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Abstract

Liquid drops adhere to solid surfaces due to surface tension but can depin and run back along

the surface due to wind or gravity forcing. This work develops a simple mechanistic model for

depinning by combined gravity and high-Reynolds-number wind forcing and tests that model using

water drops on a roughened aluminum surface. On non-inclined surfaces, drops depin at a constant

critical Weber number, Wecrit = 7.9, for the present wettability conditions. On inclined surfaces,

Wecrit decreases linearly with the product of the Bond number and the width-to-height aspect ratio

of the unforced drop. The linear slope is different in distinct wind- and gravity-dominated forcing

regimes above and below Wecrit = 4. Contact line shapes and drop profile shapes are measured

at depinning conditions but do not adequately explain the differences between the two forcing

regimes.

I. INTRODUCTION

When a liquid drop rests on a solid surface in the presence of wind or if the surface is

inclined, the drop may remain fixed in place or depin and run back along the surface. When

forcing is low, surface tension balances the wind and gravity forces and the drop remains

pinned in place. As forcing increases, it eventually exceeds the maximum pinning force

surface can provide and the drop depins and runs downstream.

Whether a drop depins involves a complex balance of forces at the three-phase contact

line. Contact angle hysteresis is critical as it provides the drop with a range of metastable

configurations and determines the criterion for depinning of the contact line [1]. The advanc-

ing contact angle, θa, is the maximum angle on the advancing side of the drop; the receding

contact angle, θr, is the minimum contact angle on the receding side. Because the advancing

angle exceeds the receding angle, surface tension exerts a net force in the direction opposing

motion. The maximum pinning force is largely determined by the difference between the

cosines of these angles, ∆(cos θ)a,r = cos θr − cos θa.

When a drop rests on a surface inclined at angle α, the downhill force is ρdgV sinα,

where ρd is the drop density. Wind forcing involves the interface pressure and viscous stress

imposed on the drop by air. These depend strongly on drop shape which is affected by
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contact angle and the impinging flow field. When a drop is very small or the air (or other

fluid) velocity is low, the forcing on the drop is mainly due to shear stress. When the

drop is large or the air velocity is high, the dynamic pressure stress imposed by the air

becomes dominant. Whether shear stress or pressure is more important is characterized by

a Reynolds number, Re = ρaUh/µa, based on the drop height, h, a characteristic air velocity,

U , at that height, and the viscosity, µa, and density, ρa of the air. The present interest is

high Reynolds numbers. In the high-Re regime, flow over a drop separates, vortices are

shed [2], and pressure fluctuations may cause drop-shape unsteadiness [3].

The objective of this work is to develop and test a simple mechanistic model of drop

depinning limits with combined gravity and high-Re-wind forcing. Although both forcing

types may act simultaneously on drops, mixed forcing results do not appear to be addressed

elsewhere. Examining mixed forcing enables a systematic study of whether depinning char-

acteristics depend on forcing modality. This may provide new insight into how laboratory

depinning studies using tilted plates may or may not apply to industrial applications in

which high-Re forcing is most important.

II. BACKGROUND

Early gravity-forced experiments on inclined surfaces without wind forcing were by Mac-

dougall and Ockrent [1], Bikerman [4], and Furmidge [5]. These experiments revealed that

larger contact angle hysteresis increases a drop’s ability to resist depinning. To capture this

behavior, Macdougall and Ockrent proposed a depinning model equation equivalent to

αcrit = sin−1
(
γ w∆(cos θ)a,r

ρd g V

)
(1)

in which γ is the surface tension, V and w are the drop volume and width, and αcrit is the

angle at which the pinning force equals the gravity force in the downhill direction. Bikerman

observed modifications to the contact line and contact angle as the critical inclination is

approached. These changes are required to maintain equilibrium between the gravity and

surface tension before the gravity force exceeds the maximum available pinning force.

Since that early work, multiple researchers have studied the problem of drops depinning

on inclined planes. Seminal analytical studies were by Dussan V. and Chow [6, 7]. The

former study considered the depinning problem for small contact angles in the lubrication
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limit. The latter relaxed the lubrication assumption and only required ∆(cos θ)a,r to be

small. More recent studies are by Quéré et al. [8], ElSherbini and Jacobi [9], Berejnov and

Thorne [10], Chou et al. [11], and others. Quéré et al. develop and test a depinning model for

drops with small contact-angle hysteresis in the low-Bond-number limit over a wide range of

advancing and receding contact angles. ElSherbini and Jacobi provide an analytical model

that predicts a critical angle based on the receding contact angle. As tilt angle increases,

multiple critical angles exist as drops transition between different metastable configurations

prior to depinning [10, 11]. Berejnov and Thorne show experimental results on modifications

to the contact line shape and the uphill and downhill contact angles as inclination increases.

Chou et al. observe the same behavior in experiments and numerical simulations.

Wind-forced depinning is substantially more complex than the gravity-forced depinning

because the wind profile can be an important factor. At high Reynolds numbers, wind forcing

can also be unsteady and lead to drop interface oscillations [3]. Milne and Amirfazli [12] give

a review of the wind-forced depinning literature. Recently, Razzaghi et al. [13] considered

how critical wind velocity is affected when drops are positioned in closely spaced arrays.

Milne and Amirfazli [12] propose a high-Re depinning model that predicts the wind

velocity at which aerodynamic drag, Fdrag = 1
2
ρaU

2ACD, becomes equal to the maximum

drop adhesion force which they characterize as Fadh = γkLb∆(cos θ)a,r. The drag depends

on the drop projected area A before wind forcing and drag coefficient CD which depends on

the drop’s volume and shape. The shape depends on the forcing magnitude, surface tension,

and contact angle limits. The pinning force depends on Lb, the drop base length (diameter)

before forcing is applied, the advancing and receding contact angles, plus a parameter k

that accounts for contact-angle variations about the drop’s contact line. Similar to CD, k

depends on parameters that may change as depinning is approached. Milne and Amirfazli

equate the drag and pinning forces and solve for a critical depinning velocity, Ucrit that is

proportional to (Lb/A)1/2 and involves the advancing and receding contact angles, surface

tension, air density, and the unknown ratio k/CD.

Working with four different liquid/solid combinations, Milne and Amirfazli found Ucrit

depinning data did not readily fit the (Lb/A)1/2 form and instead found a function Ucrit =

a exp
[
b (Lb/A)1/2

]
to be more successful. The fitting parameters a and b are different for

each different liquid/solid pair. The fact that (Lb/A) does not appear to the 1/2 power

but instead inside an exponential indicates that the k/CD term is sensitive to (Lb/A) plus,

4



potentially, other parameters. Later analysis by Roisman et al. [14] showed Milne and

Amirfazli’s depinning data to collapse along Ucrit ∼ V −1/3 curves which accounts for the

variability in the drop size relative to the shear-layer thickness.

III. MIXED-FORCING DEPINNING MODEL

The proposed model for depinning limits derives from a simple force balance similar to

the gravity-only model proposed by Macdougall and Ockrent [1] plus the wind-only model

suggested by Milne and Amirfazli [12]. Detailed drop shapes, wettablity characteristics, and

high-Re unsteadiness are not explicitly included. Instead, their various effects are lumped

into model coefficients that are experimentally measured.

Using this approach, the pinning force provided by surface tension is modeled as Fγ =

C∗γ γ w0 where w0 is the initial width of the circular drop contact line and C∗γ is an O(1)

coefficient that accounts for the contact line shape and the contact angle distribution about

the contact line. This model is similar to the exact equations developed by ElSherbini and

Jacobi [9] but lumps the contact line shape and contact angle variability into the unknown

parameter C∗γ . The use of w0 is consistent with those authors’ finding that the equivalent

drop radius is most appropriate for that purpose.

Because C∗γ depends on drop shape, it increases as forcing increases to maintain equi-

librium. How it does so may depend on the forcing mode. Depinning occurs when forcing

exceeds the maximum available pinning force. The maximum is expected to be proportional

to ∆(cos θ)a,r.

The gravity force on a drop is Fgrav = C∗g ρd g w
2
0 h0 sinα. The initial drop height is h0

and C∗g is an O(1) constant that relates the actual drop volume to w2
0 h0. Because the drop

volume is fixed, C∗g does not depend on forcing but only the initial drop shape. At low Bond

numbers when drops have the shape of spherical caps, C∗g can be computed exactly using the

measured drop height and width. The aerodynamic force is Fwind = C∗w ρa U
2w0 h0 where

U is a characteristic wind speed and C∗w is an O(1) drag coefficient that depends on the

instantaneous drop shape. C∗w is expected to change markedly as air velocity is increased

and the drop shape evolves in response to this forcing.

Combining the force terms into a single equation yields

C∗γ γ w0 = C∗w ρa U
2w0 h0 + C∗g ρd g w

2
0 h0 sinα, (2)
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for a pinned drop up to the maximum value of C∗γ . Once the right-hand side exceeds the

maximum value, the drop depins. Equation 2 can be recast as

Cγ = CwWe+ A0Bo sinα (3)

in which Bo and We are the Bond and Weber numbers, A0 = w0/h0 is the initial drop aspect

ratio, and the unknown coefficients are combined as Cγ = C∗γ/C∗g and Cw = C∗w/C∗g . The C∗g

coefficient is absorbed into Cγ and Cw because it does not change as forcing increases. The

Bond number is defined Bo = ρd gh
2
0/γ. The Weber number is defined We = ρaU

2h0/γ.

Equation 3 reveals the role of the Bond and Weber numbers in depinning and presents

an immediate implication for gravity-only forcing. The critical depinning angle is

αcrit = sin−1
(
Cγ,crit
A0Bo

)
, (4)

which is essentially the same as Eqn. (1) and a result by ElSherbini and Jacobi [9] who

find a critical tilt angle based on the Bond number. The aspect ratio and Bond number

are known based on initial conditions. Cγ,crit is unknown and may depend on the initial

and final drop shape which, for gravity-only forcing, could only depend on drop volume and

wettability parameters. The degree to which Ca depends on volume in gravity-only forcing

can be assessed by conducting gravity-only depinning tests and evaluating the quality of a

fit to the Eqn. (4) model assuming Cγ,crit is constant.

Considering situations with subcritical tilt, Eqn. (3) can be rearranged to yield the critical

Weber number

Wecrit =
Cγ,crit
Cw,crit

− 1

Cw,crit
A0Bo sinα. (5)

It is immediately apparent that the critical Weber number is Cγ,crit/Cw,crit for non-tilted

surfaces. This is a sensible result because a stronger pinning force requires more wind

velocity to depin a drop while a higher drag coefficient requires less. The value of Cw,crit

and the ratio Cγ,crit/Cw,crit may only be weak functions of Bond number. How they vary

can be assessed using wind-only depinning tests at various Bond numbers and observing the

manner in which the critical Weber number depends on A0Bo. Milne and Amirfazli [12] cite

evidence that, at least over small volume ranges, critical Weber numbers may be constant

for α = 0◦. More generally, Eqn. (5) suggests that the critical Weber number is a linearly

decreasing function of A0Bo if the unknown coefficients are not strong functions of A0Bo.
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The sections below present experimental tests of the depinning model as represented

by Eqns. (4) and (5). The key questions this work aims to address are: Is this simple

mechanistic model a useful representation of wind-forced depinning with various degrees of

surface inclination? If yes, what are the values of the unknown parameters Cγ,crit and Cw,crit

and are they functions of Bond number or other factors? And, finally, can the values of Cγ,crit

and Cw,crit be rationalized with respect to contact-line shape and contact-angle variability

in different forcing and Bond-number regimes?

IV. EXPERIMENTAL SETUP AND PROCEDURES

A. Wind Tunnel and Flow Conditions

The experiments seek to quantify wind- and gravity-forced depinning limits in the

air/water/aluminum system using a small tiltable wind tunnel. The tunnel was devel-

oped by Schmucker [15] and was used previously by Hooshanginejad and Lee [16]. Drops

are placed on the floor of the wind-tunnel test section that consists of a roughened aluminum

substrate. Side- and top-view cameras are included on the tilting platform to provide the

nonintrusive drop-shape measurements developed by Schmucker and coworkers [15, 17].

The wind tunnel is designed according to typical wind tunnel paradigms [18]. A schematic

is shown in Fig. 1. It is an open-return design with an inlet cross section 25 mm tall by

200 mm wide. After passing through a honeycomb and two screens for flow conditioning,

a 250-mm-long contraction decreases the cross section to 25 mm tall by 50 mm wide. In-

terchangeable surface samples 25 mm wide by 50 mm long fit flush into the tunnel floor.

The sandblasted aluminum surface has a rms surface roughness of 3.26 µm. Downstream

of the test section, the flow passes through a diffuser and an 80-mm-diameter fan. The

wind-tunnel rotation axis passes through the test-section so the linear acceleration of a drop

is essentially zero while the tunnel is rotated to different inclination angles. The pressure

drop across the contraction is measured to control the test-section flow velocity. Surface

inclination is measured using a rotary encoder.

A hotwire anemometer was used to measure the wind-tunnel floor boundary layer. Nor-

malizing the height above the surface, y, by the boundary-layer displacement thickness,

δ∗, and the flow velocity by the freestream velocity, U∞, the data collapse to a self-similar
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FIG. 1. Wind tunnel and experimental rig for drop stability experiments

FIG. 2. Boundary velocity and turbulence intensity profiles

curve shown in Fig. 2. The displacement thickness was found to vary as δ∗ = aU−0.5∞ where

a = 1.7 mm(m/s)1/2. As seen in Fig. 2, u′rms velocity fluctuations are between 0.2 and 0.5%

of the freestream speed.
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B. Test Procedures

To begin a depinning experiment, the aluminum substrate is cleaned with acetone. Once

it evaporates, an image of the dry aluminum is captured using the top-view camera. Next, a

distilled water drop of a particular volume, V , is applied on the surface. Drops are applied

by hand using a graduated syringe. Careful drop application is essential to produce nearly

circular contact lines with contact angles close to θa. A second top-view image is captured

once the drop is applied. Next, the wind tunnel is brought to a sub-critical inclination angle

at 1◦ per second. Once the target inclination is reached, wind speed is slowly increased until

the critical speed is reached and the drop depins. Top- and side-view images are captured

at multiple subcritical flow speeds.

Depinning is identified using side- and top-view images collected during the experiments.

Depinning is judged to occur at the velocity or inclination at which motion is first observed

on the receding portion of the contact line. This corresponds to the second of three depinning

events identified by Berejnov and Thorne [10]. Consistent with observations by Berejnov

and Thorne, the advancing side of a drop is usually observed to move first in response to

subcritical forcing. This allows the drop to temporarily achieve a meta-stable configuration

before stronger forcing eventually causes depinning.

C. Drop Geometry

Side-view images obtained at α = 0◦ and U∞ = 0 m/s at the start of each test are used

to measure the initial height, h0, and width, w0, of each drop. Before forcing is applied,

the drop width is the diameter of the nearly circular contact line. As shown in Fig. 3,

these measurements both scale as V 1/3 at low Bond numbers where drops take the shape

of spherical caps. At large drop volumes, the initial heights approach a constant value of

2.92 mm, approximately equal to the capillary length `c ∼ (γ/ρdg)1/2 ≈ 2.72 mm. At larger

volumes, w0 increases as V 1/2.

The data in Fig. 3 are fit to power-law forms h0 ∝ V n and w0 ∝ V m in two ranges

with a break at V = 175 µL, the cutoff between low and high Bond numbers. This volume

corresponds to Bo = 1.15. Although there is actually a smooth transition between these

regimes, a piecewise-continuous fit successfully models the data within measurement uncer-
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FIG. 3. Initial drop-dimension measurements

tainty. The break at 175 µL plus the proportionality constants for h0 and w0 in the low-Bond

regime are the three fit parameters. Bond numbers corresponding to each volume are shown

at the top of the figure. Because h0 is constant above Bo = 1.15, no further increase in

the Bond number occurs at higher volumes. The initial drop aspect ratio is constant in the

low-Bond regime, A0 = w0/h0 = 4.14. This result implies that C∗g ≈ 0.42 for Bo ≤ 1.15. At

higher Bond numbers the drop is no longer a spherical cap so A0 increases as V 1/2 and C∗g

increases.

As the tests proceed, side-view images are used to measure advancing and receding contact

angles. The mean values across all the recorded data are θa = 63.5◦±3.7◦ and θr = 8.2◦±1.5◦.

Using these data, ∆(cos θ)a,r = 0.543 ± 0.058. Using the w0 data it is possible to calculate

the contact angle of the initial drop application in the low-Bond, spherical-cap limit. Using

a fit to the (V,w0) data for all drops below 175 µL yields a contact angle of 50.8◦ ± 4.8◦,

somewhat less than the measured advancing contact angle.

The height of the drop relative to the boundary layer thickness determines the appropriate

velocity scale for the We and Re. At critical conditions, nearly all the h0 values equal or

exceed δ99, the height in the boundary layer at which U(y) = 0.99U∞. Therefore, U∞ is

used as the reference velocity. Other constant physical parameters correspond to conditions
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FIG. 4. Critical runback velocity, Ucrit as a function of drop volume, V . The vertical gray line is

at V = 175 µL, the boundary between the low- and high-Bond number regimes.

at 22◦C: γ = 0.0724 N/m, ρa = 1.20 kg/m3, ρd = 998 kg/m3, and µa = 18.2× 10−6 kg/m·s.

V. DEPINNING LIMITS

To test the model represented by Eqn. (5), depinning experiments were conducted using

220 drops ranging in volume from 15 to 425 µL and at surface inclination angles of α = 0◦,

10◦, 20◦, and 30◦. Data for critical depinning wind velocity, Ucrit, is plotted as a function of

drop volume in Fig. 4. For small volumes, Ucrit decreases rapidly as volume increases. As

volume increases further, drops on the α = 0◦ surface reach a constant value, Ucrit ≈ 12.8 m/s

indicated by the horizontal black line. As inclination increases, the gravity force increases

and this reduces the wind velocity required for depinning.

To evaluate pure gravity-forced runback, a series of tests was conducted in which the

surface inclination was increased at a rate of 1◦ per second until a critical runback angle

was reached. Results are shown in Fig. 5 with a best-fit curve to Eqn. (4). This fit yields

Cγ,crit = 1.323± 0.013 for this set of wettability conditions. The fit is successful across the

entire range of A0Bo in spite of C∗g varying above V = 175 µL or A0Bo = 4.76. Because C∗g
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FIG. 5. Critical runback angle for gravity-forced drops, U = 0. The vertical gray line is at

V = 175 µL, the boundary between the low- and high-Bond number regimes.

varies, Cγ,crit must as well but the variations are sufficiently small to allow a successful data

fit.

For gravity-forced drops, the critical pinning force is ρdV g sinαcrit. Using the Cγ,crit result

from the inclined surface tests and the small-Bo C∗g value yields C∗γ,crit = C∗g Cγ,crit ≈ 0.55.

This value is expected to be close to ∆(cos θ)a,r and the match is outstanding for these

experiments: ∆(cos θ)a,r = 0.543± 0.058.

Returning to experiments with wind forcing, depinning threshold data from Fig. 4 is

presented in nondimensional form in Fig. 6. Data for the Wecrit = 0 limit is generated using

Eqn. (4) with αcrit = 10◦, 20◦, and 30◦. When the surface is horizontal, α = 0◦, drops

run back at an essentially constant Weber number, Wecrit = 7.9. This finding is consistent

with the model represented by Eqn. (5) and indicates that the ratio Cγ,crit/Cw,crit is not a

strong function of A0Bo. This, in turn, suggests that neither the drag coefficient nor the

surface-tension pinning coefficient are strong functions of the drop volume.

Large-volume drops subject to pure wind forcing demonstrate significant interface oscil-

lations, even at wind speeds below Ucrit. For all but the smallest drops, α = 0◦ critical

conditions occur above Re = 1800 where significant vortex shedding is expected [2]. The

α = 20◦ and 30◦ inclined-surface tests show depinning at Re < 1800 and drops in these

tests do not undergo significant interface-shape oscillations. While unsteady vortex shed-

ding likely occurs in the drop wakes at these Reynolds numbers, it seems insufficiently strong
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FIG. 6. Critical Weber number as a function of drop aspect ratio times Bond number.

to cause significant drop-shape unsteadiness.

For the three inclined-surface data sets, the critical Weber number decreases linearly

with increasing A0Bo as predicted by Eqn. (5) but does so in two distinct stages. Using

the combined data from all four surface inclination angles but restricting to drops for which

Wecrit > 4, Eqn. (5) is fit successfully using Cγ,crit = 2.338 ± 0.056 and Cw,crit = 0.2955 ±

0.0083. These coefficients apply to all four α values and to drops both in the small-Bo

range, A0Bo < 4.76 and in the large-Bo range, A0Bo > 4.76. The ratio Cγ,crit/Cw,crit yields

Wecrit = 7.9 for α = 0◦.

Figure 6 shows distinctly different slopes for drops with Wecrit < 4 and this requires

different values for Cγ,crit and Cw,crit. Wecrit < 4 will be referred to as the gravity-dominated

forcing regime while Wecrit > 4 will be referred to as the wind-dominated forcing regime.

Cγ,crit in the gravity-dominated forcing regime is taken to be 1.323± 0.013, the value found

in the critical-tilt experiments. Proceeding from this, Cw,crit is determined by requiring the

curves be continuous at Wecrit = 4. This yields Cw,crit = 0.042± 0.017.

The choice of Wecrit = 4 as a cutoff between the forcing regimes provides the best match

to the data. However, the quality of the fits presented in Fig. 6 are not especially sensitive

to that Weber number; values between 3.75 and 4.25 give essentially the same fit quality.
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Notably, the different forcing regimes do not appear related to drop volume. Both wind-

and gravity-dominated depinning occurs at small and large Bond numbers and the different

critical coefficient values are associate with different Wecrit regimes, not different A0Bo

regimes.

The Cw,crit coefficient in the gravity-dominated forcing regime has a larger relative un-

certainty than the other coefficients. This is reflected in the worse data fit in the gravity-

dominated regime, especially for α = 10◦. This may occur because the data in the gravity-

dominated regime is not used to determine the corresponding Cγ,crit and Cw,crit values. Again,

the lines below Wecrit = 4 in Fig. 6 use the value of Cγ,crit from the critical tilt tests plus

the value of Cw,crit that yields piecewise-continuous extensions of the lines above Wecrit = 4.

The relatively poor fit for α = 10◦ may also occur because the entire subset of the data

for gravity-dominated forcing occurs at A0Bo > 4.76 where the initial drop shapes are not

spherical caps and Cγ,crit and Cw,crit are expected to depend at least weakly on A0Bo.

To summarize these findings, the data and fit curves presented in Fig. 6 show that the

simple mechanistic model of mixed-mode depinning is successful but must be considered

in distinct wind- and gravity-dominated forcing regimes. The choice to represent the data

in two linear segments is arbitrary. A more sophisticated model would include values of

Cγ,crit and Cw,crit that are continuous functions of Wecrit, A0Bo, or other parameters. The

present model does not attempt to predict coefficient values as, say, functions of θa, θr, Bond

number, or Reynolds number. However, once the coefficients are empirically determined,

they suggest the relative strengths of wind and pinning forces as compared to the gravity

force.

An unexpected result is that Cγ,crit is substantially larger in the wind-dominated forcing

regime as compared to the gravity-dominated regime: Cγ,crit = 2.338 ± 0.056 for wind-

dominated forcing as compared to 1.323± 0.013 for the gravity-only tests. The gravity-only

value is essentially equal to ∆(cos θ)a,r. This finding was expected based on previous work

dating to Macdougall and Ockrent [1]. The fact that Cγ,crit is 75% larger for wind-dominated

forcing means that surface tension is 75% more effective at resisting wind-dominated forcing

than gravity-only forcing. This suggests results from tilted plate tests may not be suitable

for predicting the maximum surface-tension pinning force in wind-forced situations.

The different values of Cγ,crit and Cw,crit above and below Wecrit = 4 may arise because

of different drop shapes in the wind- and gravity-dominated forcing modalities. Different
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drop shapes also exist in the small- and large-Bo ranges below and above A0Bo = 4.76.

However, those changes are accommodated using constant critical coefficients across the

entire range of A0Bo. Different contact-line shapes and contact-angle distributions about

the contact line would affect Cγ,crit while different drop interface shapes would affect the

drag coefficient, Cw,crit. To explore this possibility, data on drop shapes under the different

forcing modalities are presented in the next section.

VI. DROP SHAPES AT CRITICAL DEPINNING CONDITIONS

To investigate why depinning conditions may differ between the two forcing regimes,

drop images were recorded using side- and top-view cameras. Top-view images were ana-

lyzed using the laser-speckle interface measurement technique developed by Schmucker and

coworkers [15, 17]. That analysis consists of finding the contact line, measuring the defor-

mation of a laser speckle image caused by refraction of light at the air/water interface, then

numerically reconstructing the interface shape using a simulated annealing optimization

procedure. Results are used to measure the contact-line shape and side-view drop profile,

both of which are measured with good accuracy. Receding contact angles proved difficult to

measure with good accuracy using this approach. Receding and advancing contact angles

reported in Sec. IV were measured using conventional side-view images and are accurate to

within the quoted uncertainty.

Mean initial and final contact line shapes for drops that depin due to mainly wind forcing

are shown in Fig. 7(a) while the equivalent mean shapes for the gravity-only drops are shown

in Fig. 7(b). Each drop’s geometry is scaled by its initial width in the streamwise x direction,

w0. Although the differences between gravity-only forcing and wind-dominated forcing are

small, drops subjected to gravity-only forcing elongate somewhat more than the wind-forced

drops. The most-downstream point of the gravity-only drops is 0.98w0 from the initial drop

center as compared to 0.87w0 for the wind-forced drops. Additionally, the radius of curvature

at the advancing part of the contact line is smaller for gravity-forced drops, 0.31w0, than

for wind-forced drops, 0.39w0. The drops’ maximum transverse width was not observed to

decrease for either forcing type.

Sideview profiles of the final subcritical drop configurations are shown in Fig. 8. The plots

are scaled by each drop’s final streamwise length. Dashed lines are drops that depin in the
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FIG. 7. Mean and standard deviation of drop contact lines for initial drop placements and final

subcritical drop measurements. Contact lines are shown for (a) wind-forced drops and (b) gravity-

only drops. Solid curves are mean contact line locations. Shaded areas indicate one standard

deviation.

gravity-dominated forcing regime; solid-lines represent wind-dominated forcing. Concave

interface curvature is present on the windward portion of the drop interface at high wind

speeds. This shows the wind pressure imposed on that portion of the drop exceeds the

capillary pressure that would be present if the drop was able to maintain its spherical cap

shape. Again, the receding contact angles are not captured accurately using the top-view

laser speckle technique; the receding contact angles are larger than what is observed in the

side-view profiles.

One difference between the forcing regimes that is not highlighted by Fig. 8 is the dif-

ference in final drop length and height. Gravity-forced drops are approximately 13% longer

than same-volume wind-forced drops just before depinning. Because the side-view profiles

are nearly unchanged for the two regimes, this means the maximum drop height is larger

by approximately the same amount. The larger height might be expected to result in a

larger value of Cw,crit (the drag coefficient) for primarily gravity-forced drops as compared

16



0 10.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9
0

0.1

0.2
0

0.1

0.2
0

0.1

0.2
0

0.1

0.2

y/
x fi

na
l

y/
x fi

na
l

y/
x fi

na
l

y/
x fi

na
l

x/xfinal

(a) α=0°

(b) α=10°

(c) α=20°

(d) α=30°

FIG. 8. Final subcritical drop profiles for each surface inclination angle. Mean profiles for drops

that depin in the wind-dominated forcing regime are shown with solid lines; drops that depin due

to gravity-dominated forcing are shown with dashed lines. Shaded areas indicate one standard

deviation.

to primarily wind-forced drops. However, this is not the case. Wind-forced drops have a sub-

stantially larger value of Cw,crit. This could be a consequence of interface shape differences

or the increased interface unsteadiness at higher Reynolds numbers.

Ultimately, the reasons for the different Cγ,crit and Cw,crit values are not clear. Drops do

exhibit different contact line shapes and profiles just prior to depinning in the two forcing

regimes. However, the differences do not suggest an obvious connection to the different

critical coefficient values. To provide more information on this issue, higher-accuracy mea-

surements of the contact angle distribution about the contact line are needed.
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VII. CONCLUSIONS

The objective of this work is to develop and test a simple mechanistic model of gravity-

and high-Re wind-forced drop depinning using straightforward formulations of surface-

tension, gravity, and aerodynamic forces. To test the model, depinning experiments were

performed using water drops ranging from 15 to 450 µL on a roughened aluminum surface

inclined at 0◦, 10◦, 20◦, and 30◦ in combination with wind forcing. Tests of critical tilt

angle without wind forcing were also performed. Critical tilt experiments yield the criti-

cal pinning-force coefficient Cγ,crit for gravity-only forcing. Tests with wind-only forcing on

the non-inclined surface resulted in a constant critical Weber number. Combined wind and

gravity forcing experiments give critical pinning and drag coefficients under mixed forcing

conditions. Overall, the model is judged to be successful.

When the surface is inclined, the model predicts the critical Weber number decreases

linearly with increasing A0Bo, the product of the initial drop aspect ratio and Bond number.

The unknown model coefficients Cγ,crit and Cw,crit do not depend strongly on either Bond

number or surface inclination. However, they do take markedly different values above and

below Wecrit = 4.0 which is identified as a boundary between wind- and gravity-dominated

forcing regimes for the present wettability conditions. The existence of different regimes has

not been previously identified and has important implications for predicting drop depinning

due to wind forcing using data obtained from critical tilt experiments.

Contact line shape and side-yield profile shapes were measured in an attempt to explain

the different values of Cγ,crit and Cw,crit in the different forcing regimes. In both forcing

modalities, the contact lines of the final drop shapes appear as semicircular arcs connected

by nearly straight-line segments. Compared to drops that depin in the wind-dominated

forcing regime, gravity-forced drops extend somewhat more in the streamwise direction

before depinning and their contact lines have a smaller radius of curvature on the advancing

side.

Overall, the difference in the model coefficients in the wind- and gravity-regimes is not

clearly explained by the shape measurements presented here. Continuing work aims to im-

prove receding contact angle measurements and this may provide additional information that

could improve understanding. Separately, the role of Reynolds number and drop interface

unsteadiness remains under active investigation.
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