =
1600 at (a) tu0k0 = 5 and (b) tu0k0 = 10. Red: no-limiter, Black: minmod limiter. The magenta dotted line is the dissipation
spectra from DNS results.

Next, we provide further analysis to compare the numerical dissipation of the scheme to the form of dissipation
that is obtained through the modified equation analysis in section IV. Similar analysis [67, 74, 75] on how the resolved
vorticity field affects SGS dissipation transport has provided insights into the dynamics of the flow. We start with

presenting the transport equation for the resolved enstrophy Ẽ = 1
2 〈ω̃iω̃i〉 that is obtained by multiplying Eqn. (4)
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FIG. 5. The filtered dissipation ε̃∗ as a function of time for (a) N = 256, (b) N = 128, and (c) N = 64. Red dashed line:
no-limiter, Black solid line: minmod limiter. The magenta line is the dissipation from DNS results spatially filtered with a
sharp-cutoff spectral filter with several filter widths ∆ = 2∆x (solid line), 4∆x (dashed line), and 8∆x (dotted line).

FIG. 6. The filtered dissipation ε̃∗ as a function of time for (a) N = 128 and (b) N = 64 at Re = 1600, 2000, 3000, 5000, and
∞ . The magenta line is the dissipation from DNS results spatially filtered with a sharp-cutoff spectral filter with several filter
widths ∆ = 2∆x (solid line), 4∆x (dashed line), and 8∆x (dotted line).

by ωi and filtering. The resolved enstrophy transport equation is given by the following:

∂Ẽ
∂t

=− ũj
∂Ẽ
∂xj︸ ︷︷ ︸
I

+ ω̃iω̃j s̃ij︸ ︷︷ ︸
II

+ ν
∂2Ẽ

∂xj∂xj︸ ︷︷ ︸
III

− ν ∂ω̃i
∂xj

∂ω̃i
∂xj︸ ︷︷ ︸

IV

− ω̃iũi
∂ω̃j
∂xj︸ ︷︷ ︸

V

− ω̃i
∂

∂xj
(Rij)︸ ︷︷ ︸

VI

,
(37)

which relates the temporal change in the resolved enstrophy to spatial changes in the vorticity, velocity, and SGS
vorticity stress tensor. The equation contains several mechanisms that balance the temporal change in resolved
enstrophy: I.) convection, II.) amplification by vortex stretching, III.) diffusion by viscous effects, IV.) dissipation by
viscous effects, V.) diffusion by divergence modification, and VI) SGS dissipation and SGS diffusion. Term VI can be
expanded into two terms as follows:

ω̃i
∂

∂xj
(Rij) =

∂

∂xj
(ω̃iRij)−Rij

∂ω̃i
∂xj

, (38)
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FIG. 7. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 64 test case with minmod limiter.
(b) The temporal evolution of the calculated SGS dissipation and diffusion and the temporal evolution of the SGS dissipation
and diffusion obtained from the modified equation for the N = 64 test case with minmod limiter.

where the first term is the diffusion by SGS modes and the second term is the SGS dissipation. This expansion
allows us to investigate the SGS dissipation by terms that are present in the modified equation. We discretized each
derivative (in space and time) using standard 3 point second order central differencing. Note that vorticity does not
need to be discretized, because it is the solution variable. Every term in Eqn. (37) except term VI can be directly
calculated from the instantaneous flow. However, because it is necessary to balance Eqn. (37), we can find term VI,
which gives us the exact numerical SGS dissipation and SGS diffusion due to the scheme and slope limiter. Figure 7(a)
shows the temporal evolution of each term in Eqn. (37) for the test case with N = 64 employing the minmod limiter.
Near the initial time, the temporal change in the enstrophy is dominated by the amplification of vortex stretching.
At this time, the vortical structures are large and nearly resolved by the grid resolution and there is very little SGS
interactions. However, as the flow progresses towards the transition to turbulence around tk0u0 = 5, the SGS term
begins to increase as a balance to the amplification by vortex stretching. Around this time, there is non-negligible
viscous dissipation, however, the other terms are small compared to the vortex stretching and SGS terms. This trend
continues towards the maximum dissipation time near tk0u0 = 9 and after as the turbulence begins to decay. The
trend that vortex stretching balances the SGS dissipation is consistent with experiments of high Reynolds number
turbulence [67] with multi-probe hot-wire measurements. Overall, the SGS term is balanced by the vortex stretching,
which indicates that a majority of the dissipation is provided by the numerical method not the viscosity.

In Fig. 7(b) the SGS dissipation and SGS diffusion term (VI) in Eqn. (37) are compared with the modeled SGS
dissipation and production (i.e. modified equation sub-grid dissipation and diffusion) that uses Rij = Rtij +Rgij +Rhij
from Eqns. (35), (32), and (34), respectively. The temporal evolution of the modified equation SGS dissipation and
SGS diffusion has a similar trend as the numerically calculated term while there are some discrepancies near the peak
dissipation. These discrepancies arise from a) the simplified calculation of the modified equation by not incorporating
the exact limiter definition, and b) truncation of the final modified equation to only second-order accurate terms.
The modeled SGS dissipation and modeled SGS diffusion are obtained through Eqn. (38), which shows that SGS
dissipation is the dominating term compared to the diffusion.

The balance of enstrophy is also investigated at a higher grid resolution in Fig. 8(a) with N = 128 and the minmod
limiter. The temporal evolution of the amplification by vortex stretching term is the dominant term in the enstrophy
balance. Compared the N = 64, the amount of the viscous dissipation is increased, which is expected because the
higher grid resolution resolves more viscous dissipation. The increased viscous dissipation acts as an offset for the SGS
dissipation and SGS diffusion term, which is comparably less for all simulated time compared to the corresponding
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FIG. 8. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 128 test case with minmod
limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the temporal evolution of the SGS
dissipation and diffusion obtained from the modified equation for the N = 128 test case with minmod limiter.

terms in the N = 64 test case. Figure 8(b) shows the comparison of the calculated SGS dissipation and diffusion
term with the modeled SGS dissipation and SGS diffusion. At this resolution, the model elucidated from the modified
equation analysis is shown to be well represented because higher order terms in the modified equation become smaller
with higher grid resolution. As with the coarser grid resolution the SGS dissipation is dominant compared to the SGS
diffusion. Overall, the enstrophy transport equation analysis shows that the numerical results and the form of the
implicit SGS model derived from the modified equation analysis are similar and provides validation for the modified
equation analysis for this scheme.

The modified equation SGS dissipation and diffusion can be separated into three different terms based on Eqns.
(32), (34) and (35) developed directly from the modified equation. This allows us to identify which mechanism
dominants the dissipation in the ILES. Figure 9(a) shows the temporal evolution of the three terms for the N = 64
test case with the minmod limiter. Overall the modified equation SGS dissipation is driven by terms similar to
a tensor-gradient model. Similarly, for the N = 128 test case with the minmod limiter shown in Fig. 9(b), the
tensor-gradient terms in Eqn. (32) are the dominant mechanism for dissipation. In general, these SGS models with
tensor-gradient are not overly dissipative and normally are paired with other models. This is consistent with the SGS
dissipation shown herein. The modified equation terms similar to a hyper-viscosity model in Eqn. (34) are shown to
contribute to the total SGS dissipation, which enables the total modified equation SGS dissipation to have a similar
temporal evolution as the calculated SGS dissipation (term VI). The SGS dissipation contribution from Eqn. (35) is
shown to relatively less significant for both resolutions.

Figure 10(a) shows the enstrophy balance for the N = 64 with no-limiter case to show the temporal evolution of
the transport of enstrophy when no limiter is employed in the scheme, which limits the numerical dissipation. Similar
to the limited cases presented in Fig. 7, amplification by vortex stretching dominants the evolution of enstrophy,
but is significantly larger than the limited cases. Furthermore, terms IV and V are also augmented compared to
the limited case by the lack of limiter and pathway for dissipation. This has a large influence on the balance and
the SGS dissipation/diffusion term. This term is significantly higher than than the limited case and corroborates
the high numerical dissipation observed in Fig. 5(c). Similarly, the N = 128 case shows that the amplification of
vortex stretching is elevated by the lack of limiting. This affects the enstrophy balance by increasing the remainder
calculated in the SGS dissipation/diffusion.

Figure 11 compares the SGS dissipation εSGS with the expected SGS dissipation obtained through DNS. The
latter is obtained by filtering the dissipation spectra Fig. 4 using a sharp-cutoff spectral filter with a length scale
2π/(N/4 + 1), where N is the grid resolution for each case. Figures 11(a), (b), and (c) show that the SGS dissipation
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FIG. 9. The temporal evolution enstrophy transport of components of the SGS dissipation and diffusion obtained from modified
equation in Eqns. (32), (34) and (35) for (a) N = 64 and (b) N = 128 test cases with minmod limiter.

for the N = 256, 128, and 64 cases, respectively. As expected, as the length scale of the filter is increased, the total
SGS dissipation increases for both the DNS and ILES. The SGS dissipation from both ILES cases (minmod and
no-limiter) are lower than the DNS dissipation as expected based on the dissipation spectra, which indicated that the
total resolved dissipation smaller than the filter scale is relatively small. The SGS dissipation obtained through the
modified equation analysis for the N = 128 and N = 64 cases with the minmod limiter ωi∂jRij is included in Figs.
11(b) and (c). The SGS dissipation is relatively similar to that from the filtered DNS for N = 128. It is however,
under-predicted for N = 64 . This provides further evidence with the Fig. 5(c) that more analysis and clarification
is needed especially in the low resolution limit.

Next, to further understand the implicit numerical dissipation and SGS model derived from the modified equation
analysis we compare several terms of the modified equation to the well-known Smagorinsky model. A Smagorinsky
model [11] was developed in Ref. [55] for the VTE and can used for closure of Rij :

∂Rij
∂xj

= gi = − ∂

∂xj

(
νt
∂ωi
∂xj

)
− ∂νt
∂xj

∂ωj
∂xi

. (39)

The eddy viscosity νt is given by

νt = Cs∆
2|S̃|, (40)

where S̃ij is the filtered strain-rate tensor, Cs is the Smagorinsky constant and |S̃| = (2S̃ij S̃ij)
1
2 . While the implicit

model is shown by modified equation analysis to consist of several terms (Eqns. (35), (32), and (34)) and provide
implicit SGS vorticity stress on all tensor element, the comparable Smagorinsky model creates an anti-symmetric SGS
vorticity stress tensor.

Additional LES cases are simulated using the explicit model in Eqn. (39). No limiter is used in the upwind
based scheme to ensure that the dissipation is enabled through the explicit model; however, there is still interaction
between the scheme dissipation and explicit model dissipation. Several Smagorinsky constants are employed including
Cs = 0.1 and 0.3, where the former is used in Ref. [55] with a vortex particle method discretization. Simulations
are performed at N = 64 and 128 resolution of the Taylor-Green vortex at Re = 1600 to compare to the present
results. Figures 12(a) and (b) show the numerical filtered dissipation ε̃∗ at N = 64 and N = 128, respectively. The
dissipation is shown to be affected significantly by the Smagorinsky constant. In fact, the constant used previous
studies is shown to be out performed by the ILES. The higher constant, especially in N = 64 performs slightly better.
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FIG. 10. The temporal evolution of terms in the enstrophy transport equation for (a) N = 64 and (b) N = 128 test cases with
no-limiter.

FIG. 11. The SGS dissipation εSGS for the Taylor-Green vortex for (a) N = 256, (b) N = 128, and (c) N = 64. The SGS
dissipation obtained from the modified equation analysis is shown for the N = 128 and N = 64.

The discrepancies are affected by the interactions of the modified equation of the vorticity transport scheme, even
if no limiter is employed, and the SGS model. Further insights into the performance of explicit LES compared to
the present implicit model is shown in the enstrophy transport analysis in Figs. 12(c) and (d) for the N = 64 and
N = 128, respectively. Results from the explicit LES model suggest that the value of the model coefficient produces
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FIG. 12. The filtered dissipation ε̃∗ as a function of time for (a) N = 64 and (b) N = 128 comparing test case with minmod
limiter, two explicit LES cases with Cs = 0.1 and 0.3, and DNS results from a spectral method. The temporal evolution of the
calculated SGS dissipation and diffusion obtained from the present method, the modified equation, and Smagorinsky model for
explicit LES with grid discretization of (c) N = 64 and (d) N = 128.

high variability for the SGS dissipation. Moreover, a priori tests of forced homogeneous, isotropic turbulence [55]
reveal that both vorticity convection and vortex stretching contribute to sub-grid scale dissipation, but the explicit
eddy-viscosity model does not capture the contribution from vortex stretch adequately. While the variability may
be reduced with a dynamic model [12, 55], the overall simplification, deterministic dissipation through the modified
equation, consistent integration both the vorticity convection and vortex stretching, and reduced computational effort
of the implicit approach are desirable qualities for a scheme. Furthermore, ILES has been described by one constant—
typically the effective viscosity [76]—to quantify the observed behavior of the simulated flow field.

Finally, we analyze the scheme by attempting to provide methodology to characterize the flow field in terms of a
numerical effective Reynolds number Ref . In the previous analysis, we demonstrated that the numerical dissipation
of the present schemes and the dissipation predicted by the modified equation are similar. In what follows, we provide
methodology to characterize the flow in order to determine if the simulation is sufficiently resolved to provide an
accurate solution. This is particularly important considering the N = 64 simulations where numerical dissipation is
considerably different from DNS dissipation. If the simulation is not sufficiently resolved then we provide information
on what the simulation physically solved. In coarse-grained simulations, such as LES either explicit or implicit, where
small scales are not directly solved but are modeled, the Ref can be used to interpret what the simulation physically
solved. The methodology is based on the analysis of an ILES Euler scheme of turbulence flows by Ref. [36]. For
incompressible flows with sufficiently fine grid resolution to be considered a DNS, the numerical dissipation −dK/dt
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FIG. 13. The effective Re, Ref , as a function of twice the enstrophy throughout the runtime of the simulations for several grid
resolutions and viscosities. The Ref at (b) t = 5 and (c) maximum dissipation.

and resolved dissipation εE = 2ν〈ωiωi〉 are equal. This means that the scales impacted by the numerics of scheme are
in only in a narrow band of high wavenumbers dominated by the viscous scales. In the under-resolved simulations
presented herein, the ratio of the resolved enstrophy and dissipation is used to characterize the Ref as the following:

Ref =
u0
k0νf

=
〈ω∗i ω∗i 〉
ε∗

. (41)

Figure 13(a) shows the temporal evolution of Ref of several test cases including some additional test cases with
different Re = u0/k0ν than presented above in order to understand some general trends. The additional Re included
are 800, 2000, 3000, 5000, and an inviscid case where the Re =∞. In each case, the initial Ref is near the Re indicating
that the initial numerical dissipation and resolved dissipation are equal. However, the Ref decreases as the enstrophy
increases towards a maximum. The grid resolution of each case has an effect on how the Ref decreases where the
largest decreases can be attributed to the lowest grid resolution cases. In Fig. 13(b), the Ref is selected at t = 5 when
the transition to turbulence is occurring. The Ref is observed to be a function of the physical viscosity while the grid
resolution has a secondary effect. However, the Ref lower than the Re, which indicates there is noticeable discrepancy
in the numerical dissipation and the resolved dissipation. The Ref is selected at the location of maximum dissipation
for each case and is shown in Fig. 13(c). The results show that the grid resolution has the largest effect on Ref . The
Ref increases with the grid resolution. Regardless of the slope limiter or Re, all cases show similar behavior. This
suggests that the numerical dissipation is highly affected by the grid resolution compared to the effects of the viscous
diffusion or limiting in the flux functions of the present scheme for the Taylor Green vortex. We observe that the
N = 128 cases, which have a closer Ref to 800 than 1600, can be reasonably compared to the results for the Re = 800
in some parts of the evolution of the flow. At the highest resolution case N = 256, secondary effects of the Re begin
to have a larger effect.

Next, we can use the ratio of the numerical dissipation and the resolved dissipation to create an effective length
scale as follows:

∆xf =
ε1/2

(ω̃iω̃i)
3/4

. (42)

The effective length scale is compared with the Kolmogorov length scale η provide by the DNS at a Re = 1600 in Fig.
14. The temporal evolution of the effective length scale indicates that before the transition to turbulence, the flow
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FIG. 14. The ratio of the effective grid spacing and Kolmorgorov lengthscale (from DNS) ∆xf/η for the Re = 1600 cases. Red:
no-limiter, Black: minmod limiter.

field is relatively resolved. However, as the large structures begin to break down, the grid is no longer sufficiently fine
to resolve the flow and the effective length scale become larger than the Kolmogorov scale. The grid resolution has a
large effect on the evolution of the effective length scale.

Further analysis into Ref of the simulations allows us to interpret the effective viscosity νf with the Taylor
micro-scale λ which is calculated as follows:

λ =
1

3

3∑
i

√
〈uiui〉/〈

∂ui
∂xi

∂ui
∂xi
〉. (43)

The effective Taylor micro-scale Reλ = u′λ/νf . Many studies on high-Re turbulence have investigated the relation-
ship between the energy containing eddies in flows with the dissipation especially using turbulence-resolving DNS or
experiments [77–80]. From these efforts, we are able to conclude that the time scale of the energy-containing eddies
u′/L are on the same magnitude as the time scale of the dissipation rate ε/u′2, where u′ is the characteristic velocity
scale and L is the characteristic length scale. This key finding is especially beneficial for success with under-resolved
simulations where by resolving large energy-containing eddies, there is some understanding of the magnitude of the
dissipation just based on resolved characteristics. Furthermore, the DNS studies showed that with a sufficiently high
Reλ, the flow reaches a minimum state [81] where turbulence seems to exhibit self-similar behavior. The minimum
state of turbulence flows where the time scale of the large scales and dissipation in terms of Reλ can be as low
as Reλ > 100 [82, 83] or Reλ > 200 [77, 80]. For the Taylor-Green vortex case with Re = 1600, the maximum
Reλ = 140 [70]. This implies that in order to reach some self-similarity of small-scale turbulence the flow must have
sufficient separate of scales, and the dissipation must occurs away from the large scales in the spectral sense. Ref. [36]
used this criteria in order to characterize ILES schemes for velocity-pressure formulation to see if a minimum state
is reached. Furthermore, well-known relationships for Reλ to a large-scale ReL exist. Several studies have pointed
towards ReL ∼ Re2λ [84, 85].

We present details on the characteristics of several of the Taylor-Green simulations in Table I, which shows the effec-
tive Re at transition to turbulence (t = 5), maximum dissipation (t ≈ 9), and decaying turbulence (t = 15, 20). Here,
we calculate the characteristic velocity as the rms (root-mean-square) of the velocity fluctuations u′ = 〈( 1

3uiui)
1/2〉.

The high-resolution cases with N = 256 show that the limiter has minor effects on Ref as also shown in Fig. 13.
While only at the transition stage has the flow field reached a sufficiently high Reλ, this is consistent with ILES
simulations with for the Euler equations [36]. The DNS has an initial Reλ = 55 which increases to the maximum
Reλ = 140 [70, 76] around t = 9. Reλ ≈ 100 at larger times t > 10 as the turbulence decays. In the N = 128 test
cases, the numerical dissipation provided by the minmod limiter has more effects while in the N = 64, the Ref remains
relatively low and does not provide positive results during turbulence decay indicating that the grid resolution is not
high enough or the dissipation is not enough for this flow.
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TABLE I. Effective Re for ILES of Taylor-Green Vortex

N Limiter t Ref = u0
k0νf

∆xf Reλ = u′λ
νf

ReL ∼ Re2λ

256 No-limiter 5.00 774 2.30×10−2 98 9692

9.03 1048 1.60×10−2 58 3407

15.00 1624 1.61×10−2 47 2251

20.00 1704 1.98×10−2 43 1871

Minmod 5.00 923 2.16×10−2 122 14991

8.30 698 2.13×10−2 52 2711

15.00 1135 2.08×10−2 47 2226

20.00 1283 2.30×10−2 45 2048

128 No-limiter 5.00 639 2.60×10−2 86 7527

8.49 589 2.31×10−2 42 1819

15.00 1328 1.92×10−2 45 2100

20.00 1596 2.04×10−2 41 1725

Minmod 5.00 769 2.47×10−2 109 11956

8.29 533 2.67×10−2 52 2755

15.00 856 2.57×10−2 39 1559

20.00 1313 2.39×10−2 47 2212

64 No-limiter 5.00 1356 1.84×10−2 203 41296

8.23 329 3.28×10−2 38 1503

Minmod 5.00 667 2.80×10−2 104 10965

8.33 303 3.75×10−2 46 2144

V.2. Forced Isotropic Turbulence

Next, we consider the numerical experimentation of isotropic turbulence simulation employing a forcing scheme
developed for linear forced turbulence in physical space [86]. Forced isotropic turbulence provides test cases that
allow for velocity and vorticity statistics to be collected over the simulation, which are used to assess the ILES

dissipation and ability to capture turbulence statistics. A forcing term f̃ = ∇ × ε0/3u′2u, where ε0 is a constant

energy injection and u′ =
(
3
2 〈K〉

)1/2
is the rms (root-mean-squared) velocity updated throughout the simulation,

is included in Eqn. (4) to maintain a nearly constant energy after an initial transient time. The energy injection
constant is ε0 = 5 × 10−5. The simulation cases are initialized using the conditions for isotropic turbulence. It is
simulated from an initial condition, which quickly decays into fully-developed turbulence, given in Refs. [87] and [88]
where the initial energy spectrum takes the form:

E(k, 0) =
3

2A

1

kσ+1
p

kσ exp

(
−σ

2

(
k

kp

)2
)
, (44)

where kp is the wavenumber at which E(k, 0) is maximum, σ is parameter, and A is
∫∞
0
kσ exp(−σk2/2)dk. A flow

is initialized with σ = 4 and kp = 3. The ν = 0.0007 gives a initial Reynolds number based on the length of the
side domain, 2π, and the initial velocity fluctuations of Re = 6× 103. Grid resolutions are employed in the 2π-sided
periodic box with the number of grid cells per dimension N = 256, 128, 64, and 32 with a minmod limiter for all
resolutions. An additional no-limiter case is employed for the N = 256 resolution based on results above which show
that the N = 256 is nearly resolved for the present initialization.

Several studies [31, 36, 39] have employed forced turbulence simulations to examine the turbulence statistics espe-
cially to see sensitivities the velocity, vorticity, and strain rates have for ILES with different grid resolutions. It has
been observed in Ref. [36] for ILES that above a mixing transition of Reλ > 100 [83], the behavior of the turbulence
statistics in terms of velocity probability density functions (PDFs) begin to approach asymptotic Re statistics. Figure
15 shows the longitudinal and transverse fluctuating velocity gradients with a comparison to DNS [89] and grid turbu-
lence experimental measurements [90]. The present simulations capture the turbulence statistics, especially, the high
probability statistics well for all grid resolutions. The tails of the PDFs, which represent only a small fraction of the
solution correspond well with higher Reλ DNS and experimental cases, which suggests that the numerical dissipation
in the scheme may be appropriate for simulating high Re turbulence cases in which intermittency and non-Gaussian
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FIG. 15. Longitudinal (left) and transverse (right) velocity gradient probability density functions normalized by the rms vorticity
ω′ with several grid resolutions. Markers indicate PDFs captured from DNS results from Ref. [89] are at Reλ = 35, 61, 94 and
168 and Experimental measurements from Ref. [90] are at Reλ = 852. Each PDF is labeled.

behavior at the tail of PDFs are observed. The negative bias of the longitudinal derivative of the fluctuating velocity
is similar to results present in DNS and experimental flow field statistics. The PDF of the transverse derivative of the
fluctuating velocity shown in Fig. 15 demonstrates the convergence of the velocity towards non-Gaussian behavior
observed for this quantity. The turbulence statistics indicate that there is convergence towards high Re turbulence
statistics.

Figure 16(a) show the near Gaussian behavior, similar to flow fields from DNS results, of the velocity fluctua-
tions, which show asymptotic convergence as the grid resolution increases. This also suggests that the effective Re
is increasing with the grid resolution as seen in the Taylor-Green vortex. The statistics for the magnitude of the
vorticity fluctuations are shown in Fig. 16(b), which suggests that vorticity statistics are better represented compared
to the velocity statistics at lower grid resolutions and for this particular Re. Interestingly, this is not seen ILES of
velocity-pressure formulations [36], which may suggest that the present scheme designed to preserve vorticity may
enhance the ability of lower grid resolution cases to capture some vorticity statistics more efficiently and DNS simula-
tions from Ref. [91] have relatively low Reλ. Next, we focus on statistics related to the resolved enstrophy transport
equation shown in Eqn. (37). The PDF of the vortex stretching, σij = ωisijωj/|ω|2, shows the convergence of the
high probability portion of the PDF and tails that correspond well with different Re. Furthermore, the PDF of the
strain rate magnitude in Fig. 16(d) shows similar behavior. Overall, the velocity and vorticity statistics display that
the turbulence characteristics have asymptotic convergence and tails of the PDF resemble higher Re statistics with
increasing grid resolution.

The effect of numerics of the ILES on the correlation of turbulence statistics is shown in Fig. 17. First, Fig. 17(a)
shows that the joint PDF of the vorticity magnitude and the strain rate magnitude |S|. The correlation between
the two quantities reveals some convergence towards in the tails of the PDF for the three lowest grid resolutions.
However, because the N = 256 cases employs a central difference for the limiter, due to it being nearly resolved, there
is a difference between this case and the other three. Furthermore the correlations between the vorticity and vortex
stretching and the strain rate magnitude and stretching in Figs. 17(b) and (c) respectively show similar behavior.
The statistics indicate that there is high probability that the grid resolution does not have an effect on the statistics
of the flow field, while the outlying statistics have some dependence on the resolution of the simulation.

In order to further assess the implicit method, invariants of the velocity gradient [92], which is related to turbulence
dissipation, are analyzed. The three invariants of the velocity gradient Aij = ∂ui

∂xj
are given as follows:

P = −Aii = 0

R = −1

2
AijAji

Q = −1

3
AijAjkAki

(45)

Because the first invariant P is zero for an incompressible flow, the velocity gradient is completely determined by the
second and third invariants, R and Q, respectively. The invariants determine the local flow topology and indicate
stretching and stability.

Figure 18(a) and (b) shows the joint PDF for the N = 64 and N = 128 test cases, respectively. The invariants are
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FIG. 16. (a) Velocity magnitude, (b) vorticity magnitude, (c) vortex stretching, and (d) strain rate magnitude probability
density function normalized by the rms vorticity ω′ of forcing case for several grid resolutions. The case N = 256 with no-
limiter is shown as a solid cyan line. Marked indicate DNS results from Ref. [91] are at Reλ = 37, 62, 95, 142 and 168. Each
PDF is labeled.

FIG. 17. Turbulence statistics of the forced turbulence simulations for grid resolutions of N = 256, 128, 64 and 32. Contour
lines for each plot are shown at {100, 10−1, 10−2, 10−3}.
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FIG. 18. Joint PDF of velocity gradient invariants Q and R normalized by the resolved enstrophy Ẽ of the forced turbulence
simulations for grid resolutions of (a) N = 64 and (b) N = 128. Contour lines for each plot are shown in log-space between 0
and 10−5.

determined at every grid points at t/τ = 10, where τ = u′2/ε is the eddy-turnover time. Both cases reveal a joint PDF
this consistent with previous studies of homogeneous turbulence [92]. Furthermore, the invariants calculated in each
simulation corroborate the PDFs of the turbulence statistics in that the overall statistics are captured independent of
grid resolution. Increased grid resolution increases the appearance of outliers and are be associated with intermittency,
which should be expected by resolving smaller velocity fluctuations.

Next, three new simulations are introduced with a grid resolution N = 64 but with different initial Re =
8.4 × 103, 4.2 × 104, and 4.2 × 105. This is obtained by changing the kinematic viscosity. All other conditions and
forcing remain consistent with the N = 64 test case at Re = 6 × 103. Figure 19(a) shows the longitudinal velocity
gradient PDF of the four N = 64 simulations. As the Re number increases, the tails of PDF trend closer to the high
Reλ results obtained from DNS and experimental measurements. Furthermore, Fig. 19(b), showing the transverse
velocity gradient PDF, suggests similar, yet non-monotonic [2], convergence as the Re number increases. The higher
Re demonstrate that a larger scale separation compared to lower Re is achieved at a minimum state [36] such that the
turbulence statistics become asymptotic. The velocity gradient statistics as a function of Re corroborate the statistics
as a function of grid resolution (Fig. 15) to indicate that asymptotic turbulence and dissipation behavior with ILES
and VTE scheme can be realized through combination of both high initial Re and sufficient grid resolution. This
ensure that the turbulence will have a sufficient separation of scales.

The velocity gradient invariants of the four different Re cases at N = 64 are shown in Fig. 20. These statistics
show that as the Re number increases, the joint PDF of the invariants resembles the canonical ‘teardrop’ shape more
definitely. The Q-R plot at higher Re compared to Re = 6000 resemble the N = 128 case shown in Fig. 18(b) more
as the Re increases. This further suggests that once a minimum state is reached, statistics become asymptotic.

The balance of terms in enstrophy transport equation introduced in Eqn. (37) is shown in Fig. 21(a) for the
N = 64 case in order to assess the modified equation analysis with forced turbulence. Similar to the Taylor-Green
vortex, the amplification via vortex stretching is balanced by SGS dissipation and diffusion. Figure 21(b) shows
that the modified equation SGS dissipation and diffusion are consistent with the calculated profile throughout the
simulation. This is a further indication that the implicit model obtained through the modified equation can be used
to describe the dissipation of the scheme.

The accuracy of the modified equation SGS dissipation and diffusion at N = 128 is corroborated in Fig. 22. In this
case, the enstrophy amplification by vortex stretching is offset by both the SGS dissipation and viscous dissipation.
At this resolution, there is significantly more resolved viscous dissipation than the N = 64 case. The calculated SGS
dissipation and diffusion is shown to be very similar to the modified equation SGS dissipation and diffusion throughout
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FIG. 19. Longitudinal (left) and transverse (right) velocity gradient probability density functions normalized by the rms
vorticity ω′ for grid resolutions of N = 64 at several initial Re numbers. Markers indicate DNS results from Ref. [89] are at
Reλ = 35, 61, 94 and 168. Experimental measurements from Ref. [90] are at Reλ = 852. Each PDF is labeled.

FIG. 20. Joint PDF of velocity gradient invariants Q and R normalized by the resolved enstrophy Ẽ of the forced turbulence
simulations for grid resolutions of N = 64 at several Re numbers. Contour lines for each plot are shown in log-space between
0 and 10−5.
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FIG. 21. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 64 test case with minmod
limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the temporal evolution of the SGS
transfer and diffusion obtained from the modified equation for the N = 128 test case with minmod limiter.

the simulation.
Finally, we examine the average energy spectra over the final half of the simulations in Fig. 23. The energy

spectra indicate that there is a well-captured low wavenumber regime of all the simulations regardless of the grid
resolution. A zoomed-in plot in the low wavenumber region before the inertial range show that both the N = 256
and 128 spectra are nearly converged together, while the modes for the N = 64 grid resolution approaches similar
energy contents and the lowest grid resolutions have slightly higher energy contributions to the modes in this region.
This suggests that very low grid resolution causes slightly more energy to be present in low wavenumber modes. The
inertial range may not be wide enough to separate the energy-containing scales from the dissipative scales. However,
the higher resolutions including N = 64, the resolution becomes asymptotic. These cases exhibit the formation of an
inertial range that is consistent with a −5/3 slope. The energy content at the highest wavenumbers in the N = 256
cases suggest that the grid resolution is approaching the resolution required for a DNS.

Additional inviscid simulations with the same forcing and initial conditions are performed to quantify the impact
of viscosity and resolution. Figure 24 shows the original forced cases and Re =∞ cases at grid resolutions of N = 128
and 64. A forced turbulence DNS cases from Ref. [86] and explicit LES cases with N = 64 and N = 128 from Ref. [93]
with a similar linear forcing in physical space are included for comparison. Note that the forcing scheme used in the
DNS and explicit SGS cases are performed with the velocity-pressure formulation using the velocity variable while
the forcing in physical space employed in the present study uses the vorticity-velocity formulation on the vorticity
variable. This may cause parameters selected in the forcing to behave with slight differences between the formulations.
However, the spectra reveal that the low wavenumbers are relatively unaffected by the dissipation regardless of the
Reynolds number and resolution. The impact of viscosity is seen in the high wavenumber scales. Furthermore, the
forced ILES simulations show similar behaviors and trends to the DNS and explicit SGS in the low wavenumber
region. The finite Reynolds number does have a larger impact on the inertial range compared to the DNS. At high
Re, there is evidence of asymptotic convergence of flow statistics.

V.3. Temporally Evolving Jet

A temporally evolving jet provides a more rigorous test case where both large-scale features (Kelvin-Helmholtz
instability) and small-scale fully-developed turbulence are presence. This is a flow that more closely resembles the
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FIG. 22. (a) The temporal evolution of terms in the enstrophy transport equation for the N = 128 test case with minmod
limiter. (b) The temporal evolution of the calculated SGS dissipation and diffusion and the temporal evolution of the SGS
transfer and diffusion obtained from the modified equation for the N = 128 test case with minmod limiter.

FIG. 23. Energy spectra of forced turbulence simulations. The thin dotted line is at a −5/3 slope. The case N = 256 with
no-limiter is shown as a solid cyan line.

complex flows with dominant coherent structures that the present scheme is designed to investigate.
The initial velocity flow field from Ref. [74] is given as follows:

u1(x) =
1

2
− 1

2
tanh

[
H

4θ0

(
1− 2|x2|

H

)]
(46)

where H is the initial jet thickness and θ0 is the initial momentum thickness. A H/θ0 = 35 is selected with a
Re = (U1 − U2)H/ν = 3200. The initial U1 = 1 and U2 = 0. Initial velocity fluctuations are prescribed from the
spectrum E(k) ∼ k4 exp

[
−2(k/k0)2

]
. However, for the present scheme in the vorticity-velocity formulation we impose
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FIG. 24. Energy spectra of forced turbulence simulations at Re = 6000 and Re =∞. The solid line is N = 128 and the dashed
line is N = 64. The diamond, square, and triangle markers are forced turbulence cases 1, 2, and 3, respectively, from Ref. [86].
Circle and plus markers denote N = 64 and N = 128, respectively, and correspond to explicit LES of case 2 from Ref. [93].

the initial condition based on the transverse vorticity as follows:

ω3(x) =
1

4θ0

|x2|
x2

cosh−2
[
H

4θ0

(
1− 2|x2|

H

)]
. (47)

The initial condition has been shown to be a good estimate of the inlet velocity profile of spatially evolving jets.
However, the temporally evolving jet provides a computationally expedient solution compared to simulating the
spatial jet. The temporally evolving jet employs periodic boundary conditions on all sides of a cubic domain of
(L1×L2×L3) = (4H × 4H × 4H). Several grid resolution are used for comparison of the effects of the discretization:
N = 64, 128, and 256, where N is the number of grid cells per dimension. At N = 256, the grid resolution is
sufficiently fine to approach a DNS solution similar to the DNS simulation in Ref. [94]. Both a dissipative ENO
slope limiter and no-limiter are employed. The ENO slope limiter is similar to the minmod slope limiter but is not
total variation diminishing. Contours of the out-of-plane vorticity are shown for each simulation in Fig. 25 at the
time when the flow field becomes starts to become self-similar, t/Tref = 15, where Tref = H/∆U , (see Fig. 26(a)).
This time is equivalent to x/H = 7.5 at the same Re for a spatially evolving jet. The three different grid resolutions
demonstrate how different levels of resolution can affect features in the flow field. Each case using the ENO limiter
show qualitatively the capture of large-scale coherent vortices, while the large-scale structure is less evident with the
no-limiter case with low grid resolutions (N = 64 and 128).

Figure 26(a) shows profiles of the mean streamwise velocity 〈u1〉 in x2 direction averaged over the x1 and x3
directions for each grid resolution and both the ENO limiter and no-limiter. The profiles are normalized by the
centerline velocity Uc = 〈u1〉(x2 = 0), while the jet half-width δ1/2, which is calculated with the mean streamwise

velocity 〈u1〉(x2 = δ1/2)−U∞ = 1
2 (Uc − U∞) and U∞ is the streamwise velocity far from the jet, is used to normalize

the abscissa. The profiles are chosen in the regime where the jet wake becomes self-similar. The grid resolution has
a large effect on the amount of time the temporally evolving jet requires to become self-similar and will be discussed
below. The streamwise velocity profiles are compared with several experimental measurements of spatial evolving jet
in the self-similar regime. The present simulation results compare well with experimental measurements and show
consistency between the different grid resolutions. Moreover, the spread in the results are comparable to DNS of
temporal jets performed in Refs. [74, 94]. This suggests that even the low grid resolution of N = 64 with the ENO
limiter can capture some of the large-scale features well. The mean transverse vorticity profiles are shown in Fig.
26(b) for each simulation in the self-similar regime. The profiles indicate the mean vorticity from each simulation is
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FIG. 25. Velocity ω3 normalized by the jet half-width δ1/2 and centerline velocity for the temporally evolving jet contours for
the temporally evolving jet at t/Tref = 15.

captured reasonably well except the N = 64 with the no-limiter case. However, the N = 64 with dissipative ENO
limiter, where the shear layer is only discretized by less than four grid cells, is captured reasonably. On the other
hand, the N = 64 and 128 with no-limiter show slightly higher mean vorticity in the shear layer suggesting that
under-resolved simulations need additional dissipation.

The second-order velocity statistics are compared with experimental measurements in Fig. 27. The rms (root-
mean-square) streamwise velocity 〈u21〉1/2 profiles, shown in Fig. 27(a), and rms normal velocity 〈u22〉1/2 profiles,
shown in Fig. 27(b), are compared with experimental measurements in the self-similar regime. While there are some
differences between the different test cases, the overall comparison is reasonably well, especially for the lowest grid
resolution case with the dissipative ENO limiter, which approximates sufficient dissipation. On the other hand, the
lowest resolution with the no-limiter significantly under predicts the rms velocities. While scatter in the data can
also be attributed to the relatively low number of samples for the temporally evolving jet especially at the lowest grid
resolution, the role of numerical dissipation to capture flow statistics is apparent in the jet.

The grid resolution and numerical dissipation affect the temporal evolution of the jet from its initial condition
through the transition to turbulence. Up to this point, the result from the simulations have focused on the flow
field after the jet transitions to turbulence, the transient behavior diminishes, and a self-similar regime occurs. In
temporal jet simulations [94], the self-similar regime is obtained at times t/Tref > 20 for a similar initialization. This
is equivalent to x/H = 10 for a spatial-evolving jet. Figure 28 shows the evolution of the mean transverse vorticity
profiles with time for each grid resolution case with the dissipative ENO limiter. The initial mean vorticity profile
across the shear layer is relatively high and sharp. At further instances in time, the vorticity magnitude diminishes
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FIG. 26. Profiles of the (a) mean streamwise velocity 〈u1〉 normalized by the centerline velocity Uc compared with experimental
results from Ref. [95] (circles) and Ref. [96] (squares) and (b) mean vorticity 〈ω3〉 normalized by the jet half-width δ1/2 and
centerline velocity for the temporally evolving jet. Blue - no-limiter, Black - ENO limiter.

FIG. 27. Profiles of the (a) rms (root-mean-square) streamwise velocity 〈u2
1〉1/2 and (b) rms normal velocity 〈u2

2〉1/2 normalized
by the centerline velocity Uc compared with experimental results from Ref. [95] (circles) and Ref. [96] (squares). Blue -
no-limiter, Black - ENO limiter.

to a self-similar solution. Each grid resolution test case due to the increase numerical dissipation and grid cell size,
transitions to the self-similar solution at different times. For the most resolve case, the self-similar solution is obtained
at t/Tref > 20, while the lowest grid resolution transitions quicker, around t/Tref > 10. We are effectively solving
the flow field at different effective Reynolds numbers through the transition to turbulence but are able to obtain a
self-similar solution after the transition. The temporal impact of the numerical scheme on the flow field and the
effective Reynolds number is significant when solving temporally evolving flows.

An estimate of the effective Reynolds number is determined from measurable features of the flow field. It is
important to determine the effective Re to determine what the simulation is solving and if it has reached a minimum
state in the sense of the asymptotic turbulence statistics. Here, we assume a high Reynolds number is achieved and
using the asymptotic relationship for high Re regime of isotropic turbulence [77] where D = εL/U3 ≈ 1

2 similar to

ILES estimates for complex Richtmyer-Meshkov instabilities [36]. The velocity scale U = u′ = 〈( 1
3uiui)

1/2〉 and length
scale L is chosen to the jet half-width, which is shown as a function of the time in Fig. 29(a). The temporal evolution
of the half-width shows that the grid resolution affects the jet spreading, which is expected based Fig. 28. The
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FIG. 28. Temporal evolution of the vorticity profiles 〈ω3〉 for (a) N = 256, (b) N = 128 and (c) N = 64. Each case employs
the ENO limiter.

FIG. 29. The temporal evolution of the (a) jet half-width, (b) effective viscosity, and (c) effective Re. Blue - no-limiter, Black
- ENO limiter.

dissipation is obtained ε = DU3/δ1/2 and the effective viscosity is obtain through νf = ε/ωiωi. Figure 29(b) shows
the temporal evolution of the effective viscosity. For each grid resolution and slope limiter case, the initial effective
viscosity behaves slightly differently, however, as the jet flow field asymptotically approaches the self-similar solution,
the effective viscosity for each simulation approaches a single viscosity, which is the viscosity of the simulation. The
numerical dissipation in the lowest resolution case is able to reach a state such that the asymptotic relationships in the
jet can be reached. The Ref = u′δ1/2/νf is shown in Fig. 29(c). It indicates that the lower grid resolution cases with
the increased dissipation are in fact solving a slightly different temporally evolving jet problem. However, because
the flow comes self-similar at long times, this is not readily noticeable from profiles. Moreover, experimentation, both
numerical and measurement, have shown that at high enough Re based on the inlet velocity and slot width (6000
and Ref. [97] and 1000 in Ref. [98], respectively) the spatially evolving planar jet becomes independent of Re, which
comparable to the same Re for the present simulations (Re ≈ 3200).

Energy spectra of the jet cases are shown in Fig. 30(a) for N = 256, 128 and 64 for both the limited and no-limiter
cases at t/Tref = 40. The spectra for the nearly resolved N = 256 cases are comparatively similar. Furthermore,
the N = 128 case with the ENO limiter matches reasonably well in the large-scales but is slightly more dissipative
than the N = 256 cases in the high wavenumber range as expected. The lack of a limiter in the N = 128 case shows
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FIG. 30. Energy spectra E(k) of simulations temporal simulations: (a) Re = 3200 at several discretizations, Blue - no-limiter,
Black - ENO limiter, (b) N = 128 case at different Re, and (c) N = 64 case at different Re.

that a non-dissipative scheme can have a large effect on the low wavenumbers. The lowest resolved cases, N = 64
show some differences in the low wavenumbers. Additional Reynolds number cases are performed to assess the low
wave number behavior and corroborate the results above that indicate the lower grid resolution are solving a slightly
different temporally evolving jet problem. Figure 30(b) shows the N = 128 resolution for Re = 3200, 1× 104, 2× 105,
and ∞. The higher Re numbers cases have an asymptotic behavior in the low wavenumbers which converge to the
nearly resolved N = 256 resolution. Additionally, this behavior is also found in the N = 64 cases with high Re
shown in Fig. 30(c). The viscosity Re = 3200 plays a significant role in dissipation but can be mitigate by carefully
selecting the grid resolution. The spectra show that with adequate resolution and a high enough Re, the solution
converges to correct results especially in the low wavenumber range, which is most important for performing LES. The
estimation of an effective Re becomes especially critical when attempting ILES of more complex flow fields where the
flow characteristics can become independent of Re such as wind turbine wakes [59]. By selecting the grid resolution
for the problem, an ILES with the present scheme can be employed such that the large-scale structures are captured
and small-scale turbulence are implicitly modeled to obtain physically accurate, expedient results.

VI. CONCLUSIONS

The subgrid scale characteristics and effectiveness of an upwind finite volume scheme for the vorticity transport
equations were investigated. The numerical scheme employs a generalized Riemann problem-based multi-dimensional
wave propagation approach. Modified equation analysis was used to characterize the dissipation and backscatter. The
analysis revealed two limits for including dissipation implicitly through numerics: 1.) a low dissipation limit using a
second-order central difference, most appropriate in smooth areas, i.e. regions dominated by large vortical coherent
structures; and 2.) a high dissipation limit using a first order upwind difference, used when the vorticity changes
rapidly across grid cells, i.e., regions of under-resolved turbulence. While the former is ideal in well-resolved areas of
the flow field, the latter is necessary in regions in which dissipation is essential to account for the transfer of energy
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from the resolved scales to the sub-grid scales in the absence of an explicit SGS model. The modified equation at the
high dissipation limit contains many terms, some of which can be combined into forms that are similar to commonly
used explicit sub-grid scale models including the tensor-gradient models, hyper-viscosity model, and a simple gradient
model. This serves a qualitative tool to understand the implications of using the present scheme for ILES. We are
careful to note that—for ILES in general—the terms in the modified equation do not have to be similar to explicit
SGS terms. Rather, the similarities to known models provide insight in characterizing the scheme.

To characterize turbulence with the present scheme for the ILES methodology, a series of turbulence-in-a-box
simulations of the Taylor-Green vortex was performed to understand the process of energy transfer from energy-
containing scales to the sub-grid scale. The Taylor-Green vortex cases revealed that the grid resolution must be
carefully taken into account in order to obtain desired results. The grid resolution is the largest factor for the
magnitude of the effective Re while the choice of limiter, which subtly controls the numerical dissipation, has an
impact on the accuracy. However, in under-resolved simulations, a dissipative limiter is essential. The dissipation
terms obtained from the modified equation analysis are shown to faithfully represent the implicit SGS torque in the
Taylor-Green vortex case. In high Reynolds number flows, where there is a marked separation of scales, the method
is able to represent the high energy modes. Further numerical experiments with forced turbulence revealed that
high-Reynolds number asymptotic turbulence statistics can be reasonably captured with the ILES methodology for
this vorticity-velocity formulation scheme.

Finally, simulations of a temporally evolving jet, which contains both large-scale vortical structures and fine-scale
turbulence show that under-resolved numerics can capture asymptotic turbulence statistics and large-scale features.
The method is particularly useful when the effective Reynolds number is past a threshold beyond which the flow is
dependent on the Reynolds number.

The simulations studied herein represent canonical flows which allow us to build our understanding of the method
to more complex flows. The simulation tests show that coarse grid resolutions provide a good estimate for large
energy-containing modes given a large enough inertial range. This particular vorticity-velocity scheme was designed
to capture and preserve large vorticity structures in flows in which fully-developed small-scale turbulence tends to
localized and large energy-containing structures dominate the flow. Our previous work [45] showed how the scheme
can be used to capture vortical structures, while this work indicates that the impact of fine-scale turbulence on the
energy-containing scales can also be reasonably represented.
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