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Abstract

Every animal cell is filled with a cytoskeleton, a dynamic gel made of inextensible fibers, such

as microtubules, actin fibers, and intermediate filaments, all suspended in a viscous fluid. Nu-

merical simulation of this gel is challenging because the fiber aspect ratios can be as large as 104.

We describe a new method for rapidly computing the dynamics of inextensible slender filaments

in periodically-sheared Stokes flow. The dynamics of the filaments are governed by a nonlocal

slender body theory which we partially reformulate in terms of the Rotne-Prager-Yamakawa

hydrodynamic tensor. To enforce inextensibility, we parameterize the space of inextensible fiber

motions and strictly confine the dynamics to the manifold of inextensible configurations. To do

this, we introduce a set of Lagrange multipliers for the tensile force densities on the filaments

and impose the constraint of no virtual work in an L2 weak sense. We augment this approach

with a spectral discretization of the local and nonlocal slender body theory operators which is

linear in the number of unknowns and gives improved spatial accuracy over approaches based on

solving a line tension equation. For dynamics, we develop a second-order semi-implicit temporal

integrator which requires at most a few evaluations of nonlocal hydrodynamics and a few block

diagonal linear solves per time step. After demonstrating the improved accuracy and robustness

of our approach through numerical examples, we apply our formulation to a permanently cross-

linked actin mesh in a background oscillatory shear flow. We observe a characteristic frequency
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at which the network transitions from quasi-static, primarily elastic behavior to dynamic, pri-

marily viscous behavior. We find that nonlocal hydrodynamics increases the viscous modulus

by as much as 25%. Most of this increase, in contrast to the smaller (about 10%) increase in

the elastic modulus, is due to short-ranged intra-fiber interactions.

1 Introduction

Interactions of long, thin, inextensible filaments with a viscous fluid abound in biology, engineering,

physics, and medicine. In biology, the swimming mechanisms of flagellated organisms have been

of interest for decades, with an initial cluster of studies on how force and torque balances lead to

swimming [13, 9, 11, 44], and a more recent focus on flagellar bundling and propulsion [48, 54, 56].

In physics and engineering, suspensions of high-aspect-ratio fibers have been observed to display

non-Newtonian, viscoelastic behavior both experimentally [10] and computationally [53, 81].

Our particular area of interest is the simulation of semi-flexible filaments that make up the

cell cytoskeleton. These inextensible filaments, which include microtubules and actin filaments,

maintain the cell’s structure, control the mechanics of the cell division process, and have aspect

ratios from 102 to 104 [4]. In vivo, actin filaments are generally bound together into networks by

cross-linking proteins, the properties of which determine the viscoelastic behavior of the cytoskele-

ton [87, 33, 3]. While there has been much work recently on microtubule systems [66, 77], there

has yet to be, to our knowledge, a systematic study of the influence of hydrodynamic interactions

on the mechanics and rheology of cross-linked actin networks. One of the goals of this paper is to

develop an efficient numerical technique that can simulate a cross-linked network of thousands of

inextensible actin filaments and take into account the filament interactions with a viscous solvent

at zero Reynolds number. Our method not only handles the inextensibility and stiffness of the

fibers robustly and efficiently, but also accounts for, in near-linear time with respect to the number

of fibers, the long-ranged hydrodynamic interactions between fibers, which we show can increase

the viscous modulus of the network by as much as 25%. We will not consider thermal fluctuations

or elastic twisting of the filaments in this work.

Prior to the year 2000, tools for analytical analysis and numerical simulation of filaments in

Stokes flow were developed in parallel by several authors. For slender filaments, a useful approach

for both analysis and computation is to reduce the problem from three dimensions to one by

assuming a certain distribution of singularities along the filament centerline. This approach, referred
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to as “slender body theory” (SBT), was first introduced by Hancock [31] and later expanded upon

by Batchelor [7]. By using the method of matched asymptotics, Keller and Rubinow were the first

to derive an SBT that is uniformly accurate in the fiber slenderness ratio ε = radius/length [38].

Johnson further developed the theory by adding higher order corrections and correctly treating a

fiber with free ends [36], and Götz re-derived the SBT of Keller and Rubinow in a more general

context, allowing him to apply the theory to Oseen’s and Poisson’s equations [26].

Because the SBTs of Keller and Rubinow, Johnson, and Götz are uniformly accurate in powers

of ε, they have formed the basis of most of the more recent analysis. To this end, Mori et al. re-

cently showed that these singularity solutions solve a well-posed Stokes problem with non-standard

boundary conditions on the filament surface [63, 64]. Koens and Lauga also showed that the SBT

singularity solution can be recovered by matched asymptotic expansion of the full surface boundary

integral formulation of Stokes flow [41].

On the numerical side, non-SBT based techniques for the simulation of fibers in Stokes flow

have been in use for many decades. The most prevalent among these are regularized singularity

methods, in which the fibers are discretized by a series of marker points, each of which is assigned

a force according to the fiber physics. The force on each marker is then regularized, and the

Stokes equations are solved to obtain a fluid velocity on the marker points due to the collection

of regularized forces. The type of regularization determines the particular numerical method. For

example, in the immersed boundary (IB) method of Peskin and collaborators, the force is regularized

by smearing it onto a background grid on which the fluid equations are solved, and this velocity field

is then interpolated back onto the marker points [68, 69]. In the special case when the spreading

and interpolation are done with a Gaussian kernel, the method is referred to as a force coupling

method (FCM) [50, 57]. For regularization and interpolation over the surface of a sphere, the

force to velocity relationship (mobility matrix) can be computed analytically and is known as the

Rotne-Prager-Yamakawa (RPY) tensor [74, 76, 21]. Finally, the method of regularized Stokeslets

describes the case when the Stokes equations are solved analytically for a given regularization

function, and the resulting velocity field is evaluated directly on the marker points without an

interpolation kernel1 [15, 17].

All of these regularization methods have been used to model immersed rods, but generally with

penalty terms to enforce inextensibility [67, 47]. To our knowledge, only the recent approaches of

1This destroys the symmetry of hydrodynamic interactions, which is otherwise preserved in the IB, FCM, and

RPY approaches.
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Schoeller et al. [76] and Jabbarzadeh and Fu [34] enforce inextensibility rigorously with Lagrange

multipliers. In the case of [34], the fiber is broken up into segments of regularized point forces, and

each segment is updated via a rotation that preserves inextensibility exactly. Yet both [76] and

[34] suffer from the same pitfall as all regularization methods: when modeling slender fibers, the

width/radius of the regularization function must be on the order of the fiber radius [12]. Since the

regularization width is also tied to the fiber discretization spacing (and, in the IB method, the fluid

grid spacing), semi-flexible slender fibers must be discretized with many more points than would

be necessary in a continuum, SBT-based approach. While this limitation can be partially overcome

with adaptive mesh refinement [28], grid coarsening with local velocity correction [59], and kernel-

independent fast multipole methods (to accelerate many-body sums) [73], the fact remains that

to achieve controlled accuracy for dilute suspensions of many fibers, discretizing the fiber by a

collection of marker points is much less efficient than treating it as a continuum with SBT. This is

especially true for semi-flexible or stiff fibers, where the smooth fiber shapes are well represented

in a spectral basis with rapidly decaying coefficients.

Despite their limitations, regularized singularities are sometimes convenient to work with since

they are nonsingular on the fiber centerline, and can therefore be easily evaluated there. A natural

workaround to the regularization lengthscale issue is to take a continuum limit of many regularized

point forces along the fiber [18] or along segments of a fiber [30, 16, 89]. For example, Walker et

al. recently derived an SBT that uses regularized singularities along the fiber centerline and can

be used for fibers of non-uniform cross section [90]. In still more recent work [89], they combined

this theory with the regularized Stokeslet segments approach of Cortez [16] to yield a numerical

method which is more efficient than that of regularized point forces, but still quadratic-complexity

in the total number of segments.

Since the shapes of biological filaments are smooth, a better approach is to represent the entire

shape using an interpolating polynomial, rather than breaking into segments, and take a continuum

limit of regularized singularities along the entire fiber. We show in Appendix A that applying this

procedure to the RPY tensor yields a formula for the fiber velocity that is identical to SBT away

from the fiber endpoints. For the reasons just listed, efficient simulation of many slender fibers

requires a numerical method that can handle an SBT-type formulation for the fiber velocity.

To our knowledge, Shelley and Ueda were the first to derive such a method and use it to simulate

immersed slender fibers. By designing a numerical method around the analytical results of slender

body theory, they reduced the complexity of the numerical computations from three dimensions to
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one [78, 79]. Their formulation, however, relies on the filament being a closed loop, thus excluding

many problems from biology, engineering, and physics where the filament ends are free.

Tornberg and Shelley treated inextensible filaments with free ends using an SBT-based nu-

merical method [85]. In their approach, inextensibility is preserved by deriving an auxiliary

(integro-)differential equation for the line tension in the filament, which acts as a Lagrange multi-

plier to preserve inextensibility. This method has since been used in applications with flexible (and

sometimes fluctuating) filaments [55, 96], and was also extended to simulate falling rigid fibers, the

novelty there being that many of the SBT-related integrals can be done analytically [84]. More

recently, Nazockdast et al. modified the approach of Tornberg and Shelley to make it feasible to

simulate many-body cellular fiber assemblies. By replacing the second-order spatial discretization

of Tornberg and Shelley with a spectral spatial discretization and utilizing a kernel-independent

FMM to accelerate sums, Nazockdast et al. developed a parallel algorithm that makes it possible

to simulate O(1000) fibers in linear time [66].

Despite these recent advances, imposing inextensibility via a tension boundary value problem

(BVP) leads to a number of drawbacks which are present in all of the prior SBT-based numerical

methods. To begin, the line tension equation of [85] involves multiplications of high-order (as high

as four) derivatives of the fiber position function. This leads to severe aliasing problems and a

loss of spatial accuracy in the spectral formulation [66]. In addition, the “inextensibility” of the

filaments is still subject to discretization error and requires inserting a penalty term into the line

tension equation that reduces the discrete extensibility [85]. For fibers tugged by cross-linkers or

strong extensional flows, this penalty parameter will be large, introducing artificial stiffness into

the problem.

The primary focus of this paper is on a new formulation for inextensible filaments. In our

approach, the fibers are evolved via a rotation of the tangent vector on the unit sphere, and the

fiber positions are then obtained by integration. This approach is similar to that of [34], but unique

because we consider the fiber as a continuum, rather than a collection of discrete line segments. In

this way, we maintain strict inextensibility of the fibers without introducing a penalty parameter.

To close our formulation, we treat the force due to tension as a Lagrange multiplier and enforce the

principle that the constraint forces do no work [42]. We couple this advance with recent techniques

[1, 82] for efficient evaluation of nonlocal integrals appearing in SBT to develop a method that

is both accurate and robust. In our spectrally accurate numerical method, we use, as in [66],

Chebyshev polynomials of relatively low degree (16 − 32) to represent the fiber centerlines and
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the force densities acting on them. This assumes that all of these quantities are smooth enough

to be represented in the spectral basis. This assumption fails for truly cylindrical fibers near the

endpoints, and also when the fibers experience localized forces such as those due to steric repulsion,

electrostatics, friction, and molecular motors. In our concluding Section 7, we discuss some possible

ways to extend our method to account for these important biophysical forces and fiber shapes.

The rest of this paper is laid out as follows. We begin in Section 2 by introducing the nec-

essary SBT equations for both local and nonlocal hydrodynamics. We modify the classical SBT

formulation [38, 36, 26] to regularize the local drag coefficient for cylindrical fibers and account for

inter-fiber interactions through the RPY tensor. In Section 3, we parameterize inextensible motions

of the fiber as rotations of the unit tangent vector, thus strictly enforcing inextensibility. We then

discuss how to determine the Lagrange multiplier forces for inextensibilty by imposing the principle

of virtual work in a weak L2 sense. Section 4 is devoted to numerical methods. We show how to

incorporate a fast method for evaluating far-field hydrodynamic interactions (positively-split Ewald

summation [21]), and how to use specialized quadrature schemes for accurate evaluation of finite

part and near-fiber quadratures. In Section 4.5, we design a semi-implicit, second-order temporal

integrator that treats bending elasticity implicitly, yet for dilute systems only requires solving a

block-diagonal linear system with a single evaluation of the nonlocal hydrodynamics per time step.

For more concentrated systems, we use GMRES to solve a dense linear system, but show in Section

5.2 that at most a few iterations are needed per time step to maintain stability. In the other numer-

ical tests of Section 5, we also show how our “weak formulation” of inextensibility gives improved

spatial accuracy over the traditional “strong formulation” of inextensibility in [85, 66]. In Section

6, we study the rheology of a cross-linked network of filaments in oscillatory shear by introducing

cross-linkers into the SBT formulation. Section 7 gives our conclusions and discusses future work.

2 Slender body theory

We begin here by summarizing the slender body theories of [38, 36, 26], here following in particular

Johnson [36] and Götz [26]. These SBTs derive a global fluid velocity due to a single slender fiber,

then evaluate this velocity asymptotically on the fiber surface to obtain a fiber evolution equation.

It remains an open question, however, how to efficiently evaluate the fluid velocity generated by

one filament on another filament. Here we formulate a modified treatment of these fiber-fiber

interactions that is more physical and motivated by our observation in Appendix A that classical
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SBT can be formulated in terms of a line integral involving the RPY kernel. In this section we will

not consider any time dependence and look at the velocity of the filament and the Stokes fluid at a

specific instant in time. We therefore omit explicit time dependence in our notation for simplicity.

2.1 Single filament

We denote with X(s) the position of the centerline of a filament, parameterized by arclength

s ∈ [0, L], where L is the fiber length. The tangent vector is τ (s) = ∂X/∂s and has unit length.

The fiber has physical radius a(s) = rρ(s), where 0 ≤ ρ(s) ≤ 1, and slenderness ratio ε = r/L. Let

the force per unit length on the fiber centerline be denoted by f(s) and the background flow (e.g.

shear flow) at an arbitrary point in the fluid be denoted by u0(x).

We recall the Stokeslet and doublet (Laplacian of the Stokeslet) kernels, which are the funda-

mental solutions to the Stokes equations for a point force and mass source dipole, respectively. If

we center the kernels at x0, take x to be an arbitrary point in the fluid, and introduce R = x−x0

with R̂ = R/ ‖R‖, we have that

S (x,x0) =
I + R̂R̂

‖R‖
and D (x,x0) =

I − 3R̂R̂

‖R‖3
. (1)

The idea of SBT is to introduce an ansatz for the flow field away from the fiber centerline of

the form

u(x)− u0(x) =
1

8πµ

∫ L

0
(S (x,X(s)) + β(s)D (x,X(s)))f(s) ds (2)

:=
1

8πµ

∫ L

0
SD (x,X(s);β(s))f(s) ds, (3)

where µ is the fluid viscosity. In Eq. (3), we have defined a kernel SD (x,x0;β(s)) that is a

combination of a Stokeslet and a doublet with strength β. Using the method of matched asymptotic

expansions, the velocity integral (2) can be computed analytically on the surface of the fiber to

O(ε) (see [26, 41] for details on these integrals). The value of β comes from imposing the boundary

condition that the velocity on the fiber surface be constant to O(ε); Mori et al. [63, 64] refer to this

as the “fiber integrity condition.” For cylindrical [26] or ellipsoidally-tapered [36] filaments, this

yields the solution for the velocity in the fluid as

u(x)− u0(x) =
1

8πµ

∫ L

0
SD

(
x,X(s);

(εL)2

2

)
f(s) ds. (4)

The fluid velocity u(x) in (4) does not apply inside of the fiber volume; in fact the kernel SD in (4)

is not even defined on the fiber centerline. Physically, however, the velocity of the fiber centerline,
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which we denote with U(s), should be equal to the average of u(x) around a ring cross section of

the fiber with radius a(s). Equivalently, since the function u(x) is constant on the cross section

surface to O(ε), averaging u(x) is equivalent to throwing out all terms in its expansion of O(ε)

or higher. Another approach, which is based on the Rotne-Prager-Yamakawa (RPY) kernel and

matched asymptotics, is presented in Appendix A. The RPY tensor approximates the hydrodynamic

interaction between two spheres of radius b centered at x and y with the kernel [74, 88, 21]

8πµSRPY (x,y; b) =


SD

(
x,y; 2b2/3

)
r > 2b(

4
3b −

3r
8b2

)
I + 1

8b2r
rr r < 2b

, (5)

where r = x− y, r = ‖r‖, and we set the sphere radius (see (A.27)) to

b = εL
e3/2

4
≈ 1.12εL. (6)

We express the velocity U(s) on the fiber as a line integral of the RPY kernel

U (s)− u0 (X(s)) :=
1

8πµ

∫ L

0
SRPY

(
X(s),X

(
s′
)

; 2b2/3
)
f
(
s′
)
ds′. (7)

Using matched asymptotics to approximate (7) for slender fibers (see Appendix A), we obtain

the same result as classical SBT [26]

U(s)− u0 (X(s)) = ML (τ (s); c(s))f(s) +
(
MFP [X(·)]f(·)

)
(s), where (8)

ML(τ ; c) =
1

8πµ
(c(I + ττ ) + (I − 3ττ )) , and (9)

(
MFP [X]f

)
(s) =

1

8πµ

∫ L

0

(
S
(
X(s),X(s′)

)
f(s′)−

(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′. (10)

Here ML is a 3 × 3 local drag matrix that gives the velocity contribution from the force density

f at points O(ε) away from X(s). The integral operator MFP [X] gives the contribution from

the rest of the fiber in the form of a finite part integral. The first term in the integrand is the

Stokeslet, and the second term is the “common” part in the matched asymptotic expansion that

comes from expansion of the Stokeslet around s′ = s. Physically, the finite part integral gives the

velocity contribution from forcing at points O(1) away from X(s). Thus while both terms in the

integrand are singular, their difference is finite [85] (see also Section 4.2.1).

In the local drag matrix (9), the leading order local drag coefficient is given by [26]

c(s) = ln

(
4s(L− s)
a(s)2

)
(11)
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Figure 1: Regularized drag coefficients and effective radius functions. (Left:) The regularized local drag

coefficients c̄(s; δ) for various δ. (Right:) The effective fiber radius ā(s; δ) as defined in (14). We show only

one side of the fiber, with the other being the former’s mirror image about s/L = 0.5.

and is singular without proper decay of a(s) at s = 0 and s = L. Clearly, if a(s) decays near the

fiber endpoints as 2ε
√
s(L− s), then the leading order coefficient (11) is finite at the fiber endpoints

[36]. This fact is the basis for a general assumption across the SBT literature that the filaments

have ellipsoidal shape, so that in most studies c(s) = − ln(ε2) is constant for all s [85, 66, 19].

Actin filaments are best modeled as cylinders with constant radius, so that a(s) = r = εL on

s ∈ [0, L]. In this case, the coefficient (11) becomes singular at the filament ends, and so we modify

the local drag coefficient by effectively tapering the fiber radius over a distance ∼ δL near the

endpoints. Specifically, to regularize c(s), we set η = 2s/L− 1, so that η ∈ [−1, 1], and compute a

weight function

w(s; δ) = tanh

(
η(s) + 1

δ

)
− tanh

(
η(s)− 1

δ

)
− 1, (12)

which is 1 near the fiber center (η = 0) and zero at the fiber ends (η = ±1). We then assign to

each s a regularized fiber centerline coordinate by

s̄(s; δ) = w(s; δ)s+
(
1− w(s; δ)2

) δL
2

(13)

on 0 ≤ s ≤ L/2, with the corresponding reflection for s > L/2. The regularized coefficient for a

given δ is then given by

c̄(s; δ) := c(s̄(s; δ)) = ln

(
4s̄(L− s̄)

(εL)2

)
:= ln

(
4s(L− s)
ā(s; δ)2

)
. (14)

Figure 1 shows how the choice of δ impacts the local drag coefficient c̄(s) and effective radius

function ā(s). We see that the fibers are cylindrical (ā(s) = εL) for s/L & δ, while for s/L . δ
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the effective radius smoothly decays to zero, as it would for an ellipsoidal fiber. Larger values of δ

yield smoother radius functions and smoother local drag coefficients. Throughout this paper, we

will use δ = 0.1, unless otherwise stated.

2.2 Multiple filaments

It remains to include in the fiber centerline velocity (8) the perturbed flow due to other filaments,

i.e., to account for hydrodynamic interactions between fibers. We require more involved notation in

this case to distinguish between fibers. In general, we use the symbol X in an equation whenever

it is localized to a single fiber and is the same on all fibers. For example, H[X] = 0 implies that

H is a functional of a single fiber’s position and is zero on every fiber individually. When multiple

fibers are involved, we index the ith fiber by the superscript X(i). For example, H
[
X(i),X(j)

]
f (i)

implies that H is a functional of a pair of fiber positions which acts on the force density on fiber

i. Whenever an equation applies to one fiber, but involves all other fibers, we will use the notation

X(i) for the single fiber and X to refer to the collection of all fibers. Our use of X to refer to both

a general fiber and collection of fibers is a slight abuse of notation, but the meaning should be clear

from the context, specifically whether an equation involves a single fiber or multiple fibers.

The simplest approach for including hydrodynamic interactions in SBT is the one taken by

Tornberg and Shelley [85], in which the fluid velocity due to one fiber (4) is simply evaluated on the

centerline of the other fibers. Nazockdast et al. also adopted this, except they dropped the doublet

term completely and included only the Stokeslet term. Inspired by the fact that the classical SBT

for a single fiber (8) can be reformulated as a regularized singularity method using the RPY line

integral (7), we use the same line integral for interaction with other fibers. In (A.28), we substitute

the choice of RPY radius (6) into the RPY kernel (5) to obtain the inter-fiber interaction velocity

v(j)
(
X(i)(s)

)
:=

1

8πµ

∫ L

0
SD

(
X(i)(s),X(j)(s′),

e3

24
(εL)2

)
f (j)(s′) ds′

:=
(
Mc

[
X(j)(·)

]
f (j)(·)

)(
X(i)(s)

)
(15)

Here we have again defined a linear integral operator Mc which acts on f (j) to give the velocity on

the centerline of filament i solely due to filament j. More generally, we will denote by v(j) (x) the

velocity induced by filament j at any point x on the centerline of any other filament. This “filament

interaction velocity” differs from the slender body fluid velocity (4) in that the coefficient of the

dipole term is e3/24 ≈ 0.84 instead of 1/2 (see (A.28)). Since v(j) (x) can be evaluated everywhere
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in the fluid, we use a lowercase letter to denote it and distinguish it from the fluid velocity u(j)

induced by fiber j, which is given in (4).

We have used a constant radius b when defining the inter-fiber mobility (15) using the RPY

kernel. While our use of the regularized local drag coefficient (14) implies that the fibers are tapered

at the endpoints, and therefore that b decays to zero at the endpoints, we will use a constant radius

for nonlocal hydrodynamics. This assumption, together with the assumption that all of the fibers

have the same maximum radius εL, can both be relaxed, as the RPY kernels derived in [97] and

associated fast methods [23] can be used to generalize (15) to tapered filaments or fibers with

different radii.

Summing the interaction kernel (15) over filaments j 6= i and adding the terms from local drag,

we get a slender body theory for the velocity U (i)(s) at position s on filament i,

U (i)(s)− u0

(
X(i)(s)

)
= ML

(
τ (i)(s); c(s)

)
f (i)(s) (16)

+
(
MFP

[
X(i)(·)

]
f (i)(·)

)
(s) +

∑
j 6=i

(
Mc

[
X(j)(·)

]
f (j)(·)

)(
X(i)(s)

)
,

whereML is defined in Eq. (9), MFP is defined in Eq. (10), and Mc is defined in Eq. (15). Because

U (i) is only defined on the centerline of filament i (and not everywhere in the fluid), we denote it

with a capital letter.

For a single fiber i, we will write the mobility (16) abstractly as

U (i)(s)− u0

(
X(i)(s)

)
=
∑
j

(
Mij [X]f (j)

)
(s), (17)

where the mobility operator M [X] is a functional of the positions of all fibers. We will compactly

write the velocity (17) for the entire collection of fibers as

U − u0 (X) := M [X]f . (18)

This mobility equation can be closed by defining a constitutive equation for the fiber force densities

f , which we do next.

3 Inextensible filaments

In this paper, we consider inextensible filaments X(i)(s, t) which can bend, but not stretch, as they

evolve in time. We assume the fibers are in a constant twist-free equilibrium, since in the absence of
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externally-applied or internally-generated torques the timescale of twist relaxation is O(ε−2) faster

than bending [70].

At every instant in time, each fiber resists bending with bending force density (per unit length)

fκ [X]. Inextensibility can be enforced by introducing Lagrange multiplier force densities on each

fiber λ(i)(s, t), where we will again write λ =
{
λ(i)

}
whenever we refer to the collection of Lagrange

multipliers on all fibers. Thus the PDE that we need to solve on every fiber is given by (using the

abstract notation of (18)),

∂X

∂t
− u0 (X, t) = M [X] (fκ [X] + λ) , (19)

where the mobility operator M is defined in (16) and the background flow function u0 can in

general vary in time. The fibers are also constrained to be inextensible, so that for every fiber

τ (s, t) · τ (s, t) = 1, (20)

for all s and t. We still need to specify boundary conditions for the evolution equation (19) and

additional conditions on λ to make the solution unique, as we explain shortly.

3.1 Bending elasticity

For fiber mechanics, we use the Euler beam model, in which the bending force density on every

fiber is given by

fκ [X] = −κXssss := FX, (21)

where the constant linear operator F gives fκ taking into account the “free fiber” boundary

conditions [85]

Xss (s = 0, t) = Xsss (s = 0, t) = 0, (22)

Xss (s = L, t) = Xsss (s = L, t) = 0.

Again, because the boundary conditions (22) apply to every fiber without dependence on other

fibers, we use the notation Xss and Xsss to refer to the arclength derivatives along the fiber and

drop the superscript (i).

It is easy to see that the boundary conditions (22) cause the total force and torque on every

12



fiber due to fκ to be zero, ∫ L

0
fκ ds = −κXsss

∣∣∣L
0

= 0, and (23)(∫ L

0
fκ ×X ds

)`
= −κ

∫ L

0

(
XjXk

ssss −XkXj
ssss

)
ds = −κ

∫ L

0

(
Xj
ssX

k
ss −Xk

ssX
j
ss

)
= 0. (24)

Here the set of superscripts (j, k, `) denote vector components and are a cyclic permutation of

(1, 2, 3). In the torque equation, the free fiber boundary conditions lead to the cancellation of

boundary terms that arise in integration by parts.

3.2 Traditional formulation of inextensibility

In the traditional formulation of inextensibility [85], the inextensibility constraint (20) is differen-

tiated with respect to time. Then, s and t derivatives are interchanged to yield(
∂X

∂t

)
s

· τ = 0. (25)

In [85], the system was closed by substituting the mobility equation (19) into the differentiated

inextensibility constraint (25). On each fiber, Tornberg and Shelley then assume that λ(i) =(
T (i)τ (i)

)
s
, where T (i)(s, t) is an unknown scalar tension [85]. This results in the line tension

equation,

∂

∂s

u0

(
X(i)

)
+
∑
j

Mij [X]
(
FX(j) +

(
T (j)τ (j)

)
s

) · τ (i) = 0. (26)

which holds for each fiber i [85]. While the second-order BVP (26) is linear in T , it is highly

nonlinear in X, since the operation FX gives fourth derivatives of X. Even in the absence of

any nonlocal hydrodynamic interactions (i.e. if M = ML) and zero background flow (u0 = 0),

the line tension equation still has terms of the form Xsss ·Xsss (see [85, Eq. (13)]), which lead

to aliasing errors in spectral numerical methods. Because the line tension equation (26) enforces

inextensibility pointwise along the fiber, we refer to it as a strong formulation of inextensibility.

3.3 Kinematics of inextensible fibers

In our approach, we evolve the tangent vector τ (s, t), rather thanX(s, t) = X(0, t)+
∫ s

0 τ (s′, t) ds′.

Considering the evolution of τ (s, t), the differentiated inextensibility constraint (25) implies that,

for every fiber,
∂τ

∂t
(s, t) = Ω(s, t)× τ (s, t), (27)

13



i.e., that the fiber evolution can be thought of as rotations of τ on the unit sphere.

At each fiber point, we uniquely define an orthonormal coordinate system using spherical angles

θ(s, t) and φ(s, t). We represent the unit tangent vector τ (s, t) as

τ (s, t) =


cos θ cosφ

sin θ cosφ

sinφ

 , (28)

where we define θ to be single-valued at φ = π/2 by setting θ (φ = ±π/2) = 0. A choice of normal

vectors that are always orthonormal to τ on the unit sphere is

n1 =


− sin θ

cos θ

0

 , n2 =


− cos θ sinφ

− sin θ sinφ

cosφ

 . (29)

Because n1 and n2 can be determined uniquely from τ , we denote them henceforth with nj (τ (s, t)),

for j = 1, 2. Since θ is single-valued at φ = π/2, each component of the orthonormal coordinate

system (τ ,n1,n2) is a smooth function of X when τ is smooth. Importantly, our method does not

depend on the particular choice of normal vectors (29); any choice that gives smooth n1 and n2 for

a smooth X is equally acceptable. For example, the Frenet or Bishop frames could be used [43].

Because τ × τ = 0, and since we are not considering twist, Ω(s, t) can be restricted to linear

combinations of n1 and n2. We let

Ω(s, t) := Ω (τ (s, t), g(s, t)) := g1(s, t)n2 (τ (s, t))− g2(s, t)n1 (τ (s, t)) , (30)

where g1(s, t) and g2(s, t) are two specific unknown functions and g = {g1, g2}. Equation (30)

implies that, by the right-handedness of the coordinate system (τ ,n1,n2),

∂τ

∂t
= Ω× τ = g1n1 + g2n2. (31)

Any inextensible velocity of the fiber centerline can now be written in the form

U(s, t) =
∂X

∂t
(s, t) =U(t) +

∫ s

0

2∑
j=1

gj(s
′, t)nj

(
τ (s′, t)

)
ds′, (32)

whereU(t) = ∂X/∂t(s = 0, t) is a rigid body translation.
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3.4 Principle of virtual work

The kinematic formulation of Section 3.3 can still be used to solve for the line tensions and fiber

velocities. In particular, by substituting the inextensible velocity (32) into the left hand side of the

evolution equation (19) and setting λ = (Tτ )s, a PDE results with unknowns g1, g2,U, and T . We

choose to close our formulation differently, in the process eliminating the need to solve for tension

explicitly.

On every fiber, the principle of virtual work states that the constraint forces λ do no work for

any choice of g1, g2, and U [42]. Because this constraint holds for all time, for simplicity we drop

for the moment the explicit dependence on t in the notation. To impose the principle of virtual

work, we use the L2 inner product to compute the total power dissipated in the fluid from λ,

P =

〈
λ,
∂X

∂t

〉
=

∫ L

0
ds′

(
U +

∫ s′

0
(g1(s)n1 (τ (s)) + g2(s)n2 (τ (s))) ds

)
· λ
(
s′
)
. (33)

Changing integration variables, we can rewrite this as

P =U ·
∫ L

0
λ
(
s′
)
ds′ +

∫ L

0
ds

∫ L

s
(g1(s)n1 (τ (s)) + g2(s)n2 (τ (s))) · λ(s′) ds′ (34)

=U ·
∫ L

0
λ
(
s′
)
ds′ +

∫ L

0
(g1(s)n1 (τ (s)) + g2(s)n2 (τ (s))) ·

(∫ L

s
λ(s′) ds′

)
ds = 0. (35)

3.4.1 Pointwise formulation

Since the principle of virtual work (35) must hold for any inextensible motion, it must hold for all

U and all sufficiently smooth g1 and g2. Therefore, we must have, for all s,
(∫ L

s λ(s′) ds′
)
· n1 (τ (s))(∫ L

s λ(s′) ds′
)
· n2 (τ (s))∫ L

0 λ(s′)ds′

 =


0

0

0

 . (36)

The first and second components of the constraints (36) taken together tell us that
∫ L
s λ (s′) ds′ is

orthogonal to both normal vectors. Therefore,
∫ L
s λ (s′) ds′ is in the direction of τ (s) and can be

written as ∫ L

s
λ
(
s′
)
ds′ = −T (s)τ (s), (37)

for some scalar function T (s) with T (s = L) = 0. This gives

λ(s) = (T (s)τ (s))s , (38)
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which is the form assumed in Tornberg and Shelley [85]. Thus our derivation shows that the form

of λ taken in [85] is equivalent to the principle that the constraint forces perform no virtual work,

if the work is given by the standard L2 inner product [42].

Now, returning to the third of the constraints (36),
∫ L

0 λ(s) ds = 0, and substituting the derived

form of λ in (38), we obtain

T (L)τ (L)− T (0)τ (0) = 0. (39)

Since T (L) = 0, Eq. (39) implies that T (0) = 0 as well, since neither of the tangent vectors is

identically 0. So we obtain T (0) = T (L) = 0, which is exactly the boundary condition for the line

tension equation in [85]. The form of λ = (Tτ )s and the tension boundary conditions imply that

the total torque induced by the constraint forces is zero in continuum,
∫ L

0 X(s)× λ(s) ds = 0.

In this sense, the constraint equation (33) is equivalent to the line tension equation used in prior

work [85]. Because we showed the equivalence by enforcing constraint (33) for every choice of g1(s)

and g2(s), we refer to the inextensibility constraint (33) as a weak formulation of inextensibility.

In the next section, we choose a suitable basis for g1(s) and g2(s) to obtain a linear system of

equations instead of the pointwise constraint (36).

3.4.2 L2 weak formulation

In this section, we introduce an L2 weak formulation that is suitable for a numerical discretization

of the weak inextensibility constraint (33). The key idea is to expand the unknown functions g1(s)

and g2(s) as,

gj(s) =
∑
k

αjkTk(s), for j = 1, 2, (40)

where Tk(s) are sufficiently smooth scalar-valued basis functions for L2 : [0, L]. Substituting the

basis function expansion (40) into the inextensible velocity (32), we obtain

U(s) =
∂X

∂t
(s) =U +

∫ s

0

2∑
j=1

∑
k

αjkTk
(
s′
)
nj
(
τ (s′)

)
ds′ := (K [X(·)]α)(s), (41)

where we have defined a linear operator K [X] on every fiber that acts on α =
(
αjk,U

)
to give

an inextensible velocity on the filament centerline (i.e., α parameterizes the space of inextensible

fiber motions). Note the functional dependence of K on X since K involves the normal vectors n1

and n2. Substituting the inextensible velocity (41) into the dynamical equation (19), we obtain

K [X]α = u0 (X) + M [X] (FX + λ) . (42)
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This constrained dynamical equation is supplemented by enforcing the principle of virtual work

(36) in an L2 weak sense. We begin by substituting the representation of gj in (40) into the power

equation (33) to obtain, for every fiber,

P =

〈
λ,K[X]α

〉
:=

〈
K∗[X]λ,α

〉
(43)

=U ·
∫ L

0
λ(s) ds+

∫ L

0

∫ s

0

2∑
j=1

∑
k

αjkTk
(
s′
)
nj
(
τ
(
s′
))
ds′

 · λ (s) ds = 0,

where we have defined K∗ as the L2 adjoint of K. Since the power from the constraint forces must

be zero for any inextensible motion (any α), each term of the constraint (43) must be zero. This

gives the set of constraints on every fiber

K∗[X]λ :=


∫ L

0

(∫ s
0 Tk(s

′)n1 (τ (s′)) ds′
)
· λ(s) ds∫ L

0

(∫ s
0 Tk(s

′)n2 (τ (s′)) ds′
)
· λ(s) ds∫ L

0 λ(s) ds

 =


0

0

0

 , (44)

where the first two constraints hold for all k and the last constraint holds for each of the three

Cartesian directions.

3.5 Summary of dynamical equations

In our abstract notation, the evolution of the fiber system can be obtained by solving the following

system for α(t) =
{
α

(i)
jk (t),U

(i)
(t)
}

and λ =
{
λ(i)(s, t)

}
,

∂X

∂t
= K [X]α = u0 (X, t) + M [X] (FX + λ) (45)

K∗ [X]λ = 0. (46)

The first equation (45) is the mobility equation. The left hand side is the velocity of a fiber

centerline, restricted to the space of inextensible motions via the operator K defined in (41). The

right hand side involves all fiber positions and force densities because of hydrodynamic interactions.

The second equation (46) is the principle of virtual work and applies on each fiber separately,

K∗
[
X(i)

]
λ(i) = 0.

17



On a single fiber i, the mobility equation (45) takes the explicit form

∂X(i)

∂t
(s, t) =U

(i)
(t) +

∫ s

0

2∑
j=1

∑
k

α
(i)
jk (t)Tk

(
s′
)
nj
(
τ (s′, t)

)
ds′ = u0

(
X(i)(s), t

)
(47)

+
1

8πµ

((
c̄(s; δ)

(
I + τ (i)(s, t)τ (i)(s, t)

)
+
(
I − 3τ (i)(s, t)τ (i)(s, t)

))
f (i)(s, t) (48)

+

∫ L

0

(
S
(
X(i)(s, t),X(i)

(
s′, t
))
f (i)

(
s′, t
)
−

(
I + τ (i)(s, t)τ (i)(s, t)

|s− s′|

)
f (i)(s, t)

)
ds′ (49)

+
∑
j 6=i

∫ L

0

(
S
(
X(i)(s, t),X(j)

(
s′, t
))

+
e3

24
(εL)2D

(
X(i)(s, t),X(j)

(
s′, t
)))

f (j)
(
s′, t
)
ds′

)
,

(50)

with f (i)(s, t) = FX(i)(s, t) +λ(i)(s, t). The Stokeslet and doublet kernels S and D are defined in

(1), and the local drag coefficient c̄ is regularized at the endpoints as defined in (14). The mobility

equation for fiber i is supplemented by the principle of virtual work (46) which is localized to fiber

i and takes the explicit form∫ L

0

(∫ s

0
Tk(s

′)nj

(
τ (i)(s′, t)

)
ds′
)
· λ(i)(s, t) ds = 0, ∀k and j = 1, 2, (51)∫ L

0
λ(i)(s, t) ds = 0. (52)

4 Numerical Methods

Our goal in this section is to write the evolution equations (45) and (46) in the form of a block-

matrix saddle point system. We will replace the operators with matrices and the position functions

X(i)(s) with discrete vectors of collocation points X(i). The fiber evolution is then given by

∂X(i)

∂t
(t) = K

(
X(i)

)
α(i)(t). (53)

The coefficients α =
{
α(i)

}
can be determined by solving a saddle point system of the form−M (X) K (X)

K∗ (X) 0

λ
α

 =

u0 (X, t) +M (X)FX

0

 , (54)

where as before X =
{
X(i)

}
and λ =

{
λ(i)

}
. In a slight abuse of notation, we will write

K (X) to represent the block diagonal matrix of kinematic operators for each fiber i, K (X) =

Diag
{
K
(
X(i)

)}
, and likewise for K∗ (X).
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Since we expect the fiber shapes to be smooth, we use a spectral spatial discretization, described

in Section 4.1. In Section 4.2, we break the discretized mobility matrix M into three components:

the local drag mobility ML given in (48), the finite part mobility (49), and the cross-fiber mobilities

(50). The local drag matrix ML is the 3× 3 matrix whose definition is the same as in continuum.

The finite part mobility and cross-fiber mobilities require more specialized quadrature schemes since

the integrals involved are near singular or singular and therefore too expensive or impossible to

evaluate with direct quadrature. The basic idea of the specialized schemes is to factor out the (near)

singularity, expand what remains in a monomial expansion, and compute the integrals involving

monomials times the singularity analytically. In Section 4.2.1, we discuss this special quadrature

scheme for the singular integrals appearing in the finite part mobility (49).

In Section 4.2.2, we write a quadratic complexity discretization which uses direct quadrature

to compute the SBT interaction kernels (15). In Section 4.3, we then discuss how to make the

complexity linear over a triply periodic, sheared domain using a spectral Ewald method. Since we

reformulated the inter-fiber hydrodynamics in terms of the RPY tensor (see Section 2.2), our Ewald

splitting method is exactly the positively split Ewald method of [21], with some modifications for

a non-orthogonal coordinate system [22]. In Section 4.4 we return to the case when the direct

quadrature is insufficiently accurate and corrections are required, for which we use a recently

developed monomial-expansion-based special quadrature scheme [1] similar to that used for the

finite part integral.

Finally, in Section 4.5, we present a semi-implicit second-order temporal discretization that

avoids nonlinear solves and requires a minimum number of evaluations of the nonlocal hydrody-

namics for each timestep. For dilute suspensions, our temporal integration strategy is essentially to

treat the local drag part of the mobility MLFX implicitly using an implicit trapezoidal method.

We treat all of the terms involving the finite part and cross-fiber mobilities explicitly. This leaves

a linear system to be solved on each fiber separately. When the suspension becomes more con-

centrated, this scheme breaks down as the nonlocal hydrodynamics adds stiffness to the problem.

When this occurs, we treat the nonlocal and local hydrodynamics implicitly using an implicit trape-

zoidal method and use GMRES to solve for α and λ. By converting to a residual form based on the

solutions of the block diagonal system for dilute suspensions, we are able to use only the minimum

number of GMRES iterations necessary to achieve stability without altering accuracy.
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4.1 Spectral spatial discretization

Because the fibers are semi-flexible, their shapes are relatively smooth and can be well represented

by a finite number of basis functions. This makes a spectral spatial discretization the logical choice.2

We therefore use a first-kind Chebyshev grid for the collocation points on each fiber and Chebyshev

polynomials for the basis functions Tk(s), as described in Section 4.1.1. For indefinite integration,

we use the pseudo-inverse of the Chebyshev differentation matrix, and for definite integration we

use Clenshaw-Curtis quadrature. Once these choices are made, the discretization of the kinematic

operators K and K∗ follows naturally in Section 4.1.2. The discretization of the elastic force

operator F is more subtle as the boundary conditions must be treated correctly; for this we use the

rectangular spectral collocation approach of [20, 5] that is described in Section 4.1.3. Throughout

this section, we consider the discretization on a single fiber.

4.1.1 Collocation discretization

Because we use a collocation discretization, each fiber is discretized as a collection of nodes sp,

p = 1, . . . N , where sp is a node on a type 1 Chebyshev grid (i.e. a grid that does not include the

endpoints). Our notation will shift slightly here to reflect the change from continuous to discrete.

We useX to refer to the N×3 matrix of fiber positions at the collocation points. The pth row of this

matrix will be denoted by Xp = X(sp). Likewise, τ refers to the N × 3 matrix of tangent vectors

at the collocation points with τ p = τ (sp), and f refers to a matrix of force densities evaluated

at the nodes with rows fp = f(sp). Meanwhile, X(s) refers to the Chebyshev interpolant for X

(this is actually three interpolants, one for each direction), and likewise for τ (s). We will not try

to distinguish between the unknown “true” fiber shape (which could have more than N Chebyshev

modes) and its Chebyshev approximation X(s).

The tools we use for differentiation and integration are standard [86]. For differentiation, we

use the Chebyshev differentiation matrix DN . By DNX, we mean the linear operation that takes

X, computes the N − 1 degree Chebyshev polynomial representation X(s), differentiates it, and

returns τ (s). We also defineD†N , the pseudo-inverse of the Chebyshev differentiation matrix, which

2Implicit in our choice of spectral discretization is the assumption that the fiber constraint forces λ(s) and tangent

vector rotation rates Ω(s) are also smooth, which is the case for sufficiently large δ in the local drag regularization

(14). If δ � 1, λ and Ω can become nonsmooth and oscillatory at the fiber endpoints, and a small number of

Chebyshev modes can no longer resolve them.
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gives the values of the indefinite integral of a function f(s) modulo an unknown constant,(
D†Nf

)
p
≈
∫ sp

0
f(s′) ds′ + C. (55)

For definite integration, we use Clenshaw-Curtis quadrature with weight wp associated with each

collocation point, ∫ L

0
f(s′) ds′ ≈ wTf :=

N∑
p=1

fpwp. (56)

4.1.2 Discretization of K and K∗

To construct a discretization of the kinematic operator K defined in (41), we first need to choose

the basis functions Tk in the representation formula (40). We choose Tk(s) to be the Chebyshev

polynomial of the first kind of degree k on [0, L]. We truncate the sum at N − 2 basis functions,

gj(s) =

N−2∑
k=0

αjkTk(s). (57)

The choice of N − 2 for the maximum summation index is a necessary condition to make the

representation U = Kα unique on an N point Chebyshev grid. Increasing the number of basis

functions introduces degeneracy without improving the fiber representation. In particular, if the

maximum index in the sum were N − 1, integration of gj(s) in the inextensible velocity (41) could

cause U to be zero at all N Chebyshev nodes without α being zero.

Since the kinematic operators K and K∗ act linearly on α and λ, respectively, they can each

be discretized as matrices. Because we use a spectral discretization, however, care must be taken

to avoid aliasing errors. The key step in doing this is to compute, for each k = 0, . . . , N − 2 and

j = 1, 2, the integrals that describe the inextensible motions of the fiber

J (k,j)
q ≈

∫ sq

0
Tk(s

′)nj
(
τ
(
s′
))
ds′ (58)

on a grid of size 2N (q = 1, . . . 2N). To do so, we determine the Chebyshev polynomial representa-

tion of τ (s) on the N point grid and upsample it to a type 1 Chebyshev grid of 2N points. We then

compute the normal vectors on the 2N grid using the polar angle representations (28) and (29), and

multiply the normal vectors pointwise by Tk evaluated on the 2N grid. This gives the integrand

in (58) on the 2N grid. To integrate, we apply the matrix D†2N to approximate the integrals (58)

(modulo a constant) on the 2N grid. Since both Tk and nj are Chebyshev polynomials of degree

at most N − 1, these integrals are exact on the grid of size 2N , modulo a constant.
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Once J
(k,j)
p has been computed, the discretization of K∗ is straightforward. The discrete form

of the principle of virtual work (44) is given by inner products of λ with J (k,j), where λ has been

upsampled to a grid of size 2N to avoid aliasing errors,

K∗ (X)λ :=



∑2N
p=1

(
J

(0,1)
p · (Uλ)p

)
wp

...∑2N
p=1

(
J

(N−2,1)
p · (Uλ)p

)
wp∑2N

p=1

(
J

(0,2)
p · (Uλ)p

)
wp

...∑2N
p=1

(
J

(N−2,2)
p · (Uλ)p

)
wp

wTλ



=



0

...

0

0

...

0

0



. (59)

This defines K∗ (X) as a (2N+1)×3N matrix acting on a 3N vector λ, which has been upsampled

to (i.e., evaluated on) the grid of size 2N by applying the upsampling matrix U . Because λ

discretely integrates to zero (wTλ = 0), adding a constant to J
(k,j)
p does not change the first two

rows of K∗ (X)λ. Thus the fact that J
(k,j)
p gives the integrals modulo a constant is not relevant

in the formation of K∗.

The discretization of K is less straightforward. The main issue is that the integrals J
(k,j)
p are

exact on the grid of size 2N , but the fiber velocity is defined on a grid of size N . One way around

this is to simply double the grid size, i.e., define Kα on a grid of size 2N . This would, however,

necessitate computing Mf on a grid of size 2N as well, which is unnecessarily expensive. Instead,

we incur some aliasing error and downsample the velocity J
(k,j)
p to an N point grid. Specifically,

we discretize the matrix K as

(K (X)α)p =U +
2∑
j=1

N−2∑
k=0

αjk

(
RJ (k,j)

)
p

(60)

so that K = RJ is a 3N × (2N + 1) matrix which acts on the 2N + 1 vector α =
(
αjk,U

)
to

give the three components of the velocity at N points on the Chebyshev grid. The matrix R is a

downsampling matrix which gives a reduced-order representation of J (k,j) on the N point grid (the

unknown constant in J (k,j) can be folded into the constant velocityU). If we concisely write K∗λ

as defined in (59) as K∗λ = JTW 2NUλ, where W 2N is the diagonal matrix of Clenshaw-Curtis

quadrature weights on the 2N grid, and discretize the inner products in (43) as

〈α,K∗λ〉 = αTJTW 2NUλ = 〈Kα,λ〉 = (UKα)T W 2NUλ, (61)
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we obtain the weighted least squares downsampling matrix

R =
(
UTW 2NU

)−1
UTW 2N . (62)

4.1.3 Discretization of F

We use rectangular spectral collocation [5, 20] to discretize the bending force operator F with the

boundary conditions (22). We recall that the matrix X gives the positions of the fiber on an N

point type 1 Chebyshev grid that does not include the boundaries.

In rectangular spectral collocation, we compute an upsampled representation X̃ of X. Since

there are four boundary conditions, the upsampled representation is on a Ñ = N + 4 point type

2 Chebyshev grid that includes the endpoints. The unique configuration X̃ can be obtained by

solving A
B

 X̃ =

X
0

 , (63)

where A is an N × Ñ resampling matrix and B is a 4 × Ñ matrix that encodes the boundary

conditions. The linear operation AX̃ has the effect of computing the Chebyshev interpolant of

X̃ on the Ñ = N + 4 point grid and evaluating it at the N original gridpoints. The first block

equation simply states that the downsampled X̃ has to be the original X. In the next block, the

product BX̃ is a vector with 4 entries. The first two entries are the Chebyshev interpolant approx-

imation to ∂2
sX̃ (s = 0, L), respectively, and the second two entries are likewise an approximation

to ∂3
sX̃ (s = 0, L). Thus the second block equation simply states that the boundary conditions are

satisfied on the type 2 grid, and any modifications to the BCs would modify B in this formulation.

The use of a type 1 grid for X and a type 2 grid for X̃ is a sufficient condition for the left-hand

side of system (63) to be invertible (see [20] for details). We can therefore write

X̃ =

A
B

−1X
0

 := EX. (64)

In summary, X̃ is the unique upsampled configuration that satisfies the problem boundary condi-

tions and gives X when downsampled. This is similar to “ghost cells” in finite difference schemes

which take on unique values so that the boundary stencils satisfy the BCs to some order. The
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rectangular spectral collocation method can therefore be thought of as a generalization of ghost

cell techniques for finite difference methods to collocation-based spectral methods.

Once the configuration X̃ is known, the elastic force density can be computed on it as f̃
κ

=

−κD4
Ñ
X̃. The elastic force density f̃

κ
is then downsampled to the original N point type 1 grid to

give the final result,

fκ = Af̃
κ

= −κ
(
AD4

Ñ
E
)
X := FX, (65)

which defines F , the discrete analogue of F . In a slight abuse of notation, we will use the notation

FX to refer to the bending force calculation on either a single fiber (where F is as defined in (65)),

or a collection of fibers (where F is a diagonal block matrix composed of smaller matrices that are

defined in (65)); the meaning should be clear from the context.

4.2 Discretization of M

We discretize the mobility operator defined in (16) by computing the relative velocity of point p

on fiber i as

(Mf)(i)
p = ML

(
τ (i)
p ; cp

)
f (i)
p +

(
MFP

(
X(i)

)
f (i)

)
p

+
∑
j 6=i
M c

(
X(i)

p ,X
(j)
)
f (j). (66)

The 3 × 3 matrix ML given in (9) is unchanged from the continuum, and cp = c̄(sp; δ). The

matrix MFP computes an approximation to the finite part integral (10) (see Section 4.2.1), and

M c
(
X

(i)
p ,X

(j)
)
f (j) is the velocity at point X

(i)
p induced by fiber j (see Section 4.2.2).

We will need notation to separate the local part of the discrete mobility (66), which is easy to

invert, from the nonlocal part, which is not. For this we write

(Mf)(i)
p = ML

(
τ (i)
p ; cp

)
f (i)
p +

(
MNL (X)f

)(i)
p
, (67)

where the nonlocal part of the mobility matrix MNL (X) is a function of the collection of fibers X

and acts on the collection of force densities f . For the collection of fibers, we will simply write the

splitting (67) as

M (X) = MLD (X) +MNL (X) , (68)

where the block diagonal matrix MLD is composed of a collection of 3× 3 local drag matrices on

the diagonal.
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4.2.1 Discretization of MFP

Here we discretize the finite part integral (10). Since the finite part integral involves only a single

fiber, we use X here to denote a matrix of N × 3 positions for a single fiber. Substituting the

definition of the Stokeslet (1), we have

(
MFP [X]f

)
(s) =

1

8πµ

∫ L

0

I +
(
R̂R̂

)
(X(s),X(s′))

‖R (X(s),X(s′))‖
f(s′)−

(
I + τ (s)τ (s)

|s− s′|

)
f(s)

 ds′ (69)

for any coordinate on the fiber s. We seek to evaluate the finite part integral (69) at s = sp on

a given fiber. Because each term in the integrand is singular, the integral (69) cannot directly be

evaluated with Clenshaw-Curtis quadrature. One way around this difficulty is to simply skip the

singular point in the quadrature, which results in a second-order accurate scheme. Because this

destroys the spectral accuracy of our formulation, we seek an improved quadrature that handles

the singularity analytically.

In [85], the integrand was regularized to make it non-singular, and a product integration scheme

was used to compute the resulting regularized integral [85, Section 3.1]. The justification for the

regularization is that the self mobility operator M is actually not invertible, since its null space

contains force densities f with frequencies higher than 1/ε. Götz [26] and Tornberg and Shelley

[85, Appendix B] show this analytically by considering a straight fiber and expanding f as a sum

of Legendre polynomials (which diagonalize MFP). They show that the centerline velocity U for

a single fiber (8) uniquely gives the Stokeslet strength f(s) via U = Mf if the maximum number

of polynomials that contribute to f is less than O(1/ε). Intuitively, adding polynomials of degree

larger than 1/ε introduces length scales into f which are less than ε and cannot be accounted for

by SBT. In the discretization of [85], the number of points can exceed 1/ε for ε = 10−2, and so

regularization of the integrand is required.

Because we use a spectral basis with smooth fiber shapes, we never exceed the O(1/ε) threshold

for the number of Chebyshev polynomials. Indeed, having less than O(1/ε) Chebyshev points

(polynomials) is a sensible restriction on the numerics. After all, using such a large number of points

(spectral modes) is antithetical to the philosophy of SBT, which, unlike IB methods, eliminates

the need to resolve the length scale ε. Mori and Ohm analyze this “spectral truncation” approach

for infinite (periodic) fibers and find that it yields errors of order at worst ε with respect to the

true solution for a “slender body” PDE on the fiber surface [62, Eq. (20)]. This accuracy is

asymptotically equivalent to that obtained using the regularization of Tornberg and Shelley [62,
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Eq. (22)].

With this in mind, we do not modify the integrand of the finite part integral (69). Rather, we

use a spectrally accurate method developed in [82] to compute the action of the finite part integral

on the fiber force density. The key idea is to isolate the singularity by writing the integrand in (69)

as g(s′, s)(s′ − s)/|s′ − s| for some function g(s′, s). In particular, we observe that the finite part

integral (69) can be written as

(
MFP [X]f

)
(s) =

∫ L

0
g(s, s′)

s′ − s
|s′ − s|

ds′ =
L

2

∫ 1

−1
g(η, η′)

η′ − η
|η′ − η|

dη′, (70)

where η = −1 + 2s/L is a rescaled arclength coordinate on [−1, 1] and

g(s, s′) =
1

8πµ

[(
I +

(
R̂R̂

) (
X(s),X(s′)

)) |s′ − s|
‖R (X(s),X(s′))‖

f(s′)

− (I + τ (s)τ (s))f(s)

]
1

s′ − s
. (71)

The computation is now tractable since g has a limit as s′ → s. The limit is easily computed

by adding and subtracting (I + τ (s)τ (s))f(s′) inside the square bracket, and Taylor expanding

around s′ = s, to obtain

lim
s′→s

g(s, s′) =
1

8πµ

(
1

2
(τ (s)Xss(s) +Xss(s)τ (s))f(s) + (I + τ (s)τ (s))f s(s)

)
. (72)

Since g is smooth, we can approximate it by a polynomial expressed in a monomial basis on [−1, 1],

L

2
g(η, η′) ≈

N−1∑
k=0

ck(η)(η′)k, (73)

where ck is a vector of 3 coefficients for each η.

We are now ready to discretize MFP [X] with the matrix representation MFP (X). Substitut-

ing the monomial expansion (73) into the finite part integrand (70) and computing the integrals

involving monomials and the singularity analytically, we get

(
MFP (X)f

)
p

=
N−1∑
k=0

ck(ηp)

∫ 1

−1
(η′)k

η′ − ηp
|η′ − ηp|

dη′ =
N−1∑
k=0

ck(ηp)qk(ηp), (74)

where qk(ηp) =

∫ 1

−1
(η′)k

η′ − ηp
|η′ − ηp|

dη′ =
1 + (−1)k+1 − 2ηk+1

p

k + 1
. (75)

An adjoint method can be used to accelerate our computation of the product (74). Let us

introduce the Vandermonde matrix V with entries Vpq = ηqp. Let gp (X) be the N × 3 matrix
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with rows gpq = g(ηp, ηq), with g defined in (71). The N × 3 matrix c of coefficients of the three

polynomial interpolants of the columns of gp is c = V −1gp. If q is an N vector with elements

qk = qk(ηp) as given in (75), then the product (74) can be computed efficiently as

(
MFP (X)f

)
p

= cTq =
(
V −1gp (X)

)T
q = (gp (X))T

(
V −Tq

)
:= (gp (X))T b. (76)

Since b = V −Tq does not depend on the fiber configuration, it can be precomputed using pivoted

LU factorization for each p = 1, 2, . . . N at the beginning of the simulation. The Vandermonde

matrix must be sufficiently well-conditioned to do this calculation accurately; specifically, the fiber

discretization can have at most ∼40 points in double precision. If higher accuracy is needed, then

the fiber must be split into multiple panels or higher precision arithmetic must be used to compute

b in (76).

4.2.2 Discretization of Mc

In this section, we describe the simplest discretization of inter-fiber hydrodynamic interactions. We

recall the definition of the velocity induced by fiber j at point s on fiber i from (15),

v(j)
(
X(i)(s)

)
=
(
Mc

[
X(j)(·)

]
f (j)(·)

] (
X(i)(s)

)
(77)

=
1

8πµ

∫ L

0
SD

(
X(i)(s),X(j)(s′),

e3

24
(εL)2

)
f (j)(s′) ds′.

Given a discrete Chebyshev node on fiber i, X
(i)
p , the total disturbance velocity is a sum of the

flows generated by all other fibers j 6= i. We can therefore restrict our attention to the calculation

of the velocity induced by a single “source” fiber at a single “target” point on another fiber.

The simplest approach is to discretize the interaction velocity (77) by Clenshaw-Curtis quadra-

ture,

v(j)
(
X(i)

p

)
≈ 1

8πµ

N∑
q=1

wqSD

(
X(i)

p ,X
(j)
q ;

e3

24
(εL)2

)
f (j)
q := M c

(
X(i)

p ,X
(j)
)
f (j). (78)

The key challenge in evaluating (78) is the quadratic complexity; for each Chebyshev point X
(i)
p we

must sum over all others. We address this in Section 4.3 using the positively split Ewald method

[21].

While the direct quadrature (78) represents the simplest way to discretize Mc, it becomes

inadequate when fibers i and j approach each other. In fact, the Stokeslet-doublet combination

kernel SD defined in (3) becomes singular if the Chebyshev interpolantX(j)(s) of fiber j approaches
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the target X
(i)
p for some value of s. This singularity occurs because the velocity of one fiber due

to another (15) only makes sense physically if the two fiber cross sections are not overlapping (for

overlapping fibers the RPY kernel is different, see the second line of (5)).

While it makes little physical sense for fiber cross sections to overlap, it is numerically possible.

In this case, we set the velocity at the target point on fiber i to be equal to the centerline velocity

at the closest point on fiber j. Let us denote the minimum distance from X
(i)
p to3 X(j)(s) by d and

denote the closest point on fiber j to X(i) as X(j)(s∗). Then if the two cross sections are (almost)

overlapping, we set

v(j)
(
X(i)

p

)
= ML

(
τ (j) (s∗) ; c̄ (s∗; δ)

)
f (j) (s∗) +

(
MFP

(
X(j)

)
f (j)

)
(s∗) for d ≤ 2b, (79)

so that the influence of fiber j on the target (which is inside the cross section of fiber j) is the

same as if the target were actually on the centerline of fiber j, with the radius b ≈ 1.12εL given in

(6). By τ (j) (s∗), we mean the Chebyshev polynomial τ (j)(s) evaluated at s∗, and likewise for the

remaining terms.

For non-overlapping cross sections (d > 2b), the expression for the interaction velocity (15) has

to be changed because evaluating (15) at d = 2b may not be exactly equal to the centerline velocity

on fiber j (79) because of the slenderness approximation used in SBT. We therefore set the velocity

to be the interaction velocity (15) only if d ≥ 4b. Between 2b ≤ d ≤ 4b, we linearly interpolate

between the interaction velocity (15) and centerline velocity (79). This interpolation procedure is

almost identical to that of [85], except we use a different integral kernel SD for the interaction

velocity (15), and we estimate s∗ using a more robust procedure described in Section 4.4.

Despite our modifications to the interaction velocity for contacting cross sections, the kernel

in (15) is still nearly singular, and some quadrature scheme other than direct quadrature (78) is

required to accurately determine the interaction velocity for d > 2b, as we discuss in Section 4.4.

4.3 Fast summation

Putting off for the moment the possible near-singular nature of the interaction integrals (15),

suppose that we discretize every integral using direct quadrature (78). If F is the number of fibers,

each of which is discretized using N Chebyshev points, then the direct evaluation of nonlocal

hydrodynamics using (78) requires O
(
(NF )2

)
operations. In this section, we discuss our choice of

3Recall that we cannot and do not distinguish between the unknown “true” fiber shape and its Chebyshev inter-

polant and denote both with X(j)(s).
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fast algorithm to accelerate the evaluation of these many-body sums under triply periodic boundary

conditions. We recall that the kernel SD in (78) is the RPY kernel for non-overlapping spheres

of radius b = εLe3/2/4. Thus (78) reduces to summing the RPY kernel over all pairs of points(
X

(i)
p ,X

(j)
q

)
, which is a well-studied problem that can be treated with a number of fast algorithms

[21, 45, 29, 94]. Alternatively, the kernel SD can be viewed as a linear combination of Stokes

singularities, and fast algorithms for the individual singularities can be applied [49, 2, 39]. In

Section 4.3.2 we describe the Positively Split Ewald (PSE) approach of [21, 22], which assumes a

constant value of b (and therefore εL), across all of the fibers; this assumption can be relaxed [23].

Because we are interested in rheological applications, we use the method of [22] to extend the fast

Ewald summation technique of [21] to a parallelepiped sheared unit cell (see Section 4.3.1).

For overlapping spheres the RPY kernel SRPY differs from the SBT kernel SD in (78), and is

given by [88]

SRPY (x,y; b) =
1

8πµ

((
4

3b
− 3 ‖R‖

8b2

)
I +
‖R‖
8b2

R̂R̂

)
if ‖R‖ < 2b, (80)

where R = x − y. This means that the PSE method mistakenly computes the RPY kernel (80)

between a pair of points separated by a distance less than 2b instead of the desired SBT kernel. We

need not worry about this, however, since points that are a distance less than 2b yield a target-fiber

pair for which we set the velocity at the target to the fiber centerline velocity (79). More generally,

even for points farther apart than 2b there will be some number of target-fiber pairs for which

the direct quadrature (78) fails. Our approach to this is to rely on Ewald splitting to periodize

and accelerate the many-body summation, then subtract the free space RPY kernel between the

problematic fiber and target from the result. Subtracting the free space kernel leaves the periodic

images of the sum, which have been correctly accounted for by Ewald splitting (since they are

distant). We then handle the free space kernel SD for problematic pairs of fibers and targets using

the special quadrature algorithm described in Section 4.4.

4.3.1 Sheared coordinate system

In order to implement a shear flow in periodic boundary conditions, a strained coordinate system is

necessary. The PSE method was extended to sheared cells in [22], but here we give a more detailed

description for completeness. We assume (without loss of generality) that x is the flow direction,

y is the gradient direction, and z is the vorticity direction. Let the total nondimensional strain be
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Figure 2: The sheared/parallelepiped periodic simulation cell. We denote the dimensionless shear by g.

The green area shows the periodic cell (2D projection) when g = 0, and the blue area is the periodic cell for

nonzero g.

g(t). In Fig. 2 we define a strained coordinate system with axes

ex′ = ex, ey′ = ey + g(t)ex, ez′ = ez, (81)

and strained wave numbers

k′x = kx, k′y = ky + g(t)kx, k′z = kz. (82)

Here kx, ky, and kz are the wave numbers when the periodicity is over the x, y, and z directions,

while k′x, k′y, and k′z are the wave numbers when the periodicity is over the x′, y′, and z′ directions.

The transformation between the two coordinate systems is given by

x′ :=


x′

y′

z′

 =


1 −g(t) 0

0 1 0

0 0 1



x

y

z

 := Lx. (83)

In the unsheared to sheared transformation (83), the sheared coordinates x′, y′, and z′ are all

periodic on [0, L]3 (the blue simulation cell in Fig. 2).

Now we use the transformation (83) to transform the derivative operators in the unsheared

coordinate system to the sheared one,

∂

∂x
=

∂

∂x′
∂

∂y
=

∂

∂y′
− g(t)

∂

∂x′
∂

∂z
=

∂

∂z′
. (84)

We therefore have the Laplacian in the transformed space as [40]

∆ =

(
∂2

∂x′2
+

(
∂

∂y′
− g(t)

∂

∂x′

)2

+
∂2

∂z′2

)
. (85)

In Fourier space, ∆̂ = k′ · k′, where
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k′ = (k′x, k
′
y − g(t)k′x, k

′
z), (86)

Using the sheared to unsheared transformation in (82), it is easy to see that k′ :=
∥∥k′∥∥ =

‖(kx, ky, kz)‖ := k. It follows that we can simply replace k in any isotropic Fourier calculations by

k′ to use a Fourier method in the sheared coordinate system [92, 40]. In Appendix B, we verify

this formulation by considering a set of particles that can be viewed periodically in two ways. This

appendix verifies our correct treatment of the sheared periodic boundary conditions.

4.3.2 Ewald splitting for direct quadratures

Let x be a target point on the centerline of a fiber. To evaluate the direct quadrature (78) with

periodic boundary conditions, we first compute

U (PSE) (x) :=
∑
P

∑
i

SRPY

(
x,y

(P )
i ; b

)
F i :=

∑
i

S
(P )
RPY (x,yi; b)F i (87)

where F i is a force (force density × weight) assigned to the point yi. For each target point x = yj

for some j, the sum is over all discrete fiber points yi (including yj) and over triply periodic images

of the points yi in the sheared coordinate system P . The periodized RPY kernel is denoted by

S
(P )
RPY.

We use the Ewald splitting of [21, 22] to accelerate the computation of the many-body sum (87)

on a periodic domain. The idea of Ewald splitting or Ewald summation is to split the RPY kernel

into a smooth long-ranged part and a remaining short-ranged part. The smooth “far field” part

has an exponential decay in Fourier space and can be done by standard Fourier methods (namely

the non-uniform FFT), and the “near field” part decays exponentially in real space and can be

truncated so that it is nonzero for O(1) neighboring points (sources) per target.

Let x′ and y′ be the coordinates of the points x and y in the sheared domain using the coordinate

transformation (83). The periodic RPY tensor for a sphere with radius b can then be written on

the sheared domain as

S
(P )
RPY

(
x′,y′; b

)
=

1

V µ

∑
k′ 6=0

eik
′·(x′−y′) 1

k′2

(
I − k̂′k̂′

T
)

sinc2
(
k′b
)
, (88)

where V is the domain volume and k′ = 2πm/Ld, where m is a vector of three integers and Ld is

the periodic domain length. Using the screening function of Hasimoto [32],

H(k′, ξ) =

(
1 +

k′2

4ξ2

)
e−k

′2/4ξ2 , (89)
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we split the periodic kernel S
(P )
RPY into a far field and near field component, S

(P )
RPY = S

(FF)
RPY +S

(NF)
RPY,

where the far field is given in Fourier space by

S
(FF)
RPY

(
x′,y′; b

)
=

1

V µ

∑
k′ 6=0

eik
′·(x′−y′) 1

k′2

(
I − k̂′k̂′

T
)

sinc2
(
k′b
)
H(k′, ξ). (90)

Here ξ is a splitting parameter that controls the decay of the far field kernel in Fourier space and

of the near field kernel in real space, and is chosen to optimize performance. The total far field

sum is obtained by summing the far field kernel (90) over all points y′, with the k′ = 0 mode set to

zero since in continuum the total force on the system is zero. We use standard NUFFT algorithms

(in particular the Flatiron NUFFT library [6]) to compute these sums at all points x′ in log-linear

time in the number of points (see [21, 22] for more details). The Flatiron NUFFT relies on a new

“exponential of a semicircle” kernel to do spreading and interpolation [6], which is more efficient

than the traditional Gaussian featured in [21, 22]. See [83, Eq. (31)] for error estimates using the

exponential of a semicircle kernel, although these have yet to be extended to sheared domains in

the manner of [22, Eq. (55)].

Assuming that the near field decays rapidly enough that Fourier series can be replaced by

Fourier integrals, the near field mobility can be computed in real space by inverse transforming its

Fourier space representation,

S
(NF)
RPY (x,y; b) = F (r, ξ, b)

(
I − r̂r̂T

)
+G(r, ξ, b)r̂r̂T , (91)

where r = (x− y)∗, r = ‖r‖, and the ∗ denotes the nearest periodic image in the sheared domain

(blue in Fig. 2). The exact forms of F and G are given in [21, Appendix A]. The total near field sum

is computed at x by summing the near field kernel (91) over neighboring points whose minimum

image distance from x is less than a precomputed value r∗. We choose r∗ so that the velocities

are computed to a relative tolerance of 10−3, and set ξ such that r∗ is small enough that only the

nearest periodic image contributes to the near field sum for each pair of points.

While the nearest image for near field calculations is over the sheared domain, r and r are

computed using the Euclidean metric. We search for pairs of points closer than r∗ apart in log-

linear time using a kD tree implemented in SciPy for a rectangular periodic cell. To adjust for

the fact that the x′ coordinates are given on a non-orthogonal coordinate system, we bound the

Euclidean distance between points in the unsheared coordinates by their “distance” in sheared

coordinates,

‖r‖ =
√
rTr =

√(
r′
)T
L−TL−1r′ ≤

(
1 +

1

2

(
g2 +

√
g2(g2 + 4)

))∥∥r′∥∥ := ψ
∥∥r′∥∥ , (92)
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where we have used the maximum eigenvalue of L−TL−1 to bound the norm [22]. The factor ψ

defined in (92) can be thought of as a “safety factor” in the sense that points that are r∗ apart

using the Euclidean metric in primed coordinates are at most ψr∗ apart in physical space.

For multiple interacting fibers, the velocity U (RPY)
(
X

(i)
p

)
is obtained by summing both the

far field and near field over fibers j and points q. One inconvenience is that the PSE sum (87) is

over all pairs of points, including a point with itself (yi = x is automatically included in the sum).

Specifically, the PSE sum (87) will include interactions of a fiber with itself using the RPY kernel;

this is not correct since those interactions should be computed by the SBT formula (8). Since we

know a priori that the velocity at target X
(i)
p incorrectly includes the direct quadrature sum due

to fiber i, we subtract the free space RPY kernel, defined in (5), from the RPY sum U (PSE)
(
X

(i)
p

)
defined in (87) to obtain the final Ewald sum

U (RPY)
(
X(i)

p

)
= U (PSE)

(
X(i)

p

)
−
∑
q

SRPY

(
X(i)

p ,X
(i)
q ; b

)
f (i)
q wq. (93)

4.4 Near fiber quadrature

The Ewald splitting scheme (93) gives the velocity at all points X
(i)
p due to all other points X

(j)
q ,

including target-fiber pairs where the direct quadrature scheme (78) is inaccurate. If the box size

is sufficiently large, these inaccuracies only happen for the periodic image of the target X
(i)
p that is

closest to the fiber X(j). The other periodic images are handled correctly using the Ewald splitting

scheme (93), since they are sufficiently far from the fiber. In this section, we describe the special

quadrature scheme we use to correct the velocity for fibers j 6= i that are close to target X
(i)
p .

We need to compute the interaction velocity

v (x) =
1

8πµ

∫ L

0
SD

(
x,X(s),

e3

24
(εL)2

)
f(s) ds, (94)

where x is a target point and X(s) is the Chebyshev interpolant of the centerline of a fiber. There

are several components in our scheme to compute the interaction velocities v (x) to a guaranteed

tolerance regardless of how close the target point x is to the centerline of fiber X(s). We need to:

1. Understand how far x can be from X(s) for the direct quadrature (78) to remain sufficiently

accurate.

2. Obtain a reliable metric to compute or bound the minimum distance between the target x

and fiber X(s),

d := min
s
‖x−X(s)‖ . (95)
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Our procedure to compute d will be different for d/L = O(1), when fibers are far apart and

minimizing over a discrete set of nodes is sufficiently accurate, than for d/L = O(ε), where it

is more efficient to actually solve the continuous minimization problem.

3. Use a special quadrature scheme to compute the integral for d = O(ε). The special quadrature

scheme will of course be more expensive than direct quadrature (78), but less expensive than

actually using the requisite number of direct quadrature points required to get the same

accuracy. The scheme we use here is taken directly from [1] and is based on extending the

ideas used for the finite part integration in Section 4.2.1 to near-singular quadrature.

4. If d < 4b, compute the closest point on fiber X(s) to the target x and denote it by X (s∗).

Use the distance metric for small d to correctly blend the interaction velocity (94) with the

centerline velocity (79) of the fiber at X (s∗).

To begin, we define an acceptable tolerance for the integrals. Since slender body theory itself

is only accurate to O(ε), it does not make sense to set a tolerance less than ε. For actin filaments

ε ≈ 10−3, so we define the tolerance as 10−3 and set ε = 10−3 in our accuracy tests. That is, our goal

is to compute the interaction velocities v (x) to three digits of accuracy regardless of the distance

between a target x and fiber X(s). Algorithm 1 gives the schematic flowchart of our method, the

details of which are discussed next. While this method cannot guarantee 3 digits of accuracy, it

does so for most target-fiber pairs of interest to us; see Appendix C for numerical results.

4.4.1 Distance where direct quadrature breaks down

Our first goal is to determine when direct quadrature breaks down. To do this, we simply mea-

sured the accuracy of direct quadrature (78) with N = 16 and N = 32 Chebyshev nodes for

randomly-generated pairs of fibers and targets. Specifically (more detail is given in Appendix C),

we generated 100 inextensible fibers with 16 nonzero Chebyshev coefficients decaying exponentially

(in expectation) by four orders of magnitude. We placed 100 targets around each fiber a distance

d in the normal direction and computed the quadratures (78). Measuring error with respect to a

refined direct quadrature, we found that N = 16 gives 3 digits of accuracy for all test cases when

the non-dimensional distance d/L ≥ 0.15. Likewise, direct quadrature with N = 32 points gives 3

digits of accuracy when d/L ≥ 0.06.
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Use 𝑁௨ = 16 to estimate 𝑑/𝐿
𝑑ሚ/𝐿 ≥ 0.15 ∗ 1.05

Do nothing (direct quad ok)

𝑑ሚ/𝐿 ≥ 0.06 ∗ 1.20
Direct quadrature with 𝑁 = 32

Find root with 1 panel, 𝑁 = 32 𝑑መ < 2𝑏 ≈ 2.24𝜖𝐿
Velocity = centerline velocity at 𝑠∗

𝑑መ/(𝜖𝐿) ≥ 8.8

Redo special quad with 2 panels, 
𝑁 = 32 per panel

Continue special quad with 1 panel, 
𝑁 = 32

Subtract free space RPY kernel

𝑑ሚ/𝐿 < 0.15 ∗ 1.05

𝑑ሚ/𝐿 < 0.06 ∗ 1.20

2.24 ≤ 𝑑መ/(𝜖𝐿) < 8.8

𝑑መ < 4𝑏 ≈ 4.48𝜖𝐿

Linear blend with CL velocity at 𝑠∗

Algorithm 1: The discrete operation v (x) = M c (x,X)f for a fiber X(s) and target x. Beginning with

a target x and N Chebyshev points on the fiber centerline X(s), we first estimate the distance d/L by d̃/L,

where d̃ is computed from the discrete minimization over 16 uniform points. This determines whether the

result from direct quadrature with N (assumed to be at least 16) points is sufficiently accurate. If direct

quadrature is not sufficiently accurate, we subtract the free space RPY kernel (96) from the velocity (93)

and, if N < 32, redo the calculation with direct quadrature with Np = 32 points or special quadrature. If

special quadrature is needed, we calculate the complex root η∗ of ‖x−X(η)‖ = 0, use the projection (99) to

find the closest point on the fiber, and compute the non-dimensional distance d̂/(εL) in (100). The distance

d̂/(εL) determines whether to use special quadrature with 1 or 2 panels of 32 points each, and whether to

use a linear combination with the fiber centerline velocity at s∗, given in (79). The algorithm is designed to

ensure the calculation of v (x) to 3 digits of accuracy most of the time, and is specific to ε ≈ 10−3.

4.4.2 Estimating d for d/L = O(1)

Since direct quadrature breaks down for d/L < 0.15 when N = 16, we need to determine whether

a target x is indeed a distance less than d/L = 0.15 from the fiber centerline X(s) (the analogous
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statement holds for d/L = 0.06, N = 32). To do this quickly, we resample the fiber centerline at

Nu = 16 uniformly spaced points (in the arclength coordinate s) and perform a discrete minimiza-

tion over the uniform fiber points to estimate the distance d. We denote this approximation by d̃.

Using the same random set of fibers and targets as in Section 4.4.1, we found the estimate of d by d̃

has a relative error in the distance |d̃− d|/d of at most 5% for d/L = 0.15 and 20% for d/L = 0.06.

Since direct quadrature breaks down at d/L = 0.15 for N = 16, after accounting for the error

in estimating d, we have that if d̃/L ≥ 0.15×1.05, direct quadrature with N = 16 gives the integral

to 3 digits. If d̃/L < 0.15× 1.05, it is possible that the direct quadrature (78) is not accurate to 3

digits, and so the many-body Ewald sum (93) contains a direct quadrature between x and X that

is not accurate enough. We therefore subtract, for the target point x, this incorrect part of the

sum, specifically the free space RPY kernel between the fiber X(s) and target x,

v(RPY)(x) =
N∑
p=1

SRPY (x,X; b) wp. (96)

We then recompute the integral (94) to 3 digits using some other method.

For N = 16, our first resort to compute the integral (94) is to sample the Chebyshev polynomial

X(s) at 32 points and use direct quadrature (78) with 32 points. Since direct quadrature with 32

points gives 3 digits of accuracy when d/L ≥ 0.06, including the error bounds we have that if

d̃/L ≥ 0.06× 1.20, the direct quadrature gives the integral (94) to 3 digits. For d̃/L < 0.06× 1.20,

we abandon direct quadrature and use a special quadrature routine.

This initial step to upsample and integrate directly is designed to take care of most of the near

target and fiber pairs without incurring a significant computational cost. Our empirical correlation

between the distance d̃ and the direct quadrature error is less rigorous than the direct quadrature

error estimates of [1]. These estimates require information about the near singularity which, as

discussed in the next section, must be computed using more expensive root finding.

4.4.3 Special quadrature.

The special quadrature routine is taken directly from [1]. As in Section 4.2.1, the underlying idea

is to find the near singularity in the integrand, factor it out, expand what remains in a monomial

basis, and compute integrals with the singularity and monomials analytically. This time, however,

the integrand is not actually singular on the fiber centerline. By expanding the fiber representation

to the complex plane, the nearby singularity can be found in the complex plane and the entire

procedure of Section 4.2.1 can be repeated.
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In more detail, the interaction velocity integral (15) can be written so that the numerator is

smooth as x approaches the centerline of X(s). Starting from

v (x) =
1

8πµ

∫ L

0

f(s)

‖R‖
+

(
(RR) + e3

24 (εL)2 I
)
f(s)

‖R‖3
− 3

e3

24
(εL)2 (RR)f(s)

‖R‖5

 ds, (97)

where R = x−X(s), we rescale s by η = −1 + 2s/L. Then each of the terms in the integral (97)

can be written in the form ∫ 1

−1

hm (x, η)

‖x−X(η)‖m
dη, (98)

where m = 1, 3, 5. For each m, hm (x, η) is a density that depends on the target point x and varies

smoothly along the fiber j arclength coordinate η.

Now, the idea of [1] is to extend the representation of X(η) from η ∈ [−1, 1] ⊂ R to the complex

plane C and compute the complex root of ‖x−X(η)‖ = 0. Because the centerline representation

X(η) is available as a Chebyshev series, it is simple to solve for the root via Newton iteration. We

denote this root by η∗, i.e., ‖x−X(η∗)‖ = 0 with η∗ ∈ C.

Once the root is known, the algorithm of [1] finds the radius of the Bernstein ellipse associated

with η∗. This radius then bounds the direct quadrature error for the integral (97). If the upper

bound on the direct quadrature error with N = 32 points is less than 10−3, we proceed with direct

quadrature. Otherwise, we use the special quadrature scheme of [1], which is the same as in the

finite part integration in Section 4.2.1. The complex singularity is factored out of the integrand,

leaving a “smooth” function which can be expanded in a monomial basis. Integrals involving

monomials multipled by the singularity are computed analytically, and an inner product of the

monomial coefficients with the analytical integrands yields the approximation to v (x).

The only difference from Section 4.2.1 is that the location of the singularity (complex root η∗)

now depends on the fiber position X. This means that the roots and monomial coefficients must

be computed at every time step using an LU factorization of the Vandermonde matrix. Since the

Vandermone matrix is a function of the nodes sp on the fiber, its LU factorization is the same for

all fibers and can be precomputed once at the start of a dynamic simulation. We refer the reader

to [1, Section 3] for more details on this quadrature scheme.

While error bounds exist for direct quadrature, the special quadrature scheme of [1] does not

provide error bounds or a method for selecting the fiber discretization (number of panels, points

per panel, etc.). Because of this, we performed an empirical study on the same set of 100 fibers

and targets as in Section 4.4.1. The randomized testing described in Appendix C showed that, for
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most fiber configurations of interest to us, 1 panel of 32 points is sufficient to compute the integral

to 3 digits using special quadrature as long as the non-dimensional distance between the target

and fiber is d/(εL) > 8. Otherwise, 2 panels of 32 points are required. Fibers with high curvature

typically give the largest errors for a given discretization.

4.4.4 Estimating d for d/L = O(ε)

We still require a robust numerical procedure to determine when the the target point is too close

to the cross section of the fiber (i.e., when d < 4b = e3/2εL). Our idea is to use the real part of

the root η∗ as the closest arclength coordinate on the fiber to the target. We know the root η∗

solves ‖x−X(η∗)‖ = 0. It seems sensible, therefore, for the real part of the root to approximately

minimize (over real η) ‖x−X(η)‖ when the root is close to the real line. We therefore define s∗,

the closest point on the fiber to the target, from the complex root η∗ by removing the imaginary

part of the root and rescaling,

s∗ =



L
2 (Re(η∗) + 1) −1 ≤ Re(η∗) ≤ 1

0 Re(η∗) < −1

L Re(η∗) > 1

. (99)

The shortest distance from x to the fiber can then be estimated as

d̂ := ‖x−X(s∗)‖ , (100)

where the position X(s∗) is computed by evaluating the Chebyshev interpolant at s∗. Our ran-

domized tests showed that this estimate gives an error of at most 10% for d/(εL) ≤ 8, which is

sufficiently accurate for our purpose. Because we use a point s∗ on the fiber centerline to estimate

d̂, this 10% error is always an overestimation. For this reason we use 2 panels for special quadrature

when d̂/(εL) ≤ 8.8.

Combining all of our steps, we obtain an algorithm to compute v (x) for all targets and fibers

that is presented as a flowchart in Algorithm 1. In Appendix C we show that this quadrature

scheme gives 3 digits of accuracy in the integrals (94) with high probability.

4.5 Temporal discretization

In this section, we discuss how we discretize the evolution equation (45) in time. We use the

notation of (68) to split the mobility M into an O(log ε) local part MLD and O(1) non-local part
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MNL. Our goal in this section is to develop a second-order temporal integrator with the properties

that:

1. A minimum number of evaluations of the nonlocal hydrodynamics are needed per time step.

2. Bending elasticity is treated implicitly.

3. Any linear solves are block-diagonal, or fiber by fiber, so that the complexity of solving evo-

lution equation (45) scales linearly with the number of fibers and can be trivially parallelized.

Since we have separated the mobility matrix into the dominant O(log ε) block diagonal local drag

matrix MLD and the O(1) term that remains, we will begin by treating terms associated with

MLD implicitly, thereby alleviating some of the stability restrictions associated with the bending

force FX. This kind of approach gives almost unconditional stability as long as the density of

fibers is small enough for the local drag term to dominate the fiber’s motion. When the density of

fibers is larger, we will treat the bending force implicitly in the MNL term as well; the resulting

linear system can be solved approximately by a few iterations of GMRES [75].

To avoid nonlinear solves and still achieve second-order accuracy, we extrapolate values from

previous time steps to the midpoint of the next time step and use these extrapolated values as

the arguments for nonlinear functions (e.g. M(X) and K(X)). More precisely, we define the

extrapolated midpoint fiber positions as

Xn+1/2,∗ =
3

2
Xn −

1

2
Xn−1, (101)

where we have used the notation Xn to denote the fiber positions X at the nth time step. As is

our usual convention, we have not used fiber indices in the extrapolation (101) since it applies to

every fiber independent of the others.

4.5.1 Semi-implicit method for dilute suspensions

To discretize the evolution equation (45) and principle of virtual work (46) in time, we split the

mobility matrix into M = MLD + MNL. Since the elastic force density FX involves fourth

derivatives, it must be treated implicitly to maintain stability as the number of Chebyshev grid

points N increases. For dilute suspensions, we assume that, since MLD is the dominant O(log ε)

contribution at each point, only treating the term MLDFX implicitly will still give improved

stability.
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A second-order, semi-implicit discretization of the evolution equation (45) begins by solving the

saddle-point system

MLD
n+1/2,∗

(
λn+1/2 +

1

2
F (Xn +Xn+1,∗)

)
(102)

+MNL
n+1/2,∗

(
λn+1/2,∗ + FXn+1/2,∗

)
+ u0

(
Xn+1/2,∗

)
= Kn+1/2,∗αn+1/2,

K∗n+1/2,∗λn+1/2 = 0

for λn+1/2 and αn+1/2, where the notation MLD
n+1/2,∗ means MLD

(
Xn+1/2,∗

)
(and likewise for

MNL,K, and K∗). To obtain a second-order block-diagonal system, we extrapolate previous λ

values to the midpoint of the next time step,

λn+1/2,∗ = 2λn−1/2 − λn−3/2. (103)

When the nonlocal mobiility in the block diagonal discretization (102) is applied to λn+1/2,∗ and

FXn+1/2,∗, the total force might be nonzero because of discretization errors in F . In this case,

we manually set the total force to zero in the PSE method of Section 4.3. We also introduce the

approximation

Xn+1,∗ = Xn + ∆tKn+1/2,∗αn+1/2 (104)

to make (102) a linear system in αn+1/2 and λn+1/2. Since Xn+1 will actually be computed by

rotating the tangent vectors and integrating the result (see Section 4.5.3), the update (104) is a

second-order approximation to the actual Xn+1. Nevertheless, it is a sufficient approximation to

give the same stability properties as if the actual Xn+1 were included in a nonlinear saddle-point

system.

By substituting the approximation Xn+1,∗ in (104) into saddle-point system (102), we obtain

the following saddle-point linear system to solve at every time step,−MLD K − ∆t
2 M

LDFK

K∗ 0


n+1/2,∗

λn+1/2

αn+1/2

 = (105)

MLD
n+1/2,∗FXn +MNL

n+1/2,∗
(
λn+1/2,∗ + FXn+1/2,∗

)
+ u0

(
Xn+1/2,∗

)
0

 .

This system can be solved fiber by fiber, since all of the matrices MLD,K, and K∗ on the left hand

side of (105) are block diagonal. System (105) is not invertible in general because the representation
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Kα is not necessarily unique. To see this, suppose that nj is a degree N − 1 polynomial. Then

the inextensible velocity (41) could be zero at all the nodes without α being identically zero. We

therefore use the least squares solution for α while emphasizing that α itself has no significance;

only Kα has physical meaning.

4.5.2 Implicit method for denser suspensions

In the case when the fibers are packed densely enough to make the temporal discretization (105)

unstable, we treat the bending force in the nonlocal hydrodynamics implicitly and use GMRES to

solve for λn+1/2 and αn+1/2. The new linear system of equations is

MLD
n+1/2,∗

(
λn+1/2 +

1

2
F (Xn +Xn+1,∗)

)
(106)

+MNL
n+1/2,∗

(
λn+1/2 +

1

2
F (Xn +Xn+1,∗)

)
+ u0

(
Xn+1/2,∗

)
= Kn+1/2,∗αn+1/2,

K∗n+1/2,∗λn+1/2 = 0.

Now, let us denote the solutions of the block diagonal system (105) by λ̃n+1/2 and α̃n+1/2. By

subtracting the fully implicit system (106) from the locally implicit system (102), we obtain the

residual form of the saddle-point system− (MLD +MNL
)
K − ∆t

2

(
MLD +MNL

)
FK

K∗ 0


n+1/2,∗

∆λn+1/2

∆αn+1/2

 = (107)

MNL
n+1/2,∗

(
F
(
Xn + ∆t

2 Kn+1/2,∗α̃n+1/2 −Xn+1/2,∗
)

+ λ̃n+1/2 − λn+1/2,∗

)
0


to be solved using GMRES for the perturbations

∆λn+1/2 = λn+1/2 − λ̃n+1/2 and (108)

∆αn+1/2 = αn+1/2 − α̃n+1/2.

The right hand side of system (107) is zero to second order in ∆t. We therefore expect the

perturbations to be O(∆t2). While these perturbations have no impact on the temporal accuracy

of our scheme, obtaining a good approximation to them is vital for stability. In Section 5.2, we

quantify empirically (for ε = 10−3) how many GMRES iterations are enough to obtain unconditional

stability. Note that smaller values of ε require fewer GMRES iterations for stability since local drag

is more dominant for smaller ε, and vice versa for larger ε.
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To solve system (107) rapidly with GMRES, we use the block diagonal preconditioner

P n+1/2 =

−MLD K − ∆t
2 M

LDFK

K∗ 0

−1

n+1/2,∗

(109)

that appears in (105). Since MLD dominates over MNL, this preconditioner is effective, with

increased effectiveness for smaller ε.

Our overall scheme to solve for λn+1/2 and αn+1/2 can be summarized as follows:

1. Solve the block diagonal system (105) for λn+1/2 and αn+1/2. If the fiber suspension is

sufficiently dilute (see Section 5.2), continue to the next time step.

2. Otherwise, set λ̃n+1/2 and α̃n+1/2 to be the solutions of the block diagonal system (105), run

a few iterations of GMRES to solve the residual system (107), and update λn+1/2 and αn+1/2

using (108).

To initialize, in the first and second time steps (for n = 0, 1), we solve system (106) by converging

GMRES with a relative residual tolerance of 10−6. When n = 0, we set Xn+1/2,∗ = Xn.

4.5.3 Updating τ and X

Once we have computed αn+1/2, we use a discrete form of the tangent vector rotation (27) to

update the tangent vectors. This is done fiber by fiber, and so here we use X to stand for a single

fiber, rather than the entire collection of positions. To avoid double subscripts, in a slight abuse of

notation we superscript the time step index n in this section.

Our goal is to rotate the set of tangent vectors τn on the unit sphere by the (axis-angle) rotations

Ωn+1/2 = Ω
(
τn+1/2,∗,αn+1/2

)
. To do this in a stable way, we cannot use αn+1/2 directly in the

computation, since the kinematic coefficients αn+1/2 do not have physical meaning and take values

which are sensitive to discretization and ill-conditioning. Since the velocity Kn+1/2αn+1/2 has a

physical meaning and is less sensitive to numerical artifacts, we compute

Ωn+1/2 = τn+1/2,∗ ×DNK
n+1/2,∗αn+1/2 (110)

on an upsampled grid, where DN is the Chebyshev differentiation matrix on the N point grid. To

do this, we upsample τn+1/2,∗ and the derivative DNK
n+1/2,∗αn+1/2 to a grid of size 2N and do

the cross product. We then downsample the result to obtain Ω
n+1/2
p for p = 1, . . . N .
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Once Ωn+1/2 is known, we use the Rodrigues rotation formula [72] to compute the rotated

tangent vectors. Letting Ω = ‖Ω‖ and Ω̂ = Ω/Ω, we compute the rotated tangent τ at each node

p by

τn+1
p = τnp cos

(
Ωn+1/2
p ∆t

)
+
(
Ω̂
n+1/2

p × τnp
)

sin
(

Ωn+1/2
p ∆t

)
+ (111)

Ω̂
n+1/2

p

(
Ω̂
n+1/2

p · τnp
)(

1− cos
(

Ωn+1/2
p ∆t

))
.

We then compute Xn+1 from τn+1 via Chebyshev integration. Specifically, we compute the Cheby-

shev series coefficients of τn+1, apply the spectral integration matrix [27] to compute the Chebyshev

series of Xn+1, then evaluate this series at the nodes on the N point grid. To fix the integration

constant, on each fiber we set the position at the first node

Xn+1
1 = Xn+1,∗

1 , (112)

where Xn+1,∗ is defined in (104).

5 Numerical tests

In this section, we validate each component of our method and demonstrate the method’s spatial

and temporal accuracy. We study spatio-temporal accuracy in Section 5.1 with simple examples of

four falling fibers in free space and three fibers in periodic shear flow. Section 5.2 gives our most

important result for computational complexity: the number of hydrodynamic evaluations per time

step required to stably evolve the dynamics of a fiber suspension is at most five. By varying the

fiber number density and bending modulus, we show that one block diagonal solve combined with

at most three iterations of GMRES per time step are needed to maintain stability.4

In general, we will use an L2 function norm to compute the differences between configurations

throughout this section. Given two fiber configurations, we evaluate the Chebyshev interpolant of

each on a 1000 point type 2 Chebyshev grid and calculate the discrete L2 error using Clenshaw-

Curtis quadrature. Whenever there are multiple fibers, we compute the error on the first fiber X(1)

unless otherwise specified.

Since fibers in shear flow are our primary interest, some of our examples will use shear flows.

The general form of a time-oscillatory shear flow is given by

u0(x, t) = γ̇0 cos (ωt)(y, 0, 0). (113)

4The extra hydrodynamic evaluation to give a total of five comes in the conversion to residual form (107).
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The corresponding strain is given by g(t) = (γ̇0/ω) sin (ωt) for ω > 0 and g(t) = γ̇0t for ω = 0.

5.1 Spatio-temporal accuracy

In this section, we study spatio-temporal convergence for two examples where nonlocal hydrody-

namics has a nontrivial impact on the fiber trajectories. We first verify our method for fibers in

gravity by comparing the results to those obtained using the method prescribed in [66] and in

the process show improved robustness and temporal accuracy. We then demonstrate second-order

temporal convergence and spectral spatial accuracy for a periodic three fiber system in shear flow.

We also show that, if stable, our block diagonal solver (105) with one hydrodynamic evaluation per

time step is the most efficient way to resolve the dynamics to a given tolerance.

5.1.1 Comparison to strong formulation

Our first goal is to validate our weak formulation of inextensibility by numerically comparing to the

strong formulation. To do this, we consider four fibers centered around a circle of radius d = 0.2.

The fibers have initial tangent vector τ (t = 0) = (0, 0, 1) (they are aligned in the z direction) and

positions X(1)(t = 0) = (d, 0, s − 1), X(2)(t = 0) = (0, d, s − 1), X(3)(t = 0) = (−d, 0, s − 1), and

X(4)(t = 0) = (0,−d, s− 1), where 0 ≤ s ≤ L = 2. For simplicity, we set µ = κ = 1, and ε = 10−3.

For this test only, we use fibers with ellipsodial cross sections and set the local drag coefficient

c(s) = − ln
(
ε2
)
. We simulate until t = 0.25.

Each fiber has a uniform gravitational force density fg = (0, 0,−5) placed on it. In the absence

of nonlocal interactions (i.e., if M = MLD), the fibers fall straight downward. When the inter-

actions between fibers are included, however, the fibers influence each other and have an x and y

direction to their motion. Figure 3(a) shows the initial and final (t = 0.25) configurations of the

fibers in this test.

Our goal here is to verify our results by comparing to results obtained using the method of [66].

Because the method of [66] uses regularization for the finite part integral (and we do not), we drop

the finite part integral in this calculation and only include local drag and cross fiber interactions in

the mobility. The fibers are sufficiently far from each other that the dipole term in the kernel SD,

which has coefficient of 0 in [66], has a very small effect on the result (two orders of magnitude less

than our smallest spatio-temporal error). We use free space boundary conditions (no periodicity)

and compute all nonlocal integrals by direct quadrature (78), without any upsampling. We use the

block diagonal solves (105) for temporal integration and do not perform any GMRES iterations.
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Figure 3: Four fibers in gravity. (a) Initial (filled orange) and final (light blue) configurations of the fibers.

There are N = 16 points on each fiber. (b) Spatio-temporal convergence of our weak formulation (circles)

compared to the strong formulation of [66] (squares). In both cases, the exact solution is a trajectory with

N = 24, ∆t = 5× 10−4. For small ∆t, the spatial error dominates and the spatio-temporal error saturates.

We first verify that our results match those of the strong formulation [66] when the spatial

and temporal discretizations are well-refined. Considering N = 24 and ∆t = 5 × 10−4 in both

algorithms, we obtain a maximal L2 difference of 1.8×10−4 in the position of the first fiber, which,

as we show in Fig. 3(b), is on the order of magnitude of the discretization error.

It is instructive to compare the spatio-temporal error between the two algorithms. We define

the “exact” solution for both algorithms to be a trajectory with N = 24 and ∆t = 5 × 10−4.

Figure 3(b) shows the maximum L2 errors over the time interval [0, 0.25] for both algorithms with

different spatial and temporal discretizations. For small ∆t, the spatial error dominates and the

spatio-temporal error saturates. We observe that our weak formulation outperforms the strong

formulation of [66] in two ways. First, for coarse discretizations (e.g. N = 12, dashed lines in Fig.

3(b)), our saturated spatial error is more than an order of magnitude lower than the saturated

spatial error of [66]. This is likely because the line tension equation of [66] has larger aliasing

errors for coarser spatial discretizations, and because of our improved treatment of the free fiber

boundary conditions using rectangular spectral collocation. Secondly, our errors saturate at a

much larger time step size than those of [66]. For example, when N = 16 our error saturates for

∆t = 5 × 10−3, whereas the error from [66] does not saturate until ∆t = 1 × 10−3. This occurs
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because our temporal integrator is second-order accurate. This simple example demonstrates the

improved spatial accuracy of our new weak formulation over the strong one, and the improved

accuracy of our temporal discretization, even in the absence of GMRES iterations.

5.1.2 Spatio-temporal convergence

We next verify the temporal convergence of our algorithm for periodic sheared domains by choosing

an example where interactions between the fibers contribute significantly to the dynamics. We

consider three sheared fibers with L = 2 and X(1)(s) = (s− 1,−0.6,−0.04), X(2)(s) = (0, s− 1, 0),

and X(3)(s) = (s− 1, 0.6, 0.06). As shown in Figure 4(a), this corresponds to an “I” shaped initial

configuration of the fibers, with the fibers stacked in the z direction.

We set the periodic domain length Ld = 2.4, the Ewald parameter ξ = 3, and set µ = 1,

ε = 10−3, and κ = 0.01. We use a constant shear flow (113) with γ0 = 1 and ω = 0. Because

of the small bending rigidity, the fibers deform from their straight configurations in a shear flow.

In this example, two of the fibers are initially aligned with the x direction. Without nonlocal

hydrodynamics, they would stay aligned with the x direction and simply translate. When nonlocal

interactions are included, the flows generated by the middle fiber X(2) induce deformations of the

top and bottom fibers. This is evident in Fig. 4(a), which shows the final fiber positions at t = 2.4.

To quantify the temporal convergence, we fix N = 16 and simulate from t = 0 to t = 2.4 with

∆t = 0.4, 0.2, 0.1, 0.05, and 0.025 using the block diagonal solver (105) (no GMRES iterations)

and successive refinements to measure the error. Figure 4(b) shows that we obtain second-order

temporal convergence for the block diagonal solver (105) (blue circles) and for the GMRES system

(107) with 1 iteration (red squares) and 3 iterations (yellow triangles). The temporal error is

about an order of magnitude smaller when we perform one GMRES iteration in addition to the

block diagonal solvers. Note, however, that this comes at the cost of two additional nonlocal

hydrodynamic evaluations (one to convert to residual form, one in the GMRES iteration).

For spatio-temporal convergence, we simulate a refined trajectory with N = 32 and ∆t =

0.00125 and compute the maximum L2 errors in trajectories with N = 16 and 24. As shown in

Fig. 4(c), increasing the number of points by 8 decreases the spatio-temporal error by a factor of 4

(compare blue circles with purple diamonds), which is consistent with spectral spatial accuracy.

Performing one GMRES iteration with ∆t = 0.2 approximately matches the spatial and tem-

poral errors and costs a total of three hydrodynamic evaluations per 0.2 units of time. Running the

block diagonal solver with ∆t = 0.1 matches the temporal error with the spatial error and costs
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Figure 4: Three fibers in shear flow. (a) Fiber configurations at t = 0 and t = 2.4. (b) Second-

order temporal convergence. We measure the maximum L2 error over time in the first fiber position using

successive refinements and observe second-order temporal convergence for block diagonal solves with N = 16

(blue circles) and N = 24 (purple diamonds). We also see second-order convergence, and reduced temporal

errors, for both 1 (red squares) and 3 (yellow triangles) GMRES iterations. (c) The spatio-temporal errors

(measured against a more accurate solution with N = 32, ∆t = 0.00125) are shown for N = 16 and N = 24.
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two hydrodynamic evaluations per 0.2 units of time. We therefore conclude from Figure 4(c) that

the most efficient way to obtain the maximum accuracy for a given spatial resolution is to run the

block diagonal solver with the smaller time step size, assuming it is stable.

5.2 Stability

Because our block-diagonal semi-implicit temporal discretization (BDSI) described in Section 4.5.1

treats the bending force explicitly in the nonlocal term, it will become unstable when the fiber

suspension is too concentrated and the cumulative effect of nonlocal hydrodynamics is comparable

to that of local drag. In this case, we switch to the GMRES solver described in Section 4.5.2. As

discussed there, since the block diagonal solver is already second-order accurate, the perturbations

to α and λ that come from the residual GMRES solve (107) do not impact the overall temporal

accuracy (see Fig. 4), but do impact stability. For this reason, we run only a fixed number of

GMRES iterations until we obtain stability. Our goal in this section is to determine an upper

bound on the number of required GMRES iterations.

To do this, we consider a suspension of F = 1000 fibers and vary the density of fibers by

changing the periodic domain length Ld. If f = F/L3
d is the number density of fibers and L is the

length of a fiber, a dimensionless density fL3 < 1 is considered a dilute fiber suspension, while a

semi-dilute suspension is one with rfL2 = εfL3 � 1, and a semi-concentrated one has εfL3 = O(1)

[81]. Here we explore the semi-dilute and semi-concentrated regimes and derive empirical bounds

on how many GMRES iterations are required to maintain stability for a variety of bending moduli.

Our conclusion is that at most five nonlocal hydrodynamic evaluations are sufficient to maintain

stability, even for semi-concentrated suspensions.

We simulate F = 1000 initially straight fibers of length L = 2 and radius r = 2× 10−3 (so that

ε = 1× 10−3), and use N = 16 points per fiber. In the oscillatory shear flow (113), we set ω = 2π

and γ̇0 = ω/10, so that the maximum strain is g = 0.1 and the time for one cycle is 1. We expect to

need at least 20 time steps per cycle to obtain reasonable accuracy, so we set ∆t = 0.05, although in

reality we find that smaller time step sizes are needed to accurately resolve the dynamics of dense

suspensions. Since we find that changing the frequency ω has a negligible impact on the results, we

non-dimensionalize ∆t by the bending timescale τ = 8πµL4/
(
ln
(
ε−2
)
κ
)
, where here we use µ = 1.

We simulate 5 cycles of motion, until t = 5. Figure 5 shows the number of hydrodynamic

evaluations required for stability for a given bending modulus and fiber density. The fiber number

density fL3 is reported on the bottom x axis and on the top x axis we give εfL3. For semi-
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dilute suspensions (εfL3 ≈ 0.01), we see that BDSI is stable, i.e., only a single hydrodynamic

evaluation is needed for stability (red squares in Fig. 5). For a fixed number density, we first

see instabilities for BDSI for smaller τ , so that stiffer fibers require more GMRES iterations for

stability. As the fiber suspension becomes semi-concentrated (εfL3 ≥ 0.1), we see that we need at

least three hydrodynamic evaluations regardless of the fiber stiffness. For our stiffest and densest

suspensions (εfL3 ≈ 0.5), we need at most five hydrodynamic evaluations per time step to obtain

stable dynamics. For comparison, Nazockdast et al. report 9 to 16 GMRES iterations for a system

with a similar number of fibers [66, Table 1].

We caution that these evaluation counts are the minimum number needed for stability. For

dense fiber suspensions, ∆t = 0.05 might be too large to obtain reasonable accuracy, since fibers

that are in close contact are subject to nearly nonsmooth velocity fields that come from the near

singular velocity kernel (77) and the possible combination with the fiber centerline velocity (79).

In practice, we find this causes fibers that are in close contact to oscillate around each other when

∆t is too large. A smaller ∆t can resolve these issues, and we know from Fig. 5 that the number

of iterations required for stability drops with the time step size.

6 Application: cross-linked actin mesh

The cell cytoskeleton is a dynamic network of cross-linked actin filaments and myosin motors that

allows cells to migrate, divide, and adapt to new environments [4, 3]. A number of experimental

[24, 35, 37, 46] and computational [52, 33] studies have shown that the viscoelastic rheology of

actin networks comes from specialized cross-linking proteins dynamically binding and unbinding

to actin fibers, with the rates of binding and unbinding determining the ratio of viscous to elastic

behavior. When the cross-linkers (CLs) are permanently attached, the network has traditionally

been viewed as purely elastic, while instant unbinding of CLs has been seen as pure viscous behavior

[3]. The reality is more nuanced than this, since the network is embedded in an underlying fluid

which contributes to the viscous modulus of the network and affects the movement of the filaments

between binding and unbinding events.

To our knowledge, there has been no systematic study of the contribution of the underlying

fluid to the dynamics and viscoelastic properties of cross-linked actin networks. We defer a full

study of this for the future; here we develop the cross linking model and provide some initial

results. In particular, we will leave transient cross-linker dynamics for a future study and consider
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Figure 5: Number of hydrodynamic evaluations needed for stability, indicated by color. We consider a

system of F = 1000 fibers of length L = 2, vary the periodic domain length Ld and fiber stiffness κ, and show

the number of hydrodynamic evaluations needed for stability for each set of parameters. One hydrodynamic

evaluation occurs in the block diagonal solver (105), another in the conversion to residual form (107), and

one evaluation occurs per GMRES iteration. We report fiber density in units of fL3 = FL3/L3
d on the x axis

and fiber stiffness in units of ∆t/(1.72τ) on the y axis, where the elastic timescale τ = 8πµL4/
(
ln
(
ε−2
)
κ
)
.
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the special case of a permanently cross-linked network, which could model, for example, a network

of actin fibers cross-linked by scruin proteins [24]. Since our fibers are represented by Chebyshev

interpolants X(s), we seek a continuum force density on the fiber due to cross linking. This force

density must be smooth relative to the discretization to preserve the spectral accuracy of our

algorithm.

We begin in Section 6.1 by presenting our model of a cross-linker as an elastic spring between the

fibers. Although an elastic spring model might not be appropriate for some cross-linking proteins,

for example short and stiff rods like α-actinin [60], it can model longer and more flexible CLs like

filamin [91]. In Section 6.2, we then discuss how we compute rheological information from our

model to facilitate comparison with experiments. In Section 6.3, we also report the sensitivity of

this information to the number of collocation points N , width σ of the CL Gaussian smoothing

function, and local drag regularization length scale δL. We conclude this section with our results

for a permanently cross-linked actin network. We consider a fixed ratio of twelve CLs per fiber

and study the viscous and elastic behavior of the network using both local drag and fully nonlocal

hydrodynamics to evolve the system. Our conclusion is that there exists a critical time scale τc

on which the network relaxes to a dynamic steady state under oscillatory shear flow. For shear

frequencies ω � τ−1
c , the behavior is primarily elastic and dominated by the quasi-steady state of

the network. For ω � τ−1
c , dynamics, including hydrodynamics, matter and we see more viscous

behavior.

6.1 Cross-linker model

Suppose we have two fibers, X(i) and X(j), and that a CL connects two fibers by attaching to

arclength coordinate s∗i on fiber i and s∗j on fiber j, where these coordinates are not necessarily

Chebyshev points. We define the force density due to the CL at arclength coordinate sp on fiber i

as

f (CL,i)
p (X) = −Kc

1− `∥∥∥X(i)(s∗i )−X
(j)(s∗j )

∥∥∥
 δh(sp−s∗i )

N∑
q=1

(
X(i) (sp)−X(j)(sq)

)
δh(sq−s∗j )wq,

(114)

where Kc is the spring constant for the CL (units force/length), ` is the rest length, and δh is a

Gaussian smoothing function replacing a Dirac delta function. The CL force density (114) links the

point sp on fiber i to every point on fiber j, with a weight related to the distance on fiber j between

the anchor coordinate s∗j and Chebsyshev point sq by the Gaussian function δh. The prefactor
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outside of the sum is zero when the anchor points are exactly length ` apart. If the two anchor

points are farther than ` apart, the force between them is attractive; otherwise it is repulsive.

The force density (114) exerts no net force or torque on the system both in continuum (replace

the sum in (114) by an integral) and discretely. Specifically,

N∑
p=1

f (i,CL)
p wp +

N∑
q=1

f (j,CL)
q wq = 0 (115)

N∑
p=1

(
X(i)

p × f (i,CL)
p

)
wp +

N∑
q=1

(
X(j)

q × f (j,CL)
q

)
wq = 0. (116)

These identities, which imply that each pair of cross-linked fibers is force-and-torque-free, hold

regardles of the form of δh.

For a given fiber discretization, we choose δh so that the forcing is smooth in the Chebyshev

basis. We consider δh to be a Gaussian density of the form

δh(r) =
1

Z
exp

(
− r2

2σ2

)
, (117)

where σ is a parameter that controls the smoothness and spread of δh. The factor Z is a normaliza-

tion factor that ensures δh discretely integrates to 1 along the fiber length, i.e.,
∑

p δh (sp − s∗i )wp =

1. Far from the endpoints, Z =
√

2πσ2, but if the CL is bound to the end of the fiber some of

the Gaussian weight might be truncated. For a given N , we choose σ to be the minimum value

that gives 3 digits of accuracy in f , where the error is measured relative to a refined f computed

on a 1000 point Chebyshev grid. Note that small values of σ lead to instabilities if N is not large

enough to resolve δh. For N = 16, we use σ/L = 0.1; we will study the influence of σ on physical

observables numerically in Section 6.3.1.

We modify the BDSI temporal integrator (102) to treat the cross linker forces in an explicit

second-order fashion,

MLD
n+1/2,∗

(
λn+1/2 +

1

2
F (Xn +Xn+1,∗) + f

(CL)
n+1/2,∗

)
(118)

+MNL
n+1/2,∗

(
λn+1/2,∗ + FXn+1/2,∗ + f

(CL)
n+1/2,∗

)
+ u0

(
Xn+1/2,∗

)
= Kn+1/2,∗αn+1/2,

where f
(CL)
n+1/2,∗ = f (CL)

(
Xn+1/2,∗

)
and Xn+1/2,∗ is the extrapolation (101). As before, when the

block diagonal semi-implicit temporal integrator (105) is unstable, we switch to the residual system

for GMRES (107), which is unchanged by the CLs. The time step size ∆t for the CL discretization

(118) is limited by stability for cases when the fibers are more flexible than the CLs; we leave

implicit treatment of CLs for future work.
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6.2 Rheological experiments

Experimental studies on actin networks [35, 37] typically report the viscous and elastic moduli.

These quantities can be computed from the system stress tensor σ, which in turn can be computed

from the force densities on each fiber’s centerline. In this section, we briefly lay out the minimum

details needed for the calculation of the viscous and elastic moduli.

Recalling the time-oscillatory shear flow (113), the only nonzero component of the rate of strain

tensor is constant in space and is given by

γ̇21(t) =
∂ux0
∂y

= γ̇0 cos (ωt), (119)

and the relevant component of the strain tensor is therefore

γ21(t) =

∫ t

0
γ̇21(t′) dt′ =

γ̇0

ω
sin (ωt) := γ0 sin (ωt), (120)

where we have defined γ0 as the maximum strain in the system. We define the bulk elastic (G′)

and viscous modulus (G′′) from γ0 by [65]

σ21

γ0
= G′ sin (ωt) +G′′ cos (ωt). (121)

Notice that the elastic modulus G′ gives the part of the stress that is in phase with the strain, and

the viscous modulus G′′ gives the part of the stress that is in phase with the rate of strain.

The stress tensor itself can be decomposed into a part coming from the background fluid and a

part coming from the internal fiber stresses,

σ21 = σ
(µ)
21 + σ

(f)
21 = µ

∂ux0
∂y

+ σ
(f)
21 . (122)

For pure viscous fluid, the fiber contribution to the stress is zero and the stress is given entirely by

the viscous stress tensor,

σ
(µ)
21

γ0
=
ωµ

γ̇0
(γ̇0 cos (ωt)) = ωµ cos (ωt). (123)

Thus the viscous modulus due to the fluid is G′′ = ωµ.

The stress due to the fibers depends on the force the fibers exert on the fluid. Because (115)

shows that the total force exerted by the cross-linker on the pair of fibers it connects is zero, we

use Batchelor’s formula [8] for the volume-averaged stress due to the fibers and CLs. In the slender

limit (i.e., the case when the surface area force density is constant on fiber cross sections), the bulk
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stress due to the fibers and CLs in a volume V is given by σ(f) = σ(i) + σ(CL), where

σ(i) = − 1

V

 F∑
i=1

N∑
p=1

(
X(i)

p

(
λ(i)
p +

(
FX(i)

)
p

)
wp

) , (124)

σ(CL) = − 1

V

 C∑
c=1

N∑
p=1

(
X(c1)

p f (CL,c1)
p wp +X(c2)

p f (CL,c2)
p wp

) , (125)

where the double sum for σ(i) is over points on fibers and the double sum for σ(CL) is over points

on pairs of cross-linked fibers. In the cross-linker stress, C is the number of CLs and the notation c1

and c2 means that cross-linker c links fibers c1 and c2. The sums must be separated since different

periodic images of X(i) could be involved for different cross linkers. In σ(CL), the positions X
(c1)
p

and X
(c2)
p must be the periodic images of the two fibers that are connected by the CL. Because

(116) shows that the total torque exerted by the cross-linker on the pair of fibers it connects is

zero, we expect the stress tensor (124) to be symmetric to spectral accuracy, since the constraint

force λ and elastic forces FX exert exactly zero torque in continuum but not discretely [8].

We discretize the stress tensor at the midpoint of each time step. Specifically, we substitute

Xn+1/2,∗ for X and λn+1/2 for λ in the internal fiber stress σ(i), and evaluate the cross-linking

forces at the extrapolated midpoint Xn+1/2,∗ in σ(CL). Assuming that the final time T is an integer

multiple of the period 2π/ω, we then compute the bulk moduli by discretizing the integrals

G′ =
2

γ0T

∫ T

0
σ21 sin (ωt) dt G′′ =

2

γ0T

∫ T

0
σ21 cos (ωt) dt. (126)

by the midpoint rule.

6.3 Results

We now consider a permanently cross-linked network of F filaments, fix the physical parameters of

the network, and analyze how the viscoelastic behavior depends on the frequency of oscillations.

We set the fiber length L = 2 µm with aspect ratio ε = 10−3 and bending stiffness κ = 0.01

pN · µm2, and use a box of size Ld = 4 µm. For the fluid viscosity, we use µ = 1 Pa·s. The CLs

have rest length ` = 0.5 µm and spring constant Kc = 1 pN/µm. To bind the CLs, at t = 0 we

resample each fiber centerline to 16 uniformly separated points. We then randomly select a pair of

these points, X(i) (s∗i ) on filament i and X(j)(s∗j ) on filament j, where i 6= j. If the two selected

points are initially separated by a distance less than `, we bind a CL connecting fibers i and j, with

one end centered on X(i) (s∗i ) and the other end centered on X(i)(s∗j ). We continue this process
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until 12F CLs have been attached.5 Our use of such a large number of CLs effectively makes the

network into a single interconnected cluster, so that our periodic domain can be viewed as a sample

of a bulk interconnected fiber gel.

6.3.1 Effect of changing N , σ, and δ

For our experiments in the rest of this section, we will typically use N = 16 Chebyshev points per

fiber, cross-linker standard deviation σ/L = 0.1, and local drag regularization parameter δ = 0.1.

Here we test the effect of changing N , σ, and δ from these baseline parameters by considering

a set of F = 100 straight fibers and 1200 CLs. In this section, we are concerned only with the

spatio-temporal accuracy of our CL formulation, and not necessarily the actual values of the viscous

and elastic moduli, and so for this test we start measuring stress at t = 0, despite the fact that

the network could be far from a steady state. Since we have already tested the spatio-temporal

accuracy of our hydrodynamics in Section 5, we run here with local drag only. We use ω = 2π and

γ̇0 = 0.2π and run until T = 6 seconds (6 periods). To obtain a set of refined trajectories, we use

∆t = 0.005 for N = 16, ∆t = 0.0025 for N = 24, and ∆t = 0.001 for N = 32. In addition to

σ/L = 0.10 for all discretizations, we also measure stress for N = 24 with σ/L = 0.07 and N = 32

with σ/L = 0.05.

We first study the spatio-temporal convergence of stress by fixing σ/L = 0.10. The errors

in the stress under spatio-temporal refinement are shown in Figure 6(a), where we observe rapid

convergence consistent with second-order convergence in time. The errors in the stress near t = 0,

immediately after the flow is turned on, are more chaotic since the straight fibers are initially

pulled by CLs into a curved shape, and our time step sizes are too large to accurately capture these

dynamics.

Perhaps a more important question is the influence of the Gaussian regularization parameter σ.

In Fig. 6(b), we measure the differences in stress for N = 16, σ/L = 0.1 and N = 24, σ/L = 0.07

relative to our (most resolved) reference solution with N = 32, σ/L = 0.05. We see a relative

difference of at most 10% in the stress tensor for σ/L = 0.1 and 5% for σ/L = 0.07.

We also study the impact of the regularization parameter δ in the local drag coefficient (14) on

the stress tensor. In Fig. 6(c), we plot the relative errors in stress using δ = 0.05 as a reference

solution. We observe differences of about 5% in the stress tensor when we use ellipsoidal fibers

5Since there are only 16 sites on each fiber and one CL takes up two sites, this requires that we allow more than

one CL to bind to a specific site.
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instead of δ = 0.05, and we see the differences in stress decrease as δ decreases, with a difference

of only about 1% between δ = 0.1 and δ = 0.05. This shows that the precise value of δ has a small

effect on the macroscopic rheology.

6.3.2 Viscoelastic behavior

We now turn to the measurement of the viscous and elastic moduli for a network of F = 700 fibers

and 8400 CLs. In order to avoid transient behavior, we first find a steady state configuration of

the network by initializing straight fibers with CLs and running the system forward in time using

local drag and ∆t = 0.005 without any background flow. After t = 2500 seconds, the maximum L2

norm of the fiber velocity is approximately 4× 10−6 µm/s, which indicates a near steady state.

In order to measure the steady state viscous and elastic moduli, we must wait for some intrinsic

time on which the network reaches a new steady state in the shear flow. This relaxation time scale,

which we denote by τc, combines the cross-linker and fiber relaxation time scales. For cross-linkers,

a characteristic time scale of link relaxation is τCL = µ`/Kc = 0.5 seconds for our parameters. For

fibers, we assume that the network is sufficiently constrained that the length scale on which the

fibers can relax is the mesh size `m, or characteristic distance between filaments.6 We estimate `m

by assuming that Ld/L filaments can fit in one direction while Ld/`m can fit in the other two, so that

`m ∼
√
L3
d/(FL) ≈ 0.21µm, and a characteristic time scale of fiber relaxation is τF = µ`4m/κ ≈ 0.2

seconds. Thus our expectation is for τc to be on the order 0.1− 1 second.

To measure the time scale τc more precisely, we start with the steady state configurations, turn

on a shear flow (113) with ω = 0.2π rad/s and γ̇0 = 0.02π 1/s, and run for one cycle (until T = 10

seconds) with ∆t = 0.005 s. We then turn off the shear flow and measure the velocity of the fibers

for another 5 seconds. We track the mean L2 fiber velocity, given by

v̄(t) =
1

F

F∑
i=1

v(i)(t), where (127)

v(i)(t) =

 N∑
p=1

∥∥∥X(i)
p (t)−X(i)

p (t+ 0.05)
∥∥∥2

wp

1/2

,

6Another possibility is to assume that the fiber relaxation length scale is governed by the distance between two

CLs on each fiber. Since there are an average of 24 CL connections on each fiber (12F CLs, each of which binds to

2 fibers), this gives a distance `c = 2/24 ≈ 0.08µm, and a time scale µ`4c/κ of about 0.005 seconds, which is much

faster than that measured in our numerical experiments. We thank an anonymous referee for suggesting these time

scale estimates.
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Figure 6: Differences in the fiber stress σ
(f)
21 in a suspension of F = 100 fibers and 1200 CLs with (a)

constant cross-linker standard deviation σ/L and local drag regularization parameter δ, (b) varying σ/L,

and (c) varying δ. Normalization is the maximum absolute value of the stress for the reference solution in

all cases. (a) For a reference solution with N = 32 and σ/L = 0.1, we see (after initial transients) rapid

convergence of the stress consistent with second-order convergence in time. (b) For a reference solution with

N = 32 and σ/L = 0.05, we see a 10% difference in stress using N = 16 and σ/L = 0.1, and an approximately

3% difference for N = 24 and σ/L = 0.07. (c) For a reference solution with N = 16, σ/L = 0.1, and δ = 0.05

in the regularized local drag coefficient (14), we see a 5% difference in stress using ellipsoidal fibers and a

difference of 1% and 2% for δ = 0.1 and δ = 0.2, respectively.
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Figure 7: Decay of the mean fiber velocity to a steady state after being sheared for one cycle with ω = 0.2π.

We plot the mean fiber velocity, given by (127) and normalized by v̄(t = 0), over five seconds and compare

the result to the double-exponential fit 0.64e−t/0.36 + 0.36e−t/2.39 to estimate the network relaxation time

scale τc.

and normalize by v̄(0) to obtain the exponential-like decay shown in Fig. 7. The time scale of

relaxation to steady state is τc ≈ 0.5 − 2 s, with the best fit being a sum of two exponentials

τ1 = 0.4 s and τ2 = 2.4 s. These relaxation time scales are in line with our physical estimates of

τF = 0.2 s and τCL = 0.5 s.

Thus in order to measure the steady state moduli, we wait one second or one cycle (whichever

is longer) prior to measuring the stress (and moduli) over three cycles of shear flow. We use a

maximum strain γ0 = γ̇0/ω = 0.1 to stay in the linear regime (data not shown), and we give

frequencies in Hz. To initialize for a given ω, we use the final network configuration from the

previous (next smallest) frequency. A sample configuration of the fibers in the network, taken with

ω = 1 Hz at the point of maximum strain, is shown in Fig. 8. Dynamic movies of the simulations

are included in the supplementary material.

Figure 9(a) shows the steady-state elastic and viscous moduli when the dynamics of the network

are computed with fully nonlocal hydrodynamics. Figure 9(a) also shows separately the contribution

to the moduli of the CL stress (125), which is 5 − 10 times more elastic than viscous. There is

a clear transition in both of the moduli for ω ≈ 0.5 − 1 Hz which can be understood using the

characteristic time scales in the problem. Since the characteristic relaxation time scale τc ≈ 0.5− 2

s, the behavior of the moduli can be divided into three regimes: low frequency (background flow

time scale τω � τc), medium frequency (τω ≈ τc), and high frequency (τω � τc), where τω = ω−1.

1. In the low frequency regime (ω < 0.1 Hz), τω is the longest time scale and the system is in a
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Figure 8: Steady state fiber configurations for the network of 700 fibers and 8400 CLs with ω = 1 Hz and

g = 0.1. We show (left) a three-dimensional snapshot of all the fibers in the unit cell, (middle) a view along

the z axis, and (right) a snapshot of all the fibers (white/blue) and links (black) bound to a single fiber

(orange) located near the center of the simulation cell.
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(b) Changes in moduli without hydrodynamics

Figure 9: Elastic and viscous moduli for the network of 700 fibers and 8400 CLs. (a) Values of the

elastic modulus G′ (blue circles) and viscous modulus G′′ (orange squares, this excludes the piece due to the

background fluid stress σ
(µ)
21 defined in (122)) for a gel of 700 fibers and 8400 CLs. We use fully nonlocal

hydrodynamics to compute the dynamics and moduli. We show the contribution of the CL stress (125) to

the moduli as dotted lines. (b) Fraction of G′ (blue circles) and G′′ (orange squares) that can be recovered

when the dynamics are computed using local drag (solid lines) and short-ranged hydrodynamics only (i.e.,

only intra-fiber but no inter-fiber hydrodynamics). We also show the scaling of the stress for a single fiber

in a shear flow as a dotted orange line.
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constant quasi-static state. If the frequency is small enough, the network has the opportunity

to relax at every instant, and it therefore behaves more like an elastic solid where the links

constrain the network. As in an elastic solid, the elastic modulus is unchanged with frequency

and changes very little (less than 10%, as shown in Fig. 9(b)) when nonlocal hydrodynamics

is dropped. In this regime, the viscous modulus scales like G′′ = ω0.59; the reason for this

particular scaling is not obvious to us.

2. In the mid frequency regime (0.1 ≤ ω ≤ 1), fibers and CLs can deform and relax on the time

scale of the background flow and the dynamics involve both an elastic and viscous response.

In this regime, G′′ ≈ G′, as shown in Fig. 9(a), and the change in the elastic modulus G′ due

to both changes in frequency (Fig. 9(a)) and the inclusion of hydrodynamics (Fig. 9(b)) is

maximal.

3. In the high frequency regime (ω > 1), the background flow dominates the dynamics, the

network is essentially fixed on the time scale of the shear flow, and it oscillates back and

forth as a viscous fluid would. Figure 9(a) shows that for ω � 1/τc, the viscous modulus

scales linearly with ω, as would happen for a pure viscous fluid. In this regime, the viscous

modulus decreases by as much as 25% when nonlocal hydrodynamics is not included, with

higher frequencies giving larger decreases. The larger the frequency, the farther the network is

from its quasi steady-state and the more important dynamics are for determining the viscous

modulus.

Generally speaking, the changes in the viscous modulus when hydrodynamics is switched off

are attributable to a reduction in stress on each fiber individually. The changes in the viscous

modulus at most frequencies can in fact be explained by considering an isolated straight fiber that

makes an angle θ with the x axis, τ (s) = (cos θ, sin θ, 0). We put a background shear flow on the

fiber u0(x, y, z) = (y, 0, 0) and compute the resulting constraint force density λ on the fiber using

both local drag and nonlocal hydrodynamics. Averaging over θ, we obtain a mean difference in

the corresponding stress of ∼ 17%, which is plotted as a dotted line in Fig. 9(b), and matches the

change in the network’s viscous modulus when nonlocal hydrodynamics is dropped, except at the

largest frequencies. This implies that the change in the network’s viscous modulus comes primarily

from an increase in the stress on each fiber individually when the intra-fiber, but not necessarily

inter-fiber, nonlocal hydrodynamics is included in the mobility calculation. We confirm this in Fig.

10, which shows that including nonlocal hydrodynamics causes the magnitude of the constraint
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Figure 10: Subset of fibers inside the unit cell, colored by the L2 norm of the constraint forces λ(i) for

ω = 1 Hz at t = 3.5 s (g = 0). Normalization is the maximum L2 norm of λ(i) in the system, which is on the

fiber indicated by the arrow. We show the case of local drag at left and nonlocal hydrodynamics at right,

noting that the inclusion of nonlocal hydrodynamics increases the norm of the constraint forces (which is

the dominant cause of the increase in stress), without changing the fiber positions significantly.

forces λ on the fibers in the network to increase without changing their positions substantially.

While Fig. 9(b) shows that there is a change in the viscous modulus of as much as 25% when

the dynamics are computed by local drag, it also shows that including short-ranged hydrodynamics

only, i.e., including intra-fiber but not inter-fiber hydrodynamics, gives a viscous modulus that is at

least 90% of the one computed with inter-fiber hydrodynamics. The changes in the elastic modulus

when nonlocal hydrodynamics is dropped are smaller (at most 10%), but not explainable simply

by adding only intra-fiber hydrodynamics. Indeed, for ω = 0.5, when the change in the elastic

modulus due to hydrodynamics is near maximal, we find that the short-ranged finite part integral

(10) explains only one third of the change, with the rest coming from inter-fiber hydrodynamics.

Physically, the elastic modulus is related to the interactions of the fibers with CLs, and the network

is sufficiently connected that the CLs transmit stress across multiple links in the network, and so

long-ranged hydrodynamics plays a role.

Our main findings here can be summarized as follows: there exists a critical time scale τc, which

is on the order of a second for our parameters. On time scales longer than τc, the CLs are constantly
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in a steady state, as they would be in an elastic solid, and the network is more elastic than viscous

(G′ > G′′). On time scales shorter than τc, the network does not have time to respond to (penalize)

strain deformations, and the network is more viscous than elastic (G′′ > G′). On time scales

comparable to τc, the network is equally viscous and elastic. The more viscous the network behavior

and the farther the network is from a quasi-steady state, the more nonlocal hydrodynamics impacts

the moduli. Indeed, if a modulus G′ or G′′ changes substantially with changes in frequency, then we

expect dynamics, including whether they are computed with nonlocal or local hydrodynamics, to

matter. Interestingly, we find that intra-fiber nonlocal hydrodynamics dominates the contributions

of nonlocal hydrodynamics to the viscous, but not the elastic, modulus.

7 Conclusion

In this paper, we have developed a novel method for the simulation of slender filaments, such

as actin filaments and microtubules, in the viscous environment of live cells. The key novelty is

our reformulation of the continuum fiber centerline evolution in terms of tangent vector rotations,

∂τ/∂t = Ω×τ , where Ω is an unknown rotation rate. We introduced constraint forces λ and closed

the system by requiring that the constraint forces perform no work. This virtual work constraint

supplements the evolution equation to give a closed saddle-point system for the unknown rotation

rates and constraint forces. Here we used slender body theory to obtain the mobility operator M

for cytoskeletal filaments in the zero Reynolds number regime; however, our continuum formulation

could be used with other mobility relationships. In fact, we show in Appendix A that the fiber

evolution equation takes the same form regardless of whether we represent the fiber as a cylinder

using SBT or a continuum chain of regularized point forces (using the RPY tensor).

We have also shown that our formulation of inextensibility lends itself more naturally to nu-

merical calculations than formulations involving an auxiliary line tension equation [85]. The two

main issues with the line tension equation are that it is highly nonlinear in X, which can create

aliasing issues when using spectral methods, and that it does not naturally preserve inextensibility

after discretization, thereby requiring additional penalty forces to do so. We were able to obtain

the discrete tangent vector rotation rates Ω directly from the discretized saddle-point system, ro-

tate the fiber tangent vectors, and obtain the positions by integration, thus preserving discrete

inextensibility without penalty parameters.

While we developed an efficient spectral discretization for each fiber’s centerline, the numerical
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method as described here breaks down when the fibers become cylindrical. In that case, which

corresponds to δ → 0 in our local drag regularization (14), the contribution of the finite part integral

might exceed that of local drag at the fiber endpoints. This causes the SBT mobility matrix to

become ill-conditioned, and the force required to produce even a uniform velocity becomes highly

oscillatory near the fiber endpoints. The corresponding lack of smoothness in Ω and λ at the

endpoints makes the global Chebyshev method used here inaccurate and unstable. One way to

address this might be to couple a spectral discretization, such as the one developed here, for the

fiber interior with a lower-order finite difference discretization near the endpoints. This would

allow the smooth part of the forcing in the fiber interior to be represented efficiently using a global

interpolant, while the oscillatory parts of the forcing would be represented using a more robust

local representation.

In addition to our contributions for a single fiber, we have also contributed key numerical devel-

opments in nonlocal slender body hydrodynamics. By observing that slender body theory can be

interpreted as asymptotic evaluation of a line integral of regularized singularities, we reformulated

the nonlocal hydrodynamics in terms of the Rotne-Prager-Yamakawa mobility tensor. We then

used an Ewald splitting scheme for the RPY kernel to evaluate the hydrodynamic interactions on a

triply periodic sheared domain in linear time with respect to the number of fibers. For nearby fibers,

we supplemented Ewald splitting with a special quadrature scheme which is based on factoring out

the near singularity and expanding what remains in a monomial series [1]. This special quadrature

method allowed us to develop an algorithm to efficiently compute inter-fiber interactions to 3 digits

of accuracy most of the time, while avoiding calls to the special quadrature scheme when direct

quadrature is sufficiently accurate.

Despite our improved treatment of near fiber interactions, there are still several issues with our

treatment of nearly contacting fibers to be explored in future work. Foremost among these is our

use of slender body theory itself. Indeed, SBT is designed to avoid the length scale εL, which is

the same length scale on which the fibers contact each other. While we made some adjustments to

the nonlocal hydrodynamics that make it less likely for fibers to cross, these adjustments require

too small of a time step to resolve the near-contacts. Nearly contacting fibers also reduce the

effectiveness of our GMRES preconditioner for more concentrated suspensions, which is based on

the assumption that the dynamics of a single filament are dominated by local drag. Our adjustments

to nonlocal SBT also did not account for lubrication and friction (contact) forces or steric repulsion

between nearby fibers. These forces, which might be a function of the local orientation, twist,
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and microscopic shape of the filaments, play a role on length scales εL and cannot be resolved

by slenderness approximations. Our work has therefore left unanswered what contribution these

localized forces make to the macroscopic rheology of a cross-linked fiber suspension. A possible

extension to this work is to use a collision tracking algorithm [95, 93] to preserve larger time step

sizes and prevent fibers from crossing, thereby enabling future studies to determine the role of

lubrication, sterics, and friction.

Since the nonlocal hydrodynamics is the most expensive to compute, we designed a temporal

integrator that minimizes the number of nonlocal evaluations. For dilute suspensions, we split

the velocity into a local and nonlocal part. The local part, which is the leading order term in ε,

was treated implicitly, while the sub-leading nonlocal part was treated explicitly. This scheme is

stable for any value of the fiber stiffness κ, as long as the local dynamics dominate the nonlocal

hydrodynamics. For semi-dilute and semi-concentrated fiber suspensions, our strategy was to use

GMRES to solve for the second-order perturbations in the kinematic coefficients α and constraint

forces λ that give unconditional stability. Since the perturbations are needed for stability and not

accuracy, we simply run GMRES for a fixed number of iterations until we get stability. Our tests

showed that at most five total evaluations of the nonlocal hydrodynamics are needed per time step

to ensure stability, even for semi-concentrated fiber suspensions.

Our preliminary results on cross-linked actin networks in Section 6 showed that the behavior

of the network revolves around a timescale τc on which the network relaxes to a dynamic steady

state. On timescales longer than τc, the network is in a quasi-static state and is more elastic in

nature, while on timescales shorter than τc, the elastic part of the network has no time to respond

to the deformations exerted on it by a background flow, and the network as a whole shows viscous

behavior. On timescales shorter than τc, including nonlocal hydrodynamics in the mobility changes

the viscous modulus by as much as 25% in the system we considered. However, the increases in

the viscous modulus come primarily from an increase in stress on each filament separately rather

than truly long-ranged hydrodynamic interactions (i.e., the increases due to hydrodynamics are

reproducible when each fiber only interacts with itself through the fluid). This behavior differs

from that of the elastic modulus, where the more modest increase of 10% due to hydrodynamic

interactions is only present with long-ranged hydrodynamics. While these numbers are within the

error bounds of most rheology experiments, without our numerical method it would not have been

possible to determine them in the first place, since we were able to perform reference simulations

and evaluate the errors made by various approximations such as dropping inter-fiber or even intra-
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fiber nonlocal hydrodynamics (as is often done for simplicity). Omitting long-ranged inter-fiber

hydrodynamic interactions, when sufficiently accurate, can speed up our calculations considerably

since the more-expensive parts of our algorithm such as Ewald summation and nearly singular

quadratures are no longer part of the mobility calculation7 (this will allow for rapid scanning of

parameter regimes in future work). At the same time, in a number of examples in biology, especially

when activity is included, the flows generated by individual fibers add constructively to create large-

scale macroscopic flows [61, 25]. In these systems, far-field hydrodynamics is necessary to capture

large-scale fiber-generated flows, and the numerical method we developed here is a necessary tool

for such simulations.

Our findings for cross-linked actin networks are supported by a number of experimental studies.

For example, Gardel et al. also observed G′ and G′′ to be on the same order of magnitude for

an actin gel of similar density [24], and several studies have demonstrated a weak dependence of

the elastic modulus G′ on frequency [24, 35, 37]. Janmey et al. found an elastic modulus G′ ≈ 1

Pa for an actin gel with filaments of mean length L ≈ 2 µm. They also obtained linear scaling of

G′′ with ω at high frequencies and sublinear scaling at low frequencies, with a transition occurring

at a frequency near 1 rad/s [35]. Our agreement with only some of the existing experimental

results is natural since we used only one set of parameters, while in vivo or in vitro experimental

parameters can vary based on the system. For example, the CL α-actinin is about an order of

magnitude shorter (≈ 40 nm) [71] than filamin (150−200 nm) [91], and most cross-linking proteins

have been estimated to be an order of magnitude stiffer [14] than the ones we use here. Another

parameter mismatch manifests itself in the viscous modulus, for which we obtained larger values

than those reported experimentally [24, 35, 37] because our underlying fluid viscosity µ was larger

than estimated for living cells [51]. While improvements and extensions to our numerical scheme

are required to reach the entire span of biological parameters, the platform we have developed here

can still be used to test the assumptions behind some of the prior physical theories [24, 35, 46].

Our analysis here was also specific to a fixed τc, since the CL stiffness Kc and fiber bending

constant κ were fixed. This begs the question: how does τc change with changes in κ, Kc, and fluid

viscosity µ? How do the intrinsic timescales in the problem change when the CLs are dynamically

binding and unbinding to the fibers? To fully explore these questions, we need to design an efficient

temporal integrator for the CL forces. For stiff CLs, explicit treatment leads to a reduction in

the stable time step size, so that O(105) time steps might be necessary to measure stress for

7Our temporal integrator can also be simplified in this case and is stable without any additional GMRES iterations.
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frequencies as small as 0.01 s−1. To alleviate this restriction, we will develop a (semi-)implicit

temporal integrator for cross-linked networks in future work. We will also investigate the utility of

our spring model for shorter, stiffer CLs, which might be better modeled as actual fibers or as rigid

connections between fibers.

In this work, we used Euler-Bernouilli beam theory to obtain the elastic force on a fiber due

to its curvature. We neglect twist elasticity on the assumption that those deformations are in

equilibrium on our timescales of interest [70]. While this assumption is reasonable for a system

of fibers in shear flow, it precludes modeling flagellar beating [48] and chains twisted by external

forces such as magnetic fields [80]. An extension of this work is to account for twist by using the

Kirchhoff rod model instead of the Euler beam. The Kirchhoff rod model has previously been

used in combination with the immersed boundary method [47], RPY tensor [76], and method of

regularized Stokeslets [67, 34] to model a bent twisted fiber interacting with a fluid, with the

methods of [34, 76] even preserving discrete inextensibility. As we’ve discussed at length, these

regularization-based models become impractical as the fiber becomes slender since 1/ε regularized

points are required to properly resolve the fiber thickness. Slender body theory is once again a

natural choice, but it is unclear how to account for rotation and torque on the fiber centerline. The

most rigorous (and difficult) solution is to use an SBT that accounts for twist, for example the

O(ε2) slender body fluid velocity of Johnson [36] or the SBT of Keller and Rubinow [38, Section

10]. Another option is to take a continuum limit of the RPY tensor for translation-rotation and

rotation-rotation coupling [88, 76], as we have done in Appendix A for translation-translation, and

use these continuum limits in the grand mobility matrix. A still better approach would be to bridge

the gap between the RPY tensor and SBT by deriving an RPY-type tensor for rings which gives

the average linear and angular velocity on a ring (cross section of a fiber) due to the force/torque

uniformly spread over another ring (cross section).

Because the persistence length of actin is O(10) µm and actin filaments in vivo are hundreds

of nanometers of length, we have neglected thermal fluctuations in this work. For actin networks,

some studies [35, 24] have estimated large elastic moduli even in the absence of CLs, which indicates

entropic effects. One of our goals for future work is to extend the method here to account for thermal

fluctuations of the filaments. There are many challenges in doing this. Most notably, the loss of

smoothness of the fiber centerline function X(s) when thermal noise is present (τ (s) has the same

Hölder continuity as Brownian motion) makes it difficult to even write a well-posed stochastic

equation of motion, let alone solve it accurately using a spectral method suited to smooth X(s),
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as we assumed here.

While there are many improvements awaiting attention, our work has provided solutions to

several problems that have previously plagued numerical methods for inextensible slender fibers.

From a general framework to view the dynamics of inextensible fibers to specific numerical methods

for singular integrals, we have developed a platform for the efficient simulation of thousands of

filaments that can be used to gain new insights into processes from sedimentation to cell division

and motility.

Data availability: The code and input files for the examples of fibers in triply periodic shear flow

presented here are available for download at [58].
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A Relationship between regularized singularity methods and SBT

In this appendix, we compare our SBT-based fiber representation with a line of regularized point-

like forces. Previous studies have used the method of regularized Stokeslets [34] or RPY tensor

[76] to represent exactly inextensible fibers. An unresolved question is how regularized singularity

methods relate to an SBT-based approach for a single fiber. Bringley and Peskin [12] partially
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answered this by numerically comparing results from a free space immersed boundary method to

SBT. Cortez and Nicholas [18] gave a more complete answer by asymptotically evaluating the

velocity on a fiber made of regularized Stokeslets and doublets. They showed that the resulting

velocity is a regularized form of SBT with an arbitrary constant regularization parameter. In this

appendix, we extend these prior results on regularized singularity methods by considering the fiber

to be a line of singularities regularized with the RPY tensor (5). We show that there is a unique

choice of sphere radius b that gives, to order ε, the same formula as SBT for the centerline velocity.

This is the sphere radius that we use in our inter-fiber mobility (15) to give a consistent formulation.

Consider a line of regularized point forces, where each of the point forces is regularized over the

surface of a sphere of radius b, and the centerline velocity at a point on the fiber is computed by

averaging the fluid velocity over the same sphere of radius b. This means that force can be related

to velocity via the RPY mobility tensor. The velocity at arclength coordinate s on the fiber is then

obtained by integrating the RPY kernel over the fiber length,

8πµU (s) =

∫
R>2b

SD
(
X(s),X

(
s′
)
, 2b2/3

)
f
(
s′
)
ds′ (A.1)

+

∫
R≤2b

((
4

3b
− 3R (s′)

8b2

)
I +

1

8b2R (s′)
(RR)

(
s′
))
f
(
s′
)
ds′.

Here R (s′) = X (s′) −X(s) and R = ‖R‖. The separation of the integrals captures the change

in the RPY tensor (5) when R < 2b. Because the RPY tensor is nonsingular for R = 0, it can be

evaluated at any point on the centerline. This is in contrast to the asymptotics for SBT, which

are based on evaluating the Stokeslet/doublet kernel on the fiber surface (i.e., εL away from the

centerline), and then assigning this result to be the velocity of the centerline [26]. Although the

kernel (A.1) is nonsingular, it is still nearly singular for s ≈ s′, and in the limit b � L it is more

efficient to evaluate (A.1) asymptotically. In this appendix we show that this results in an SBT-type

formulation with a local drag term and finite part integral. The local drag terms can be matched

with a specific choice of b, and the remainder is a finite part integral that is equivalent to that of

SBT to O(ε).

Our strategy is standard matched asymptotics and similar to the approach of Gotz [26] for

SBT. We compute an outer expansion to the integral (A.1) by considering the region where |s− s′|

is O(1). We then construct an inner expansion in the region where |s − s′| is O(b). This inner

solution must be constructed in two parts for |s− s′| > 2b and |s− s′| ≤ 2b. We then add the inner

and outer solutions together and subtract the common part to obtain the final solution.
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A.1 Outer expansion

In the outer expansion, we consider the part of the integral (A.1) where |s − s′| is O(1). In this

case, the doublet term in SD is insignificant and we obtain the outer velocity by integrating the

Stokeslet over the fiber centerline,

8πµU (outer)(s) =

∫
R>2b

S
(
X(s),X(s′)

)
f
(
s′
)
ds′. (A.2)

The part of the kernel (A.1) for R ≤ 2b makes no contribution to the outer expansion since |s− s′|

is O(b) there.

A.2 Inner expansion

In the inner expansion, we consider the part of the integral (A.1) where |s − s′| is O(b). In this

case, we follow [26] and introduce the rescaled variable

ξ =
s′ − s
b

, (A.3)

so that ξ is O(1). As in [26], we will assume that the region [−2, 2] is contained in the domain of

ξ, thereby ignoring the case when s is O(b) away from the fiber endpoints. While it is feasible to

directly evaluate the RPY integral (A.1) at the fiber endpoints, our goal here is to show equivalence

with SBT, which is only valid away from the fiber endpoints.

We will need the following asymptotics around X(s),

R = X
(
s′
)
−X(s) = ξbτ (s) +O

(
b2
)
, RR = ξ2b2τ (s)τ (s) +O

(
b3
)
, (A.4)

R2 = R ·R = ξ2b2 +O
(
b3
)
, R = |ξ|b+O

(
b2
)
, (A.5)

R−1 =
1

|ξ|b
+O(1), R−3 =

1

|ξ|3b3
+O

(
b−2
)
, R−5 =

1

|ξ|5b5
+O

(
b−4
)
. (A.6)

f
(
s′
)

= f(s) +O(b) (A.7)

We begin with the part of the integral (A.1) that uses the kernel SD in the region R > 2b. For

this we will need the expansion of the Stokeslet and doublet,

S
(
X(s),X

(
s′
))

=
I + τ (s)τ (s)

|ξ|b
+O(1) (A.8)

D
(
X(s),X

(
s′
))

=
I − 3τ (s)τ (s)

|ξ|3b3
+O

(
b−2
)
. (A.9)
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We now integrate the Stokeslet along the centerline region∫
R>2b

S
(
X(s),X(s′)

)
f
(
s′
)
ds′ =

∫
|ξ|>2

(
I + τ (s)τ (s)

|ξ|b

)
f(s)b dξ +O(b) (A.10)

= (I + τ (s)τ (s))f(s)

[∫ −2

−s/b
−1

ξ
dξ +

∫ (L−s)/b

2

1

ξ
dξ

]
+O(b) (A.11)

= ln

(
(L− s)s

4b2

)
(I + τ (s)τ (s))f(s) +O(b). (A.12)

Likewise for the doublet, we have

2b2

3
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3

∫
|ξ|>2

(
I − 3τ (s)τ (s)

|ξ|3b3

)
f(s)b dξ +O(b) (A.13)

=
2 (I − 3τ (s)τ (s))f(s)

3

[∫ −2

−s/b
− 1

ξ3
dξ +

∫ (L−s)/b

2

1

ξ3
dξ

]
+O(b) (A.14)

=
2

12
(I − 3τ (s)τ (s))f(s) +O(b). (A.15)

Combining these results, we have, to O(b),∫
R>2b

SD
(
X(s),X

(
s′
)
, 2b2/3

)
ds′ = (A.16)(

ln

(
(L− s)s

4b2

)
(I + τ (s)τ (s)) +

1

6
(I − 3τ (s)τ (s))

)
f(s).

It still remains to include in the inner expansion the term for R ≤ 2b. For this we have the two

terms∫
R<2b

(
4

3b
− 3R (s′)

8b2

)
f
(
s′
)
ds′ = f(s)

∫ 2

−2

(
4

3
− 3|ξ|

8

)
dξ +O(b) =

23

6
f(s) +O(b), (A.17)∫

R<2b

1

8b2R (s′)
(RR)

(
s′
)
f
(
s′
)
ds′ =

1

8

∫ 2

−2
τ (s)τ (s)f

(
s′
)
|ξ| dξ +O(b) =

1

2
τ (s)τ (s)f(s) +O(b)

(A.18)

where we have used the fact that ξ ∈ [−2, 2] is on the fiber (s is away from the endpoints). We

therefore have, to O(b),∫
R≤2b

((
4

3b
− 3R (s′)

8b2

)
I +

1

8b2R (s′)
(RR)

(
s′
))

ds′ =

(
23

6
I +

1

2
τ (s)τ (s)

)
f(s). (A.19)

The inner expansion is therefore, adding the terms (A.16) and (A.19),

8πµU (inner)(s) =

(
ln

(
(L− s)s

4b2

)
(I + τ (s)τ (s)) + 4I

)
f(s). (A.20)
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By adding and subtracting ln(16) (I + τ (s)τ (s)), we obtain the same leading order coefficient as

SBT,

8πµU (inner)(s) =

(
ln

(
4(L− s)s

b2

)
(I + τ (s)τ (s)) (A.21)

+ (4− ln 16) I − (ln 16) τ (s)τ (s)

)
f(s).

A.3 Common part

The common part is the outer velocity written in terms of the inner variables. That is, to O(b),

8πµU (common)(s) =

∫
R>2b

(
I + τ (s)τ (s)

|s− s′|

)
f(s) ds′. (A.22)

A.4 Matched asymptotic expansion

The total velocity is the sum of the inner and outer expansions, with the common part subtracted,

U(s) = U (inner)(s) +U (outer)(s)−U (common)(s). (A.23)

This can be written as

8πµU(s) =

(
ln

(
4(L− s)s

b2

)
(I + τ (s)τ (s)) + aII + aττ (s)τ (s)

)
f(s) (A.24)

+

∫
R>2b

(
S
(
X(s),X(s′)

)
f
(
s′
)
−
(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′,

where aI = 4− ln 16 and aτ = − ln 16. (A.25)

We can now establish equivalence with SBT by observing that the integrand in (A.24) is O(b) when

R < 2b, and so we can add that part of the integral back into the velocity without changing the

asymptotic accuracy of the velocity (A.24). This gives a velocity of the exact same form as SBT,

8πµU(s) =

(
ln

(
4(L− s)s

b2

)
(I + τ (s)τ (s)) + aII + aττ (s)τ (s)

)
f(s) (A.26)

+

∫ L

0

(
S
(
X(s),X(s′)

)
f
(
s′
)
−
(
I + τ (s)τ (s)

|s− s′|

)
f(s)

)
ds′.

The velocity expression (A.26) is the same as the SBT velocity (8) when aI = 1 and aτ = −3. This

equivalence is accomplished by the specific choice8 of b

b =
e3/2

4
εL, (A.27)

8Observe that we have two equations (aI and aτ ) for one variable b, so the existence of a solution is surprising.
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which gives the RPY doublet coefficient

2b2

3
=
e3

24
εL, (A.28)

that we use in Section 2.2 for inter-fiber interactions. Because we used only the leading order terms

in the asymptotics, we are guaranteed that (A.26) approximates (A.1) to O(b), although we observe

O(b2) accuracy a distance O(1) from the endpoints.

B Verification for sheared unit cell

To test our implementation of sheared periodic boundary conditions, we consider a packing of

points that is hexagonal in the xy plane. As shown in Fig. 11, the points are positioned on a

(green) periodic slanted cell at (0, 0, 0) (red blob), (1, 0, 0) (black), (0.5, 1, 0) (orange), and (1.5, 1, 0)

(sky blue). To form a periodic hexagonal packing in the xy plane, we set g = 0.5 with periodic

domain length Lx = Ly = Lz = 2. Using a coloring scheme (see Fig. 11), it is easy to see that

this arrangement is equivalent to the same set of points on a (gray) rectangular unit cell, with

additional points at (1, 2, 0), (0, 2, 0), (1.5, 3, 0), (0.5, 3, 0), with the ordering of forces in the second

set of points being the same as the first and periodic length Ly = 4. We place a force of strength

+1 in each direction (including z) on the first (red) pair of points, −1 in each direction on the

second (black) pair, +2 on the third (orange), and −2 on the fourth (sky blue). Note that the z

direction is also periodic in all cases with length Lz = 2, so that we are actually considering a set

of stacked copies of Fig. 11.

We solve for the RPY velocities induced by the forces at each point using the Ewald splitting

technique described in Section 4.3. We set ξ = 5, sphere radius b = 10−2, and fluid viscosity

µ = 3. The maximum relative 2-norm error in the velocity of the four points is less than 10−5 for

all values of the NUFFT tolerance less than 10−2, with decay to 10−11 when the tolerance is 10−8.

We conclude that our modified Ewald splitting scheme of Section 4.3 properly treats the strain in

the periodic coordinate system.

C Near fiber accuracy

In this appendix, we test the accuracy of Algorithm 1 for computing the slender body interaction

integrals (15). We generate 100 smooth inextensible fibers by initializing an unnormalized tangent

vector that is an exact Chebyshev series with 15 exponentially decaying terms. More precisely,
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Figure 11: The lattice for the sheared unit cell test. The points are positioned on a lattice with a 1-particle

(primitive) unit cell (shaded green) at (0, 0, 0) (red), (1, 0, 0) (black), (0.5, 1, 0) (orange), and (1.5, 1, 0) (blue).

The lattice can also be viewed as periodic on the larger 2-particle rectangular unit cell shaded in gray. Colors

indicate the magnitude of the force placed on each set of points: +1 in all three directions on the red points,

−1 in each direction on the black points, +2 on the orange points, and −2 on the blue points.

the kth coefficient of the series is a Gaussian random variable with mean 0 and standard deviation

e−10k/N , where k = 0, . . . 15. We then normalize this tangent vector to obtain τ (s) and integrate

to obtain the fiber positions X(s). To make sure the resulting fiber is smooth after tangent

vector normalization, we compute the Chebyshev series of the fiber position X(s). Denoting the

coefficients of the position Chebyshev series by âk, we only accept fibers with Chebyshev series

coefficients |âk| ≤ e−0.61k for k = 2, . . . 15 (the constant and linear modes play no role in the fiber

smoothness). This means that the last coefficient â15 has value at most 10−4.

We consider fibers with L = 2 and ε = 10−3 in a fluid of viscosity µ = 1/8π. Our goal is to

evaluate the velocity due to a fiber X(s) at a target x,

v(x) =

∫ L

0
SD

(
x,X(s);

e3

24
(εL)2

)
f(s). (C.1)

We choose f(s) = τ (s), so that the force density is sufficiently smooth.

To measure the accuracy of Algorithm 1, we place 100 targets a distance d away in a random

normal direction from each fiber’s centerline. To get a reference answer, we compute the integral

(C.1) directly by upsampling the fiber to 6000 type 1 Chebyshev points. We then compute the

integral using Algorithm 1. We show the maximum relative error, Ei/ ‖v(x)‖∞, where the maxi-

mum is over the direction i = 1, 2, 3 and E is the absolute difference between the approximate and

reference values of the velocity (C.1).

We separate our results into short distances, 2εL < d < 10εL, and long distances, 0.01L < d <

0.2L (there is overlap between the two regions since 10εL = 0.01L = 0.02 with our parameters).
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Figure 12: Errors in Algorithm 1 for near singular quadratures. We show a histogram of the number of

digits obtained in the velocity v(x), given in (C.1), for 100 different fibers and 100 targets per fiber. Here d

is the distance from the target point to the fiber centerline and we show histograms of the number of digits

obtained in the integral v(x). The number of digits is computed as −log10 (maxiEi/ ‖v(x)‖∞), where the

maximum is over the direction i = 1, 2, 3 and E is the absolute difference between the approximate and

reference values of the velocity (C.1). (a) Errors from short distances 2 ≤ d/(εL) ≤ 10. We see that we are

over-working in most cases, since most of the time we obtain many more than 3 digits of accuracy, but there

are some cases when we only obtain 3 digits. (b) Long distances 0.04 < d/L < 0.20, where we obtain 4-7

digits most of the time.

Fig. 12(a) shows the errors at short distances. We see that we obtain many more digits than

necessary in most cases. There are, however, a few cases where we obtain 3 digits. Since d will

rarely be O(εL), it is acceptable to expend extra computational effort to guarantee accuracy. In

Fig. 12(b), we show the errors for long distances. In particular, we see that we obtain 4-5 digits

most of the time, and that ≈ 5% of the time we obtain exactly 3 digits of accuracy.
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