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Lagrangian analysis of materially conserved scalars is applied to the problem of turbulent trans-5

port in variable density flows. The consequences of an additional material conserved quantity, the
density, is generally not acknowledged and leads to significant and meaningfully different expressions
for turbulent transport in the moment equations. The formal Lagrangian analysis produces gradient
transport expressions substantially different from those obtained by the physically intuitive “argu-
ment by analogy” method used in computational models. Various intuitive arguments, in Favre10

and Reynolds averaged settings, are contrasted to the formal Lagrangian results. Using expressions
from the formal analysis, we derive consistent gradient transport closures for the turbulent trans-
port terms that appear in the first and second order Favre moment equations. Results for coupled
multi-species turbulent transport are given. The analysis is limited to variable density turbulence
in which the dilatation of the fluctuating velocity is small. The results are applicable to turbulent15

combustion and to stellar convection problems in which the density fluctuations are on the order of
the mean density.

I. INTRODUCTION

Moment closures for turbulent transport invoke eddy-viscosity or linear gradient transport models. Gradient trans-
port models are generally argued for on the basis of mixing-length ideas [16] and Lagrangian analyses by Taylor[28]20

and Corrsin[8] of the transport of a materially conserved passive scalar in constant density flows. In addition to the
requirement of material conservation, gradient transport is valid when the characteristic scale of the turbulent trans-
port mechanism is smaller than that associated with the inhomogeneity of the mean scalar [9]. Engineering models
also apply the gradient transport model to turbulent fluctuations of velocities, scalars as well as higher moments of
these quantities [10, 22].25

Closures involving higher order moments are commonly encountered in variable density turbulence and turbulent
combustion [26, 27]. Unclosed moments in these regimes are often expressed in Favre-averaged variables. In an
argument by analogy, gradient transport models developed for constant density turbulence are used for transport
models of Favre-fluctuating quantities. This strategy is applied not just for k-epsilon models but also for second
moment closures in which several additional equations are carried. All such gradient transport models are based on30

an argument by analogy with the constant density modeling and are inconsistent with a formal Lagrangian analysis.
There are several problematic issues with developing turbulent transport models in Favre variables based on argument
by analogy to the Reynolds variables in constant density flows.

There are several problematic issues with developing turbulent transport models in Favre variables based on argu-
ment by analogy to the Reynolds variables. The two most salient issues are35

1. The fluctuating velocity in Reynolds averaged coordinates, u′i has a zero mean. The analogous fluctuating
velocity in Favre averaged variables, u′′i does not have a zero mean. It is not a centered variable and argument
by analogy for quantities not based on centered variables are specious.

2. In variable density turbulence1, the density is an additional material conserved variable and the consequences of
this additional constraint on turbulent transport is substantial and is not accounted for in any transport models40

in Favre treatments.

To address these shortcomings not accounted for in the Favre argument by analogy, we work only with centered
variables in a formal Lagrangian analysis and account for the additional constraint required by a materially conserved
density.

To close higher moments such as ρ′c′u′k, we generalize the Lagrangian arguments to use simultaneous material
conservation of the density ρ and the conserved scalar ρc. A formal Lagrangian analysis using this method produces
some very interesting and unexpected formal results. For example, the Lagrangian gradient transport model for the

∗ sidharth˙gs@hotmail.com
1 We limit our work to the case of negligible fluctuating dilatation.
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third moment in the turbulent flux is bilinear in the gradients of mean density and mean mass fraction. Our general
principle result is that the turbulent fluxes of second moments have the form

〈ρ′c′vk〉 = 〈ξiξjvk〉 ρ,i C,j (1)

where ξi, vi are Lagrangian objects. In comparison, the conventional model for the second moment flux [11] results in45

an expression that is proportional to the down gradient of the second moment ρ′c′. Simultaneous dependence of the
turbulent flux on density and scalar gradients is consistent with the density-fluctuation-correlation in variable-density
turbulent jets and wakes [5].

The formal Lagrangian results not only apply to variable-density turbulent transport but to all third and higher
moments. An example is the turbulent flux of the Reynolds stress u′iu

′
ju
′
k (or its trace u′iu

′
ku
′
k) in constant-density50

turbulence. While several improved closures for third and higher moments have been proposed in the literature
[3, 15, 29, 32], the present work is novel and mathematically formal application of Lagrangian analysis to extend
gradient transport to turbulent flux of second and higher order moments. The formal results are applicable to the
class of physical problems where the assumptions of fine-grained turbulence and fluctuations in the presence of mean
gradients hold, as is typical of gradient-transport and mixing-length modeling hypotheses.55

Within the context of conserved scalars, we find that formal gradient transport can result in counter-gradient fluxes
even with isotropic eddy viscosity models for the Lagrangian transport coefficient. This is not the case for the gradient
transport by analogy for Favre fluxes. Counter-gradient fluxes are observed in variable-density mixing and combustion
[13, 14, 23]. In such flow regimes, the scalar is, in the general case, linked to the density field and therefore becomes
an active scalar. In the simplest case this issue is made clear by the relation between mass fraction and density used
in the variable-density turbulence analyses of isothermal and isobaric binary mixing [6, 19].

1

ρ
= υ =

c

ρ1
+

1− c
ρ2

, ρ =
ρ2

1 + rc
, r =

ρ2

ρ1
− 1 > 0 (2)

ρc′u′k = −1 + rC

r
ρ′u′k (3)

More generally, for multispecies/multimaterial mixing under such conditions, the species mass fluctuations are coupled
to the mass flux via mass conservation and equation-of-state constraints,∑

α

(ρcα)′ = ρ′,
∑
α

(ρcα)′

ρα
= 0 (4)

where cα denotes the mass fraction of the specie α and ρα is the corresponding specie microdensity [20].
In the next few sections, the constant density Lagrangian analysis (see also [21]) is reviewed as a foundation that

we extend to multiple materially conserved objects. The gradient transport expressions are derived using formal
Lagrangian analysis and compared to the heuristic arguments used in models. We then move on to the variable
density case. Our results are presented in the context of a first order Favre moment k-epsilon type closure as well60

second order Favre moment closures. Our general style of presentation is to contrast the formal Lagrangian results
with expressions based on arguments of analogy approach.

II. A REVIEW OF LAGRANGIAN GRADIENT TRANSPORT IN CONSTANT-DENSITY
TURBULENCE

The Lagrangian gradient transport is a widely-invoked hypothesis in turbulent transport. It is also commonly65

referred to as the mixing-length and sweeping decorrelation hypothesis [7, 30]. We review cosntant-density Lagrangian
gradient transport in this section to introduce nomenclature and basic relations.

Gradient transport hypothesis is based on material conservation in a Lagrangian trajectory. Let c be a materially
conserved scalar. Then

D

Dt
(c) = 0 =⇒ c(t0; ai) = c(t0 + t; ai) (5)

where ai is the initial position of a Lagrangian particle, and the particle is displaced by ξi from ai in the time period
t.

For simplicity, let us choose our co-ordinate system so that t0 = 0. We can decompose the variable c in terms of its
Eulerian mean C and fluctuation c′ as

c′(t; ai) + C(t; ai) = c′(0; ai) + C(0; ai) (6)
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For clarity, we drop the information in the parentheses that specifies the Lagrangian time co-ordinate and use the
subscript 0 to imply the quantities at the beginning of the trajectories t = 0. Material conservation of the scalar
during the Lagrangian trajectory is then expressed as

c′ + C = c′0 + C0 (7)

FIG. 1. Illustration of a Lagrangian trajectory in stationary homogeneous isotropic turbulence: the Lagrangian displacement
vector ξi, Lagrangian velocity vi and the Lagrangian fluctuation cL ( introduced in the next section) are labelled.

Eulerian mean scalar fields C and C0 are independent of time and only a function of the spatial co-ordinate. In the
presence of mean scalar gradient C,j , the mean scalar field can be expressed as a linear function of the Lagrangian
particle displacement vector

C − C0 = C(ai + ξj)− C(ai) = ξjC,j (8)

With Eq. 8, we can express C − C0 in Eq. 7 in terms of the Lagrangian particle displacement vector ξi such that

c′ + C0 + ξjC,j = c′0 + C0

c′ − c′0 = −ξjC,j (9)

The displacement vector ξj in homogeneous turbulence is a stochastic variable. To obtain a single point closure for
the statistical average of turbulent scalar flux in homogeneous turbulence, we take the moment of Eq. 9 with the
Lagrangian velocity at the end of the Lagrangian trajectory vk(t; ai) = uk(ξi, t). We then have

〈c′vk〉 − 〈c′0vk〉 = −〈ξjvk〉 C,j (10)

The angled bracket operator 〈·〉 represents averaging over an ensemble of Lagrangian trajectories in the turbulent flow-
field such that c(x, t) = c(t; ai). The term 〈vkc0〉 = 〈vk(t)c(0)〉 represents the correlation of the Eulerian fluctuation
in the scalar value at the beginning of the Lagrangian trajectory with the velocity fluctuation at the end of the
Lagrangian trajectory. For a passive scalar, the objects at initial and final points of the trajectory decorrelate over
the time-scale of particle transport and we have

〈c0vk〉 = 0 (11)

Eq. 11 results in the well-known gradient transport equation for the passive scalar

〈c′u′k〉 = c′u′k = 〈c′vk〉 = −〈ξjvk〉C,j (12)

The object 〈ξjvk〉 is the Lagrangian particle displacement flux and is the unclosed object. The single-point turbulent
scalar flux has now been re-expressed in terms of a temporal Lagrangian cross-correlation, which can be obtained from
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theoretical and/or data-driven models of Lagrangian dynamics. The Lagrangian particle displacement flux can be
expressed in terms of the cross-correlation using the definition of the displacement vector in homogeneous turbulence.

dξi
dt

= vi, ξi(t) =

∫ t

0

vi(t
′)dt′ (13)

〈vkξj〉 = 〈vk(t)

∫ t

0

vj(t
′) dt′〉 =

∫ t

0

〈vk(t)vj(t
′)〉 dt′ (14)

Here the trajectory ensemble average commutes with the integral over the trajectory. The cross-correlation can be
normalized in the form

〈ξjvk + ξkvj〉 =

∫ t

0

〈vj(t′)vk(t) + vj(t)vk(t′)〉 dt′ (15)

= σ2
v

∫ t

0

Rvj ,vk(τ) dτ = σ2
v Tjk (16)

Here σv = 2k = 〈vkvk〉 = 〈u′ku′k〉 is the velocity variance or twice the turbulent specific kinetic energy, Rvj ,vk(τ) is the
normalized two-time Lagrangian correlation function and Tjk is the resulting Lagrangian time-scale tensor. Therefore,
gradient transport for a passive scalar can be expressed as

c′u′k = −k Tjk C.j (17)

For homogeneous shear flow, additional moments are involved [18]. We now look into how Eq 17 is modeled for70

moment closures and subgrid-scale closures in numerical computations.

A. Constant density moment closure: the long time limit

Moment closures capture mean-gradient turbulent transport over length-scales much larger than the transport
process i.e. over regions with 〈vi(t; ai)〉 = 0 and the Lagrangian time-scales are large so that the t→∞ limit for the
cross-correlation be employed. The Lagrangian time-scale tensor is therefore, a constant and depends on the state of75

turbulence.
In engineering models, the Lagrangian time-scale tensor is modeled as an isotropic tensor

Tjk ≈ TLδjk (18)

The Lagrangian time-scale, in Eq 18 is often modeled using an Eulerian time-scale Cµk/ε resulting in the well-known
gradient transport expression

c′u′k = −Cµ
k2

ε
C,k (19)

The approximation of the Lagrangian time-scale using an Eulerian time-scale is valid in turbulent flows with a single
time-scale. In turbulent flows with competing time-scales, due to different physical mechanisms, the Eulerian time-
scale may be a poor approximation.

An anisotropic engineering approximation for the time-scale tensor may also be employed. One such approximation
uses the Reynolds stress anisotropy as a proxy for the time-scale tensor anisotropy.

Tjk ≈ TL
(
u′ju
′
k

2k

)
(20)

B. Constant density subgrid-closures: the small-time limit80

In the context of large-eddy simulations, the time-scale of the turbulent processes being modeled is imposed by
observer’s resolution and is typically constrained by the numerical grid resolution ∆. When gradient transport is
modeled over small transport length-scales due to high resolution, the small-time or the ballistic dispersion limit of
the integral in Eq. 15 can also become relevant. In such a case, the upper limit of the integral over the Lagrangian
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trajectory, t is small and as t = t∆ → 0, the two-time correlation tensor 〈vj(t′)vk(t)〉 can be approximated with85

〈vj(t = 0)vk(t = 0)〉 ≈ u′ju′k. Eq. 15 then results in

〈vkξj + vjξk〉 =

∫ t∆

0

〈vk(t∆)vj(t
′) + vk(t′)vj(t∆)〉 dt′ (21)

≈ 〈vjvk〉
∫ t∆

0

dt′ = u′ju
′
k t∆ (22)

An important point to be noted from this limit is that gradient transport at length-scales much larger than the
turbulent transport length-scale ST = TL/σv can assume a constant Lagrangian particle displacement flux tensor. At
small length-scales however, when ∆� ST , the displacement flux tensor scales with ∆ = t∆/σv.

The small-time limit of gradient transport has also been previously received attention in the context of modeling90

near-field transport of scalar atmospheric constituents near and within vegetation canopies which serve as spatially-
distributed scalar sources [17].

III. LAGRANGIAN GRADIENT TRANSPORT FOR SECOND MOMENT TURBULENT FLUX IN
CONSTANT DENSITY TURBULENCE

Gradient transport for variable-density turbulence requires closures of Favre fluxes. Due to the density weighted95

nature of the fluxes, third moments arise as unclosed terms. These third moments are turbulent fluxes of second

moments. For example, the third moment ρ′c′u′k appears in the transport of conserved scalar ρC̃ = ρ C + ρ′c′ and is

the turbulent flux of ρ′c′.
The primary objective of this section concerns with derivation of the formal Lagrangian gradient transport hypoth-

esis for the turbulent flux of the second moment. In this section, we consider second moments in constant-density100

turbulence and use the results in this section as a pedagogical tool before its application to closures in variable-density
turbulence.

We consider two scalar species, cα and cβ . All three variables, cα, cβ and cαcβ are materially conserved in the
non-diffusive limit.

Dcα
Dt

= 0,
Dcβ
Dt

= 0,
D

Dt
(cαcβ) = 0 (23)

The object c′αc
′
β represents the covariance between two species cα and cβ in multispecies/multimaterial transport.

The transport equation for the second moment c′αc
′
β is

c′αc
′
β ,t +(c′αc

′
β Uk + c′αc

′
βu
′
k),k +c′αu

′
k Cβ ,k +c′βu

′
k Cα,k = εαβ (24)

The unclosed term of focus is the second moment turbulent flux c′αc
′
βu
′
k. The key idea is to to derive the formal

gradient transport expression for c′αc
′
βu
′
k and apply it to second moment fluxes involving density fluctuations. By

substituting cα with ρ and cβ with a scalar c, we can use the result derived for c′αc
′
βu
′
k to obtain the corresponding105

formal gradient transport for objects of the form ρ′c′u′k. The result derived in this section will also serve as the
template for closure of several second and third moment turbulent fluxes in the variable-density turbulence section.

A. Gradient transport by analogy for second moment turbulent flux in constant-density turbulence

We first review the gradient transport by analogy for c′αc
′
βu
′
k and discuss why this commonly employed gradient

transport expression is not formally correct. The gradient transport expression for second moment turbulent flux
c′αc
′
βu
′
k using analogy to the passive scalar flux in Eq. 12 is [11, 12]

c′αc
′
βu
′
k = − 〈ξjvk〉(c′αc′β),j ≈ −Cµ

k

ε
u′ju
′
k (c′αc

′
β),j (25)

From a Lagrangian perspective, this model approximates an empirical gradient transport of the form

c′αc
′
βu
′
k = − 〈ξjvk〉 (c′αc

′
β),j (26)
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Eq. 26 is empirical because an argument is employed that (c′αc
′
β)′ = c′αc

′
β − c′αc′β is a materially conserved scalar.

Gradient transport for the passive scalar (Eq. 12) is then conveniently employed. However, (c′αc
′
β)′ is not materially110

conserved as its Lagrangian derivative is not zero in the presence of mean species gradients.

D

Dt
(c′αc

′
β)′ = −(c′αu

′
k)′ Cβ ,k −(c′βu

′
k)′ Cα,k (27)

In the Appendix, we discuss more about the limitations of the assumptions that lead to Eq. 26 from both perspec-
tives, Eulerian (Sec VI G) and Lagrangian (Sec VI D). We will now derive formal gradient transport expression for

c′αc
′
βu
′
k using Lagrangian principles discussed in the previous section.

B. Lagrangian gradient transport for binary passive scalar fluctuation in constant-density turbulence115

In this subsection, we derive formal gradient transport expression for the turbulent flux of the second moment
c′αc
′
βu
′
k using Lagrangian analysis. As we mention before, the conserved scalars in this setup are cα, cβ , cαcβ .

Dcα
Dt

= 0,
Dcβ
Dt

= 0,
D

Dt
(cαcβ) = 0 (28)

We introduce the notation of the Lagrangian fluctuations to avoid cumbersome expressions. The Lagrangian
fluctuation is defined as the difference between a quantity at a time t in the Lagrangian trajectory and its Eulerian
mean at the initial point in the trajectory. Therefore, Lagrangian fluctuations can be defined for both, total quantities
and as well as their Eulerian means. For example, for a scalar c, the Lagrangian fluctuation of the total quantity is

denoted by cL and the Lagrangian fluctuation of the Eulerian mean is denoted by C
L

120

cL(t; ai) = c(t; ai)− C(0; ai), (29)

C
L

(t; ai) = C(t; ai)− C(0; ai) (30)

The passive scalar gradient transport equation Eq. 12 can be rewritten using Lagrangian fluctuations as

〈cLvk〉 = 〈c′0vk〉 = 0 (31)

In other words, the flux of the Lagrangian fluctuation of a passive scalar is zero. The zero flux results from material
conservation of the scalar and a decorrelation of the Lagrangian velocity from the initial point Eulerian fluctuation

of the scalar. Expanding cL = c′ + C
L

and using C
L

= ξjC,j for mean gradient homogeneous turbulence,

〈c′vk〉 = −〈CLvk〉 = −〈ξjvk〉C,j (32)

For binary fluctuations, using cLα = c′α0 and cLβ = c′β0, we can conveniently write

cLαc
L
β = c′α0c

′
β0 (33)

A formal proof of Eq. 33 starting from material conservation of the object cαcβ is presented in the Appendix.
Additionally, we also show there that (cαcβ)L = (cαcβ)′0 is equivalent to Eq. 33. Next, expanding the Lagrangian

fluctuations in Eq. 33 as cL = c′ + C
L

, we have

c′αc
′
β + c′αC

L

β + c′βC
L

α + C
L

α C
L

β = c′α0c
′
β0 (34)

Eq. 34 can be re-expressed using c′α = c′α0 − C
L

α and c′β = c′β0 − C
L

β to obtain

c′αc
′
β − C

L

α C
L

β = c′α0c
′
β0 − c′α0C

L

β − C
L

αc
′
β0 (35)

In the case of constant mean species gradients, a linear spatial variation of Cα and Cβ exists and we express the

Lagrangian fluctuations of Eulerian means using Lagrangian particle displacement vector as C
L

α = ξiCα,i and C
L

β =

ξjCβ ,j to write

c′αc
′
β = ξiξjCα,j Cβ ,j +c′α0c

′
β0 − c′α0ξiCβ ,i−c′β0ξjCα,j (36)

〈c′αc′βvk〉 = 〈ξiξjvk〉 Cα,i Cβ ,j (37)
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The moments of final-point Lagrangian objects with initial point scalar Eulerian fluctuations vanish. As a consequence,
〈c′α0c

′
β0vk〉 = 0, 〈c′α0ξivk〉 = 0 and 〈c′β0ξjvk〉 = 0. Eq. 37 is the primary result of the paper, and has been formally

derived using material conservation of cα, cβ along Lagrangian trajectories. Eq. 37 will later be used to propose formal
gradient transport expressions for all second moment turbulent fluxes encountered in variable-density turbulence.

The result in Eq. 37 is interesting in that gradient transport for second moment turbulent flux is proportional to125

the product of mean gradients of the two objects in the second moment. Compare this to the gradient transport by
analogy to the passive scalar, which is, as intuition suggests, proportional to the down gradient of the second moment.
Inclusion of mean gradient terms in second moment turbulent fluxes have also been proposed earlier in the literature
to improve the conventional gradient transport expressions [31]. However formal gradient transport naturally brings
mean gradients into the equation, not as an additional ‘proposed tensor basis’. Numerical experiments suggest that130

gradient of first order moments can improve modeling accuracy (Appendix VI I). The bilinear form of the mean
gradient and the higher order Lagrangian moments, are both new objects that have not been studied previously.
Future investigations into their properties are critical to close turbulent fluxes of high order Eulerian moments with
gradient transport.

C. Comparison of formal and gradient transport by analogy for second moment turbulent flux135

Formal Lagrangian analysis results in expression for second moment turbulent flux that is bilinear in mean gradients.
This expression is different from the expression by analogy (Harlow-Hirt-Daly [11, 12]) proposed by applying an
analogy between the passive scalar and the second moment. Eqs. 38-39 provides a comparison between these two
expressions.

Analogy (Eq. 26): 〈c′αc′βu′k〉 = −〈ξjvk〉 (c′αc
′
β),j (38)

Formal Analysis (Eq. 37): 〈c′αc′βu′k〉 = 〈ξiξjvk〉 Cα,i Cβ ,j (39)

In the second-moment modeling, second moment turbulent fluxes of type u′iu
′
ju
′
k, φ′u′ju

′
k and φ′φ′u′k require closure.

Here φ is a scalar. Using the sweeping hypothesis for ui, we can compare the two gradient transport expressions for
these three classes of moments.

Analogy: u′iu
′
ju
′
k = −〈ξpvk〉(u′iu′j),p−〈ξpvi〉(u′ju′k),p−〈ξpvj〉(u′ku′i),p (40)

Formal Analysis: u′iu
′
ju
′
k = 〈ξpξqvk〉 U i,p U j ,q + 〈ξpξqvi〉 U j ,p Uk,q + 〈ξpξqvj〉 Uk,p U i,q (41)

Analogy: φ′u′ju
′
k = −〈ξpvk〉(φ′u′j),p−〈ξpvj〉(φ′u′k),p (42)

Formal Analysis: φ′u′ju
′
k = 〈ξpξqvk〉Φ,p U j ,q +〈ξpξqvj〉Φ,p Uk,q (43)

Analogy: φ′φ′u′k = −〈ξpvk〉 (φ′φ′),p (44)

Formal Analysis: φ′φ′u′k = 〈ξpξqvk〉
(
Φ,p Φ,q

)
(45)

The third moment φ′φ′u′k provides an useful perspective on the difference in the two expressions. The expression by140

analogy is proportional to gradient in the scalar variance, while the formal expression is proportional to flux of the
scalar variance itself, indirectly. via the product of the mean gradients.

We can also assess the formal gradient transport from the point of view of second moment transport. Substituting
Eq. 38 into the third moment in Eq. 24, GT by analogy results in

c′αc
′
β ,t +(c′αc

′
β Uk),k = −c′αu′k Cβ ,k −c′βu′k Cα,k +εαβ + (〈ξpvk〉c′αc′β ,p ),k (46)

while substitution with the formal result in Eq. 37 leads to

c′αc
′
β ,t +(c′αc

′
β Uk),k = −c′αu′k Cβ ,k −c′βu′k Cα,k +εαβ − (〈ξpξqvk〉Cα,p Cβ ,q ),k (47)

With the expression by analogy, the third moment accounts for turbulent diffusion in the second moment equation.
Whereas, the non-isotropic approximation for 〈ξiξjvk〉 in the formal expression yields terms proportional to mean
gradients. The role of the third moment then becomes reminiscent of a production/destruction term. In particular,145

the ‘energy’ associated with c′αc
′
β with formal gradient transport is affected by the term

Analogy: (c′αc
′
β)2,t + · · · = −2 〈ξivk〉 (c′αc

′
β),i (c′αc

′
β),k (48)

Formal: (c′αc
′
β)2,t + · · · = 2 〈ξiξjvk〉 Cα,i Cβ ,j c′αc′β ,k (49)
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The energetics associated with third moment is no longer straightforward and depends on product of four tensors.
The modeling choice for the object 〈ξiξjvk〉 will affect the computational stability of the second moment equation.
Therefore, future work will investigate the Lagrangian third moment 〈ξiξjvk〉 to develop stable and accurate models
for second moment turbulent fluxes.150

Assumptions for the gradient transport expression in Eq. 37: We reiterate and list the basic assumptions
on the flow state using which the formally exact expression in Eq. 37 is derived.

• High Reynolds number turbulence: The correlation length-scale of the Lagrangian fluid particle is small
so that molecular diffusion for the transported quantity can be neglected.

• Mean gradient as fluctuation production mechanism: A linearly varying mean field is assumed along the155

particle path and so the materially conserved scalar analysis assumes the existence of a constant mean gradient.
This, on the level of principle precludes Eulerian fluctuations in flows with no mean gradients.

• Fine grained turbulence: For Lagrangian statistical analysis to hold, the length-scale of the transport mech-
anism must be small compare to the mean-gradient length-scale. This is also required for the fluctuations to
become decorrelated between the initial and final points in the trajectory.160

For third moments of the type in Eqs. 40 and 42, the flows must contain mean velocity gradients for turbulence
production. This is a consequence of the sweeping hypothesis applied to fluid velocity, which is inconsistent with
Lagrangian gradient transport assumptions in the absence of a mean velocity gradient. This limits the use of formal
Lagrangian gradient transport to flows where velocity fluctuations are associated with mean velocity gradient. When
used in moment-closure modeling of buoyancy-driven or decaying turbulent layers, these principles are not valid.165

However, in large-eddy simulations and scale-resolving simulations, formal gradient-transport expressions remain
valid and useful since turbulence producing coherent structures provide non-zero mean velocity gradients.

D. Third order Lagrangian correlation

The Lagrangian third moment in Eq. 37 contains a quadratic term in Lagrangian particle displacement vector.
This term is further expressed in terms of a bicorrelation tensor as

〈viξjξk〉+ 〈vjξkξi〉+ 〈vkξiξj〉 =

∫ t

0

∫ t

0

〈vi(t)vj(t′1)vk(t′2)〉+ 〈vj(t)vk(t′1)vi(t
′
2)〉+ 〈vk(t)vi(t

′
1)vj(t

′
2)〉 dt′1 dt′2 (50)

= Sv(σv)3

∫ t

0

∫ t

0

Bvivjvk(τ1, τ2) dτ1 dτ2 (51)

The bicorrelation tensor Bijk is defined as

Bijk(τ1, τ2) =
〈vi(t)vj(t+ τ1)vk(t+ τ2)〉+ 〈vj(t)vk(t+ τ1)vi(t+ τ2)〉+ 〈vk(t)vi(t+ τ1)vj(t+ τ2)〉

Sv(σv)3
(52)

and Sv is the skewness of the Lagrangian velocity field, defined as

Sv =
〈v3
i 〉

(σv)3/2
(53)

Approximations to the Lagrangian correlation object may be devised using first moment gradients, as well as second
moments such as Reynolds stress and turbulent mass flux. A data-driven approach can then be used to identify the170

optimal bases. In the present work, we do not focus on the closure of the Lagrangian moments.

IV. LAGRANGIAN GRADIENT TRANSPORT FOR VARIABLE-DENSITY TURBULENCE

Variable-density turbulence is a turbulent transport regime in which the inertial effects due to density differences
in the fluid affect the state of turbulence. In the incompressible limit, the density differences can relate to differences
in material composition, temperature and/or phase [24]. Simulations of variable-density turbulence employ conserved175

variable sets which results in Favre solution variables. The convective terms of these Favre solution variables involve
unclosed third moments, as we discussed in the previous section.
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The conserved scalar equation and its Favre averaged form is

(ρc),t + (ρcuk),k = 0 (54)

(ρ C̃),t +
(
ρ C̃Ũk + ρ c̃′′u′′k

)
,k = 0 (55)

The molecular diffusion terms are not included as we focus on the turbulent transport arising from the convective
term. The third moment ρ′c′u′k appears in the Favre turbulent flux as a consequence of transport of ρ′c′, which is a

part of the Favre solution variable ρ C̃ = ρ C + ρ′c′. The Favre turbulent flux ρ c̃′′u′′k is

ρ c̃′′u′′k = ρ c′u′k + ρ′c′u′k − ρ c′′ u′′k (56)

Modeling within the Favre framework is common because Favre variables re-express the turbulent fluxes as a second
Favre moment. An implicit assumption in modeling the second Favre moment is that the physics can be represented
solely on the basis of mass-weighted variables. The closures are then borrowed from constant-density turbulence and180

applied using arguments by analogy.

A. Gradient transport by analogy for Favre turbulent fluxes

Engineering models almost exclusively employ gradient transport by analogy for Favre fluxes. However, the analogy
for Favre fluxes is not consistent with formal Lagrangian analysis. In the Appendix (Sec VI A), we discuss why gradient
transport cannot provide closed expressions for moments involving Favre variables.185

The analogy to passive-scalar gradient transport (Eq. 12) in Favre variables is

Passive scalar : c′u′k ≡ 〈c
′vk〉 = −〈ξjvk〉 C,j (57)

Favre analogy : ρ c̃′′u′′k ≡ 〈ρc
′′v′′k 〉 = −〈ρξjv′′k 〉 C̃,j (58)

where Favre-fluctuating Lagrangian velocity is defined as

v′′k = vk +
ρvk
ρ

(59)

The analogy is obtained by using a Favre decomposition for the scalar c instead of the Reynolds decomposition. Then,
similar to constant-density passive scalar Lagrangian gradient transport (Eq. 12), the moment with c′′ is replaced

with a moment with −ξjC̃,j .
Eqs. 60-64 provide gradient transport expressions obtained by applying the analogy for second and third order

Favre moments. The unclosed second Favre moments on the LHS appear in the governing equations for conserved

scalar ρ C̃, momentum ρ Ũi, total energy E = ρ (Ẽ + ũkuk/2). The third Favre moments appear in the total energy,

Favre stress and Favre scalar variance ρ c̃′′c′′ equations. The governing equations for the relevant Favre first and
second order moments are provided in the Appendix (Sec VI F).

ρ c̃′′u′′k = −〈ρξpv′′k 〉 C̃,p (60)

ρ ũ′′i u
′′
k = −〈ρξpv′′k 〉 Ũi,p−〈ρξiv′′k 〉 Ũj ,p (61)

ρ ẽ′′u′′k = −〈ρξpv′′k 〉 Ẽ ,p (62)

ρ ũ′′i u
′′
j u
′′
k = −〈ρξpv′′k 〉 R̃ij ,p−〈ρξpv′′i 〉 R̃jk,p−〈ρξpv′′j 〉 R̃ki,p (63)

ρ c̃′′c′′u′′k = −〈ρξpv′′k 〉 c̃′′c′′ ,p (64)

Here, e = E + e′ denotes the specific internal energy. For the third order Favre moment of the form c̃′′αc
′′
βu
′′
k , gradient

transport by analogy is

ρ c̃′′αc
′′
βu
′′
k = 〈ρc′′αc′′βv′′k 〉 = −〈ρξjv′′k 〉 (c̃′′αc

′′
β),j (65)

The object 〈ρξjv′′k 〉 in Eq. 58 is often approximated as an isotropic object using Favre kinetic energy 2ρ k̃ = ρu′′ku
′′
k

as 〈ρξpv′′k 〉 ≈ ρ k̃ k̃ε

ρ c̃′′u′′k = −〈ρξpv′′k 〉 C̃,p≈ −ρ Cµ
k̃2

ε
C̃,k (66)
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In anisotropic closures, the object 〈ρξjv′′k 〉 is approximated using the Favre stress ρ R̃ij = ρu′′i u
′′
j and the Eulerian

time-scale k̃/ε.

ρ c̃′′u′′k = −〈ρξpv′′k 〉 C̃,p≈ −ρ Cµ
k̃

ε
R̃kp C̃,p (67)

B. Gradient transport analogy for Reynolds turbulent fluxes

The gradient transport closures may also be applied to the Favre turbulent fluxes in their expanded Reynolds
form, in which moments with density are explicitly accounted for. Different second and third Favre moments in their
Reynolds form are expanded exactly as

ρ c̃′′u′′k = ρ c′u′k + ρ′c′u′k + ρ aic′′ (68)

ρ ũ′′i u
′′
k = ρ u′iu

′
k + ρ′u′iu

′
k − ρ aiak (69)

ρ ũ′′i u
′′
j u
′′
k = ρ′u′iu

′
ju
′
k + ρ (u′iu

′
ju
′
k − (R̃ijak + R̃jkai + R̃kiaj + aiajak)) (70)

ρ c̃′′c′′u′′k = ρ′c′c′u′k + ρ (c′c′u′k − c′′c′′ak + 2c′′ c̃′′u′′k − c′′ c′′ ak) (71)

Consider the second Favre moment ρ c̃′′u′′k in the conserved scalar equation (Eq. 55). It comprises of three second

moments and one third order moment (Eq. 56). The scalar flux c′u′k is closed using gradient transport (Eq. 12) in

the general case. The density-species covariance ρ′c′, can be transported or estimated using a transported variance.
The third moment is closed using Eq. 26, which we have earlier referred to as gradient transport by analogy for
second moment turbulent flux. Note that the analogy is made in this case by applying the sweeping hypothesis to the
zero-mean binary fluctuation ρ′c′ − ρ′c′.

ρ′c′u′k = −〈ξpvk〉 (ρ′c′),p (72)

Second moment turbulent fluxes appear in transport equations for first Favre moments, conserved scalar ρ C̃

and momentum ρ Ũi as well as second moments such as the turbulent mass-flux ρ′u′i, the density-specific-volume

covariance ρ′υ′ and the scalar variance c′c′. When the sweeping hypothesis is applied to the zero-mean binary
fluctuations ρ′u′i − ρ′u′i, ρ′υ′ − ρ′υ′ and c′c′ − c′c′, Eq. 26 results in

ρ′u′iu
′
k = −〈ξpvk〉 (ρ′u′i),p−〈ξpvi〉 (ρ′u′k),p (73)

ρ′υ′u′k = −〈ξpvk〉 (ρ′υ′),p (74)

c′c′u′k = −〈ξpvk〉 (c′c′),p (75)

Similarly, third moment turbulent fluxes (which are fourth order moments) can also be closed using gradient transport
by analogy. These fourth order moments appear in transport equations of second Favre moments. For example,

ρ′u′iu
′
ju
′
k appears in Favre stress R̃ij = ũ′′i u

′′
j equation and the fourth moment ρ′c′c′u′k appears in Favre scalar

variance c̃′′c′′ equation. The corresponding transport equations are provided in the Appendix (Sec VI F). The
gradient transport expressions for these two fourth moments are obtained by applying the analogy to the zero-mean
ternary fluctuations ρ′u′iu

′
j − ρ′u′iu′j and ρ′c′c′ − ρ′c′c′ respectively.

ρ′u′iu
′
ju
′
k = −〈ξpvk〉 (ρ′u′iu

′
j),p−〈ξpvi〉 (ρ′u′ju

′
k),p−〈ξpvj〉 (ρ′u′iu

′
k),p (76)

ρ′c′c′u′k = −〈ξpvk〉 (ρ′c′c′),p (77)

We reiterate that the sweeping hypothesis for zero-mean binary (and ternary) fluctuations is not valid formally.190

C. Formal closures from Lagrangian gradient transport

In contrast to gradient transport expressions using analogy, we present closures for third and fourth moments based
on the formal Lagrangian gradient transport analysis that leads to Eq. 37. Formal Lagrangian gradient transport for
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the turbulent flux of the third moment is derived in the Appendix, and follows a procedure similar to that used for
the second moment turbulent flux in Eq. 37.195

Using Eqs. 37 and 121, we have the following closures for third and fourth Reynolds moments. The third moments

ρ′c′u′k and ρ′u′iu
′
k appear in the transport equations for first Favre moments, conserved scalar ρ C̃ and momentum

ρ Ũi respectively.

ρ′c′u′k = 〈ξpξqvk〉 ρ,p C,q (78)

ρ′u′iu
′
k = 〈ξpξqvk〉 ρ,p U i,q + 〈ξpξqvi〉 ρ,p Uk,q (79)

The third moments c′c′u′k and ρ′υ′u′k appear in the transport equations for density-specific-volume covariance and
Favre scalar variance respectively.

c′c′u′k = 〈ξpξqvk〉 C,p C,q (80)

ρ′υ′u′k = 〈ξpξqvk〉 ρ,p υ,q (81)

The fourth moments ρ′u′iu
′
ju
′
k and ρ′c′c′u′k appear in the Favre stress ρ R̃ij = ρ ũ′′i u

′′
j and Favre scalar variance ρ c̃′′c′′

equations respectively.

ρ′u′iu
′
ju
′
k = 〈ξpξqξrvk〉 ρ,p U i,q U j ,r + 〈ξpξqξrvi〉 ρ,p U j ,q Uk,r +〈ξpξqξrvj〉 ρ,p Uk,q U i,r (82)

ρ′c′c′u′k = 〈ξpξqξrvk〉 ρ,p C,q C,r (83)

In Eqs. 78-83, the sweeping hypothesis has been applied to the scalars ρ, υ, c and the turbulent velocity vector ui.
These results are valid for flows with negligible dilatation at the time-scales relevant to turbulent transport.

The turbulent fluxes in variable-density flows, however, unlike constant-density passive scalar fluxes experience
dynamic effects in the presence of pressure-gradient driven acceleration [25]. As a consequence, Lagrangian gradient
transport for moments involving density and associated ‘active’ scalars involve unclosed terms when dynamic effects200

are important. We discuss this in Appendix Sec. VI H.

D. Comparison of different gradient transport expressions for Favre fluxes

The gradient transport expressions in Eqs. 78-83 for the second/third moment turbulent fluxes can be used to
derive formal Lagrangian transport expression for Favre turbulent fluxes.205

Eqs. 84-86 show different gradient transport expressions for the Favre conserved scalar flux.

Favre conserved scalar flux ρ c̃′′u′′k in ρ C̃ transport

Analogy(F) : ρ c̃′′u′′k = −〈ρξpv′′k 〉 C̃,p (84)

Analogy(R) : ρ c̃′′u′′k = −〈ξpvk〉 ρ̄C̃,p + c′′(〈ξpvk〉ρ,p +ρ̄ak) (85)

Formal : ρ c̃′′u′′k = −〈ξpvk〉 ρ̄C̃,p + c′′(〈ξpvk〉ρ,p +ρ̄ak) + (〈ξpvk〉(ρ′c′),p + 〈ξpξqvk〉ρ,p C,q )
(86)

In ‘Analogy(F)’ equation, we have used gradient transport by analogy for Favre fluxes, Eq. 60. In ‘Analogy(R)’ and
‘Formal’ equations, we have applied gradient transport to Reynolds fluxes. The difference between ‘Analogy(R)’ and

‘Formal’ is the choice of closure for the second moment turbulent flux ρ′c′u′k. In ‘Analogy(R)’, the flux is closed using
analogy (Eq. 26), while in ‘Formal’, we use formal Lagrangian analysis derived in Eq. 37.

There is an important difference in applying gradient transport to Favre vs Reynolds fluxes. The Lagrangian particle210

displacement flux tensor in the Favre analogy 〈ρξjv′′k 〉, involves Lagrangian fluctuating velocity and is a dynamical
variable due to density. We have shown in Appendix that the analogy using Favre fluctuating velocity is not valid (Sec
VI A). Formal gradient transport, instead, involves transport coefficients only in Reynolds (centered) fluctuations such
as 〈ξjvk〉 and 〈ξiξivk〉. Physically, this is a consequence of the fact that Lagrangian analysis is a kinematic description
of transport.215
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D1. Beyond down-gradient conserved scalar flux

We now discuss the additional physics captured in gradient transport expressions in Eq. 85 and Eq. 86, in
comparison to the popular Favre analogy (Eq. 84) to constant-density gradient transport. In Eq. 86, there are
two new terms in addition to the Favre mean scalar gradient. The first term which results from applying gradient
transport to centered fluctuations, or Reynolds moments, is ρak+〈ξpvk〉ρ,p. Note that gradient transport for mass flux220

without assumptions on initial-final point Lagrangian moments implies ρak + 〈ξpvk〉ρ,p = 〈ρ′0vk〉 Therefore, the term
ρak + 〈ξpvk〉ρ,p incorporates the non gradient transport physics associated with the mass flux. Gradient transport by
analogy for Favre moments does not contain this term, and therefore implicitly asserts gradient transport closure for
the turbulent mass flux. This assertion is inaccurate during the mass-flux production/destruction phase in buoyancy-
driven or decaying variable-density turbulence. Numerical simulations of buoyancy-driven turbulent mixing layers225

indicate that this term can be significant for large (O(10)) density contrasts (see Appendix VI I).

The second term, that appears as a consequence of invoking formal Lagrangian gradient transport for the third
moment, is (〈ξpvk〉(ρ′c′),p + 〈ξpξqvk〉ρ,p C,q ). This term is the difference between the formal and the empirical gradient

transport expressions for the third moment ρ′c′u′k. The term may also be recast in terms of Lagrangian fluctuations

as 〈(ρLCL + ρ′c′
L

)vk〉 ≈ 〈(ρ′c′ + ρ′c′
L

)vk〉. If the binary fluctuation ρ′c′ was a materially conserved quantity, this230

term would reduce to zero, However, this is not the case in the presence of mean scalar and density gradients as can
be inferred from Eq. 27.

D2. Gradient transport expressions for Favre fluxes of momentum, stress and scalar variance

Next, we write the three gradient transport expressions (two analogies and the formal expression) for Favre stress
and third Favre moments, in a manner similar to how Eqs 84-86 are presented for the Favre conserved scalar flux. For
the Favre analogy, we also show the modeling approximation employed in second moment closures for the Lagrangian
particle displacement flux tensor. For the ternary fluctuation flux, formal gradient transport derived in Eq. 121 is
employed. The Favre stress appears in transport of Favre velocity. The stress flux appears in transport of Favre
kinetic energy and Favre stress, while the scalar variance flux appears in the transport of Favre scalar variance. The
transport equations are provided in the Appendix (Sec VI F).

Favre stress ρ ũ′′i u
′′
k in ρ Ũi transport equation

Analogy(FW): ρ ũ′′i u
′′
k = −〈ρξpv′′i 〉 Ũk,p−〈ρξpv′′k 〉 Ũi,p

≈ −Cµ ρ
k̃

ε
(R̃ip Ũk,p +R̃kp Ũi,p ) (87)

Analogy(RU): ρ ũ′′i u
′′
k = −〈ξpvk〉 ρ̄Ũi,p− ai(〈ξpvk〉ρ,p + ρak/2) (88)

− 〈ξpvi〉 ρ̄Ũk,p− ak(〈ξpvi〉ρ,p + ρai/2)

Formal: ρ ũ′′i u
′′
k = −〈ξpvk〉 ρ̄Ũi,p−ρ (aiak/2− 〈ξpvk〉ai,p ) + 〈ξpξqvk〉ρ,p Ui,q
− 〈ξpvi〉 ρ̄Ũk,p−ρ (aiak/2− 〈ξpvi〉ak,p ) + 〈ξpξqvi〉ρ,p Uk,q (89)
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Favre stress flux ρ ũ′′i u
′′
j u
′′
k in ρ R̃ij transport equation

Analogy(F): ρ ũ′′i u
′′
j u
′′
k = −〈ρξpv′′k 〉 R̃ij ,p−〈ρξpv′′i 〉 R̃jk,p−〈ρξpv′′j 〉 R̃ki,p

≈ −Cµ ρ
k̃

ε
(R̃kp R̃ij ,p + R̃ip R̃jk,p + R̃jp R̃ki,p ) (90)

Analogy(R): ρ ũ′′i u
′′
j u
′′
k = −(〈ξpvk〉ρ R̃ij ,p +〈ξpvi〉ρ R̃jk,p +〈ξpvj〉ρ R̃ki,p )

+Rij〈ξpvk〉ρ,p +Rjk〈ξpvi〉ρ,p +Rki〈ξpvj〉ρ,p
− R̃ij(ρ ak + 〈ξpvk〉ρ,p )− R̃jk(ρ ai + 〈ξpvk〉ρ,p )− R̃ki(ρ aj + 〈ξpvk〉ρ,p )

− 〈ξpvk〉(ρ aiaj),p−〈ξpvi〉(ρ ajak),p−〈ξpvj〉(ρ akai),p−ρ aiajak (91)

Formal: ρũ′′i u
′′
j u
′′
k = ρ〈ξpξqvk〉Ui,p Uj ,q +ρ〈ξpξqvi〉Uj ,p Uk,q +ρ〈ξpξqvj〉Uk,p Ui,q
− 〈ξpξqξrvk〉ρ,p Ui,q Uj ,r −〈ξpξqξrvi〉ρ,p Uj ,q Uk,r −〈ξpξqξrvj〉ρ,p Uk,q Ui,r
− ρR̃ijak − ρR̃jkai − ρR̃kiaj − ρaiajak (92)

Favre scalar variance flux ρ c̃′′c′′u′′k in ρ c̃′′c′′ transport equation

Analogy(F): ρ c̃′′c′′u′′k = −〈ρξpv′′k 〉 c̃′′c′′ ,p

= −Cµ ρ
k̃

ε
R̃kp (c̃′′c′′ ),p (93)

Analogy(R): ρ c̃′′c′′u′′k = −ρ 〈ξpvk〉 c̃′′c′′ ,p + c′c′ 〈ξpvk〉 ρ,p
− c̃′′c′′ (ρ ak + 〈ξpvk〉ρ,p ) + 2ρ c′′ c̃′′u′′k − ρ c′′ c′′ak (94)

Formal: ρ c̃′′c′′u′′k = ρ 〈ξpξqvk〉C,p C,q −〈ξpξqξrvk〉 ρ,p C,q C,r
− ρ c̃′′c′′ ak + 2 ρ c′′ c̃′′u′′k − ρ c′′ c′′ ak (95)

The results in Eqs. 84-95 provide a useful perspective on the complexity of objects that formal gradient transport
produces. Compared to Favre analogy, the formal expressions include the explicit terms with turbulent mass flux235

and higher-order Lagrangian objects contracted with the mean density gradients. The formal expression therefore
provides insight into how the mean density gradients can produce counter-gradient diffusion in the turbulent flux, as
observed in the turbulent flux of kinetic energy in recent variable-density jet experiments [4].

V. CONCLUSIONS AND SUMMARY

Historically the formal Lagrangian analysis of a materially conserved scalar has been used to model the scalar240

turbulent transport in constant density turbulence. That result is then applied to the turbulent transport of other
quantities despite the fact that these other quantities are not materially conserved. In variable density turbulence
treated in Favre variables, most gradient transport models for the Favre turbulent fluxes use an argument by analogy
to produce expressions that are mathematical analogues to the constant density passive scalar. One can expect that it
would be unlikely that constant-density Lagrangian analysis of a passive scalar would carry over to a conserved scalar245

in the variable-density case. Argument by analogy to the constant density case is not formally valid because it does
not account for the additionally conserved scalar, density, and does not work with centered variables. This raises the
unexplored question of “What does a formal Lagrangian analysis for turbulent transport in variable density turbulence
produce?” This paper gives the mathematical details and conclusions of such a formal analysis. Computational models
using these formal results requires a deeper investigation of various moments of the Lagrangian particle displacement250

vector and is the subject of a succeeding paper.
We can expect that the variable density case will lead to substantial differences based on several ideas all of which

we have explored:

• In an analysis for materially conserved species in variable density turbulence with negligible dilatation, there
is an additional materially conserved quantity, the density. The appearance of density conservation constraint255



14

plays a substantial role in the expression of turbulent fluxes. The most important consequence of an additional
conservation principle in a formal Lagrangian analysis is that the turbulent flux is 1) no longer a down gradient
diffusion and 2) involves a bilinear term in means species gradient and mean density gradient and 3) the turbulent
transport depends on the relative orientation of the mean density and mean species gradients.

ρ′c′u′k = 〈ξiξjvk〉 ρ,i C,j (96)

• In the gradient transport by analogy for Favre turbulent fluxes, u′′i is erroneously assumed to play the same role as260

u′i, a fluctuation object with a zero mean. However, the turbulent mass flux ρ ak = −ρ u′′k 6= 0 is an independent
dynamical variable. Gradient transport in the argument by analogy for the Favre flux asserts gradient transport
for the turbulent mass flux which ignores the active scalar effects experienced by the variable-density fluid in
the presence of external and pressure-gradient driven acceleration. Numerical simulations of buoyancy-driven
mixing layers show that these effects are sizeable for large density differences and must be modeled. Excluding265

active scalar effects is also inconsistent with second moment models where the mass flux is explicitly transported.

• The formal Lagrangian gradient transport model of Eq. 96 has important implications for modeling of turbulent
fluxes in the second moment transport equations. In gradient transport by analogy, these third moments are
modeled as diffusion of the second moments. The formal Lagrangian gradient transport expression, however,
is not strictly a gradient diffusion of second order moments. Consequently, it can represent transfer of ‘energy270

into and out of the second moments.

• In contradistinction to the models arrived at in the argument by analogy method, the formal Lagrangian analysis
for the turbulent fluxes in Favre variables has three distinct physics components. The first relates to dynamics of
the turbulent mass flux and results from explicit accounting of moments with density fluctuations. The second
is the dynamics associated the binary (and ternary) fluctuations, embodied in the third (and higher) moments275

involving the Lagrangian particle displacement vector (eg. 〈ξiξjvk〉). The third important physical distinction
is that the Lagrangian particle displacement objects are kinematic in the formal expression and do not involve
the density. This is unlike the expression by analogy, which involves density velocity product in the particle
displacement moment and is thus related to particle momentum, a dynamical quantity that does not appear in
a formal Lagrangian analysis.280
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VI. APPENDIX

A. Favre decomposition in Lagrangian gradient transport

We analyze Lagrangian gradient transport in Favre averages and fluctuations. We demonstrate why moments with
Favre fluctuations cannot result in closed form gradient transport expressions. We consider the Favre decomposition
form of Eq. 9

c′′ − c′′0 = −C̃L (97)

which is equivalent to c′−c′0 = −CL. Moments of Eq. 97 with vk, v
′′
k and ρv′′k are evaluated below. Here, v′′k = vk+u′′k .

Moment with ρv′′k results in the Favre turbulent scalar flux 〈ρc′′v′′〉 = ρc′′u′′k .

Moment with vk : 〈c′′vk〉 = −〈C̃Lvk〉+ 〈vkc′′0〉 = −〈C̃Lvk〉+ 〈vkc′′0〉 (98)
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Using two-point mean-fluctuation decorrelation, we can assume 〈vkc′′0〉 = 0. If a linear variation of the Favre mean

scalar exists, we have 〈c′′vk〉 = −〈ξjvk〉C̃,j .

Moment with v′′k : 〈c′′v′′k 〉 = −〈C̃Lv′′k 〉+ 〈c′′0v′′k 〉 (99)

We write v′′k = v′′k
L

+u′′k0, where v′′k
L

= vk+u′′k
L

and c′′0 = c′0 +c′′0 . Moments of final-point Lagrangian objects (denoted
with the superscript L) with initial-point Eulerian objects vanish. So, we have

〈c′′v′′k 〉 = 〈(c′0 + c′′0)(v′′Lk + u′′k0)〉 = c′′0 u
′′
k0 (100)

Similarly, we can expand 〈C̃Lv′′k 〉 as 〈C̃Lvk〉+ 〈C̃Lu′′k
L
〉 to obtain

〈c′′v′′k 〉 = −〈C̃Lv′k〉 − 〈C̃Lu′′
L

k 〉+ c′′0u′′k0
(101)

Therefore, due to the non-zero initial-point means, Lagrangian analysis cannot close the gradient transport of 〈c′′v′′k 〉.

Moment with ρv′′k : 〈ρc′′v′′k 〉 = −〈ρC̃Lv′′k 〉+ 〈ρc′′0v′′k 〉 (102)

Similarly, moments with ρv′′k are unclosed. Writing ρ = ρL + ρ0, we have

〈ρc′′0v′′k 〉 = 〈(ρL + ρ0)(c′0 + c′′0)(v′′Lk + u′′k0)〉 (103)

We can write ρL = ρ′0 as it is a materially conserved scalar. Since moments of Lagrangian fluctuations with initial-

point Eulerian objects vanish, the non-zero terms in the RHS of Eq 103 are ρ0 c′′0 u
′′
k0 and ρ′0c

′
0 u
′′
k0. Next, the term

〈ρC̃Lv′′k 〉 is expanded as

〈ρC̃Lv′′k 〉 = 〈(ρL + ρ0)C̃L(v′′Lk + u′′k0)〉 = 〈(ρ′0 + ρ0)C̃L(v′′Lk + u′′k0)〉 = ρ0(〈C̃Lvk〉+ 〈C̃Lu′′k
L
〉) (104)

resulting in

〈ρc′′v′′k 〉 = −ρ0(〈C̃Lvk〉+ 〈C̃Lu′′k
L
〉) + ρ0 c′′0 u

′′
k0 + ρ′0c

′
0 u
′′
k0 (105)

Therefore, analogy of the passive-scalar gradient transport in Favre variables is not valid. For reference, the analogy290

invoked in Favre variables can be expressed in the form 〈ρc′′v′′k 〉 = −〈ρ〉〈C̃Lvk〉

B. The Lagrangian fluctuation of the conserved binary scalar

In Eq. 33, we write cLαc
L
β = c′α0c

′
β0 using Eq. 31. Here, we prove the identity cLαc

L
β = c′α0c

′
β0 (Eq. 33) independently

starting from material conservation of cαcβ along its Lagrangian trajectory.

cαcβ = (cαcβ)0 (106)

We carry out a Lagrangian decomposition of the LHS and an Eulerian decomposition of the RHS in Eq. 106. A key
step is to express the mean-fluctuation decomposition for the product in a form where the expansion only consists
of means, total quantities and the binary fluctuation. For the Eulerian decomposition of the conserved scalar at the
initial point in the trajectory, we have

cα0cβ0 = c′α0c
′
β0 + Cα0cβ0 + cα0Cβ0 − Cα0Cβ0 (107)

Similarly, the Lagrangian decomposition at the end of the trajectory c = cL + C0 results in

cαcβ = cLαc
L
β + Cα0cβ + cαCβ0 − Cα0Cβ0 (108)

Equating the right hand sides in Eqs. 107 and 108 as c = c0, we obtain the second moment turbulent flux counterpart
to the scalar flux in Eq. 31. Alternatively, we can also show that

(cαcβ)L = (cαcβ)′0 ≡ cLαcLβ = c′α0c
′
β0 (109)

using (CαCβ)L = C
L

αCβ0 + Cα0C
L

β + C
L

αC
L

β .
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C. Mean field dependence on Lagrangian particle displacement vector in variable-density flows

An important step in gradient transport closures is the dependence of mean fields on the Lagrangian particle
displacement vector. The Lagrangian moments appearing in gradient transport stem from this functional dependence.
Linear C and ρ fields: With the passive scalar assumptions, formal Lagrangian analysis yields

〈ρ′c′vk〉 = 〈ρL CLvk〉 (110)

With linear variation of the form ρL = ρ,j ξj and C
L

= C,j ξj , we have a quadratic dependence of ρL C
L

on the
displacement vector.

Linear ρC and ρ fields: With a linear variation of the form ρC
L

= ρC,j ξj and ρL = ρ,j ξj , we do not have a linear

variation of C
L

. Instead, C
L

is expanded on dependent variables as

C
L

=
ρC

L − ρ′c′L − ρLC0

ρ0 + ρL
(111)

We must make an additional assumption about the variation of ρ′c′. If a linear variation for ρ′c′ is assumed, we have

C
L

= ξp
ρC,p−ρ′c′,p−ρ,p C0

ρ0 + ξqρ,q
(112)

which shows that that C
L

and consequently ρLC
L

cannot result in closed form gradient transport expressions.295

Linear C̃ and ρ fields: In the case of linear Favre mean field C̃, C
L

can simply be expressed as C
L

= C̃L + c′′
L

.

The spatial variation of C
L

will depend on the spatial variation of the object c′′
L

. When c′′
L

varies linearly, we have

C
L

= ξq(C̃,q +c′′,q ) such that a quadratic dependence of ρL C
L

is retained, as is the case with a linear C field.

D. Mean gradient inconsistency in Eq. 26

We consider the validity of Eq. 26 using gradient transport applied to the conserved scalar cαcβ . A straightforward

expression for c′αc
′
βu
′
k is suggested using the following arguments

(cαcβ)′u′k = −〈ξjvk〉(cαcβ),j (113)

=⇒ Cα c′βu
′
k + Cβ c′αu

′
k + c′αc

′
βu
′
k = −〈ξjvk〉(cαcβ),j (114)

=⇒ c′αc
′
βu
′
k = −〈ξjvk〉(c′αc′β),j (115)

where we have expanded the Eulerian fluctuation (cαcβ)′ and used the gradient transport hypothesis for cα, cβ . There
is an inconsistency in the logic which makes this argument, and Eq. 115 invalid. The following three relations for the
mean fields cannot hold true simultaneously.

C
L

α = Cα,j ξj , C
L

β = Cβ ,j ξj , cαcβ
L = cαcβ ,j ξj (116)

If the mean fields Cα, Cβ are linear in the displacement vector, cαcβ will generally have a quadratic dependence on300

the Lagrangian particle displacement vector thereby making Eq. 113 invalid.

E. Turbulent flux of ternary fluctuations

We consider three materially conserved scalars cα, cβ and cγ . The turbulent flux of ternary fluctuations is c′αc
′
βc
′
γu
′
k.

We derive the Lagrangian gradient transport closure for this turbulent flux. The following quantities are materially
conserved.

Dcα
Dt

=
Dcβ
Dt

=
Dcγ
Dt

=
D

Dt
(cαcβ) =

D

Dt
(cβcγ) =

D

Dt
(cαcγ) =

D

Dt
(cαcβcγ) = 0 (117)
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The ternary counterpart to the mean-fluctuation decomposition in Eq. 107 is the identity

cαcβcγ = c′αc
′
βc
′
γ + CαCβCγ + Cαcβcγ + cαCβcγ + cαcβCγ − CαCβcγ − cαCβCγ − CαcβCγ (118)

which results in cLαc
L
β c
L
γ = c′α0c

′
β0c
′
γ0, the ternary counterpart to Eq. 33. This relation can also be derived using

Eq. 33 using induction. Using a decomposition of the form c′0 = c′ + C
L

in Eq. 118, the expression cLαc
L
β c
L
γ can be

expanded as

c′αc
′
βc
′
γ + C

L

αC
L

βC
L

γ + C
L

αc
′
β0c
′
γ0 + c′α0C

L

β c
′
γ0 + c′α0c

′
β0C

L

γ − c′α0C
L

βC
L

γ − C
L

αc
′
β0C

L

γ − C
L

αC
L

β c
′
γ0 = c′α0c

′
β0c
′
γ0 (119)

We then take moments with the velocity at the final position. For passive scalars, the moments with initial point
Eulerian and final point Lagrangian fluctuations are zero. Here, we do not distinguish between unary, binary or
ternary fluctuations. For example, the moment of ternary final point fluctuation with a unary initial point fluctuation
is taken to be zero. Similarly, the moment of a binary final point fluctuation with a binary initial point fluctuation is
taken to be zero. Therefore, for passive scalars, we have

〈c′αc′βc′γvk〉+ 〈CLαC
L

βC
L

γ vk〉 = 0 (120)

Using linear dependence of the Lagrangian fluctuations of the means on the dispersion vector, the gradient transport
closure for the ternary fluctuation flux is

〈c′αc′βc′γvk〉 = −〈ξpξqξrvk〉Cα,p Cβ ,q Cγ ,r (121)

F. Second-moment based variable-density turbulence modeling

The present work addresses modeling within the Favre framework, specifically second-moment closures, where
transport equations for second moments inevitably require closure of third moments.305

Second-moment based closures solve for transport of averaged mass, momentum, energy and Favre stress R̃ij =

ũ′′i u
′′
j . In variable-density turbulence, additional second moments require evolution equations. A relevant modeling

framework is the Besnard-Harlow-Rauenzahn (BHR) [2] modeling framework, in which the turbulent mass flux ρ ak =

ρ′u′k and the density-specific-volume covariance b = ρ′υ′ are additionally transported. Let us review the transport
equations and the closures involved in second moment modeling of variable-density turbulence.310

Conserved scalar: (ρ̄C̃),t +(ρ̄C̃Ũk + ρ̄c̃′′u′′k),k = 0 (122)

Momentum: (ρ̄Ũi),t +(ρ̄ŨiŨk + ρ̄R̃ik + P̄ δik),k = 0 (123)

Total energy: (ρ̄(Ẽ + ŨkŨk/2 + R̃kk/2)),t +(ρ̄(Ẽ + P + ŨkŨk/2 + R̃kk/2)Ũj+

ρ̄ẽ′′u′′j + ρ̄R̃jkŨk + ρ̄ũ′′ku
′′
ku
′′
j /2− ρ̄P̄ aj + p′u′j),j = 0 (124)

Favre stress: (ρ̄R̃ij),t +(ρ̄R̃ijŨk) + (ρu′′i u
′′
j u
′′
k + p′u′jδik + p′u′iδjk),k (125)

+ ρ̄(R̃jkŨi,k +R̃ikŨj ,k )− (ajP̄ ,i +aiP̄ ,j )− (p′u′j ,i + p′u′i,j) = 0 (126)

Scalar variance: (ρ̄c̃′′c′′),t +(ρ̄c̃′′c′′Ũk + ρ̄c̃′′c′′u′′k),k = −2ρ̄c̃′′u′′kC̃,k (127)

Turbulent mass flux: (ρ̄ai),t +(ρ̄aiŨk),k = ρ̄υ′p′,i + bP̄ ,i−R̃ikρ̄,k +ρ̄(akai),k −ρ̄akŪi,k −ρ̄(ρ′u′iu
′
k/ρ̄),k (128)

b = ρ′υ′: (ρ̄b),t +(ρ̄bŨk),k = −2(b+ 1)akρ̄,k +2ρ̄akb,k −ρ̄2
(
ρ′υ′u′k/ρ̄

)
,k −2ρ̄2υ′θ′ (129)

The unclosed Favre moments are c̃′′u′′k , c̃
′′c′′u′′k and ũ′′i u

′′
j u
′′
k . Unclosed turbulent fluxes in ai and b equations are ρ′u′iu

′
k

and ρ′υ′u′k respectively.

G. The Eulerian perspective on gradient transport for second moment turbulent flux

Gradient transport has previously also been derived from an Eulerian perspective [12] although with strong empirical
assumptions. We review the Eulerian approach for passive scalar gradient transport and then derive results for the
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third moment.

c′u′j ,t +(c′u′j Uk + c′u′ju
′
k),k +u′ju

′
k C,j +c′u′k U,j = −(p/ρ)′c′,j + (νcu′jc

′,k + νc′u′j ,k),k −(νc + ν)c′,k u′j ,k (130)

For steady-state, homogeneous turbulence, the balance between production and dissipation yields

u′ju
′
k C,j = −(νc + ν)c′,k u′j ,k (131)

Next, the dissipation is assumed to be isotropic of the form c′,k u′j ,k ≈ (c′u′j)/λ
2
v such that the balance of production

and dissipation results in

c′u′j = − λ2
v

νc + ν
u′ju
′
k C,j (132)

An outcome of this hypothesis is that the time-scale of relevance in the transport process gets associated with the
viscous dissipation process. This is an inherent outcome of an Eulerian approach to turbulent transport.315

Now, we use the approach above to derive gradient transport for the turbulent flux of the binary fluctuation ρ′c′.
From an Eulerian perspective, the transport equation for the third moment can help in deriving an expression for the
turbulent flux of the second moment.

(ρ′c′u′j),t +(ρ′c′u′j U,k +ρ′c′u′ju
′
k),k =− c′u′ju′k ρ,k −ρ′u′ju′k C,k −ρ′c′u′k Uj ,k

− ρ′c′(u′ju′k),k −ρ′u′j(c′u′k),k −c′u′j(ρ′u′k),k

− ρ′c′(p,j /ρ)′ + (νcρ′u′jc
′,k ),k + (νρ′c′u′j ,k ),k

− νc(ρ′u′j),k c′,k − ν(ρ′c′),k u′j ,k (133)

The isotropic dissipation assumption is of the form

νc(ρ′u′j),k c
′,k ≈ νc

ρ′c′u′j
λ2
v

, ν(ρ′c′),k u′j ,k ≈ ν
ρ′c′u′j
λ2
v

(134)

Assuming the mean shear term is negligible and the turbulence is homogeneous and stationary, the production-
dissipation balance leads to the following expression for ρ′c′u′j

ρ′c′u′j = − λ2
v

νc + ν
(−c′u′ju′k ρ,k −ρ′u′ju′k C,k −ρ′c′(u′ju′k),k −ρ′u′j(c′u′k),k −c′u′j(ρ′u′k),k ) (135)

It is interesting that the Eulerian derivation for the second moment turbulent flux does not yield the gradient
transport expressions employed in the literature, which only consists of second moment gradients. In contrast, the
expression derived here also consists of first moment gradients. The similarity to Lagrangian gradient transport of320

the form in Eq. 141 is not a coincidence and is demonstrative of the transport physics accurately captured in the
Lagrangian analysis.

H. Active-scalars and gradient transport

A passive scalar does not influence the velocity field. The mass density of the fluid, however affects the Lagrangian
velocity field via inertia, and is therefore, active and not a passive scalar. This has two consequences for gradient325

transport.

• The Lagrangian moments involving the Lagrangian particle displacement vector are different in constant and
variable-density flows. This is due to differential acceleration effects [24] in the presence of density variations.

〈ξjvk〉CD = υconst

∫ t

0

〈ξjp′,k 〉 dτ (136)

〈ξjvk〉VD = 〈υ〉
∫ t

0

〈ξjp′,k 〉 dτ +

∫ t

0

〈ξjυ′p′,k 〉 dτ (137)

where time-integration is carried out over a trajectory time-scale long enough such that 〈ξjvk(0)〉 = 0. Therefore,
in contrast to constant-density turbulence, variable-density turbulence involves third moments involving the
pressure-gradient and the specific volume.
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• Dynamic effects on the active scalar flux are captured in gradient transport as unclosed initial-final point
Lagrangian moments. For example, For a passive scalar c, in Eq. 11 we used

〈c0vk〉 = 〈c′0vk〉 = 0 (138)

However, for density, Eq. 138 does not necessarily hold. Instead,

〈ρ0vk〉 = 〈ρvk〉 = 〈ρ′0vk〉 6= 0 (139)

The term 〈ρvk〉 cannot be zero because the acceleration and consequently, the velocity in the Lagrangian
trajectory depends on the mass-density ρ(t; 0) associated with the Lagrangian particle. Therefore, gradient
transport for turbulent mass flux yields

〈ρ′vk〉 = −〈ξjvk〉 ρ,j + 〈ρ′0vk〉 (140)

and 〈ρ′0vk〉 is an indicator of how well gradient transport approximates the turbulent mass flux. Similarly,330

Eq. 36 for binary scalar fluctuations will have additional unclosed terms for active scalars, such as density
and those that are related to density via equation of state. As in Eq. 139, the moments of initial-point
Eulerian fluctuations with final-point velocity can be non-zero in flows with pressure-gradient driven differential
acceleration (see Appendix). In such a case, the non-zero moments that result from Eq. 36 are 〈c′α0c

′
β0vk〉,

〈c′α0C
L

βvk〉 and 〈c′β0C
L

αvk〉. These caveats hold for all gradient transport closures in variable-density flows,335

including the expressions in Eqs. 78-83.

Note: The terms that incorporate active scalar effects in Eq. 37 gradient transport are 〈ρ′0c′0vk〉, 〈ρ′0C
L
vk〉 and

〈ρLc′0vk〉. The equation may alternatively be expressed in a form where only a single unclosed term exists. By taking
moments of Eq. 36 with the Lagrangian velocity vk(t; 0), we obtain

〈ρ′c′vk〉 = −〈c′ξivk〉 ρ,i−〈ρ′ξjvk〉 C,j −〈ξiξjvk〉 ρ,i C,j +〈vkρ′0c′0〉 (141)

Here, the gradient transport expression also consists of terms linear in first moment gradients, and but the Lagrangian
moments in such a case involve correlations with scalar fluctuations.

I. Numerical experiments

Two cases of numerical experiments are carried out to evaluate the relevance of the formal expressions to turbulent340

mixing zones. The first case demonstrates the quadratic dependence of scalar variance turbulent flux on the mean
scalar gradient, as is predicted by formal gradient transport. The second case evaluates the turbulent mass flux
component of the Favre scalar flux in buoyancy-driven turbulent mixing layers. For both cases, the data is reported
for Cartesian grids with 2563 points. This resolution is found to be sufficient for the quantities inferred from the
simulations.345

Case 1: Turbulent diffusion of passive scalar slab
The first numerical experiment involves mixing of a passive scalar slab in the presence of fine-grained isotropic

turbulence. The scalar slab is introduced after the stationary turbulent flow-field has evolved over several large-eddy
turnover times tLE. Turbulent diffusion takes place in the presence of mean scalar gradient that weakens with time.
From the expression in Eq. 45, we have for this case

c′c′u′k = 〈ξpξqvk〉
(
C,p C,q

)
(142)

c′c′u′2 = 〈ξ2ξ2v2〉
(
C,2

)2
(143)

The turbulence is stationary, homogeneous and isotropic and is forced at relatively high wavenumber range to
ensure fine-grained turbulence with respect to the scalar gradient length-scale. The Taylor-scale Reynolds number is
250. The fields are evolved using a pseudospectral method and RK4 time integration.

Statistical averages are computed in the plane perpendicular to the direction of inhomogeneity x2. Therefore, the350

overbars and prime operators denote spatial averages in the context of this subsection.
In Fig 3(a), the instantaneous standard deviation σ of the moment 〈c′c′u′2〉(x2) is seen to scale as (C,2 )2 (Eq. 45)

post-transient. This is consistent with formal expression in Eq. 143 that predicts a quadratic dependence of the
moment on the mean scalar gradient in stationary turbulence. The standard deviation (in x2) is used here as a proxy
for the magnitude of the third moment.355
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FIG. 2. Case 1: Scalar slab diffusing with time (left) and the instantaneous velocity component field of the stationary
homogeneous isotropic turbulence (right).

Additionally, in Fig 3(a), we observe that the scalar variance turbulent flux magnitude scales as c′c′,2. This is
predicted by the conventional gradient transport expression (Eq. 44). However, in Fig 3(b), we plot time-averaged
normalized profiles of 〈c′c′u′2〉, C,2 and c′c′,2. The mean scalar gradient has two peaks, in the two mixing zones while

the variance gradient has four peaks, two for each mixing zone. The magnitude envelope of c′c′u′2 can be seen to
coincide with the mean gradient and not the variance gradient. Therefore, formal gradient transport can potentially360

provide more accurate estimates of second moment turbulent fluxes.

FIG. 3. (a) Third moment magnitude, mean and variance gradient as a function of time, and (b) Normalized profiles in x2,
averaged between 4 ≤ t/tLE ≤ 15

Case 2: Rayleigh-Taylor turbulent mixing layer

Turbulent mass flux is an important dynamical variable in Rayleigh-Taylor unstable mixing layers. Therefore,
simulations of incompressible buoyancy-driven mixing layers are carried out for three Atwood numbers A = (ρ2 −
ρ1)/(ρ1 + ρ2) = 0.5, 0.8 and 0.9 to evaluate the mass-flux term. The details of the numerical method can be found365

in [1, 27]. The Reynolds number based on Taylor-microscale in the center of the mixing zone is approximately 75 for
all three cases. The Froude number is fixed at 0.5.

The mass flux term c′′(〈ξ2v2〉ρ,2 +ρ̄a2) (Eq. 85,86) is estimated using the approximation 〈ξ2v2〉 ≈ −c′u′2/C,2 and

compared against the Favre scalar flux ρ̄c̃′′u′′2 . In Fig 4, the peak values of the fluxes in fully developed mixing zones

are plotted. The values for the third moment ρ′c′u′2 are also plotted for comparison. The active scalar effects in370

the turbulent mass flux are seen to be negligible for moderate Atwood numbers but are important at higher Atwood
numbers. As discussed in the main text, active scalar effects are implicitly neglected when gradient transport analysis
is carried out with non-centered Favre fluctuations — the so-called argument by analogy. The formal expression
allows explicit modeling of the mass flux effects in Favre fluxes.
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FIG. 4. Case 2. Buoyancy-driven turbulent mixing layers: (left) instantaneous density fields for three Atwood numbers, and
(right) peak fluxes in the fully developed mixing zones. Arrows indicate direction of acceleration.

J. List of symbols and operators375

(),j Spatial gradient ()0 Initial point in Lagrangian trajectory

〈()〉 Lagrangian trajectory ensemble average ()L Lagrangian fluctuation

() Eulerian mean ()′ Eulerian fluctuation

(̃) Favre mean ()′′ Favre fluctuation

TABLE I. Averaging and fluctuation operators

ui Eulerian velocity vi Lagrangian velocity

ρ Density cα Scalar specie α

ξi Lagrangian displacement vector υ Specific volume

k Specific kinetic energy ε Dissipation rate

Rij Turbulent stress ρ̄ai Turbulent mass flux

b Density specific volume correlation θ Dilatation

TABLE II. Symbols for physical quantities
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