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Abstract

The mean stress is one of the most important quantities of interest in turbulent boundary layers.

The governing equations for the mean flow are used to derive a relation between the mean total

stress and the mean velocity in a zero pressure gradient turbulent boundary layer, allowing the

mean shear stress to be written as a function of wall-normal distance. The relation contains an

unknown term, which is modeled using as a linear function of the wall-normal distance, inspired

by existing data sets. The model for the mean total stress requires the wall-normal mean velocity

profile, which requires modeling if not available. The existing data sets and scaling arguments are

used to obtain a simple and compact fit for the mean wall-normal velocity, which is subsequently

used to obtain a simple model for the mean total stress. The model shows good agreement with

the available simulation and experimental data for a large range of Reynolds number.
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I. INTRODUCTION

Flow over a solid surface or wall produces a thin region of high shear close to the wall due

to no-slip condition at the surface imposed by viscosity. This thin near-wall region called

boundary layer has been one of the most studied fluid problems starting from the seminal

work of Prandtl [1]. The high shear induces large tangential stresses at the wall, which leads

to drag responsible for energy expenditure in aerodynamic and hydrodynamic applications.

Under most practical conditions, the boundary layer is turbulent, which is often described

using the first- and second-order flow field statistics since the instantaneous flow field is

highly chaotic [2].

Wall shear stress is perhaps the most important quantity of interest in many wall-bounded

flows, and is challenging to measure directly. Therefore, it is often obtained indirectly from

the measured velocity profile. The Clauser chart is often used in zero pressure gradient

(ZPG) turbulent boundary layers (TBL) to obtain wall shear stress. However, Wei et al. [3]

pointed out that the Clauser chart method can be problematic as it can potentially mask

subtle Reynolds number (Re) dependent behavior. Even if the wall shear stress is obtained,

it is really difficult to obtain the mean tangential or shear stress (called the total stress

henceforth), which may be desirable, due to the fine resolution requirements near wall to

measure the velocity gradient accurately.

The total stress (T ) has viscous and turbulent components, the former dominates only

very close to the wall. As Re (the ratio of inertial to viscous forces) increases, the region

of dominant viscous stress shrinks and almost all of the total stress in the TBL is the

turbulent shear stress, also called the Reynolds shear stress [4]. The scaling and universality

of turbulent mean flow and Reynolds stresses have been subjects of numerous studies in

recent years [4, 5]. Many common turbulent simulation techniques solve the time-averaged

Navier–Stokes equations for the mean velocity, which requires a closure for the Reynolds

shear stress term. The accuracy of these techniques relies heavily on the accuracy of the

employed Reynolds stress model [6].

The shear stress in TBL has been subject of numerous past studies. Fukagata et al. [7]

proposed a decomposition of skin-friction into laminar, turbulent and inhomogeneous parts

using the momentum budget whereas Renard and Deck [8] used the mean kinetic energy

budget to isolate the laminar and turbulent contribution to the skin-friction. Hou et al. [9]
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proposed two methods of recovering the entire total stress profile from incomplete velocity

data in TBL. The first method used an exponentialpolynomial curve fit, to recover the entire

total stress profile using the data from the outer part of the boundary layer (η = y/δ > 0.3,

where δ is the boundary layer thickness). However, they found that the curve fit was sensitive

to the quality of the data. Hence, they proposed a second method where a simple linear

fit was used for the total stress in viscous units (denoted by ’+’ superscript) weighted with

(1 − η) i.e. (1 − η)T+ = aη + b. The value of b ≈ 1 to satisfy the boundary condition

and a was found to be independent of Reθ, but loosely correlated with the shape factor H

(a ≈ −H). The linear fit showed good agreement with the data for η < 0.4 − 0.5. They

reported values of the model constants a and b from several experimental and simulation

data sets, which showed significant scatter for a at high Re.

Mehdi and White [10] used the mean momentum balance to obtain an expression to

evaluate skin friction coefficient for TBL. Their method requires the gradient of T which is

difficult to evaluate directly from noisy shear stress profiles. To overcome this limitation,

they fit a Whittaker smoother, using a small smoothing parameter, to the entire total stress

profile, with the condition that the gradient of the fit always remain negative. They show

this approach to be robust for experimental data with typical noisy shear stress profiles, for

which there are limited ways to obtain skin friction. The present work differs from their

work in that our objective is to obtain a simple model for T valid for the entire boundary

layer. The model for T will be obtained by first expressing T in terms of the velocity profile

and then modeling the unknown term using physical insight and available databases.

The mean flow field in a TBL is two-dimensional. However, the wall-normal velocity

(V ) is small, typically of the order (10−2U), and hence often not reported in literature.

However, V is an important quantity which is directly related to the streamwise growth

of the boundary layer thickness and it also relates to the entrainment of the inviscid outer

flow to the boundary layer across the boundary layer edge. Wei and Klewicki [11] used

the existing TBL data sets to show that V/Ve is independent of Re, where Ve is V at the

boundary layer edge (η = 1).

The present paper proposes a simple model for T which is valid throughout the TBL

at ZPG. The model is derived from the governing equations of the mean flow with the

assumption of equilibrium boundary layer. The model for T requires the wall-normal velocity

(V ) profile, which is seldom reported in literature. Hence, a simple and compact model for
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TABLE I. TBL datasets considered in this paper.

Case Reθ Reτ H Database

S1000 1006 359 1.4499 DNS [12]

S2000 2001 671 1.4135 DNS [12]

S3030 3032 974 1.3977 DNS [12]

S4060 4061 1272 1.3870 DNS [12]

S5000 5000 1571 1.3730 DNS [13]

S6000 6000 1848 1.3669 DNS [13]

S6500 6500 1989 1.3633 DNS [13]

E13000 13000 4336 1.31 Expt. [14]

E31000 31000 10022 1.27 Expt. [14]

E21630 21632 5100 1.4135 Expt. [15]

E51520 51524 10600 1.4135 Expt. [15]

V in a ZPG TBL is also proposed in the process. The paper is organized as follows. Section

II discusses the existing turbulent databases used in the present work. The model is derived

in Section III, followed by a discussion in Section IV. Section V concludes the paper.

II. TBL DATABASES

Table I lists the relevant details of all the simulation and experimental databases used in

this paper. Note that the correlation Reτ = 1.13 × Re0.843θ proposed by Schlatter and Örlü

[12] is used to obtain Reθ from the reported values of Reτ in the experiments of Baidya

et al. [15].

Figure 1 shows the profiles of T+ and −u′v′ using the direct numerical simulation (DNS)

data of Schlatter and Örlü [12]. It can be clearly observed that T+ shows excellent collapse

for across all the data sets, whereas the collapse of−u′v′ is poor near the wall. This motivates

modeling the total stress as opposed to only the −u′v′, which is a common practice in

literature. Any such model for T+ would be valid throughout the boundary layer and would

be insensitive to Re. Figure 2 shows the profiles of V/Ve for a range of Re using the DNS

data of [12]. The profiles show excellent collapse across a range of Re, showing that V/Ve is
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FIG. 1. Profiles of T+ (a) and −u′v′
+
(b) are shown in zero pressure gradient turbulent boundary

layers using the DNS data of Schlatter and Örlü [12] (see Table I).
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FIG. 2. Profiles of V/Ve are shown in zero pressure gradient turbulent boundary layers using the

DNS data of Schlatter and Örlü [12] (see Table I).

a function of η and independent of Re, as first observed by Wei and Klewicki [11].
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III. MODEL DERIVATION

The boundary layer approximations for the time-averaged Navier–Stokes equations in

Cartesian coordinates yield,

∂U

∂x
+

∂V

∂y
= 0, (1)

U
∂U

∂x
+ V

∂U

∂y
= −

1

ρ

dP

dx
+

∂T

∂y
(2)

where U and V are the streamwise (x) and the wall-normal (y) components of mean velocity

vector, ρ is the fluid density, P is the mean pressure and T is the mean total stress, i.e., the

sum of the viscous stress (ν∂U/∂y) and the Reynolds shear stress (−u′v′). ν is the kinematic

viscosity. Using Eqs. (1) and (2), it can be shown that

−U
∂V

∂y
−
(

y
∂U

∂y
+ Ue

)

dUe

dx
=

∂T

∂y
. (3)

Note that the subscript ‘e’ denotes the edge of the boundary layer, the pressure gradient

term in Eq. (2) is replaced by UedUe/dx, and the approximation V ≈ −ydUe/dx is used in

Eq. (3). Now, the second term of Eq. (3) drops out for a zero pressure gradient boundary

layer yielding

−Ue

∂V

∂y
+ F =

∂T

∂y
, (4)

where F = (Ue − U)∂V /∂y. Integrating Eq. (4) from a generic y to y = δ yields,

T = UeVe

(

1−
V

Ve

)

−
∫ δ

y

Fdy, (5)

where δ is the boundary layer thickness often defined as the wall-normal distance where

U = 0.99Ue. The friction velocity uτ =
√
τw/ρ, where τw is the mean shear stress at the

wall, is considered an appropriate inner velocity scale, in terms of which Eq. (5) becomes

T+ = U+

e V
+

e

(

1−
V

Ve

)

−
∫ δ+

y+
F+dy+. (6)

Wei and Maciel [16] showed that −u′v′ is of the order UeVe at large Re. Hence, the

last term of Eq. (6) (say I) is expected to be small. In fact, Kumar and Dey [17] showed

that −u′v′ varies linearly with UeV in the outer layer, which is equivalent to neglecting I

and viscosity. In the present work, such assumptions are avoided to obtain a model for the

total stress valid for the entire turbulent boundary layer. Also, U+
e V

+
e = H for ZPG TBL
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FIG. 3. I/(H −1) profiles are shown in zero pressure gradient turbulent boundary layers using the

simulation data of Schlatter and Örlü [12].

[11], where H is the shape factor (the ratio of the displacement thickness to the momentum

thickness), which is a weak function of Re at large Re.

Hence, it is expected that I is a weak function of Re. Also, by definition, I vanishes for

y/δ ≥ 1. Using the data sets shown in Figure 1, I can be obtained as

I = T+ − U+

e V
+

e

(

1−
V

Ve

)

(7)

By using the definition of I and the self-similarity of TBL, it can be shown that I(0) =

(H − 1)/2 (See Appendix A). Hence, it can be expected that I/(H − 1) becomes insensitive

to Re. Figure 3 shows I/(H − 1) using the data sets of Figure 1, showing a good collapse.

Therefore, I is modeled as a simple linearly decreasing function of η to yield a modeled total

stress

T+ = H

(

1−
V

Ve

)

+ (H − 1)(η − 1) (8)

where, the relation H = U+
e V

+
e is used. Note that H has a small sensitivity to Re consistent

with the earlier discussion about I.

A major limitation of the derived model for T+ (Eq. (8)) is that it presumes the avail-

ability of V , in the absence of which it requires a model for V . As shown in Section II, V/Ve

is a function of η, increasing monotonically from zero at the wall to unity at η = 1 (Figure

2). Hence, it is modeled using a hyperbolic tangent function as:

V

Ve

= tanh(aη + bη3). (9)
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FIG. 4. Model for V/Ve is compared to the simulation data [12] (see Table I). Note that the profiles

are shifted upwards by 0.5 for clarity.

It is found that the model constants a = 0.5055 and b = 1.156 give excellent fit with the data

as shown in Figure 4. The model is not too sensitive to the model constants (see Appendix

B).

Eqs. (8) and (9) together yield a model for T+, i.e.,

T+ = H

(

1−
V

Ve

)

+ (H − 1)(η − 1). (10)

Eq. (10) can be written in terms of outer units as,

T

UeVe

= 1−
V

Ve

+

(

H − 1

H

)

(η − 1). (11)

Figure 5 shows the comparison of the modeled T+ (Eq. (10)) with the data showing

excellent agreement. Note that the models have used the DNS data shown in Figure 1 to

obtain model constants. Hence, the model performance is also tested for both V/Ve (Eq.

(9)) and T+ (Eq. (10)) models at higher Re [13, 18] in Figure 6 showing excellent agreement.

As a more stringent test, modeled viscous stress (dU+/dy+) is obtained by subtracting the

Reynolds shear stress from T+, and compared to the DNS data in Figure 7 for the same

datasets as Figure 6. It is clear that the model performance is excellent throughout the

boundary layer.

Next, the model for T+ is tested at even higher Re using the experimental Reynolds shear

stress data [14, 15] in Figure 8. There appear to be some discrepancies between the model

predictions and the experimental data, however, the model still shows reasonable agreement.
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FIG. 5. Model for T+ is compared to the simulation data [12] (see Table I). Note that the profiles

are shifted upwards by 0.5 for clarity.
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FIG. 6. Models for V/Ve (a) and T+ (b) are compared to the simulation data at higher Re [13, 18]

(see Table I). Note that the profiles are shifted upwards by 0.5 for clarity.

IV. DISCUSSION

Multiplying both sides of Eq. (10) by (1− η), it can be shown that

(1− η)T+ = 1−H

(

V

Ve

)

− η(2−H) +Hη

(

V

Ve

)

+ (1−H)η2. (12)

For small η, V/Ve is approximately linear in η which makes the last two terms of Eq. (12)

negligible. This explains why the fit proposed by Hou et al. [9] is a good approximation for

small η and the slope of the linear fit is loosely related to H .
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FIG. 8. Model for T+ is compared to the Reynolds shear stress experimental data of De Graaff and

Eaton [14] (a) and Baidya et al. [15] (b) (see Table I). Note that the profiles are shifted upwards

by 0.5 for clarity.

The apparent independence of the mean total stress with Re also suggests that it may

be better to focus the modeling effort on the mean total stress rather than the Reynolds

shear stress alone, if a universal model is desired. Nevertheless, the Reynolds shear stress

contributes almost all of the mean total stress away from the wall. Hence, the model for the

mean total stress can also be considered as a model for the Reynolds shear stress away from

the wall.
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V. CONCLUSION

The mean total stress profiles show very good collapse across a range of Re, motivating

derivation of a model for the mean total stress. An expression is derived from the governing

equations relating the mean total stress to the mean velocity, which involves a term I

requiring modeling. The main assumption is that the flow satisfies the mean boundary layer

equations with negligible pressure gradient. The term I is modeled using the available data

by approximating I/(H − 1) as a linear function of η.

The derived model requires mean wall-normal velocity profile to obtain the mean total

stress, which may not be available. Hence, the mean wall-normal velocity is also modeled

using a simple compact function, assuming that the mean wall-normal velocity profile scaled

with the edge wall-normal velocity becomes independent of Re. The model shows good

performance for a large range of Re and hence, is potentially useful for closure approaches

like wall–modeled LES. Complex flows have TBL evolving under pressure gradients and

transverse curvature. The present model requires extension to include such effects.
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Appendix A: The value of I(0)

The term I is a function of y which can be written as

I = −
∫ δ

y

(U+

e − U+)
∂V +

∂y
dy

=

∫

∞

y

(U+

e − U+)
∂U+

∂x
dy

= U+

e

∫

∞

y

∂U+

∂x
dy −

1

2

∫

∞

y

∂U+2

∂x
dy. (A1)

Using the definition of displacement (δ∗) and momentum (θ) thicknesses, it can be shown
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that for a zero pressure gradient turbulent boundary layer,
∫

∞

0

∂U+

∂x
dy = −U+

e

∂δ∗

∂x
, (A2)

∫

∞

0

∂U+2

∂x
dy = −U+2

e

(

∂δ∗

∂x
+

∂θ

∂x

)

. (A3)

Using Eqs. (A2) and (A3) in Eq. (A1) after setting y = 0 yields,

I(0) =
1

2
U+2

e

(

∂δ∗

∂x
−

∂θ

∂x

)

=
1

2
U+2

e

∂θ

∂x

(

∂δ∗/∂x

∂θ/∂x
− 1

)

. (A4)

For a zero pressure gradient turbulent boundary layer, U+2
e dθ/dx = 1 and equilibrium

implies (dδ∗/dx)/(dθ/dx) = H [21]. Therefore, Eq. (A4) simplifies to

I(0) =
1

2
(H − 1) (A5)

Appendix B: Sensitivity to model constants

The model for V is V = Vef where

f = tanh

(

a

(

y

δ

)

+ b

(

y

δ

)3)

. (B1)

The function f has two model constants a and b. It can be shown that

∂f

∂a
=

y

δ
(1− f)2, (B2)

∂f

∂b
= 3

(

y

δ

)2

(1− f)2, (B3)

Therefore, relative change in f due to change in the model constants respectively are

∆f

f
=

[

a

(

y

δ

)

(1− f)2

f

]

∆a

a
, (B4)

∆f

f
=

[

3b

(

y

δ

)2
(1− f)2

f

]

∆b

b
. (B5)

The terms in square brackets of Eqs. (B4) and (B5) are shown in Figure 9. These terms

represent relative change in f per unit relative change in the model constants. It is clear

that the sensitivity is small.
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