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Abstract

Fiber orientation in oscillatory shearing flow was studied both experimentally and numerically. Optical

measurements were made using a custom flow cell containing rigid, non-colloidal fibers suspended at high

concentration in a Newtonian fluid. Simulations that account for hydrodynamic drag and excluded volume

predict fiber alignment in the vorticity direction for some conditions, in agreement with the measurements.

Vorticity alignment was found to be a complex function of strain amplitude and fiber concentration, con-

finement, and aspect ratio.
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I. INTRODUCTION

Shearing concentrated particle suspensions using an oscillatory flow can create a microstructure

that is highly organized and substantially different from that observed in steady shearing flows.

For suspensions of hard spheres that are Brownian, techniques such as light scattering [1, 2] and

microscopy [3–5] have established the existence of multiple phases, including face-centered cubic

and string phases. The microstructure is controlled in part by the rate of shear, or frequency

of oscillation, relative to the timescale for Brownian diffusion. However, the amplitude of the

oscillatory strain largely controls the microstructural phase [2, 5, 6].

Highly concentrated suspensions of non-Brownian spheres also organize under oscillatory flow.

In this case, the strain amplitude and particle concentration control the microstructure; the rate of

shear (i.e. frequency of oscillation) is irrelevant so long as it is maintained within the creeping-flow

regime and since there is no Brownian time-scale. Evidence for the strain amplitude-dependent

organization is given by rheological measurements [7, 8] which have been correlated to the mi-

crostructure through simulation [9]. Changes in the microstructure are driven, at least partially, by

a transition from reversible dynamics at small strain amplitudes to irreversible dynamics at large

strain amplitudes, where the transition depends on the concentration of particles [10, 11].

Oscillatory rheology is used commonly to characterize colloidal and non-colloidal particle sus-

pensions for materials development and quality control, hence the interest in examining the rela-

tionship between the applied flow, microstructure, and rheology. The possibility of using oscilla-

tory flows to alter favorably the microstructure for specific applications has also been suggested

[2]. For example, investigations have explored using oscillatory shear to assemble colloidal crys-

tals [12, 13], and oscillatory shear may be relevant for self-assembly of non-colloidal particles as

well [14].

The vast majority of studies concerning oscillatory flow of concentrated particle suspensions

have been limited to spheres rather than other particle shapes, which comprise many suspensions.

In the case of elongated particles that are non-Brownian and suspended at high concentration,

oscillating the flow can induce strong alignment in the vorticity direction [15, 16]. This alignment

contrasts with the tendency of fibers to align with flow direction when sheared steadily within

a Newtonian fluid. Simulations by Snook et al. [17] accurately predicted the alignment of the

fibers and indicated that particle collisions drive the organization of the orientation distribution.

Additionally, they speculated that the suspension must be confined in order for vorticity alignment
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FIG. 1: Fibers were manufactured from the poly(methyl methacrylate) core of fiber optic cables

of diameter d by cutting them in segments of length L. Various aspect ratios of A = L/d were

generated: (a) L = 5.2±0.2 mm, d = 0.46±0.06 mm, and A = 11±2; (b) L = 5.2±0.2 mm,

d = 0.23±0.02 mm, and A = 23±2; and (c) L = 10.4±0.2 mm, d = 0.46±0.06 mm, and

A = 23±2.

to occur.

Here, we address questions raised by the work of Franceschini et al. [15, 16] and Snook et al.

[17], including the effects of fiber concentration and confinement on the orientation distribution.

Measurements of fiber alignment were made in a custom-built flow cell as functions of fiber ge-

ometry and strain amplitude, as well as concentration and confinement (see section II). Simulation

methods used to predict the orientation are described in section III. Section IV B demonstrates

that the measurements are consistent with previous experiments at the same conditions, though

the dependence of alignment on the distance from the bounding walls must be considered when

making the comparisons (see section IV A). Additional results in section IV confirm that vorticity

alignment depends upon the confinement and concentration of particles, as well as particle size

and geometry.

II. MATERIALS AND EXPERIMENTAL METHODS

Three batches of fibers, as shown in Fig. 1, were manufactured from fiber optic filaments with

poly(methyl methacrylate) cores. The filaments were soaked in dimethyl sulfoxide, mechanically

wiped to remove the outer fluorocarbon coating, and then cut to the appropriate length to produce

fibers with aspect ratios A = L/d of 11± 2 and 23± 2, where L and d are the fiber length and

diameter; two sets of fibers were used at A = 23, where L and d of one set are double the other

set. The fibers were suspended in a mixture of Triton X-100 (73% by mass), distilled water

(11%), and zinc chloride (16%). Fluorescent dye (Rhodamine 6G) was added to the mixture at
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FIG. 2: (a) Schematic of the shear cell as viewed from above. The suspension is sheared by the

transparent acrylic belt (red) which is driven by rotating the cylinders (white) at either end of the

cell. A laser sheet (green) of thickness 250 µm, centered in the gap, fluoresces the fluid and

enables imaging of the particle orientation distribution. (b) Photograph showing the controller

and imaging equipment that surrounds the shear cell. A stepper motor attached to the cylinders

drives the shearing flow, which is oscillated using a controller that also actuates the shutter and

camera. (c) View of the shear cell from the same direction as the camera. The laser sheet

fluoresces the suspension in the flow-vorticity plane.

a concentration of 9× 10−7 g/cm3. This fluid was Newtonian, with a viscosity of µ = 30 Poise,

and the density (ρ = 1.24 g/cm3) and refractive index matched that of the fibers. These properties

were characterized at the same temperature (25◦C) at which the experiments were performed.

The suspension was sheared within the custom-built cell shown in Fig. 2. Specifically, the fiber

suspension was loaded in the region between the transparent belt (see Fig. 2(a)). Pure suspending

fluid was loaded into the space between the shear cell walls and the belt. Since the belt extends

from the bottom of the shear cell to a point above the fluid, fibers were unable to escape the

region between the belts, and the concentration of fibers was maintained constant throughout the

experiment. The suspension was gently mixed and sheared, allowing trapped air to escape to the

surface prior to each experiment.

The belt was held in place by applying tension with the aluminum cylinders at either end of

the cell, and a shearing flow was generated by the relative motion of the transparent belt upon
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rotating the cylinders as indicated in Fig. 2(a). Grooves were etched into the top of the belt for

the cylinders to grip and aid with rotating the belt. Gears on one of the cylinders were attached

to a stepper motor to actuate the motion, while the other cylinder rotated freely. Spacers made

of acrylic were inserted in the shear cell to set the gap size at either H = 7.8 or 15.6 mm, which

corresponds to H = 1.5L and 3L; the length of the controlled gap (cylinder to cylinder) was 11 cm,

and the maximum height of fluid was 4.5 cm.

A controller operated the stepper motor to generate an oscillatory shearing flow. The rate of

shear was constant for the forward and backwards motions (i.e., a square-wave), rather than a

sinusoid, and the instantaneous strain increased from zero to a value of 2γ0 before returning to

zero for each cycle. The range of strain amplitudes γ0, gap sizes H, volume fractions φ , and

fiber aspect ratios A were chosen similar to the experimental work of Franceschini et al. [15]

and computational work of Snook et al. [17]. The maximum shear rate of 1.67 s−1 used in the

experiments gives a maximum particle Reynolds number of Re= ργ̇L2/µ = 0.07, and Brownian

motion is negligible owing to the large size of the fibers. The maximum stress exerted by the flow

on the fibers was much smaller than the stress required to buckle a fiber [18]; consequently, the

fibers can be considered rigid under the conditions of the experiment.

Figure 2(b) shows the spatial arrangement of the shear cell and surrounding imaging equipment.

The laser sheet that entered the cell from the top (see Fig. 2(a)) had a width of 250 µm and

wavelength of 532 nm. A shutter was mounted in front of the laser sheet to prevent photobleaching

caused by overexposure of the fluid. The shutter and camera were actuated by the same controller

that managed the oscillatory motion; at the end of each oscillatory cycle, a five second delay was

implemented to minimize the free surface deformation from the shear, and then one image was

captured. Figure 2(c) shows the shear cell from the same direction as the camera, which allows for

capturing images in the flow-vorticity plane through the transparent walls of the shear cell. Images

were only captured in the flow-vorticity plane that is aligned with the center of the gap; the top

metal piece in Fig. 2(c) restricts the imagining plane from various positions in the gap, such as

capturing images near the wall.

Images collected during the experiments, such as the example in Fig. 3, were processed to cal-

culate the orientation distribution. The fibers were marked, and the center of mass and orientations

were measured. To minimize any effects of the free surface and the bottom bounding wall of the

apparatus, the window of analysis was limited to the region one particle length from each bound-

ary. Quantitative information on the orientation distribution was extracted from the processed
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FIG. 3: (a) Example image showing fibers in the flow-vorticity plane, where α is the angle

between the projection of the fiber in this plane with the flow direction. (b) Fibers within each

image were identified and the orientation of each was determined. Only those particles at least

one fiber length from the free surface and bottom plate were included in calculations of the

orientation distribution.

images. As depicted in Fig. 3(a) and Fig. 4(a), the angle α is the angle between the flow direction

and the projection of the fiber in the flow-vorticity plane. The angle α was used in the computation

of the order parameter Sα , a measurement of the fiber orientation. Here, Sα = 1−2 < cos2(α)>,

where the < ·> denotes an average over fibers in the window of analysis. Note that Sα = 0 for a

suspension with a random orientation distribution, and Sα = −1 or 1 indicates a suspension with

perfect fiber alignment in the flow or vorticity direction, respectively.

III. SIMULATIONS

To assist in interpreting the experimental results and spanning a wider range of the dimension-

less parameters, simulations were used. The model is similar to that used by Snook et al. [17] to

simulate the oscillatory shear of concentrated suspensions of rigid fibers. The equations ignore the

effects of inertia since the Reynolds number is small, and the hydrodynamic forces are modeled

using slender-body theory for a rigid rod at leading order [19, 20]. Furthermore, the model ex-

cludes hydrodynamic interactions between particles; this approximation has been used to predict

accurately the orientation distribution of high-aspect ratio fibers at sufficiently large concentrations

[21–23], as contact interactions between fibers predominately influence the dynamics.

Using the above assumptions and balancing the hydrodynamic drag and short-range repulsive
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FIG. 4: (a) The x, y, and z-directions are the flow, gradient, and vorticity directions, respectively.

The angle between the fiber’s projection in the flow-vorticity plane and the flow direction is α .

(b) Each fiber of aspect ratio A is defined by its center-of-mass position xi and orientation pi. A

Hertzian repulsive force acts to separate pairs of fibers when their minimum separation distance

hi j indicates an overlap (refer to Equation 3).

forces (Fi) to maintain the excluded volume of the fibers gives

ẋi = u(xi)+ξ
−1(I+pipi) ·Fi, (1)

where ẋi is the velocity of the center-of-mass, xi, and pi is the unit vector along the axis of fiber

i (see Fig. 4(b)). An oscillatory shear flow, u(xi, t) = γ̇(t)yex, is imposed, with flow in the x-

direction and the gradient in the y-direction as defined in Fig. 4(a). The shear rate is a square-wave

of magnitude γ̇0 and the period is determined by the strain amplitude γ0; simulations were also

run using a sine-wave oscillation method, replicating the conditions of the previous work [15, 17].

The coefficient for the mobility is ξ−1 = ln(2A)/4πµL.

Likewise, the rotational motion is governed by a balance between the torque due to hydrody-

namic drag and torque caused by the repulsive forces between fibers (Ti),

ṗi =Ω ·pi +B(I−pipi) ·E ·pi +
12ξ−1

L2 Ti ×pi. (2)

In the above equation, rotation of a slender body due to a shearing flow has been replaced by

the rotation of a rod with a finite thickness. The fiber rotates in proportion to the rotation of
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the fluid, Ω = 1
2 [(∇u)− (∇u)T], and a fraction B = (A2

e − 1)/(A2
e + 1) of the extensional flow,

E = 1
2 [(∇u)+(∇u)T]. The parameter B is a correction for the rotation of a spherocylinder [24–26]

instead of an ellipsoid [27], using a fiber effective aspect ratio Ae = 0.8A, rather than the aspect

ratio A; for these calculations, Ae = 8.8 and 18.4 when the fibers are of aspect ratio A = 11 and 23,

respectively.

To maintain the excluded volume of the particles, Snook et al. [17] applied a repulsive force

between overlapping fibers that was constant. Here, a Hertzian force [28, 29] was applied to

prevent the overlap of two fibers in contact (see Fig. 4(b)),

f(c)i j =

0 if hi j > 2ε

kn(
hi j
2ε
)

3
2 ni j if hi j ≤ 2ε

, (3)

where kn = 4πµγ̇L2/ln(2A), hi j is the minimum separation distance between two fibers i and j,

ε = 0.1d is the estimated roughness of a fiber in the experiments, and ni j =±(pi ×p j)/
∣∣pi ×p j

∣∣
is the normal direction of the collision. The sign of the normal is chosen so that the fibers repel,

rather than attract, each other. Periodic boundaries were used in the flow and vorticity directions,

and particles were maintained within the bounding walls using a similar forcing,

f(w)i =

0 if hi > ε

kn(
hi
ε
)

3
2 ni if hi ≤ ε

, (4)

where hi is the minimum separation between the fiber i and the nearest wall, and the normal points

from the wall into the fluid.

The summation of interactions for a fiber i yields the total non-hydrodynamic force,

Fi = f(w)i +
νT

∑
j=1

f(c)i j , (5)

and torque,

Ti = sipi × f(w)i +
νT

∑
j=1

si jpi × f(c)i j , (6)

where si j is the point on fiber i where it collides with fiber j, as illustrated in Fig. 4(b), and si is

the point on fiber i where it collides with the wall. The sums over the total number of fibers νT

exclude when i = j.

Equations 1 and 2 were integrated in time using the Euler method, starting from an initial set

of particle positions and orientations. The initial distribution for each simulation was created by
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FIG. 5: The order parameter Sα as a function of the oscillation number N of the simple contact

force simulations used in previous calculations [17] compared to the change in the forcing to a

Hertzian contact force. The conditions used were H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5; both

curves were produced using the sine-wave oscillation method and the initial distributions are

identical. Averaging is performed over all fibers within the gap and over 12 runs.

randomly placing particles in the simulation box, while rejecting any placements that generated

an overlap. Simulations were performed using up to νT = 5052 particles (given a box size of

5L×3L×5L), which varies depending on box size, aspect ratio A, and concentration φ . The time

step was set to a value of ∆t = 0.001L/(H γ̇0), which ensured that displacements were smaller

than the range over which the repulsive force operates. The computational expense, caused by the

combination of small time steps and total time over which simulations were run, was mitigated in

part by making use of link-lists [30] to facilitate the search for collisions between particles.

Figure 5 compares Sα calculated using the constant repulsive force model used by Snook et

al. [17] and the Hertzian force model (see Equations 3 and 4). Twelve runs were performed for

H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5 using a sine-wave oscillation. The values of Sα were

determined by averaging over all fibers in the simulations within the gap, and the error bars shown

in the figure represent the standard deviation of the mean across the twelve runs. Given identical

initial conditions, Sα is slightly higher for the constant repulsive force model than the Hertzian

force model following each oscillation N, though the steady-state result is the same within the

calculated error. The predictions for Sα are similar since the range over which the forces operate
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z (vorticity)

y (gradient)

Sα=0.90Sα=0.62Sα=-0.01

H

FIG. 6: Visualisation of an initial condition for the fibers and their predicted distribution after

N = 400 and 4000 oscillations. Fibers generally rotated into alignment with the vorticity

direction for this set of conditions, which consisted of H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5

with a square-wave oscillation. Vorticity alignment is reflected by the increased values of Sα ,

which were calculated using all fibers in the gap.

(h < 2ε) are identical.

IV. RESULTS AND DISCUSSION

Sec. IV A describes simulation results that indicate spatially dependent alignment of the fibers,

and Sec. IV B compares experimental and numerical results from this work with previous ones.

Later sections present results on the larger range of conditions. Including the gap H, a total of four

length scales (L, d, and strain displacement γ0H) were varied in the experiments. Additionally,

the fiber concentration was varied and is reported as either a volume fraction φ or a dimensionless

number density nL2d = 4Aφ/π; the number of fibers normalized by the total volume is the number

density n. Note that the alignment is assumed to depend only on the gap H, and not the length and

height of the test cell. Also, the alignment depends on the number of oscillations N, but not on

time. Time does not enter into the problem directly since the flow was in the creeping regime and

there were no other time scales due to the absence of Brownian motion and gravitational effects

(i.e. the particle and fluid densities matched). Consequently, the alignment (Sα ) at any value of N

is expected to be a function of four dimensionless parameters (A, γ0, H/L, and either φ or nL2d)

constructed from the five variables and one independent unit (length).

A. Spatial dependence of the order parameter

Figure 6 illustrates a set of fibers, starting from the initial distribution (N = 0), and after sim-

ulating N = 400 and 4000 oscillations using the methods presented in Section III. The order
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FIG. 7: Results from simulations with H = 1.5L, A = 11, φ = 0.20, γ0 = 2.5, and a square-wave

oscillation. (a) Illustrations of slices of the suspension at the center of the gap (left column) and

near the wall (right column) evolving from an initial state (N = 0) through the steady-state

structure at N = 4000. Reported values of Sα were calculated only over those fibers intersecting

each slice. (b) The order parameter Sα as a function of the number of oscillations N for the

square-wave model presented in Section II using every fiber in the gap (circles), fibers

intersecting the center (open triangles), and fibers within a diameter of the wall (square symbols).

Order parameters measured from experiments are also shown (filled triangles). The inset shows

the calculated average number of fibers νS present in the wall and center slices as a function of N

from the square-wave model. Error bars represent the standard deviation of the mean values

calculated from multiple realizations of either the simulations or experiments.

parameters Sα reported in the figure were evaluated by averaging over all fibers in the gap; it was

found to increase from the initial value of Sα =−0.01 to 0.79, indicating a preferential fiber align-

ment in the vorticity direction after 4000 cycles. Correspondingly, the images indicate that the

fibers tend to align in the vorticity direction throughout the gap, though alignment is a function of

position as seen more explicitly in Fig. 7(a). This figure shows slices of width d/2L at the center

of the gap and adjacent to a bounding wall for the same set of data as in Fig. 6. Initially, fibers

near the wall lie mostly in the flow-vorticity plane with no preferential alignment, while many
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of the fibers that intersect the flow-vorticity plane in the center of the gap extend substantially in

the gradient direction. Additionally, the number of fibers intersecting the center slice exceeds the

number in the wall-adjacent slice. After oscillating 400 and 4000 times, fibers near the wall and

in the center of the gap aligned more fully in the flow-vorticity plane and preferentially oriented

in the vorticity direction. Notably near the wall, fibers organized more strongly than in the center,

and the relative number of fibers near the wall surpassed the number in the center of the gap after

oscillating approximately 100 times.

The order parameter Sα was evaluated as a function of oscillation number and was averaged

over multiple simulations. Figure 7(b) shows the results for the bulk value and for fibers in the

center and adjacent to the wall. Note that bulk values of Sα were produced by averaging over

all fibers in the gap, while the center slice and wall slice values of Sα were calculated using

only those fibers intersecting a slice of thickness d/2L at the center and adjacent to the wall,

respectively. As N increased to 4000 cycles, the bulk Sα first dropped to a minimum value of

−0.32± 0.03 at N ≈ 25 before increasing and approaching a steady-state value of 0.79± 0.03.

This set of conditions (H = 1.5L, A = 11, φ = 0.20, γ0 = 2.5) gave the largest bulk value of the

order parameter across all conditions that were studied. The order parameter for the wall and

center slices remain larger and smaller, respectively, than the bulk value.

The steady-state distribution was highly vorticity aligned for the wall slice (Sα = 0.96) , and the

fibers in the center of the gap began to align more in the flow direction (N ≈ 100) before weakly

aligning in the vorticity direction (Sα = 0.19) only after 500 oscillations. The numerical data in the

center slice agree most closely with the experimental measurements. The inset of Fig. 7(b) shows

the number of fibers (νS) intersecting slices at the center and adjacent to the wall as a function of

oscillation number N for the simulations. The number of fibers decreased in the center plane as

fibers rotated out of the gradient direction and into the flow-vorticity plane; fibers near the wall

self-organized as the concentration of fibers increased.

B. Comparisons with previous work

Figure 8 compares measurements reported by Franceschini et al. [15] (see panel a) to measure-

ments from the experiments described in Sec. II (see panel b) over a range of strain amplitudes

and identical conditions of H = 1.5L, A = 11, and φ = 0.20. Previous measurements indicate

fibers strongly align with the the vorticity direction at γ0 ≈ 2.5, where the order parameter Sα is
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FIG. 8: Experimental and simulation results for H = 1.5L, A = 11, and φ = 0.20. (a) The bulk

order parameter Sα measured in previous experiments [15] is compared to simulation results,

including those of Snook et al. [17]. The inset indicates the oscillation number NR at which Sα

was determined for each γ0. (b) The order parameter Sα measured from experiments are

compared to simulations using square-wave oscillations. Simulations show Sα as calculated

using all fibers in the gap, though the open triangles and dashed line used only those fibers

intersecting the center plane of the gap when calculating Sα .

maximized. Experimental results in Fig. 8(b) appear to show a very different dependence of Sα on

γ0; as γ0 increases above 1.5, Sα not only decreases, but is also negative, indicating an increased

alignment of particles in the flow-direction. The discrepancy in the results is due primarily to the

spatial positions over which the orientation distributions were sampled and, to a lesser extent, the

pattern of the shearing flow.

The laser sheet fluoresces the flow-vorticity plane in the center of the gap in the current exper-

imental work, and the alignment of the fibers is position dependent as demonstrated in Figs. 6 and

7. Hence, the experimental data for Sα shown in Fig. 8(b) compares well with simulation results

where only those fibers that intersect the center plane have been used in the evaluation. Like the

experimental data, the simulations indicate smaller values of Sα as the strain amplitude increases,

with quantitative agreement for γ0 > 1.5. Analysis of simulation results that include all fibers

when determining Sα , which are also shown in Fig. 8(b), indicate much larger values than seen

in the experiments. Likewise, Fig. 7(b) shows that the experimentally measured values of Sα as a
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function of oscillation number are much better predicted by the simulated values of Sα from fibers

in the middle of the gap than across the entirety of the gap, as expected given the measurement

position.

In the experiments by Franceschini et al. [15], fibers were sheared in a Couette cell and the

orientation distribution was measured for fibers intersecting a laser sheet. Few details were given

regarding the exact position and size of the laser sheet, but the curvature of the Couette cell pre-

vented aligning the sheet uniformly in the flow-vorticity plane, and fibers not in the center of the

gap were sampled as well. Figure 8(a) compares the order parameter measured by Franceschini

et al. [15] with the present simulations and those of Snook et al. [17] using different contact

forces but calculating Sα using all fibers in the gap; the inset indicates the oscillation NR at which

Sα was determined for each γ0 across all of the results shown. At the lower strain amplitudes

(γ0 = 0.5−1.5), discrepancies between the simulations and the experiments are most likely due to

different initial configurations, as the simulations used initially random orientations (Sα ≈ 0) and

the experiments were pre-aligned slightly in the flow-direction (Sα ≈−0.20). The good agreement

suggests that the measurements of Franceschini et al. [15] sampled fibers across the entirety of the

gap.

Though the spatial sampling of fibers is the primary reason that the experimental results in

Figs. 8(a) and (b) should not be compared directly, the pattern of oscillation and data collection

also causes some differences that affect any comparisons with the work of Franceschini et al.

[15, 16]. Their experiments and the corresponding simulations of Snook et al. [17] utilized a

sinusoidal strain displacement, where the instantaneous strain was increased from zero to a value

of γ0, was decreased to −γ0, and then returned to zero, at which point the orientation distribution

was sampled. The order parameter Sα from the previous works are compared in Fig. 8(a) to our

simulations using the same sine-wave oscillation, though simulations results in Fig. 8(b) used a

square-wave oscillation and sampling in order to mimic the experiments. For the square-wave, the

instantaneous strain is increased to 2γ0 and then returned to 0, at which point the measurement of

orientation was made.

Using identical initial conditions, simulations shown in Fig. 9(a) demonstrate that the bulk

value of Sα is lower at each value of N when using a square-wave, as opposed to sinusoidal,

pattern of shear and measurement. At N = 4000 oscillations, the order parameter for the sine-wave

simulations is 0.83±0.01 and for square-wave simulations is 0.79±0.03. The order parameter Sα

also depends on when it is calculated throughout an individual cycle; evolution of Sα as function of
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FIG. 9: Bulk values of Sα at H = 1.5L, A = 11, φ = 0.20, and γ0 = 2.5 from simulations. (a) The

order parameter Sα as a function of the number of oscillations N is different for the sine-wave

and square-wave patterns of shear and measurement, and the inset shows the first nine cycles. (b)

The order parameter as a function of N when using the square-wave and recording the orientation

distribution at end and half-point of each cycle.

N for various positions in the square-wave cycle is shown in Fig. 9(b) for square-wave oscillations.

Until around N = 200, the order parameter is consistently larger at the end of each cycle (dotted

line) compared to the calculations recorded halfway through the cycle (solid line), the point at

which the flow is reversed in the cycle. Similar differences in the Sα due to the oscillation methods

were observed for all conditions in the current work.

Having established, with the aid of simulations, that the experiments performed here are consis-

tent with those Franceschini et al. [15], the remaining section presents a wider range of conditions.

The remaining simulation and experimental results use only the square-wave pattern of oscillation

and sampling, except where noted.

C. Orientation dependence on gap size, aspect ratio, and concentration

The effect of confinement on the order parameter is depicted in Fig. 10, where A = 11 and

φ = 0.20. The order parameter of the final cycle recorded in the experiments compares well with

simulation results, as shown in Fig. 10(a); only fibers intersecting the center of the gap were
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FIG. 10: Calculations and measurements performed with A = 11 and φ = 0.20. (a) The order

parameter Sα was evaluated for fibers intersecting the center of the gap for simulations and

experiments at different H and γ0; here, Sα was measured at N = 1283, the largest common

number of oscillations across every experiment and simulation. (b) The bulk, center, and

wall-adjacent values of Sα as a function of N for H/L = 3.0 and γ0 = 1.5. The inset shows the

calculated average number of fibers νS that intersect the center and wall plane as a function of N.

included in the calculation of Sα and the measurements and simulations are reported at N = 1283,

the largest common oscillation number among the experiments shown in the figure. For the smaller

H/L of 1.5, fibers at the center of the gap orient only slightly in the direction of vorticity at

intermediate strain amplitudes at N = 1283. Fibers at the center of the gap align preferentially in

the gradient direction for H/L = 3.0, though a surprising dip in Sα is predicted by the simulations

at γ0 ≈ 1.5. Figure 10(b) explores the dynamics for this condition and shows that Sα for fibers in

the center diverges from the bulk value after approximately 100 oscillations, with the fibers in the

middle turning towards the flow direction while fibers adjacent to the wall strongly align with the

vorticity direction. The inset of Fig. 10(b) reports that the calculated average number of fibers in

each of the center and wall slices remains relatively constant throughout the development of the

microstructure, much unlike the conditions presented in the inset of Fig. 7(b).

Bulk values of Sα were evaluated from simulations at N = 4000 for gap sizes between H = 1.5

and 3.0 for a range of γ0 values; for all but the smallest strain amplitude of 0.5, the orientation

distribution was steady by N = 4000. Figure 11(a) shows that each confinement produces a maxi-

16



(a)

H=1.5L
H=2.0L
H=2.5L
H=3.0L

S α
(N

=4
00

0)

−1

−0.5

0

0.5

1

γ0

0 1 2 3 4 5

slope = -0.6

1

0.5

H/L
1.5 2 2.5 3

(b)

H=1.5L
H=2.0L
H=2.5L
H=3.0L

S α

−0.2

0

0.2

0.4

0.6

0.8

1

h/L
0 0.25 0.5 0.75 1 1.25 1.5

ν S

0

100

200

0 0.5 1 1.5

FIG. 11: Simulation results for A = 11 and φ = 0.20. (a) The bulk order parameter Sα was

evaluated for multiple gap sizes H/L at N = 4000 across multiple γ0. The inset shows the

maximum Sα for each gap size H (occurs at γ0 = 2.5) as a function of H/L. (b) Spatial variation

of Sα for various H when γ0 = 2.5, where h/L is the distance from the wall (see Fig. 2(a)). The

inset shows the calculated average number of fibers νS as a function of h/L.

mum peak value in the bulk Sα at γ0 = 2.5, with the highest being Sα = 0.79±0.03 at H = 1.5L.

As the confinement relaxes to H = 3.0L, Sα drops to 0.50± 0.04. At γ0 = 2.5, alignment in the

vorticity direction is remarkably similar as a function of distance from the wall (h/L across all

of the studied gaps (see Fig. 11(b)). Fibers adjacent to the wall are strongly aligned in the vor-

ticity direction, with Sα > 0.9. The orientation distribution returns toward a random alignment

(Sα = 0) as the distance h/L from the wall increases. Note that the inset of Fig. 11(a) shows that

the peak values of Sα scale as (H/L)−0.6, though calculating this result from Sα(h/L) requires

consideration of the position dependent concentration. This is shown in the inset of Fig. 11(b) and

indicates that the fibers are more concentrated near the wall where the fibers are highly organized

and aligned with the vorticity direction.

Two sets of fibers with an aspect ratio of A = 23 were used in experiments, as pictured in Fig.

1, where both the length and diameter of one set is roughly double the second set. Experimental

measurements for both sets of A = 23 fibers is compared in Fig. 12 to simulation results at the

same confinement of H = 1.5L and oscillation number N = 1395, the largest common oscillation

number between experiments; to compare the measurements, Sα from the simulations was calcu-
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FIG. 12: Measurements and simulations with A = 23, H/L = 1.5, and φ = 0.10. The order

parameter Sα from experiments (closed symbols) is compared to simulation results where Sα was

evaluated for fibers intersecting the center of the gap (open symbols). The results are reported at

the common terminal oscillation N = 1395 of the experiments. The bulk order parameter Sα

evaluated from simulation results is also shown.

lated only for fibers intersecting the mid-plane between the bounding walls. The experiments and

simulations show slightly reduced values of Sα at γ0 = 2.5 versus 1.5, with the results indicating

that the alignment is close to random in the center and across the gap of the channel as well. The

experimental results should be the same, regardless of the physical size of the fibers since all other

parameters (H/L, γ0, and φ ) were held constant. However, the values of Sα are larger for the

bigger fibers, and the reported measurement errors do not account for the differences. One notable

possibility is that the height of the fluid in the cell may have impacted the results.

To further assess the functional dependence of alignment on aspect ratio and concentration,

simulations were performed for two different aspect ratios and concentrations over a range of

strain amplitudes. The results for the predicted bulk values of Sα are given in Fig. 13(a) along

with some experimental results of Franceschini et al. [16] for a concentration of φ = 0.10. Similar

to the simulation results at the same conditions, a maximum Sα is observed around γ0 = 4−5 in the

experiments, though it should be noted that the comparison is at a different oscillation number and

the experiments were performed using a sine-wave oscillation. The simulation data in Fig. 13(a)

demonstrates that there is no simple agreement when comparing order parameters on the basis of
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FIG. 13: (a) Bulk values of Sα from simulations for N = 2340, H = 1.5L and A = 11 and 23 for a

range of concentrations. Some experimental results [16] are also shown for comparison; the inset

indicates the oscillation number at which the experimental data was reported. (b) Simulations

results for the bulk values of Sα are replotted by scaling the strain amplitude by φ/Φc, where

Φc = 0.4 as found by Franceschini et al. [16] from rheological measurements.

either volume fraction φ or dimensionless number density nL2d. At the same particle aspect ratio

A= 11, a decrease in the concentration by a factor of two (φ = 0.20 to 0.10 or nL2d = 2.88 to 1.44)

yields distinctive fiber orientations, even though both are considered concentrated suspensions;

the higher concentration system (φ = 0.20 or nL2d = 2.88) indicates a strong alignment in the

vorticity-direction (Sα = 0.79 at N = 4000), whereas the lower concentration system (φ = 0.10

or nL2d = 1.44) indicates increasing alignment in the flow-direction (Sα = −0.35 at N = 4000).

Simulation results for A = 23 indicate little vorticity alignment relative to A = 11 when comparing

both at identical φ and nL2d.

The orientation distribution is controlled by contacts between particles and the bounding walls,

as indicated by the simulations by Snook et al. [17] and here. As the strain amplitude is increased

at a fixed concentration, initially random rods experience more collisions during a cycle; below a

critical strain amplitude, particles organize into a state that significantly lowers the number of con-

tacts, or “activity” as defined by Franceschini et al. [15, 16]. Likewise, at a fixed strain amplitude,

a critical concentration exists at which collisional activity transitions. Data from oscillatory rheol-

ogy was used to conclude an inverse relationship between the critical strain and concentration at
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FIG. 14: Average number of contacts (ν(c)) extracted from simulations with H = 1.5L and

A = 11 and 23. (a) The total number of fiber contacts with other fibers and bounding walls as a

function of the oscillation number N. Results below, near, and above the critical rescaled strain

amplitude of γ0φ/Φc = 1 are shown for volume fractions φ = 0.10 and 0.20. (b) The total

number of contacts are compared at N = 4000, after having substracted the minimum value of

ν(c) at N = 4000 for each volume fraction. The number of contacts markedly increases at

γ0φ/Φc ≈ 1. Inset shows the spatial distribution of contacts for A = 11 and φ = 0.2, where h/L is

the distance from the bounding wall.

which the activity transitions. Assuming that the transition to-and-from vorticity alignment scales

in a similar manner, the data for Sα in Fig. 13(b) was replotted by a rescaled strain amplitude of

γ0φ/Φc. Here Φc = γcφ is the critical volume fraction as defined by Franceschini et al. [16],

which represents the effective volume fraction swept-out by the fibers rotating in the shear flow of

amplitude γc. We use the value of Φc ≈ 0.4 that they found for fibers at high concentration. As

shown in the inset of Fig. 13(b), the data for A = 11 collapses for this choice of scaling, with the

maximum close to a value of one. For A = 23, the success of the scaling is not so clear, as the

maximum value of Sα is not as prominent as for data with A = 11. Also, Φc is likely a function of

the aspect ratio.
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D. Contact Interactions

Since contact forces drive the alignment of fibers, significant changes in the contact interactions

must occur as the order parameter Sα increases to its maximum value at γ0φ ≈ Φc. Extracting in-

formation on the contacts from the experiments is not directly possible, but simulation results on

the contacts are given in Fig. 14(a). The average number of contact interactions (ν(c), evaluated

at the completion of each oscillation) is shown as a function of the oscillation number. The con-

tacts include those between fibers and between fibers and the bounding walls, and the number of

contacts is generally larger at higher concentrations and at higher aspect ratios.

The number of contacts remains nearly constant as a function of N for many of the conditions

shown in Fig. 14(a), though other cases show a general decline or increase in the number of

contacts. For strain amplitudes and concentrations below Φc, Franceschini et al. [16] asserted that

fibers organize into a reversible state where every particle returns to its position and orientation

after each oscillation. In a reversible state, there would be no contacts. However, simulations

indicate that the number of contacts do not decay to zero for any of the conditions studied here,

and the positions and orientations of individual fibers were not reversible even for γ0φ < Φc.

Despite the lack of a transition between a reversible and irreversible state at Φc, there is a qual-

itative change in the orientation distribution (see Fig. 13(b)). This change in Sα is accompanied

by a change in the number of contacts, as shown in Fig. 14(b) which compares the number of

contacts at N = 4000. The number of contacts are relatively low and constant up until the product

γ0φ ≈ Φc, indicating that the jump in the number of contacts coincides with maximum vorticity

alignment and transition between viscous and elastic responses for the oscillatory rheology [16].

The inset of Fig. 14(b) shows the number of contacts versus distance from the bounding wall

(h/L) for A = 11, φ = 0.2, and a range of strain amplitudes. Data at h/L = 0 represents the number

of particle contacts with the walls, whereas data for h/L > 0 indicates the local number of contacts

between particles. The wall contacts are non-zero even when the particles are highly aligned in

the vorticity direction. For all but the lowest strain amplitude of γ0 = 0.5, the number of contacts

between particles is smaller in the center than near the bounding walls where vorticity alignment

is stronger. Intuitively, higher alignment of fibers in the vorticity direction is expected to generate

fewer contacts, at least for fibers suspended at a fixed concentration. This is because fibers aligned

in the vorticity direction can simply rotate around their major axis without tumbling in the shear

flow. However, the stronger vorticity alignment near the wall enables more particles to crowd

21



into this space (see Fig. 7, for example). This higher concentration of particles explains the larger

number of collisions between particles in the vicinity of the walls.

V. CONCLUSIONS

Results demonstrating the vorticity alignment of rods having an aspect ratio of 11 by Frances-

chini et al. [15, 16] and Snook et al. [17] have been expanded to a wider set of conditions than

previously studied. Here, both the aspect ratio of the fibers and their confinement were varied,

and the effects on the orientation distribution have provided some new insights into the vorticity

alignment of the fibers.

The gap size in our experiments and simulations ranged from H/L = 1.5 to 3.0, whereas Snook

et al. [17] simulated two levels of confinement (H/L = 1.5 and fully periodic boundary condi-

tions). In addition to affirming that bulk measurements of vorticity alignment increase as con-

finement is increased, the orientation was found to be a strong function of distance from the wall.

Indeed, demonstrating that the experimental measurements reported here match those of Frances-

chini et al. [15, 16] required consideration of the spatial dependence of the orientation distribution,

since previous measurements sampled across the channel width and the measurements performed

here sampled only the plane centered between the bounding walls. In particular for those con-

ditions that maximized the bulk order parameter (φ = 0.2 and γ0 = 2.5), the wall-adjacent fibers

aligned nearly perfectly with the vorticity direction regardless of the confinement. Also fibers

concentrated near the wall as they self-organized, and the order parameter decayed toward Sα = 0

with distance from the wall, indicating a randomized orientation in the flow-vorticity plane. The

higher concentration near the wall results in a larger number of contacts between particles than far

from the wall, despite the stronger alignment of the particles in the vorticity direction.

The present work confirms that collisions between fibers suspended at high concentration drive

their alignment in the vorticity direction, as suggested originally by Snook et al. [17]; the simula-

tions correctly predict the measured orientations while only considering contributions to the mo-

tion of the fibers from collisions and self-mobilities. However, despite the simple contact origin

of the phenomenon, vorticity alignment is a complex function of the confinement, fiber concen-

tration and aspect ratio, and strain amplitude. The higher aspect ratio rods (A = 23) were found to

only weakly align in the vorticity direction, and maximum alignment was observed at H = 1.5L,

A = 11, φ = 0.20, and γ0 = 2.5. Maxima in the bulk Sα over a range of conditions were found to
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occur at roughly the same values of γ0φ . Furthermore, the position of the maximum was found to

be approximately equal to the critical volume fraction (Φc = γcφ ≈ 0.4) at which the oscillatory

rheology indicates the onset of an elastic response [16]. The number of contacts was found to

suddenly increase when comparing results for γ0φ ≥ Φc to those for γ0φ < Φc, but the number of

contacts remained finite even at the smallest values of γ0φ that were studied. Hence, the particle

positions were irreversible over all conditions examined.

More certainty regarding this scaling, as well as development of additional scaling principles,

would require results spanning a larger set of concentrations and aspect ratios, but the range over

which any scalings can be made or would be applicable are limited. Vorticity alignment occurs

only over a narrow set of conditions which correspond to concentrated suspensions (nL2d & 1)

having an isotropic orientation distribution in the bulk. For these conditions, results given in Sec-

tion IV A demonstrate that fibers adjacent to the confining walls are initially organized, at least

loosely, and that oscillating can drive additional fiber organization and alignment with the vortic-

ity direction. Creating suspensions with nL2d >> 1 requires a nematic orientation distribution,

where the specific value of nL2d at which the transition to nematic ordering occurs is a decreas-

ing function of the aspect ratio [31]. For these conditions, the fibers would be initially organized

throughout the gap in addition to near the wall, and the dynamic changes caused by oscillating the

suspension would likely differ significantly from the cases studied here.
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