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The Boltzmann equation provides a rigorous description of gas flows at all degrees of gas rar-
efaction. Asymptotic analyses of this equation yields valuable insight into the physical mechanisms
underlying gas flows. In this article, we report an asymptotic analysis of the Boltzmann-BGK
equation for a slightly rarefied gas when the acoustic wavelength is comparable to the macroscopic
characteristic length scale of the flow. This is performed using a three-way matched asymptotic
expansion, which accounts for the Knudsen layer, the viscous layer and the outer Hilbert region—
these are separated by asymptotically disparate length scales. Transport equations and boundary
conditions for these regions are derived. The utility of this theory is demonstrated by application
to three problems: (1) flow generated by uniformly heating two plates, (2) oscillatory thermal creep
induced between two plates, and (3) the flow generated by an oscillating sphere. Comparisons to
numerical simulations of the Boltzmann-BGK equation and previous asymptotic theories (for long
wavelength) are performed. The present theory is distinct from previous asymptotic analyses that
implicitly assume long or short acoustic wavelength. This theory is expected to find application
in the design and characterisation of nanoelectromechanical devices, which often generate acoustic
oscillatory flows of a rarefied nature.
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I. INTRODUCTION

Sound propagation in a gas is a compressible flow phenomenon that is conventionally studied using either the
inviscid Euler equations, or (less frequently), the Navier-Stokes equations that account for the effects of viscosity.
These theoretical treatments provide an approximation to the non-equilibrium nature of these gas flows, that have
found significant use in a host of applications. For example, they have been used to study the effects of sound waves
on rocket propellant combustion [1], acoustic characterization of duct systems [2], and the acoustics of flow around
rotors [3]. The effect of sound waves is also important in oscillatory systems such as in inkjet print heads [4], industrial
swirled combustion [5], and magnetohydrodynamic waves [6]. The validity of these theoretical approaches is contingent
on the nature of the flows, which require (i) the gas mean free path to be much smaller than the characteristic length
scale over which the flow varies, e.g., the sphere radius for flow over a sphere, and (ii) that the molecular collision
time is far greater than any macroscopic time scale of the flow. This leads to the well-known constraints:

Kn ≡ λ

L
≪ 1, θ ≡ ω

ν
≪ 1, (1)

where Kn is the Knudsen number, λ is the mean free path, L is the macroscopic length scale of the flow, θ is the
frequency ratio, ω is the macroscopic oscillation frequency, and ν is the collision frequency.
Two common situations give rise to gas flows with non-vanishing Knudsen number. First, low gas density flows,

which naturally occur in the upper atmosphere, obviate use of the above-mentioned continuum treatments. Appli-
cations include the aerodynamics of atmospheric re-entry [7] and the drag experienced by low Earth orbit satellites
[8]. Second, gas flows generated by devices of size comparable to the gas mean free path at atmospheric temperatures
and pressures, e.g., resonant nanoelectromechanical systems that naturally generate oscillatory flows [9]. Violation of
the second condition in Eq. (1) is less common at atmospheric pressure, but is achieved by nanoscale resonators that
vibrate mechanically in the microwave range [10].
One key difference between the gas dynamics of atmospheric re-entry and of nanoscale devices is their vastly different

Mach numbers,

Ma ≡ U

vmp

, (2)

where vmp is the most probable gas speed and U is the characteristic bulk flow speed. The gas flow around re-entering
vehicles satisfies Ma ≫ 1, whereas nanoscale flows exhibit Ma ≪ 1. The latter regime and application provides
the motivation and focus of this article. Because very small Mach number flows are inherently near thermodynamic
equilibrium, the governing Boltzmann equation for these flows can be linearized to simplify analysis.
Theoretical analysis of the Boltzmann equation is complicated by the quadratic nonlinearity and high dimensionality

of its collision operator. Bhatnagar, Gross, and Krook [11], and Welander [12] independently proposed the so-called
BGK collision model. This model mimics the behavior of a real gas through a single relaxation time process. This
eliminates the velocity-space integral of the standard Boltzmann equation which simplifies analytical treatment while
retaining important features of the full collision operator [13]. The BGK collision model contains one adjustable
parameter, the particle collision frequency, which restricts simultaneous accurate modelling of viscous and thermal
effects. Despite this limitation, the BGK model has found great utility in providing insights into rarefied gas flows
which have been explored in greater detail using more realistic collision models.
Mathematical complexity of the Boltzmann equation has motivated the development of a multitude of numerical

methods. Monte Carlo methods, which simulate the statistical nature of particle-particle collisions and particle-wall
collisions, have been developed and applied to steady and unsteady problems [14, 15]. However at low Mach number,
which allows linearization of the Boltzmann equation, these Monte Carlo methods can be overwhelmed by statistical
noise. A range of methods have consequently been developed that simulate the deviation in the distribution function
from equilibrium, alleviating this issue [16–19].
Variational methods involve the construction of a functional whose stationary point is the solution to the Boltzmann

equation. This typically utiltizes approximation through the selection of appropriate trial functions. Cercignani [20]
developed a general variational approach for the steady linearized Boltzmann equation that is suitable for linearized
collision models satisfying general boundary conditions. This was extended by Ladiges & Sader [21] to (unsteady)
oscillatory flows. In these variational methods, any error δ in the distribution function propagates as an error δ2 in
the chosen functional. As such, variational methods can yield accurate approximations to physical quantities provided
the functional is related to the physical quantity of interest. This principle was applied in Ref. [20] to a variety of
gas flow phenomena, including calculation of the velocity slip coefficient to 99% accuracy [22], the mass flow rate for
plane Poiseuille flow and the shear flow rate for plane Couette flow. The unsteady extension in Ref. [21] is used in
this article to benchmark the derived asymptotic solutions.
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Alternate approaches reformulate the Boltzmann equation in terms of bulk macroscopic moments, simplifying
analysis. Grad [23] devised a method of expanding the distribution function in multidimensional Hermite polynomials.
His thirteen moment method involves the density, three velocity components, the temperature, five independent stress
components and three heat flow components—this is achieved through truncation of the distribution function at three
terms in a Hermite polynomial expansion. Each moment depends on a higher order moment, so in principle, infinitely
many equations are required. Truncating the number of moments in a physically sensible manner, i.e., invoking a
closure, is an active area of research [24, 25]. Struchtrup [26, 27] demonstrates that more moments improve agreement
with other established methods, while Levermore [24] presents a hierarchy of closures requiring up to 35 moments.
As pointed out by Groth [25], the Levermore procedure does not always have a solution for higher order moments. In
addition, the number of moment equations is large which can present computational difficulty.
Many asymptotic theories have been developed to solve the Boltzmann equation. The earliest asymptotic model

was proposed by Hilbert [28] for a slightly rarefied gas, with matched asymptotic expansions emerging in 1951 [29].
Hilbert considered an isotropic geometric length scale, L, and expanded the distribution function and all its moments
with respect to the corresponding Knudsen number. This yielded the required transport equations away from any
solid surface in terms of the usual five (continuum) moments of density, bulk velocity and temperature. The required
boundary conditions were not formulated until the advent of singular perturbation methods many decades later [30, 31].
Hilbert’s name would then become attached to the outer region of these matched asymptotic expansions of the
Boltzmann equation [32–36], since he used an identical procedure. Cercignani [30] and Sone [31, 37] considered the
steady linearized Boltzmann equation, i.e., θ = 0, imposed a diffusely reflected solid boundary, and derived the
appropriate boundary conditions for the Hilbert solution. For example, Cercignani [22, 30] reported a second-order
slip model for the tangential bulk velocity, u, for isothermal steady shear flow:

uwall = 1.016k
∂u

∂y

∣

∣

∣

∣

wall

− 0.7667k2
∂2u

∂y2

∣

∣

∣

∣

wall

, (3)

where k = (
√
π/2)Kn and y is the normal Cartesian coordinate to the surface; this was later generalised to arbitrary

steady/unsteady flows [31, 34, 35, 37]. Equation (3) was investigated by Hadjiconstantinou [38], who demonstrated
its accuracy for Kn < 0.4.
Sone’s original work for a slightly rarefied gas has been extended to cover nonlinear flows [33] and unsteady linear

flows [34–36], all utilizing similar matched asymptotic expansions. In Sone’s nonlinear theory [33], an intermediate

viscous layer exists near a solid boundary, whose thickness is of order
√
Kn smaller than the macroscopic length

scale, L. As we shall discuss, this feature parallels the boundary layer structure in this article. For low frequency
unsteady linear flows, slip conditions up to O(Kn2) were derived in Ref. [35] for the linearized hard sphere and BGK
collision operators in the time domain, and in Ref. [34] for the linearized Boltzmann-BGK equation in the frequency
domain. These unsteady theories give an incompressible low Reynolds number flow in the Hilbert region. However,
viscous diffusion in this region and an implicitly assumed large acoustic wavelength suppress wave phenomena in these
theories. Complementary to these studies, Nassios & Sader [36] explored the high frequency (small wavelength) limit.
The Chapman-Enskog expansion, formulated independently by Chapman [39] and Enskog [40], is another method

often used to derive the (continuum) Stokes and Navier-Stokes equations from the Boltzmann equation. This approach
expands the distribution function in powers of Knudsen number to find successive approximations for the heat flow
vector and pressure tensor in terms of the density, velocity, and temperature. At the first three orders in Knudsen
number, this leads to the Euler, Navier-Stokes, and Burnett equations, respectively. However, the Burnett and super-
Burnett equations possess higher order derivatives without sufficient boundary conditions [34]; closing this system
also represents an open research area.
Recently, Aoki et al. [41] used a Chapman-Enskog expansion to derive a set of unsteady nonlinear compressible

Navier-Stokes-Fourier (NSF) equations. These authors draw on the work of Sone [33] (discussed above) who shows
that in the limit of high Reynolds number, a three-layer system forms involving a Knudsen layer of thickness O(Kn),

an intermediate viscous (Prandtl) boundary layer of O(
√
Kn) and an outer inviscid region. By considering the outer

two regions, Aoki et al. [41] show that the appropriate boundary condition to use with the nonlinear compressible
Navier Stokes equation is the Navier slip condition.
Here, we present a formal matched asymptotic analysis of the unsteady linearized Boltzmann-BGK equation, in

the limit of small Knudsen number, Kn, and small dimensionless frequency, θ, that accounts for acoustic flows.
That is, the acoustic wavelength is comparable to the geometric length scale of the flow. This work utilizes and
generalizes the asymptotic frameworks of Refs. [34, 35] where unsteady quasi-incompressible (long wavelength) flows
were considered. The reported calculation involves a three-way matched asymptotic expansion with an (outer) Hilbert
region, an intermediate viscous boundary layer, and an inner Knudsen boundary layer. This leads to a system of
transport equations and boundary condition correct to O(Kn). Interestingly, we find that the slip boundary condition

appears at O(
√
Kn), in contrast to previous studies that assume long wavelength [34, 35].
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The purpose of this article is to detail the (frequency-domain) asymptotic theory reported in the Masters thesis
(2018) of the first author and complete the analysis of its applications [42]: (1) one-dimensional flow generated between
two planar walls, (2) two-dimensional thermal creep between two walls, and (3) three-dimensional axisymmetric flow
generated by an oscillating sphere. We also provide a comparison to previous asymptotic analyses and direct numer-
ical solutions of the Boltzmann-BGK equation. Together, the study of these applications provides a comprehensive
validation of the asymptotic theory across a range of spatial dimensionalities. We recently became aware of indepen-
dent work by Takata & Hattori [43] that reports the complementary time-domain formulation—which is related to
the present frequency-domain formulation by the ansatz in Eq. (12)—where the single application of one-dimensional
wave generation by an oscillating plane wall was studied (with several collision models). Formulation in the frequency-
domain is natural due to the foundational use of the linearized Boltzmann equation, employed in both studies. The
present work thus provides a significant advance in the applications studied, which robustly demonstrates the va-
lidity of the asymptotic theory and its utility across a broad array of problems. Importantly, use of a time-domain
formulation can generate secular terms that grow in both time and space [43], i.e., when operating on resonance. In
the present frequency-domain formulation, this time-based secularity appears naturally as frequency-based singulari-
ties. Ref. [43] presents a remedy to this issue via a modification of the compressible Navier-Stokes-Fourier system of
Aoki [41] that retains the O(ǫ2) accuracy of the theory. The same regularization can be used in the frequency-domain.
Here, we demonstrate and discuss the features/limitations of the (simpler) compressible Navier-Stokes-Fourier system
of Aoki [41] via the applications studied; this constitutes a standard implementation of conventional hydrodynamics
with a Navier slip condition.
This article is presented in four sections. The problem formulation and its solution method are outlined in Section II.

This is followed by a discussion of the boundary layer structure and derivation of the transport equations in all regions.
Section III discusses the transport equations and reports the slip conditions. A comparison to existing results is also
made. Finally, the developed theory is applied to the three model applications and a comparison to independent
results is reported.

II. PROBLEM FORMULATION

We consider a general flow of a gas obeying the BGK collision model near a solid boundary or boundaries. This
flow is to be solved subject to the assumptions used in previous asymptotic analyses of the Boltzmann equation: Solid
boundaries move sinusoidally in time with angular frequency, ω; net mass flux at the solid boundaries is zero; the
gas flow is in the small Mach number and small Knudsen number regimes; the solid boundaries reflect incoming gas
particles diffusely. The difference here is that the the resulting acoustic wavelength is comparable to the macroscopic
length scale, allowing for the modelling of acoustic effects.
The mass distribution function, F , satisfies the BGK equation [11, 12, 44],

∂F

∂t
+ vi

∂F

∂xi

+ ai
∂F

∂vi
= ν(ρ(x, t)f0(x,v, t)− F ), (4)

where ai is the external body force per unit mass [45], xi and vi are the position and gas particle velocity, respectively,
ν is the collision frequency, and ρ(x, t) is the local (bulk) gas density. The local (equilibrium) Maxwell-Boltzmann
velocity distribution is given by

f0(x,v, t) =

(

1√
πvmp(T )

)3

exp

(

−
(

vi − v̄i
vmp(T )

)2
)

, (5)

where v̄i(x, t) is the local mean gas velocity and vmp(T ) is the most probable gas velocity at the local temperature
T (x, t),

vmp(T ) =

√

2kBT

m
, (6)

where kB is the Boltzmann constant. The local (bulk) density ρ, velocity v̄i, temperature T , pressure p, pressure
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tensor pij , and heat flow vector qi are given by the following moments,

ρ =

∫

R3

F d3v, (7a)

v̄i =
1

ρ

∫

R3

viF d3v, (7b)

3kBT

m
=

1

ρ

∫

R3

(vi − v̄i)
2F d3v, (7c)

p =
ρkBT

m
, (7d)

pij =

∫

R3

(vi − v̄i)(vj − v̄j)F d3v, (7e)

qi =
1

2

∫

R3

(vi − v̄i)(vj − v̄j)
2F d3v, (7f)

where the equation of state for a dilute gas is the ideal gas law in Eq. (7d), and d3v is the usual volume element for
three-dimensional velocity space. Mass, momentum, and energy are conserved over intermolecular collisions [44],

∫

R3

(ρ(x, t)f0(x,v, t)− F )Φ d3v = 0, (8)

where Φ = 1, vj, v
2
j , respectively.

Because we study small Mach number flows, i.e., Ma ≪ 1, the distribution function, F , is expressed as

F = ρ0E0(1 +Maφ(x,v, t)), (9)

and linearized with respect to Ma. Henceforth, all symbols with subscript 0 are at equilibrium, and

E0 =

(

1√
πvmp(T0)

)3

exp

(

−
(

vi
vmp(T0)

)2
)

. (10)

Similarly, the scaled linearized transport variables are given by

ρ = ρ0(1 +Ma σ(x, t)), v̄i = Ma v̄′i, T = T0(1 +Ma τ(x, t)),

p = p0(1 +MaP (x, t)), pij = p0(δij +MaPij(x, t)), qi = Ma p0vmp(T0)q̂i. (11)

For brevity, we shall refer to φ simply as the distribution function, rather than the distribution function perturbation,
and similarly for its macroscopic transport variables. All time-varying functions (denoted α) are expressed as

α(x,v, t) = α̃(x,v)e−iωt. (12)

For simplicity, we omit the ‘∼’ notation and note that henceforth all dependent functions are frequency-dependent
expressions. The prime symbol in v̄′i is also omitted from this point forward for simplicity.
Linearizing the Boltzmann-BGK equation gives [34]

−iωφ+ vi
∂φ

∂xi

− 2viai
vmp(T0)2

= ν

(

σ +
2vi

vmp(T0)
v̄i +

(

v2j
vmp(T0)2

− 3

2

)

τ − φ

)

. (13)

Gas particles reflect diffusely from the solid boundary which is moved with velocity, MaVi,. In the low Mach
number limit, as particle speeds greatly exceed the solid boundary velocities, the boundary condition in Eq. (2.17) of
[34] can be simplified to Eq. (14).

φb = σb +
2vi

vmp(T0)2
Vi +

(

v2i
vmp(T0)2

− 3

2

)

τb, vini > 0. (14)

Zero net mass flux at the solid boundary leads to the corresponding linear relation [34],

σb = −1

2
τb +

√
π

Vini

vmp(T0)
− 2

√
π

∫

vini≤0

vjnj

vmp(T0)
φE(v)d3v. (15)

The no-penetration condition is

v̄ini = Vini. (16)

It can be shown that Eq. (15) is implicit in the no-penetration and diffuse boundary condition, so it will not be
used explicitly.
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A. Three-layer structure of the acoustic flow

Acoustic phenomena occur when the flow wavelength,

Λ ≡ vmp

ω
, (17)

is comparable to the macroscopic length scale, L, of the flow. This can be expressed in terms of the acoustic wave
number,

ζ ≡ L

Λ
=

1

2
βk, (18)

where k = (
√
π/2)Kn is the reduced Knudsen number, and the Stokes parameter is

β ≡
(

L

δ

)2

=
ωL2

νkin
. (19)

Here, νkin = (
√
π/4)vmpλ is the gas kinematic viscosity [32, 34] and δ is the usual viscous penetration depth. For wave

effects to occur, we require the acoustic wavenumber, ζ, to be O(1). It then follows from Eq. (18) that β = O (1/k),
or equivalently,

δ

L
= O

(√
k
)

. (20)

This shows that the viscous penetration depth is dictated by the gas mean free path—it is not an independent
parameter as in previous studies [34, 35] that focused on long wavelength (quasi-incompressible) flows. Therefore,
a three-layer structure exists in these acoustic flows where the thickness of each boundary layer separately vanishes
asymptotically in the limit of small k, i.e., a slightly rarefied gas. Figure 1 shows this three-layer structure along
with previous studies that considered slightly rarefied flows (k ≪ 1). (i) long wavelength (quasi-incompressible),
Λ = O(L/k), and low frequency, ω ≪ ν, which leads to the usual two-layer structure [34, 35]; and (ii) short wavelength,
Λ ≪ λ ≪ L, and high frequency, ω ≫ ν, that produces a different three-layer structure [36].

FIG. 1: Boundary layer structures for slightly rarefied flows. Left panel: Present study of acoustic flows with ζ = O(1),

showing the three-layer structure with the thickness of each layer separated by a multiplicative factor of
√
k. Middle

panel: Quasi-incompressible (long wavelength) flows with ζ ≪ 1 [34, 35]. Right panel: High frequency flows with
ζ ≫ 1/k ≫ 1 [36].

It is easy to show that

ω

ν
= ζk, (21)



7

which establishes that the present acoustic problem also coincides with the low frequency limit, ω ≪ ν, because
ζ = O(1).

The presence of the length scale,
√
k, in the current acoustic problem motivates an asymptotic expansion in the

small parameter,
√
k, rather than the usual k. This three-layered system also features in Sone’s general nonlinear

theory for steady but finite Mach number flow [33]. Indeed, our analysis has many similarities with Sone’s formulation,
yet it applies to the opposite limit of low Mach number unsteady flow. Takata et al. [35] hint at the existence of such
a three-layered system on a suitable frequency scale.

III. MATCHED ASYMPTOTIC EXPANSION

We now provide details of the matched asymptotic expansion used to solve the flow problem in the limit of small
scaled Knudsen number, k. From this point forward, all particle velocities refer to their non-dimensional quantities,
scaled by vmp(T0), while bulk velocities are scaled by U ≡ Ma vmp(T0); see Eq. (2).

A. Hilbert region

In the furthest region from the solid surface, the Hilbert region (see Fig. 1a), the flow problem is non-dimensionlized
using the isotropic and macroscopic length scale, L. The linearized scaled Boltzmann equation, Eq. (13), becomes

−iζφH + vi
∂φH

∂xi

− 2ζviai =
1

k
(QH − φH) , (22)

with the linearized equilibrium,

QA = σA + 2v̄A|ivi +

(

v2i −
3

2

)

τA, (23)

where A is either H , V or K which respectively refer to the Hilbert, viscous and Knudsen regions.
Following the analysis in Section IIA, we define ǫ ≡

√
k and expand the distribution function, φH , its moments,

the Boltzmann equation (Eq. (22)), in powers of ǫ,

α =

∞
∑

n=0

ǫnα(n), (24)

where α represents any of these dependent functions, and α(n) is the nth component. Substituting Eq. (24) into
Eq. (22) gives

0 = Q
(0)
H − φ

(0)
H , (25a)

0 = Q
(1)
H − φ

(1)
H , (25b)

−iζφ
(0)
H + vi

∂φ
(0)
H

∂xi

− 2ζviai = Q
(2)
H − φ

(2)
H , (25c)

−iζφ
(n−2)
H + vi

∂φ
(n−2)
H

∂xi

= Q
(n)
H − φ

(n)
H , n ≥ 3. (25d)

The collision invariants (see Eq. (8)) hold in all regions and can be linearized to give

∫

R3

(Q
(n)
A − φ

(n)
A )Φ d3v = 0, (26)

where A is defined in Eq. (23). These solvability conditions, when applied to the Hilbert equations, Eq. (25), yield the
system of governing equations in Table I. The issue of closure of these governing equations is deferred to Section IIIG.
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n = 0

iζσ
(0)
H =

∂v̄
(0)
H|i

∂xi
,

iζv̄
(0)
H|j + ζaj = 1

2

∂P
(0)
H

∂xj
,

τ
(0)
H = 2

3
σ
(0)
H ,

P
(0)

H|ij = P
(0)
H δij ,

q
(0)
H|i = 0,

n = 1

iζσ
(1)
H =

∂v̄
(1)
H|i

∂xi
,

iζv̄
(1)

H|j = 1
2

∂P
(1)
H

∂xj
,

τ
(1)
H = 2

3
σ
(1)
H ,

P
(1)
H|ij = P

(1)
H δij ,

q
(1)

H|i = 0,

n = 2

iζσ
(2)
H =

∂v̄
(2)

H|i

∂xi
,

iζv̄
(2)
H|j = 1

2

∂P
(2)
H

∂xj
−

1
2

(

1
3

∂
∂xj

(

∂v̄
(0)
H|w

∂xw

)

+
∂2v̄

(0)
H|j

∂xk
2

)

,

iζτ
(2)
H = 2

3
iζσ

(2)
H −

5
6

∂2τ
(0)
H

∂xi
2 ,

P
(2)
H|ij =

(

P
(2)
H + iζτ

(0)
H

)

δij −

(

∂v̄
(0)
H|j

∂xi
+

∂v̄
(0)
H|k

∂xj

)

,

q
(2)
H|i = −

5
4

∂τ
(0)
H

∂xi
.

TABLE I: Bulk transport equations in Hilbert region up to second order in ǫ.

B. Viscous boundary layer

Flow in the intermediate region, termed the ‘viscous boundary layer’ (see Fig. 1a), varies rapidly in the direction
normal to the solid surface with a length scale δ ≡ ǫL. As per Ref. [33], the surface geometry within this viscous region
is specified using the method of moving frame, where a local orthonormal coordinate system is introduced comprising
two (principal) tangent vectors, t1i and t2i , and an associated outward wall-normal, ni. The new orthogonal curvilinear
coordinate system is

xi ≡ ǫyni(χ1, χ2) + xwi(χ1, χ2), (27)

where y is the non-dimensionlized Cartesian coordinate normal to the solid surface (scaled by δ) increasing away from
the wall, ni is the surface outward normal and xwi is the corresponding tangential Cartesian coordinate (scaled by
L), with

(

∂χj

∂xi

)

0

|| tji , tpkt
q
k = δpq, (28)

where p, q = 1, 2, the subscript 0 denotes the value at y = 0 and (ni, t
1
i , t

2
i ) forms a right-handed coordinate system.

Note that the indices j, p, q, are not tensorial.
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The non-dimensional linearized Boltzmann equation in this region (denoted using the subscript V ) is

−iζǫ2φV + ǫvini

∂φV

∂y
+ ǫ2vi

(

∂χ1

∂xi

∂φV

∂χ1
+

∂χ2

∂xi

∂φV

∂χ2

)

− 2ǫ2ζviai = QV − φV . (29)

The coordinate gradients ∂χ1

∂xi
, ∂χ2

∂xi
may depend on the rescaled normal coordinate, y, in the viscous region (length

scale is ǫ).
The curvature terms, which define contributions from the surface shape, are expanded in a power series in r ≡

(xi − xwi)ni, assuming a sufficiently smooth boundary:

∂χ1

∂xi

=

(

∂χ1

∂xi

)

0

+ ǫy

(

∂

∂r

(

∂χ1

∂xi

))

0

+
1

2
ǫ2y2

(

∂2

∂r2

(

∂χ1

∂xi

))

0

... , (30)

and similarly for χ2, where the subscript 0 indicate evaluation at the surface, y = 0.
The viscous distribution function and associated bulk moments are expanded accordingly,

φV =
∞
∑

n=0

ǫnφ
(n)
V . (31)

The corresponding Boltzmann equation in this viscous region, at each order in ǫ, is

0 = Q
(0)
V − φ

(0)
V , (32a)

vini

∂φ
(0)
V

∂y
= Q

(1)
V − φ

(1)
V , (32b)

−iζφ
(0)
V + vini

∂φ
(1)
V

∂y
+ vi

(

(

∂χ1

∂xi

)

0

∂φ
(0)
V

∂χ1
+

(

∂χ2

∂xi

)

0

∂φ
(0)
V

∂χ2

)

−2ζviai,0 = Q
(2)
V − φ

(2)
V , (32c)

−iζφ
(1)
V + vini

∂φ
(2)
V

∂y
+ vi

(

(

∂χ1

∂xi

)

0

∂φ
(1)
V

∂χ1
+

(

∂χ2

∂xi

)

0

∂φ
(1)
V

∂χ2

)

+yvi

(

(

∂

∂r

(

∂χ1

∂xi

))

0

∂φ
(0)
V

∂χ1
+

(

∂

∂r

(

∂χ2

∂xi

))

0

∂φ
(0)
V

∂χ2

)

−2ζvi

(

∂ai
∂r

)

0

= Q
(3)
V − φ

(3)
V , (32d)

−iζφ
(2)
V + vini

∂φ
(3)
V

∂y
+ vi

(

(

∂χ1

∂xi

)

0

∂φ
(2)
V

∂χ1
+

(

∂χ2

∂xi

)

0

∂φ
(2)
V

∂χ2

)

+yvi

(

(

∂

∂r

(

∂χ1

∂xi

))

0

∂φ
(1)
V

∂χ1
+

(

∂

∂r

(

∂χ2

∂xi

))

0

∂φ
(1)
V

∂χ2

)

+
1

2
y2vi

(

(

∂2

∂r2

(

∂χ1

∂xi

))

0

∂φ
(0)
V

∂χ1
+

(

∂2

∂r2

(

∂χ2

∂xi

))

0

∂φ
(0)
V

∂χ2

)

−2ζvi

(

∂2ai
∂r2

)

0

= Q
(4)
V − φ

(4)
V , (32e)

where φ
(0)
V is the Maxwellian defined in Eq. (23).

The transport equations in the viscous region are derived using the collision invariants, Eq. (26), and are given in
Table II. Corresponding equations in the t2i direction are obtained by interchanging t1i with t2i and χ1 with χ2. As
with the Hilbert equations, closure of this system is discussed in Section III G.
The set of equations in Table II are expressed in terms of curvature coefficients in Appendix C [32, 34, 46].
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n = 0

∂P
(0)
V

∂y
= 0,

∂v̄
(0)
V |i

ni

∂y
= 0,

∂2 v̄
(0)
V |i

t1i

∂y2 + 2iζv̄
(0)

V |it
1
i = t1i

(

∂χ1
∂xi

)

0

∂P
(0)
V

∂χ1
− 2ζai,0t

1
i ,

∂2τ
(0)
V

∂y2 + 2iζτ
(0)
V = 4

5
iζP

(0)
V ,

P
(0)
V |ij = P

(0)
V δij ,

q
(0)
V |i = 0,

n = 1

∂P
(1)
V

∂y
= 2iζv̄

(0)

V |ini + 2ζai,0ni,

∂v̄
(1)
V |i

ni

∂y
= iζσ

(0)
V −

((

∂χ1
∂xi

)

0

∂
∂χ1

+
(

∂χ2
∂xi

)

0

∂
∂χ2

)

v
(0)
V |i,

∂2v̄
(1)
V |i

t1i

∂y2 + 2iζv̄
(1)
V |it

1
i = t1i

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)(

P
(1)
V δij −

∂
∂y

(

v̄
(0)
V |jni + v̄

(0)
V |inj

))

−

∂
∂y

(

njt
1
i

(

(

∂χ1
∂xi

)

0

∂v̄
(0)
V |j

∂χ1

))

+ yt1i

(

∂
∂r

((

∂χ1
∂xi

)

0

)

∂P
(0)
V

∂χ1

)

− 2yt1i ζ
(

∂ai

∂r

)

0
,

∂2τ
(1)
V

∂y2 + 2iζτ
(1)
V = 4

5
iζP

(1)
V +

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)

(

∂σ
(0)
V

∂y
nj

)

,

P
(1)

V |ij = P
(1)
V δij −

∂
∂y

(

v̄
(0)

V |inj + v̄
(0)

V |jni

)

,

q
(1)
V |i = −

5
4

∂τ
(0)
V

∂y
ni,

n = 2

∂v̄
(2)

V |i
ni

∂y
= iζσ

(1)
V −

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)

v̄
(1)

V |j − y
((

∂
∂r

(

∂χ1
∂xj

))

0

∂
∂χ1

+
(

∂
∂r

(

∂χ2
∂xj

))

0

∂
∂χ2

)

v̄
(0)

V |j ,

∂P
(2)
V

∂y
= 2iζv̄

(1)

V |ini + 2yniζ
(

∂ai

∂r

)

0
−

∂
∂y

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)(

v̄
(1)

V |j

)

,

∂2v̄
(2)

V |i
t1i

∂y2 + 2iζv̄
(2)

V |it
1
i = −

3
2

∂4v̄
(0)

V |i
t1i

∂y4 −

∂
∂y

(

njt
1
i

(

∂χ1
∂xi

)

0

∂v̄
(1)

V |j

∂χ1

)

+

t1i

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)(

δijP
(2)
V + iζτ

(0)
V δij −

(

∂
∂y

(

v̄
(1)

V |jni + v̄
(1)

V |inj

)))

−

t1i

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)((

∂χ1
∂xk

)

0

∂
∂χ1

+
(

∂χ2
∂xk

)

0

∂
∂χ2

)(

v̄
(0)
V |jδik + v̄

(0)
V |iδjk

)

+ 3
2

∂2

∂y2

(

t1i

(

∂χ1
∂xi

)

0

∂τ
(0)
V

∂χ1

)

−

2iζ
∂2 v̄

(0)

V |i
t1i

∂y2 −

∂
∂y

(

ynjt
1
i

(

∂
∂r

(

∂χ1
∂xi

))

0

∂v̄
(0)

V |j

∂χ1

)

+

t1i y
((

∂
∂r

(

∂χ1
∂xj

))

0

∂
∂χ1

+
(

∂
∂r

(

∂χ2
∂xj

))

0

∂
∂χ2

)(

P
(1)
V δij −

∂
∂y

(

v̄
(0)
V |inj + v̄

(0)
V |jni

))

+ 1
2
y2

(

t1i

(

∂2

∂r2

(

∂χ1
∂xi

))

0

∂P
(0)
V

∂χ1

)

−

y2t1i ζ
(

∂2ai

∂r2

)

0
,

∂2τ
(2)
V

∂y2 + 2iζτ
(2)
V = 4

5
iζP

(2)
V + 11

5
iζ

∂2τ
(0)
V

∂y2 + ∂2

∂y2

((

∂χ1
∂xk

)

0

∂
∂χ1

+
(

∂χ2
∂xk

)

0

∂
∂χ2

)(

v̄
(0)
V |k

)

+
((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)(

2iζv̄
(0)
V |j − 2ζaj,0 − nj

∂
∂y

(σ
(1)
V + 2τ

(1)
V )− nj

(

∂aj

∂r

)

0

)

−

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)2 (

σ
(0)
V + 2τ

(0)
V

)

+ y
((

∂
∂r

(

∂χ1
∂xj

))

0

∂
∂χ1

+
(

∂
∂r

(

∂χ2
∂xj

))

0

∂
∂χ2

)

(

∂σ
(0)
V

∂y
nj

)

,

P
(2)
V |ij = δij

(

P
(2)
V + 2

5
iζP

(0)
V

)

−

∂
∂y

(

v̄
(1)
V |inj + v̄

(1)
V |jni

)

+
∂2τ

(0)
V

∂y2 ninj −

((

∂χ1
∂xi

)

0

∂
∂χ1

−

(

∂χ2
∂xi

)

0

∂
∂χ2

)

v̄
(0)
V |j ,

−

((

∂χ1
∂xj

)

0

∂
∂χ1

+
(

∂χ2
∂xj

)

0

∂
∂χ2

)

v̄
(0)

V |i,

q
(2)

V |i = −

5
4

∂τ
(1)
V

∂y
ni +

1
2

∂2 v̄
(0)
V |i

∂y2 −

5
4

((

∂χ1
∂xi

)

0

∂
∂χ1

+
(

∂χ2
∂xi

)

0

∂
∂χ2

)

τ
(0)
V .

TABLE II: Transport equations in the viscous region.
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C. Knudsen layer

The scaled coordinates in the Knudsen region are

xi = ǫ2ηni(χ1, χ2) + xwi(χ1, χ2). (33)

The solution in this region is expressed as the sum of the viscous solution, φV , and a Knudsen correction, φK , whose
governing equation is

−iζǫ2φK + vini

∂φK

∂η
+ ǫ2vi

(

∂χ1

∂xi

∂

∂χ1
+

∂χ2

∂xi

∂

∂χ2

)

φK = QK − φK . (34)

Expanding the Knudsen correction in an asymptotic series in ǫ,

φK =
∞
∑

n=0

ǫnφ
(n)
K , (35)

yields the governing equations,

vini

∂φ
(0)
K

∂η
= Q

(0)
K − φ

(0)
K , (36a)

vini

∂φ
(1)
K

∂η
= Q

(1)
K − φ

(1)
K , (36b)

−iζφ
(n−2)
K + vini

∂φ
(n)
K

∂η
+ vi

(

∂χ1

∂xi

∂φ
(n−2)
K

∂χ1
+

∂χ2

∂xi

∂φ
(n−2)
K

∂χ2

)

= Q
(n)
K − φ

(n)
K , n ≥ 2. (36c)

Note that in contrast to the other regions, the leading-order distribution function, φ
(0)
K , is no longer Maxwellian. That

is, inter-particle collisions and particle collisions with the solid wall are equally important in the Knudsen layer. In

addition, it is noted that, in the Knudsen region, all coordinate gradients
∂χ1,2

∂xi
are evaluated at η = y = 0.

The above solutions in the Hilbert, viscous, and Kundsen regions are substituted into the collision invariants,
Eq. (26), the results of which are matched in their respective overlap regions that we now describe. Importantly, the
Knudsen layer contributes a correction, φK , to the distribution function, φ, that decays to zero faster than any inverse
power of η [32].

D. Matching of Hilbert and viscous regions

The Hilbert and viscous distribution functions to O(ǫ2) are respectively,

φH = φ
(0)
H + ǫφ

(1)
H + ǫ2φ

(2)
H +O(ǫ3), (37a)

φV = φ
(0)
V + ǫφ

(1)
V + ǫ2φ

(2)
V +O(ǫ3). (37b)

Matching requires the inner part of the Hilbert region, (xi − xwi)ni ≡ ǫy ≪ 1, to coincide with the outer part of

the viscous region, y ≫ 1. This is performed by first expanding φ
(n)
H with respect to the normal distance from the

boundary, (xi − xwi)ni ≡ ǫy, giving

φ
(n)
H =

(

φ
(n)
H + ǫyni

∂φ
(n)
H

∂xi

+
1

2
(ǫy)2

(

ni

∂

∂xi

)2

φ
(n)
H

)∣

∣

∣

∣

∣

(xi−xwi)ni=0

+O
(

ǫ3
)

. (38)

Substituting Eq. (38) into (37a) and collecting terms of equal order in ǫ, produces

φH =



φ
(0)
H + ǫ

(

φ
(1)
H + yni

∂φ
(0)
H

∂xi

)

+ ǫ2

(

φ
(2)
H + ynj

∂φ
(1)
H

∂xj

+
1

2
y2
(

ni

∂

∂xi

)2

φ
(0)
H

)∣

∣

∣

∣

∣

(xi−xwi)ni=0



 +O
(

ǫ3
)

. (39)
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This expression for φH is then matched to the equivalent expression for φV with y ≫ 1, resulting in the following
asymptotic matching conditions for φV to O(ǫ2),

φ
(0)
V

∣

∣

∣

y→∞
∼ φ

(0)
H

∣

∣

∣

(xi−xwi)ni→0
, (40a)

φ
(1)
V

∣

∣

∣

y→∞
∼
(

φ
(1)
H + yni

∂φ
(0)
H

∂xi

)∣

∣

∣

∣

∣

(xi−xwi)ni→0

, (40b)

φ
(2)
V

∣

∣

∣

y→∞
∼
(

φ
(2)
H + yni

∂φ
(1)
H

∂xi

+
1

2
y2
(

ni

∂

∂xi

)2

φ
(0)
H

)∣

∣

∣

∣

∣

(xi−xwi)ni→0

. (40c)

The corresponding moments in the viscous and Hilbert regions are matched in a similar fashion. Specific cases
illustrating this matching procedure are given in the examples that follow. It is evident that the matching procedure
provides an asymptotic polynomial growth condition on the viscous solutions as y → ∞.

E. Knudsen correction

The Knudsen equations in Eqs. (36a) – (36c) are rewritten as

vini

∂φ
(n)
K

∂η
+ φ

(n)
K = Q

(n)
K +R(n), (41)

where R(n) is a remainder term, with R(0) = R(1) = 0. The boundary conditions for the Kundsen region are

lim
η→∞

φ
(n)
K = 0, (42a)

φ
(n)
K = σ

(n)
b + 2V

(n)
i vi +

(

v2i −
3

2

)

τ
(n)
b , vini > 0. (42b)

Eq. (41) are solved using an integrating factor to give

φ
(n)
K =











e
− η

vini

(

φ
(n)
b −Q

(n)
V 0 +

∫ η

0
1

vini
e

η′

vini

(

Q
(n)
K +R(n)

)

dη′
)

, vini > 0

∫ η

∞
1

vini
e

η′−η
vini

(

Q
(n)
K +R(n)

)

dη′, vini < 0,

(43)

where φV 0 = φV

∣

∣

y=0
. The density, velocity and temperature corrections in the Knudsen region are specified by

moments of φ
(n)
K ; a coupled set of Weiner-Hopf integral equations arise for these moments. To leading-order in ǫ,

these integral equations are identical to those listed in Ref. [47]. The unique solution to the leading-order problem
throughout the Knudsen region is [47, 48]

φ
(0)
K = 0, (44)

which gives φ
(0)
V = Q

(0)
b at the solid boundary. This produces the no-slip condition for the leading-order bulk

velocity, v̄
(0)
V |i, in the viscous region at the solid boundary. Because ∂v̄

(0)
V |ini/∂y = 0 from Table II, it then follows

that lim(xi−xwi)ni→0 v̄
(0)
H|ini = V

(0)
i ni, which is the no-penetration boundary condition for the leading-order Hilbert

equations.
From Eqs. (36a) – (36c) and the definition of R(n) in Eq. (41),

R(2) = iζφ
(0)
K − ǫ2vi

(

∂χ1

∂xi

∂

∂χ1
+

∂χ2

∂xi

∂

∂χ2

)

φ
(0)
K = 0. (45)

Application of the collision invariant, Eq. (26), with Φ = 1, corresponding to mass conservation, leads to

∂v̄
(m)
K|ini

∂η
= 0, m = 0, 1, 2. (46)
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Because limη→∞ φ
(m)
K = 0, all moments of φ

(m)
K also vanish, giving

v̄
(m)
K|ini = 0, m = 0, 1, 2. (47)

From Eqs. (46) and (47) it then follows that the no-penetration condition at the inner part of the viscous region
persists up to and including O(ǫ2). The corresponding integral equations at O(ǫ) are identical to those reported in
Refs. [34, 47]. Following the method outlined in Refs. [34, 47] gives the required slip conditions for the viscous region.
A summary of the required boundary conditions for the viscous region are listed in Table III.

1. Pressure tensor and heat flux vector

Similarly, conservation of momentum and energy via Eq. (26) gives

∂P
(m)
K|ijni

∂η
=

∂q
(m)
K|ini

∂η
= 0, m = 0, 1, 2. (48)

Since all Knudsen corrections vanish in the outer part of the Knudsen region, by construction, it then follows from
Eq. (48) that the normal stress correction and normal heat flux in the Knudsen region are also zero, i.e.,

P
(m)
K|ijni = q

(m)
K|ini = 0, m = 0, 1, 2. (49)

This establishes that calculation of hydrodynamic forces, correct to O(ǫ2), does not involve P
(m)
K|ij for m = 0, 1, 2.

The correction to the pressure tensor in the Knudsen region is then determined from the distribution function

in Eq. (43), from which it follows that P
(1)
K|ij and P

(2)
K|ij are both diagonal, and P

(1)
K|ijt

1
i t

1
j = P

(1)
K|ijt

2
i t

2
j . The latter

components are directly related to the first order pressure via

P
(1)
K = σ

(1)
K + τ

(1)
K =

1

3
tr
(

P
(1)
K|ij

)

=
2

3
P

(1)
K|ijt

1
i t

1
j , (50)

from which it follows that

P
(1)
K|ijt

1
i t

1
j = P

(1)
K|ijt

2
i t

2
j =

3

2
P

(1)
K . (51)

Eqs. (48) and (51) specify all components of P
(1)
K|ij in the local Cartesian frame of the surface.

Calculating the remaining pressure tensor components P
(2)
K|ijt

1
i t

1
j , P

(2)
K|ijt

2
i t

2
j from moments of Eq. (43) shows that

they satisfy

√
πP

(2)
K|ijt

2
i t

2
j =

√
πP

(2)
K|ijt

1
i t

1
j + 2



t2i t
2
j

∂χ2

∂xi

∂v̄
(0)
V 0|j

∂χ2
− t1i t

1
j

∂χ1

∂xi

∂v̄
(0)
V 0|j

∂χ1



 J0(η). (52)

From their relationship to P
(2)
K , we then obtain

P
(2)
K|ijt

1
i t

1
j =

3

2
P

(2)
K +

1√
π



t1i t
1
j

∂χ1

∂xi

∂v̄
(0)
V 0|j

∂χ1
− t2i t

2
j

∂χ2

∂xi

∂v̄
(0)
V 0|j

∂χ2



 J0(η), (53a)

P
(2)
K|ijt

2
i t

2
j =

3

2
P

(2)
K +

1√
π



t2i t
2
j

∂χ1

∂xi

∂v̄
(0)
V 0|j

∂χ2
− t1i t

1
j

∂χ1

∂xi

∂v̄
(0)
V 0|j

∂χ1



 J0(η). (53b)

A subset of these Knudsen corrections and slip coefficients have been reported in the literature [32, 34, 47, 49]. In
addition, some slip coefficients and Knudsen functions are identical because they satisfy the same governing equations,
e.g.,

G2 = G4 = Z0, A3 = W0, M2(η) = M4(η) = M8(η) = Y1(η),

C3(η) = M5(η) = X2(η), B3(η) = X1(η), M1(η) = M7(η). (54)

We retain the present nomenclature because it highlights the connection of these coefficients to each physical quan-
tity; each letter symbol describes an individual slip condition or Knudsen function. Numerical values for these slip
coefficients and Knudsen functions are given in Appendix B.
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n = 0

v̄
(0)
K|i 0

v̄
(0)

V 0|i − V
(0)
i 0

τ
(0)
V 0 − τ

(0)
b 0

σ
(0)
K 0

τ
(0)
K 0

P
(0)
K|ij 0

q
(0)
K|i 0

n = 1

v̄
(1)

K|it
1,2
i Y1(η)

∂v̄
(0)

V 0|i
t
1,2
i

∂y

(v̄
(1)
V 0|i − V

(1)
i )t1,2i Z0

∂v̄
(0)
V 0|i

t
1,2
i

∂y

v̄
(1)

K|ini 0

(v̄
(1)
V 0|i − V

(1)
i )ni 0

τ
(1)
V 0 − τ

(1)
b W0

∂τ
(0)
V 0

∂y

σ
(1)
K X1(η)

∂τ
(0)
V 0

∂y

τ
(1)
K X2(η)

∂τ
(0)
V 0

∂y

P
(1)
K|ijni 0

P
(1)
K|ijt

1,2
i t

2,1
j 0

P
(1)

K|ijt
1,2
i t

1,2
j

3
2
P

(1)
K

q
(1)
K|ini 0

q
(1)

K|it
1,2
i Y2(η)

∂v̄
(0)
V 0|i

t
1,2
i

∂y

n = 2

(v̄
(2)
V 0|i − V

(2)
i )t1,2i G1

∂2v̄
(0)
V 0|i

t
1,2
i

∂y2 +G2nkt
1,2
j

∂χ1,2

∂xj

∂v̄
(0)
V 0|k

∂χ1,2
+G3t

1,2
i

∂χ1,2

∂xi

∂τ
(0)
V 0

∂χ1,2
+G4

∂v̄
(1)
V 0|i

t
1,2
i

∂y

v̄
(2)
K|it

1,2
i M1(η)

∂2v̄
(0)
V 0|i

t
1,2
i

∂y2 +M2(η)nkt
1,2
j

∂χ1,2

∂xj

∂v̄
(0)
V 0|k

∂χ1,2
+M3(η)t

1,2
i

∂χ1,2

∂xi

∂τ
(0)
V 0

∂χ1,2
+M4(η)

∂v̄
(1)
V 0|i

t
1,2
i

∂y

v̄
(2)

K|ini 0

(v̄
(2)
V 0|i − V

(2)
i )n1,2

i 0

τ
(2)
V 0 − τ

(2)
b A1iζσ

(0)
V 0 + A2iζτ

(0)
V 0 +W0

∂τ
(1)
V 0

∂y
+ A4

(

∂χ1
∂xj

∂
∂χ1

+ ∂χ2
∂xj

∂
∂χ2

)

(v̄
(0)

V 0|j)

σ
(2)
K B1(η)iζσ

(0)
V 0 +B2(η)iζτ

(0)
V 0 +B3(η)

∂τ
(1)
V 0

∂y
+B4(η)

(

∂χ1
∂xj

∂
∂χ1

+ ∂χ2
∂xj

∂
∂χ2

)

(v̄
(0)
V 0|j)

τ
(2)
K C1(η)iζσ

(0)
V 0 + C2(η)iζτ

(0)
V 0 + C3(η)

∂τ
(1)
V 0

∂y
+ C4(η)

(

∂χ1
∂xj

∂
∂χ1

+ ∂χ2
∂xj

∂
∂χ2

)

(v̄
(0)

V 0|j)

P
(2)

K|ijni 0

P
(2)
K|ijt
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i t
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P
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K|ijt
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j

3
2
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(2)
K + 1√
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t
1,2
i t

1,2
j

∂χ1,2

∂xi

∂v̄
(0)
V 0|j

∂χ1,2
− t

2,1
i t

2,1
j

∂χ2,1

∂xi

∂v̄
(0)
V 0|j

∂χ2,1

)

J0(η)

q
(2)
K|ini 0

q
(2)
K|it

1,2
i M5(η)

∂2v̄
(0)
V 0|i

t1i

∂y2 +M6(η)nkt
1
j
∂χ1,2

∂xj

∂v̄
(0)
V 0|k

∂χ1,2
+M7(η)t

1
i
∂χ1,2

∂xi

∂τ
(0)
V 0

∂χ1,2
+M8(η)

∂v̄
(1)
V 0|i

t1i

∂y

TABLE III: Knudsen corrections and slip results to second order.
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F. Curvature coefficients

The surface normal and geodesic principal curvatures, κq and gq, respectively, where q = 1, 2, are [32, 46]

tqj

(

∂χq

∂xj

)

0

∂tqi
∂χq

= tqj
∂tqi
∂xj

= −κqni − (−1)qgqt
3−q
i , (55a)

tqj

(

∂χq

∂xj

)

0

∂t3−q
i

∂χq

= tqj
∂t3−q

i

∂xj

= (−1)qgqt
q
i , (55b)

tqj

(

∂χq

∂xj

)

0

∂ni

∂χq

= tqj
∂ni

∂xj

= κqt
q
i , (55c)

tqj
∂κq

∂xj

= −gq(κ1 − κ2). (55d)

These are used to express the governing equations for the viscous region (Table II) in a form that is more amenable
to computation, while being less physically illuminating. The results of this manipulation are given in Appendix C.

G. Outline of solution process

The system of governing equations at each order, n, is closed. At leading order, n = 0, there is no Knudsen
correction or slip condition for the viscous solution. For n ≥ 1, the slip condition using viscous solutions of order
k < n provides the surface boundary condition for the viscous solution of order n. At all orders, n, use of the
appropriate polynomial growth condition as y → ∞ provides the other boundary conditions for the viscous region.
The Hilbert solution may be solved by applying (i) surface boundary conditions derived using the matching con-

ditions in Section III C, and (ii) the Sommerfeld radiation condition [50] for problems involving unbounded domains.
The applications that follow illustrate this solution process in detail.

IV. APPLICATIONS

We now illustrate the utility of the derived theory by applying it to several canonical examples: (i) the flow
generated in a gas that is confined between two walls that undergo time dependent (oscillatory) uniform heating, (ii)
oscillatory thermal creep between two walls, and (iii) the flow generated by a sphere that is oscillating in a quiescent
and unbounded gas. In all cases, the flow is chosen to coincide with the acoustic regime, where the acoustic wavelength
is comparable to the geometric length scale. This provides complementary examples to those of previous studies that
focused on alternate flow regimes [34, 36]. Comparisons to these previous studies and numerical solution of the
Boltzmann-BGK equation are also reported. We do not provide a comprehensive study of these canonical examples,
but rather focus on validating the developed theory while pointing out major features of the flow. As above, the

subscript 0 indicates evaluation at the wall, i.e., φ
(n)
H0 ≡ lim(xi−xwi)ni→0 φ

(n)
H and φ

(n)
V 0 ≡ limy→0 φ

(n)
V together with

their corresponding moments.
To facilitate comparison, we form composite asymptotic solutions for each problem below by combining solutions

in the viscous and Hilbert regions in the usual fashion,

XC = XH +XV −
(

XV |y→∞

)

, (56)

where X is the transport variable of interest, and the subscripts V and H refer to solutions in the viscous and Hilbert
regions, as above. While the composite solution, XC , is an approximation for finite k, giving error predominantly in
the (matching) overlap region between the viscous and Hilbert regions, it is exact in the required asymptotic limit,
k → 0. Because the solution in the Knudsen region is constructed as per Section III C, the required total composite
solution follows directly from Eq. (56),

Xtotal = XK +XC . (57)

This composite formula is used in all comparisons that follow.
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A. Application 1: Antisymmetric uniform heating

We consider the gas flow generated between two stationary infinite parallel walls with oscillatory uniform tem-
perature perturbations applied to each wall. This strictly non-continuum effect (with continuum theory predicting
no flow) was studied by Manela & Hadjiconstantinou [51, 52] and Nassios, Yap & Sader [53]. Herein we consider
the antisymmetric heating problem, where the temperature perturbations at both walls are equal in magnitude but
opposite in sign; see Fig. 2 with boundary conditions A. By linearity, the general flow problem may be constructed
from linear combinations of flows generated by antisymmetric and symmetric temperature perturbations at the walls.
The following velocity and length scales are used,

vs =
L

ω
, xs = L. (58)

Symmetry dictates that the flow need be solved only for 0 ≤ x ≤ 1/2, with temperature and density being an-
tisymmetric and the velocity symmetric about x = 1/2. The wall temperature perturbations are scaled to unity.
Because there is no Knudsen number dependence in these temperature boundary conditions, the components of the
wall temperature at x = 0 are

τb = τ
(0)
b = 1, τ

(n)
b = 0, n ≥ 1. (59)

This flow problem is solved correct to O(ǫ2) using the theory reported in the preceding section. Its validity is assessed
by comparison to direct numerical simulations of the linearized Boltzmann-BGK equation [21].

x = 1

x = 0

(A) (B) Δ z

(A) (B) Δ z

x

z

FIG. 2: Schematic for Applications 1 and 2 showing infinite parallel walls, where temperature boundary conditions
are applied, that confine the gas in the region 0 ≤ x ≤ 1. Two wall boundary conditions are considered: (A) Anti-
symmetric temperature perturbations, and (B) symmetric temperature gradients in the x-direction; these correspond
to Applications 1 and 2 in Sections IVA and IVB, respectively.

1. Leading-order solution (n = 0)

The velocity equation in the (outer) Hilbert region is

∂2v̄
(0)
H

∂x2
= −6

5
ζ2v̄

(0)
H , (60)

where ζ is the acoustic wavenumber defined in Eq. (18), which upon application of its no-penetration condition gives

v̄
(0)
H = τ

(0)
H = σ

(0)
H = P

(0)
H = Q

(0)
H = φ

(0)
H = 0. (61)

There is no Knudsen layer to leading-order (n = 0) and transport in the viscous region satisfies the no-slip velocity
condition and temperature at the wall. By constancy of the pressure and velocity in the viscous region, normal to
the wall, we obtain

τ
(0)
V =

2

5
P

(0)
V +

(

1− 2

5
P

(0)
V

)

e
√
ζ(−1+i)y, v̄

(0)
V = 0, (62)
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where y ≡ x/ǫ in the present problem and ǫ ≡
√
k is the dimensionless viscous penetration depth. Matching the

above Hilbert and viscous regions then gives P
(0)
V = 0 and hence

τ
(0)
V = −σ

(0)
V = e

√
ζ(−1+i)y, (63)

showing that the only leading-order nonzero transport variables are the temperature and density in the viscous region.

2. First-order solution (n = 1)

We begin with the viscous region, for which the governing equations are

∂P
(1)
V

∂y
= 2iζv̄

(0)
V , (64a)

∂v̄
(0)
V

∂y
= iζσ

(0)
V , (64b)

∂2τ
(1)
V

∂y2
+ 2iζτ

(1)
V =

4

5
iζP

(1)
V . (64c)

Substituting Eq. (62) into Eq. (64a) shows that P
(1)
V is constant; this constant is calculated below by matching with

the Hilbert region. Solving Eqs. (64) subject to its no-penetration and slip conditions gives

τ
(1)
V 0 = W0

√

ζ(−1 + i), τ
(1)
V =

2

5
P

(1)
V +

(

W0

√

ζ(−1 + i)− 2

5
P

(1)
V

)

e
√
ζ(−1+i)y, (65a)

v̄
(1)
V =

(1− i)
√
ζ

2

(

1− e
√
ζ(−1+i)y

)

. (65b)

In the Hilbert region, the governing equations are rewritten as

∂v̄
(1)
H

∂x
= iζσ

(1)
H , (66a)

∂2v̄
(1)
H

∂x2
= −6

5
ζ2v̄

(1)
H , (66b)

τ
(1)
H =

2

3
σ
(1)
H . (66c)

with the velocity being symmetric about x = 1/2. The velocity in the viscous region, Eq. (65b), specifies the required
boundary conditions, giving

v̄
(1)
H =

(1− i)
√
ζ

2

cos
(√

6
5ζ
(

x− 1
2

)

)

cos
(

1
2

√

6
5ζ
) , (67)

from which the density and temperature follow via Eqs. (66),

σ
(1)
H =

√

6

5

(1 + i)
√
ζ

2

sin
(√

6
5ζ
(

x− 1
2

)

)

cos
(

1
2

√

6
5 ζ
) , τ

(1)
H =

2

3
σ
(1)
H , P

(1)
H =

5

3
σ
(1)
H . (68)

Matching the temperatures in the Hilbert and viscous regions, Eqs. (65a) and (68), then gives

P
(1)
V = −

√

5

6
(1 + i)

√

ζ tan

(

1

2

√

6

5
ζ

)

. (69)

The first-order Knudsen corrections are found from the leading-order solutions in the viscous region (Section IVA1),
giving

τ
(1)
K =

√

ζ(−1 + i)
7
∑

m=0

x2,mJm(η), σ
(1)
K =

√

ζ(−1 + i)
7
∑

m=0

x1,mJm(η), v
(1)
K = 0, (70)

where for this problem, η ≡ x/ǫ2 (see Eq. (33)).
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3. Second-order solution (n = 2)

The governing equations in the viscous region are

∂v̄V
∂y

= iσ
(1)
V , (71a)

∂P
(2)
V

∂y
= 2iζv̄

(1)
V , (71b)

∂2τ
(2)
V

∂y2
+ 2iζτ

(2)
V =

4

5
iζP

(2)
V +

11

5
iζ
∂2τ

(0)
V

∂y2
. (71c)

Solving Eqs. (71) subject to the no-penetration conditions gives

v̄
(2)
V =

3

5
iζP

(1)
V y +

(

−iζW0 +
1

5

√

ζP
(1)
V (1 − i)

)

(

e
√
ζ(−1+i)y − 1

)

, (72a)

P
(2)
V = ζ

√

ζ(1 + i)y + iζ(e
√
ζ(−1+i)y − 1) + p0, (72b)

where p0 is a constant (to be evaluated by matching to the Hilbert region). The temperature equation, Eq. (71c),
then gives

τ
(2)
V = e

√
ζ(−1+i)y

(

ξ − 9

10
ζ
√

ζ(1 + i)y

)

+
2

5
ζ
√

ζ(1 + i)y − 2

5
iζ +

2

5
p0, (73)

where

ξ = τ
(2)
V 0 +

2

5
iζ − 2

5
p0. (74)

Because the leading order Hilbert moments vanish, the governing equations in the Hilbert region are rewritten as

∂v̄
(2)
H

∂x
= iζσ

(2)
H , (75a)

∂2v̄
(2)
H

∂x2
= −6

5
ζ2v̄

(2)
H , (75b)

τ
(2)
H =

2

3
σ
(2)
H . (75c)

Solving Eqs. (75) gives

v̄
(2)
H = A cos

(

√

6

5
ζ

(

x− 1

2

)

)

, σ
(2)
H = iA

√

6

5
ζ sin

(

√

6

5
ζ

(

x− 1

2

)

)

, (76a)

τ
(2)
H =

2

3
σ
(2)
H , P

(2)
H =

5

3
σ
(2)
H , (76b)

where A is another constant to be evaluated by matching.
From Eq. (40c) it follows that

φ
(2)
V

∣

∣

∣

y→∞
∼
(

φ
(2)
H + yni

∂φ
(1)
H

∂xi

+
1

2
y2
(

ni

∂

∂xi

)2

φ
(0)
H

)∣

∣

∣

∣

∣

(xi−xwi)ni→0

. (77)

Given that φ
(0)
H = 0, Eq. (77) reduces to

φ
(2)
V

∣

∣

∣

y→∞
∼
(

φ
(2)
H + yni

∂φ
(1)
H

∂xi

)∣

∣

∣

∣

∣

(xi−xwi)ni→0

. (78)
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Matching the constant terms in the pressure gives

p0 = iζ − 5

3
iA

√

6

5
ζ sin

(

1

2

√

6

5
ζ

)

, (79)

and similarly for the velocities yields

A =

(

iζW0 +
1

5

√

ζP
(1)
V (−1 + i)

)

sec

(

1

2

√

6

5
ζ

)

. (80)

The Knudsen corrections follow from Table III,

τ
(2)
V 0 = A1iζσ

(0)
V +A2iζτ

(0)
V +A3

∂τ
(1)
V

∂y

∣

∣

∣

∣

∣

y=0

, (81a)

σ
(2)
K =

7
∑

k=0

(

Jk(η)

(

b1,kσ
(0)
V + b2,kτ

(0)
V + b3,k

∂τ
(1)
V

∂y

))∣

∣

∣

∣

∣

y=0

, (81b)

τ
(2)
K =

7
∑

k=0

(

Jk(η)

(

c1,kσ
(0)
V 0 + c2,kτ

(0)
V + c3,k

∂τ
(1)
V

∂y

))∣

∣

∣

∣

∣

y=0

, (81c)

where the coefficients bn,k and cn,k are defined in Tables V – VI.

4. Comparison to numerical solutions of the Boltzmann-BGK equation

We now compare the above asymptotic solutions for the transport variables to direct and accurate numerical solu-
tions of the linearized Boltzmann-BGK equation, that employ a spectral method based on the variational formulation
reported by Ladiges and Sader (2018) [21]. These spectral solutions are systematically refined to achieve high accuracy
and are referred to as ‘exact numerical solutions’ in the following discussion. In this validation study, we choose τb = 1
and ζ = 1 corresponding to the required acoustic regime.
Numerical solution: As per the examples studied in Ref. [21], the present problem consists of a bounded domain

with a single spatial dimension. The approach for discretizing the Boltzmann-BGK equation (Eq. (13)) in space is
therefore unchanged—a second-order finite difference method is used based on a uniform grid, that is upwinded in the
direction of the particle velocity components. A spectral approach is used to discretize the particle velocity variables.
Following Ref. [21], polynomial basis functions are used that have support on either vx > 0 or vx < 0. This allows
for accurate integration of the discontinuity expected at vx = 0. The basis functions cover all three particle velocity
dimensions, and by symmetry we may discard polynomials which are anti-symmetric in y and z (here, y refers to the
Cartesian coordinate normal to x and z, rather than the rescaled normal coordinate which is used elsewhere). While
the (isothermal and constant density) examples in Ref. [21] applied a shear velocity boundary condition, here the
temperature boundary condition in Eq. (59) is used. Because the flow is not of uniform density, we also enforce mass
conservation at the boundary with Eq. (15). Numerical results are converged by systematically doubling the number
of points in the spatial grid, and increasing the order of the basis functions in particle velocity space by two, until the
relative change in all transport variables is less than 1%. Results are given for 10,000 spatial points and polynomials
of order 8.
Figure 3 shows the results of this comparison for a Knudsen number of k = 0.00625 (≪ 1), i.e., ǫ =

√
k = 0.08, which

highlights the accuracy and validity of the developed asymptotic theory; similar agreement is found for other small
values of k (data not shown). Two distinct theoretical calculations are given, with the asymptotic theory calculated
correct to O(ǫ) and O(ǫ2), using the formulas given above. Continuum theory predicts no flow for this problem,
which is reflected in the vanishing leading-order velocity in the Hilbert solution, i.e., to O(1). Only the density and
temperature distribution are O(1). Temperature gradients are confined to the viscous region, x . ǫ (= 0.08), which
in turn drives flow at O(ǫ) with nonzero contributions in all regions. We note that the length scale for variations
in all transport parameters is inversely proportional to the acoustic wavenumber, ζ, which reflects the intrinsically
compressible nature of these flows.
It is evident from Fig. 3 that the temperature and density distributions are accurately predicted by the asymptotic

theory correct to O(ǫ) and O(ǫ2). This is not surprising because these transport variables exhibit nonzero contributions
at O(1), as discussed above. Thus, the O(ǫ) and O(ǫ2) corrections provide small contributions at this small value of
ǫ = 0.08. The same is not true for the velocity and pressure, that are O(ǫ), which we now discuss.
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The O(ǫ) asymptotic solution in Section IVA2 captures the dominant features of both the velocity and pressure,
albeit with some minor quantitative differences. Inclusion of the O(ǫ2) accurately accounts for these minor differences
and gives excellent agreement with high-accuracy numerical solutions. The viscous region, x . 0.08, is evident
in all results in Fig. 3, along with Knudsen corrections that occur within a distance of O(ǫ2) from the wall, i.e.,
x . 0.00625. These Knudsen corrections are clearly evident in the pressure distributions to O(ǫ). Interestingly, the
O(ǫ2) correction is significant in the viscous and Hilbert regions for the velocity and pressure and must be included
to accurately determine them, even at this small Knudsen number of k = 0.00625.
For reference, Fig. 4 compares the exact numerical solution reported in Fig. 3 to the predictions of the linearized

compressible NSF set of equations with (i) no temperature-jump, and (ii) a temperature jump included. Importantly,
while the solution calculated from the NSF system of equations with temperature jump provides a solution that
captures the velocity, density and temperature with a similar degree of accuracy to the developed O(ǫ2) asymptotic
theory (nearly coinciding with the exact numerical solution), it misses key features of the pressure. The nonlinear
structure of the pressure in the viscous region is not captured, in contrast to the developed asymptotic theory. This
suggests that the derived NSF system of equations are correct to O(ǫ2) in the Hilbert region only, not the viscous
region, and thus miss pertinent features of the flow in the viscous region.
Navier-Stokes-Fourier equations (NSF) [41]: The NSF system of equations used in all benchmarking are the

linearized and Fourier-transformed form of Eqs. (50a)–(50c) in Ref. [41],

iζσ =
∂vj
∂xj

, (82a)

iζvj =
1

2

∂P

∂xj

− 1

2
ǫ2
(

1

3

∂

∂xj

(

∂vw
∂xw

)

+
∂2vj
∂xw

2

)

, (82b)

iζτ =
2

3
iζσ − 5

6
ǫ2

∂2τ

∂xj
2
, (82c)

with associated boundary conditions at the solid walls given by Eqs. (124a)-(124c) of Ref. [41],

(vi − Vi)ni = 0, (83a)

(vi − Vi)ti = ǫ

(

1.01619

(

∂vi
∂xj

+
∂vj
∂xi

)

nitj + 0.38316
∂T

∂xi

ti

)

, (83b)

τ − τb = ǫ

(

1.30272
∂T

∂xi

ni + 0.44045
∂vi
∂xj

ninj

)

, (83c)

where ni is the outward wall-normal [defined in Eq. (27)] and ti is the corresponding tangential unit vector at the
wall; only one tangential vector exists because the problem is two-dimensional.
For the present application, this system of equations reduces to

iζσ =
dv

dx
, (84a)

iζv =
1

2

dP

dx
− 2

3
ǫ2
d2v

dx2
, (84b)

iζτ =
2

3
iζσ − 5

6
ǫ2
d2τ

dx2
, (84c)

with wall boundary conditions,

(v − V )|x=0,1 = 0, (85a)

τ − τb = ǫ

(

1.30272 (−1)x
dT

dx
+ 0.44045

dv

dx

)∣

∣

∣

∣

x=0,1

, (85b)

where (−1)x accounts for reversal in the outward wall-normal direction at x = 0, 1.
Note that Eq. (84c) provides the linearized adiabatic relationship between temperature and density, with a non-

continuum thermal dissipation term. Therefore, the flow is driven by thermal gradients at the wall via mass conser-
vation, and so a flow can result even in the absence of a wall temperature jump.
Acoustic resonances: The O(ǫ) solutions in Section IVA 2 predict the expected acoustic phenomenon of resonance,

which occurs when

cos

(

1

2

√

6

5
ζ

)

= 0, (86)
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giving

ζresonance = (2n− 1)π

√

5

6
, (87)

where n = 1, 2, 3, ... . Equations (17), (18), and (87) establish that the characteristic gas velocity for these standing

waves is
√

5/6 vmp. At these resonances, the present asymptotic solution yields singularities in the transport variables.
This is because an asymptotic expansion is performed first with respect to k (equivalently,

√
ǫ). Regularization of

these singularities is most conveniently performed by combining the viscous and Hilbert regions, e.g., through use
of the compressible NSF equations, as suggested in Refs. [41, 43]. Away from resonance, the O(ǫ) (non-continuum)
Hilbert moments vary as

√
ζ in magnitude.



22

0

0.2

0.4

0.6

0.8

1

−0.8

−0.6

−0.4

−0.2

0

−0.04

−0.03

−0.02

−0.01

0

 V
e

lo
ci

ty
 (

re
a

l)

−0.05

−0.04

−0.03

−0.02

 V
e

lo
ci

ty
 (

im
a

g
in

a
ry

)

 T
e

m
p

e
ra

tu
re

 (
re

a
l)

0

0.1

0.2

0.3

 T
e

m
p

e
ra

tu
re

 (
im

a
g

in
a

ry
)

D
e

n
si

ty
 (

re
a

l)

−0.3

−0.2

−0.1

0
D

e
n

si
ty

 (
im

a
g

in
a

ry
)

P
re

ss
u

re
 (

re
a

l)

−0.05

−0.04

−0.03

−0.02

−0.01

0

P
re

ss
u

re
 (

im
a

g
in

a
ry

)

0.10 0.2 0.3 0.4 0.5

x

0

0.01

0.02

0.03

0.04

0.05

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

0.10 0.2 0.3 0.4 0.5

x

Exact

O (ε)

O (ε2)

FIG. 3: Application 1: Antisymmetric uniform heating. Comparison of the exact numerical solution (solid line –
black), asymptotic theory correct to O(ǫ) (dashed line – red) and asymptotic theory correct to O(ǫ2) (dotted line –
green). Results shown for ζ = 1 and k = 0.00625. Some curves overlap with the exact numerical solution (solid line
– black) and therefore are not visible.
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FIG. 4: Application 1: Antisymmetric uniform heating. Comparison of the exact numerical solution (solid line –
black), NSF with no temperature jump (NSF—no TJ) (dashed line – red) and NSF with temperature jump (NSF)
(dotted line – green). Results shown for ζ = 1 and k = 0.00625. Some curves overlap with the exact numerical
solution (solid line – black) and therefore are not visible.

B. Application 2: Oscillatory thermal creep

Next, we study the oscillatory thermal creep flow generated by temperature gradients imposed on two parallel
walls separated by a distance L that confine a gas; see Fig. 2 with boundary conditions B. A uniform and oscillatory
(time dependent) temperature gradient, A, is applied to each wall and the equilibrium gas temperature is T0. The
corresponding dimensionless temperature at each wall is

τb = ∆z, (88)
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where z is the dimensionless Cartesian coordinate (scaled by L) parallel to the walls, and

∆ ≡ A

LT0
, (89)

is the dimensionless temperature gradient. The dimensionless Cartesian coordinate normal to the walls is x (scaled
by L), and by symmetry we only consider 0 ≤ x ≤ 1/2; this specifies the flow in the entire domain. The temperature,
density and tangential velocities are symmetric about x = 1/2 while the velocity normal to the walls is antisymmetric.
The normal coordinate in the viscous region is y ≡ x/ǫ, while that in the Knudsen region is η ≡ x/ǫ2. The Cartesian
coordinate (scaled by L) parallel to the wall is z = χ1.
This strictly non-continuum flow was studied by Nassios & Sader [34] in the low frequency regime (long acoustic

wavelength, ζ ≪ 1), where a quasi-incompressible flow is generated. Numerical results of this previous theory are
compared to the present theory which is solved correct to O(ǫ2). In a follow up study, Nassios & Sader [36] considered
the high frequency (short acoustic wavelength, ζ ≫ 1) limit which is not compared here.

1. Leading-order solution (n = 0)

Analysis of the (outer) Hilbert region is identical to Application 1, and gives

v̄
(0)
H = τ

(0)
H = σ

(0)
H = P

(0)
H = Q

(0)
H = φ

(0)
H = 0, (90)

along with P
(0)
V = 0 for the viscous region (upon matching). The temperature equation in the viscous region then

becomes

∂2τ
(0)
V

∂y2
+ 2iζτ

(0)
V = 0, (91)

which upon application of the boundary conditions in Eq. (88) gives the required solution

τ
(0)
V = −σ

(0)
V = ∆ze

√
ζ(−1+i)y . (92)

The normal and tangential velocity fields in the viscous region vanish because the walls are stationary, and there is
no contribution from the Knudsen region.

2. First-order solution (n = 1)

We begin with the Knudsen corrections, which are determined directly from the leading-order solution in the viscous
region via Table III,

σ
(1)
K = ∆z

√

ζ(−1 + i)
n
∑

m=0

x1,mJm(η), (93a)

τ
(1)
K = ∆z

√

ζ(−1 + i)

n
∑

m=0

x2,mJm(η), (93b)

v̄
(1)
K|i = 0. (93c)

Next, we turn to the viscous region where the normal velocity satisfies

∂v̄
(1)
V |ini

∂y
= iζσ

(0)
V , (94)

whose solution is

v̄
(1)
V |ini =

(−1 + i)
√
ζ∆z

2

(

e
√
ζ(−1+i)y − 1

)

, (95)
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while the pressure is independent of the normal coordinate, y, i.e.,

P
(1)
V = f(z), (96)

where the function f(z) is to be determined.
Because the leading-order tangential velocity vanishes, the tangential velocity in the viscous region obeys the no-slip

condition, giving

v̄
(1)
V |it

1
i =

f ′(z)

2iζ

(

1− e
√
ζ(−1+i)y

)

. (97)

The temperature jump condition in the viscous region follows directly from the leading-order temperature,

τ
(1)
V 0 = −W0

√

ζ(−1 + i)∆z, (98)

from which the corresponding temperature and density equations are solved to give

τ
(1)
V =

2

5
f(z)

(

1− e
√
ζ(−1+i)y

)

−W0

√

ζ(−1 + i)∆ze
√
ζ(−1+i)y, (99a)

σ
(1)
V =

2

5
f(z)

(

3

2
+ e

√
ζ(−1+i)y

)

+W0

√

ζ(−1 + i)∆ze
√
ζ(−1+i)y. (99b)

Finally, we solve the (outer) Hilbert region for which the matching conditions in Eqs. (40) become

v̄
(1)
H0|ini =

(1− i)
√
ζ∆z

2
, v̄

(1)
H0|it

1
i =

f ′(z)

2iζ
, σ

(1)
H0 =

3

5
f(z). (100)

The density satisfies the two-dimensional Helmholtz equation,

∂2σ
(1)
H

∂x2
+

∂2σ
(1)
H

∂z2
+

6

5
ζ2σ

(1)
H = 0, (101)

with boundary conditions,

∂σ
(1)
H

∂x
=

3(1 + i)ζ
√
ζ

5
∆z for x = 0, (102a)

∂σ
(1)
H

∂x
= 0 for x =

1

2
(102b)

Searching for a solution of the form, σ
(1)
H = zg(x), then gives the required result,

σ
(1)
H =

√

3

10

(1 + i)
√
ζ

sin
(

1
2

√

6
5ζ
)∆z cos

(

√

6

5
ζ

(

x− 1

2

)

)

. (103)

from which it follows that

τ
(1)
H =

√

2

15

(1 + i)
√
ζ

sin
(

1
2

√

6
5ζ
)∆z cos

(

√

6

5
ζ

(

x− 1

2

)

)

, (104a)

v̄
(1)
H|ini =

(−1 + i)
√
ζ

2 sin
(

1
2

√

6
5ζ
)∆z sin

(

√

6

5
ζ

(

x− 1

2

)

)

, (104b)

v̄
(1)
H|it

1
i =

√

5

24 ζ

(1 − i)

sin
(

1
2

√

6
5ζ
)∆cos

(

√

6

5
ζ

(

x− 1

2

)

)

, (104c)

and

f(z) =

√

5

6
(1 + i)

√

ζ∆z cot

(

1

2

√

6

5
ζ

)

. (105)
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3. Comparison to present acoustic theory to long wavelength theory

We first highlight the key difference between the present acoustic theory and the long wavelength theory of Nassios
& Sader [34]:
Nassios & Sader: Ref. [34] performed an asymptotic expansion in k under the assumption that the Stokes number,

β, defined in Eq. (19), is O(1). It then follows from Eq. (18) that the acoustic wavenumber, ζ, is O(k), which is
infinitesimally small in the asymptotic limit of small k. That is, acoustic effects are implicitly suppressed in this long
wavelength limit.
Present theory: The present theory assumes that the acoustic wavenumber, ζ, is O(1). This produces a Stokes

number, β = O(1/k), which is large in the asymptotic limit of small k. Acoustic effects are rigorously included in this
theory.
Consequently, these two asymptotic theories apply to different flow regimes that can be expected to overlap when

the acoustic wavenumber is not too large, i.e., ζ = O(1). Here, we explore this potential overlap by choosing a
small but finite Kundsen number, k, and by varying the acoustic wave number, ζ. We choose a Knudsen number
of k = 0.004 and present results for the flow field at a position z = 1 throughout. Numerical results are given for
acoustic wavenumbers of ζ = 0.1, 1, 10, which span the long to short wavelength regimes, respectively. We focus our
attention on the velocity field which is the transport variable of primary interest in many applications of the thermal
creep phenomenon, e.g., the Knudsen pump in microfluidic applications.
The long wavelength theory involves an asymptotic expansion in k, whereas the present acoustic theory is expanded

in ǫ ≡
√
k. We compare the leading order (nonzero) contributions of both theories for this oscillatory thermal creep

flow, which amounts to the long wavelength theory being calculated correct to O(k) and the present theory correct

to O(
√
k). Details of the long wavelength solution for oscillatory thermal creep are given in Ref. [34].

Figures 5 and 6 give numerical results derived from these complementary theories for the normal and tangential
velocity fields, respectively. For the lowest wavenumber, ζ = 0.1, these theories give quantitatively similar results
for the normal velocity while exhibiting subtle differences in the velocity profiles. However, the same is not true for
the tangential velocity, with the present theory dramatically overestimating the long wavelength theory of Nassios
& Sader; see Fig. 6. The reason for this discrepancy is that the present theory exhibits a 1/

√
ζ divergence in the

long wavelength (small ζ) limit, which clearly cannot hold in that regime. This is not an issue because the present
theory is not derived for that limit, but serves to highlight the different flow physics in the long wavelength (quasi-
incompressible) and finite wavelength (acoustic) regimes.
Increasing the acoustic wavenumber to ζ = 1 yields excellent agreement for the normal velocity, while the tangential

velocities exhibit similar profiles with a quantitative difference in magnitude of order 1.5 – 2. The large two order-of-
magnitude discrepancy in the tangential velocity for ζ = 0.1 no longer exists, supporting the above conclusion that
the 1/

√
ζ variation in the tangential velocity is strictly an acoustic phenomenon.

Operation in the strongly acoustic regime when ζ = 10 gives marked differences between the two theories. This small
acoustic wavelength is clearly visible in the present theory, but absent in the long wavelength (quasi-incompressible)
theory of Nassios & Sader. Again, such a deviation in agreement is to be expected because the theory in Ref. [34]
does not include acoustic effects.
This comparison shows the overlap of these complementary asymptotic theories for near incompressible flows, and

provides some guidance as to their respective regimes of applicability. We refrain from further analysis and comparison
because our primary aim here is to validate the present theory.
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FIG. 5: Application 2: Oscillatory thermal creep. Comparison of normal velocities calculated using the theory
of Nassios & Sader [34] (left) and the present asymptotic theory (right). Real component (solid line); Imaginary
component (dashed line). Results shown for k = 0.004.
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C. Application 3: Sphere oscillating in a quiescent gas

We conclude by studying the acoustic flow generated by a solid sphere that is executing rectilinear oscillations in an
otherwise quiescent and unbounded gas. In contrast to the preceding applications, an axisymmetric flow is generated.
The flow is calculated using the present asymptotic theory and compared to numerical solutions of the linearized
Boltzmann-BGK equation [21] to demonstrate the theory’s utility in a curvilinear coordinate system. Details of this
numerical solution are provided below.
The solid sphere executes rectilinear oscillations such that the dimensionless velocity of its surface (scaled by U ,

the sphere’s dimensional speed) is

Vs = exp(−iωt) ẑ, (106)

where the sphere’s surface temperature is fixed at τb exp(−iωt), where τb is a position-independent constant. This
corresponds to uniform heating and cooling of the surface in synchrony with the sphere’s motion. The practical
case where the surface is held at the ambient gas temperature coincides with τb = 0 (which we study numerically
below). These chosen velocity and temperature boundary conditions are independent of Knudsen number. All spatial
dimensions are scaled by the sphere radius.

With respect to the (dimensionless) spherical polar coordinate system, (r, θ, φ), it follows that t1 = θ̂, t2 = φ̂, χ1 =
θ, χ2 = φ. Expressing the radial coordinate as r = 1 + ǫy, gives the required curvature coefficients, defined in
Section III F,

h1 = 1 + ǫy, h2 = (1 + ǫy) sin θ, κ1 = κ2 = 1, g1 = 0, g2 = cot θ, (107)

where h1 and h2 are scale factors.
We now use the present asymptotic theory to calculate the resulting flow field correct to O(ǫ2).

1. Leading-order solution (n = 0)

There is no Knudsen layer to leading order, O(1). The leading order pressure and normal velocity in the viscous
region are independent of the normal coordinate, y ≡ x/ǫ. Therefore, the velocity boundary conditions at y = 0 are

v̄
(0)
V 0|ini = cos θ, v̄

(0)
V 0|it

1
i = − sin θ, (108)

from which it follows that the normal velocity in the viscous region is

v̄
(0)
V |ini = cos θ. (109)

Solutions to the temperature and density perturbations are

τ
(0)
V =

2

5
P

(0)
V +

(

τb −
2

5
P

(0)
V

)

e
√
ζ(−1+i)y, (110a)

σ
(0)
V =

3

5
P

(0)
V −

(

τb −
2

5
P

(0)
V

)

e
√
ζ(−1+i)y , (110b)

where the pressure, P
(0)
V , depends only on the polar coordinate, θ, and is to be determined, i.e., P

(0)
V is independent

of y.
Noting that the above scale factors gives the following reduced form for the tangential momentum equation,

∂2v̄
(0)
V |it

1
i

∂y2
+ 2iζv̄

(0)
V |it

1
i =

∂P
(0)
V

∂θ
. (111)

Applying the boundary conditions on the spatial domain then yields

v̄
(0)
V |it

1
i = Be

√
ζ(−1+i)y sin θ − (1 +B) sin θ, (112a)

P
(0)
V = 2iζ(1 +B) cos θ + c, (112b)

where B, c are integration constants to be evaluated by matching with the Hilbert region.
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We now examine the Hilbert region, where the continuity equation is

∂2σ
(0)
H

∂xi
2

+
6

5
ζ2σ

(0)
H = 0, (113)

which is a Helmholtz equation, whose general axisymmetric solution is

σ
(0)
H =

∞
∑

l=0

Pl(cos θ)

(

aljl

(

√

6

5
ζr

)

+ blyl

(

√

6

5
ζr

))

, (114)

where Pl are Legendre polynomials of order, l, and jl, yl are spherical Bessel functions of the first and second kind,
respectively, again of order l. Because the density is proportional to the pressure in the Hilbert region, matching the
pressure in the Hilbert and viscous regions gives

σ
(0)
H0 =

3

5
P

(0)
V =

6

5
iζ(1 +B) cos θ +

3

5
c, (115)

by which it follows from Eq. (114) that

σ
(0)
H = a0j0

(

√

6

5
ζr

)

+ b0y0

(

√

6

5
ζr

)

+

[

a1j1

(

√

6

5
ζr

)

+ b1y1

(

√

6

5
ζr

)]

cos θ, (116)

where

B = −1− 5

6ζ
i

[

a1j1

(

√

6

5
ζ

)

+ b1y1

(

√

6

5
ζ

)]

, (117a)

c =
5

3

[

a0j0

(

√

6

5
ζ

)

+ b0y0

(

√

6

5
ζ

)]

. (117b)

The continuity equation then gives the velocity field,

v̄
(0)
H|i = − 5i

6ζ

{

√

6

5
ζ

[

a0j
′
0

(

√

6

5
ζr

)

+ b0y
′
0

(

√

6

5
ζr

)

+

(

a1j
′
1

(

√

6

5
ζr

)

+ b1y
′
1

(

√

6

5
ζr

))

cos θ

]

r̂−
[

a1j1

(

√

6

5
ζr

)

+ b1y1

(

√

6

5
ζr

)]

sin θ

r
θ̂

}

, (118)

where ′ indicates the derivative.
Matching the angular and radial components of the velocity between the Hilbert and viscous regions, respectively,

requires

a0j
′
0

(

√

6

5
ζ

)

+ b0y
′
0

(

√

6

5
ζ

)

= 0, (119a)

a1j
′
1

(

√

6

5
ζ

)

+ b1y
′
1

(

√

6

5
ζ

)

=

√

6

5
i, (119b)

which is to be imposed together with the Sommerfeld radiation condition [50] (restricting the solution to outgoing
waves),

lim
r→∞

r

(

∂

∂r
− i

√

6

5
ζ

)

σ
(0)
H = 0. (120)

Equation (120) gives

b0 = −ia0, b1 = ia1, (121)

which together with Eq. (119) determine the remaining unknown coefficients,

a0 = b0 = 0, a1 = −ib1 =
i

j′1

(√

6
5ζ
)

+ iy′1

(√

6
5ζ
)

√

6

5
. (122)
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2. First-order solution (n = 1)

The Knudsen corrections follow directly from the leading-order solution in the viscous region using the formulas in
Table III; they are not produced here.
Turning to the viscous region, the corresponding boundary conditions are

τ
(1)
V 0 = W0

√

ζ(−1 + i)

(

τb −
2

5
P

(0)
V

)

, v̄
(1)
V 0|it

1
i = Z0B

√

ζ(−1 + i) sin θ, (123)

with viscous normal velocity again satisfying the no-penetration condition. Integrating the pressure equation gives

P
(1)
V = 2iζy cos θ + d(θ), (124)

where the function, d(θ) is to be determined by matching with the Hilbert region (below).
Integrating the momentum equation for the normal velocity gives

v̄
(1)
V |ini = iζ

(

3

5
P

(0)
V y − 1√

ζ(−1 + i)

(

τb −
2

5
P

(0)
V

)

(e
√
ζ(−1+i)y − 1)

)

−

2B

(

e
√
ζ(−1+i)y − 1√
ζ(−1 + i)

− y

)

cos θ, (125)

while solution to the temperature equation yields

τ
(1)
V = −

[(

τb −
2

5
P

(0)
V

)

y + C(θ)

]

e
√
ζ(−1+i)y +

4

5
iζy cos θ +

2

5
d(θ), (126a)

σ
(1)
V =

[(

τb −
2

5
P

(0)
V

)

y + C(θ)

]

e
√
ζ(−1+i)y +

6

5
iζy cos θ +

3

5
d(θ), (126b)

where C(θ) is also to be evaluated and the temperature boundary condition requires

2

5
d(θ)− C(θ) = W0

√

ζ(−1 + i)

(

τb −
2

5
P

(0)
V

)

. (127)

The tangential velocity follows similarly,

v̄
(1)
V |it

1
i = e

√
ζ(−1+i)y

(

−d′(θ)

2iζ
+ Z0B

√

ζ(−1 + i) sin θ

)

+By sin θ

+
d′(θ)

2iζ
−Bye

√
ζ(−1+i)y sin θ. (128)

The Hilbert equations give

σ
(1)
H = E0j0

(

√

6

5
ζr

)

+ F0y0

(

√

6

5
ζr

)

+

[

E1j1

(

√

6

5
ζr

)

+ F1y1

(

√

6

5
ζr

)]

cos θ, (129a)

P
(1)
H =

5

3
σ
(1)
H , (129b)

v̄
(1)
H|i = − 5i

6ζ

∂σ
(1)
H

∂xi

, (129c)

and the Sommerfeld radiation condition produces

E0 + iF0 = 0, iE1 − F1 = 0. (130)

Finally, we apply the matching condition between the Hilbert and viscous regions,

φ
(1)
V ∼ φ

(1)
H0 + yn

∂φ
(0)
H0

∂xi

, y → ∞, (131)
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which gives

d(θ) =
5

3

{

E0j0

(

√

6

5
ζ

)

+ F0y0

(

√

6

5
ζ

)

+

[

E1j1

(

√

6

5
ζ

)

+ F1y1

(

√

6

5
ζ

)]

cos θ

}

. (132)

It can be shown that Eq. (132) ensures that the tangential velocities in the Hilbert and viscous regions match.
Matching the normal velocities gives

i
√
ζ

−1 + i

(

τb −
2

5
c

)

= − 5i

6ζ

√

6

5
ζ

(

E0j
′
0

(

√

6

5
ζ

)

+ F0y
′
0

(

√

6

5
ζ

))

, (133a)

i
√
ζ

−1 + i

(

−4

5
iζ(1 +B)

)

+
2B√

ζ(−1 + i)
= −5i

6

√

6

5

(

E1j
′
1

(

√

6

5
ζ

)

+ F1y
′
1

(

√

6

5
ζ

))

, (133b)

which together with Eq. (130) determines E0, E1, F0 and F1; the coefficients B and c are defined in Eq. (117).

3. Second-order solution (n = 2)

Because the leading-order Hilbert moments are nonzero, the density equation here is an inhomogeneous Helmholtz
equation. Manipulations give

∂2σ
(2)
H

∂xj
2

+
6

5
ζ2σ

(2)
H = −36

25
iζ3σ

(0)
H . (134)

Noting that σ
(0)
H comprises of four terms then gives the general solution,

σ
(2)
H = p1(r) + p2(r) + p3(r, θ) + p4(r, θ)+

a2j0

(

√

6

5
ζr

)

+ b2y0

(

√

6

5
ζr

)

+ cos θ

(

a3j1

(

√

6

5
ζr

)

+ b3y1

(

√

6

5
ζr

))

, (135)

where the coefficients, a2, a3, b2, b3, are to be determined, and

p1(r) =
36

25

√

6

5
iζ4a0

[

j0

(

√

6

5
ζr

)

∫ r

1

y0

(

√

6

5
ζr′
)
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(

√

6

5
ζr′
)

r′2 dr′

−y0

(

√

6

5
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)
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1

j20

(

√

6

5
ζr′
)

r′2 dr′
]

, (136a)

p2(r) =
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)
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(
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(
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(
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, (136b)
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(
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(
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(
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from which the other moments directly follow using

v̄
(2)
H|j =

5

6iζ

∂σ
(2)
H

∂xj

− ∂σ
(0)
H

∂xj

, P
(2)
H =

5

3
σ
(2)
H − 2

3
iζσ

(0)
H , τ

(2)
H =

2

3
σ
(2)
H − 2

3
iζσ

(0)
H . (137)

The Sommerfeld radiation condition gives

b2 =
1

5

(

5a2i + 3a0ζe
2i
√

6
5 ζ
)

, b3 = ia3 −
1

5
a1e

2i
√

6
5 ζ(

√
30− 3iζ), (138)

with an additional two constraints determined in a similar manner to that used for the first-order solution; details are
omitted due to their complexity. This system of 4 linear equations specifies the coefficients, a2, a3, b2 and b3.

4. Comparison to numerical solutions of the Boltzmann-BGK equation

These asymptotic solutions are now validated against accurate numerical solutions. We also make a comparison
to a solution derived from the compressible linearized Navier Stokes equation with the slip and temperature jump
condition. Here, we choose τb = 0 (sphere is held at the ambient temperature) and an acoustic wavenumber of ζ = 1.
The exact numerical solution is computationally expensive and we restrict our comparison to the moderate Knudsen
number of k = 0.025 (computational expense increases with reduced k). For simplicity, we again only report results
for the velocity field since our primary aim is to assess the validity of the asymptotic theory.
Numerical solution: As in Section IVB, the method of Ref. [21] is used to obtain accurate numerical solutions;

the specific case considered here is also detailed in Ref. [54]. Because the flow is axisymmetric, it follows that the
distribution function is independent of the φ azimuthal coordinate. Spherical symmetry also specifies the functional
dependence on the θ polar coordinate [55]. Therefore, the problem reduces to a one-dimensional boundary value
problem in terms of the r radial coordinate in the spatial domain, r ∈ [1, R) as R → ∞. As per Ref. [54], a
spatially varying second-order upwind finite difference scheme is employed, with finer discretization near the surface
of the sphere. The (true) unbounded spatial domain is simulated by using successively larger values of R until the
solution converges. As in Section IVB, polynomials with compact support are used to represent the solution in
three-dimensional particle velocity space. The location of the expected discontinuities in particle velocity space is a
function of the spatial coordinate. The general approach to this type of problem is discussed in Ref. [21], and again
application to this problem is detailed in Ref. [54]. The numerical solution reported here is obtained by systematically
doubling the number of spatial points, doubling the value of R, and increasing the order of the basis functions by
one, until the relative change in all transport variables is less than 1%. Numerical results are given for 96,000 spatial
points with polynomials of order 8 and R = 60.
Figures 7 and 8 give results for the velocity field, normal and tangential to the surface along θ = 0 and π/2,

respectively. Comparison to the present asymptotic theory correct to O(1) and O(ǫ) is provided in Fig. 7. This
shows that a significant improvement is afforded through inclusion of the O(ǫ) correction, while both solutions give
reasonable agreement with the exact numerical solution. These asymptotic theories are similarly accurate in the outer
part of the Hilbert region, i.e., r ≫ 1, due to the decaying nature of the solution, with the oscillations corresponding
to wave motion with an acoustic wavenumber of ζ = 1. In contrast, significant discrepancies exist closer to the surface.
The O(1) theory intrinsically includes the no-slip condition, see Eq. (112a), which is evident in Fig. 7. Finite slip and
temperature jump emerges at O(ǫ) with the asymptotic solution agreeing reasonably well with the exact numerical
solution.
Including the O(ǫ2) correction in the present asymptotic theory strongly improves agreement with the exact nu-

merical solution; see Fig. 8. The intricate structure and variations in the exact solution are well captured by the
asymptotic theory, while some discrepancies remain. The most significant discrepancy occurs in the imaginary part of
the normal velocity in the (matching) overlap region between the viscous and Hilbert regions. This is not surprising
given k = 0.025 is not very small and the composite solution in Eq. (57) is used in this comparison. Indeed, comparison
at a larger value of k accentuates these differences, as expected (data not shown). Further comparisons using smaller
Knudsen numbers are inhibited by numerical difficulties arising due to the higher dimensionality of this problem. The
solution obtained using the NSF equations with the slip and temperature jump conditions is also shown in Fig. 8, and
is also found to agree well with the exact numerical solution. Some discrepancies are also visible in this NSF solution,
but are not dissimilar in strength relative to those of the asymptotic theory correct to O(ǫ2).
Unlike Applications 1 and 2, which are bounded flows in the wall-normal directions, resonances are not possible

here because the flow is unbounded—interference between forward and backward travelling waves is not possible.
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FIG. 7: Comparison of normal and tangential velocities in gas versus radial position, r, evaluated at θ = 0 and π/2,
respectively. Data shown for k = 0.025 and ζ = 1, as determined by the exact numerical solution (solid line – black),
asymptotic theory correct to O(1) (dashed line – red) and asymptotic theory correct to O(ǫ) (dotted line – green).
As an approximate guide, Knudsen region (r − 1 . 0.025); viscous region (0.025 . r − 1 . 0.16); Hilbert region
(r − 1 & 0.16).
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(dashed line – red) and NSF equation with slip and temperature jump condition (NSF) (dotted line – green).
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V. SLIP BOUNDARY CONDITION FOR TANGENTIAL VELOCITY

Previous asymptotic analyses of the Boltzmann-BGK equation in the limit of small k have recovered the following
leading-order expression for the tangential slip velocity,

(v̄i − Vi)t
1
i = k

(

−Z0nit
1
j

[

∂v̄i
∂xj

+
∂v̄j
∂xi

]

−G3t
1
i

∂τ

∂xi

)

+ o(k), (139)

which holds for both steady and unsteady (quasi-incompressible, long wavelength) flows [34, 35, 47]; Aoki et al. [41]
also showed that it holds for the compressible Navier Stokes equation, by using a Chapman-Enskog formulation. We
now examine the validity of this slip formula for acoustic flows (studied here) by comparison to the corresponding
asymptotic formula in Table III, also correct to O(k).
To begin, we note that the corresponding slip condition in the present acoustic problem is applied to the inner part

of the viscous region; rather than the Hilbert region for quasi-incompressible flows, as required for use of Eq. (139).
Indeed, the Hilbert region implicitly contains the viscous region for quasi-incompressible flows. To compare these slip
formulas, the outer Cartesian variables in Eq. (139) are rewritten in terms of the rescaled coordinates of the viscous
region, i.e.,

∂

∂xi

=
ni

ǫ

∂

∂y
+

(

∂χ1

∂xi

)

0

∂

∂χ1
+

(

∂χ2

∂xi

)

0

∂

∂χ2
. (140)

Substituting Eq. (140) into Eq. (139) then gives the equivalent expression,

(v̄i − Vi)t
1
i = −ǫZ0

∂v̄i
∂y

− ǫ2Z0nit
1
j

(

∂χ1

∂xj

)

0

∂v̄i
∂χ1

− ǫ2G3t
1
i t

1
i

∂τ

∂χ1
+ o(ǫ2), (141)

which can be compared directly to the corresponding acoustic slip formula in Table III, which we now present.
Combining the asymptotic slip formulas in Table III for the tangential slip velocity, at O(ǫ) and O(ǫ2), and using

the identity, G2 = G4 = Z0, gives

(v̄i − Vi)t
1
i = −ǫZ0

∂v̄i
∂y

− ǫ2Z0nit
1
j

(

∂χ1

∂xj

)

0

∂v̄i
∂χ1

− ǫ2G3t
1
i t

1
i

∂τ

∂χ1
+ ǫ2G1

∂2v̄it
1
i

∂y2
+ o(ǫ2), (142)

which is strikingly similar to Eq. (141). The only difference is the existence of a shear stress (second-order spatial
derivative) term in Eq. (142). But this term coincides with the second derivative term in the second-order steady
boundary condition, Eq. (3). This is evident upon replacement of the outer coordinate used in Eq. (142) with the
rescaled normal coordinate of the viscous region. Indeed, the coefficient −0.7667 in Eq. (3) agrees with our calculated
value of −G1 = 0.766322, correct to three decimal places; see Eq. (B2). This shows that the present formulation
includes effects found in the widely studied steady flow problem correct to O(k2) [22, 38].

VI. CONCLUSIONS

We have presented a rigorous asymptotic analysis of the Boltzmann-BGK equation for slightly rarefied gas flows,
i.e., small Knudsen number, where the acoustic wavelength is comparable to the geometric length scale of the flow
domain. Unlike previous long-wavelength (quasi-incompressible) flows [34, 35, 47], these acoustic flows confine the
effects of viscosity to a thin boundary layer near the solid surface. This leads to the appearance of three length scales:
the aforementioned geometric length scale, the viscous penetration depth, and the mean free path of the gas, in order
of asymptotically decreasing size. Transport equations and boundary conditions for these regions were thus derived
using a three-way matched asymptotic expansion.
The validity of the presented asymptotic theory was assessed by its application to three canonical problems: (i)

oscillatory (time-dependent) heating of a gas confined between two walls, (ii) oscillatory thermal creep between two
walls, and (iii) the rectilinear oscillation of a solid sphere in a quiescent gas. Benchmark numerical results for the
first and third applications were computed using the recent variational formulation of Ref. [21]. Excellent agreement
between numerical results and the present asymptotic theory was found. The second application was compared to
the long-wavelength asymptotic solution of Ref. [34], where overlap between their respective regimes of validity was
observed, as expected. Demonstration of these applications highlights the utility of the present asymptotic theory
in deriving analytical solutions for rarefied gas flows of practical interest, that would otherwise require sophisticated
numerical methods.
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Appendix A: Integral equations for the Knudsen region

1. First-order integral equations (n = 1)

The integral equations defining the Knudsen correction at O(ǫ) are

σ
(1)
b − σ

(1)
V 0 = −1

2
(τ

(1)
b − τ

(1)
V 0 ) + 2Ξ(σ

(1)
K , τ

(1)
K ), (A1a)

√
πv̄

(1)
K|it

1
i = (V

(1)
i − v̄

(1)
V 0|i)t

1
iJ0(η) +

∫ ∞

0

v̄
(1)
K|it

1
iJ−1(|η − η0|) dη0 +

∂v̄
(0)
V 0|it

1
i

∂y
J1(η), (A1b)

√
πσ

(1)
K = (τ

(1)
b − τ

(1)
V 0 ) (J2(η) − J0(η)) + 2Ξ(σ

(1)
K , τ

(1)
K )J0(η) + L1(σ

(1)
K , τ

(1)
K ) +

∂τ
(0)
V 0

∂y

(

J3(η)−
3

2
J1(η)

)

, (A1c)

3

2

√
πτ

(1)
K = (τ

(1)
b − τ

(1)
V 0 )

(

J4(η) −
3

2
J2(η) +

3

2
J0(η)

)

+ Ξ(σ
(1)
K , τ

(1)
K )(2J2(η)− J0(η)) + L2(σ

(1)
K , τ

(1)
K )+

∂τ
(0)
V 0

∂y

(

7

4
J1(η)− 2J3(η) + J5(η)

)

, (A1d)

√
πP

(1)
K|ijt

m
i tmj =

∫ ∞

0

σ
(1)
K J−1(|η − η0|) + τ

(1)
K

(

J1(|η − η0|) +
1

2
J−1(|η − η0|)

)

dη0 +

(

2Ξ(σ
(1)
K , τ

(1)
K )J0(η) +

(

τ
(1)
b − τ

(1)
V 0

)

J2(η) +
∂τ

(0)
V 0

∂y

(

J3(η)−
1

2
J1(η)

)

)

, m ∈ {1, 2}, (A1e)

which uses the following operators,-

Ξ(f(x), g(x)) =

∫ ∞

0

f(x)J0(x) + g(x)

(

J2(x)−
1

2
J0(x)

)

dx, (A2a)

L1(f(η), g(η)) =

∫ ∞

0

f(η0)J−1(|η − η0|) + g(η0)

(

J1(|η − η0|)−
1

2
J−1(|η − η0|)

)

dη0, (A2b)

L2(f(η), g(η)) =

∫ ∞

0

f(η0)

(

J1(|η − η0|)−
1

2
J−1(|η − η0|)

)

+

g(η0)

(

J3(|η − η0|)− J1(|η − η0|) +
5

4
J−1(|η − η0|)

)

dη0. (A2c)

The Abramowitz functions, Jn(x), are [56]

Jn(x) =

∫ ∞

0

tne−t2− x
t dt, x ≥ 0. (A3)

The above integral equations are solved using a refined moment method [47], in which each moment is written as
linear combinations of the inhomogeneities in each equation. This gives the slip conditions in Table III, where each
function of η is expressed as a linear combination of Abramowitz functions,

Y1(η) =

n
∑

s=0

y1,sJs(η), Y2(η) =

n
∑

s=0

y2,sJs(η), (A4a)

X1(η) =

n
∑

s=0

x1,sJs(η), X2(η) =

n
∑

s=0

x2,sJs(η), (A4b)

where y1,s, ρs, x1,s, x2,s are constants, and n is a positive integer that is systematically increased to convergence. This
gives 3n+ 5 parameters in total.
Taking n moments of Eqs. (A1) gives 3n equations. Then, using the asymptotic expression as η → 0+,

J0(η) ∼
√
π

2
+ η log(η), (A5)

∫ ∞

0

f(η0)J−1(|η − η0|) dη0 ∼ −f(0)η log(η), (A6)
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allows 3 more equations to be generated by evaluating Eqs. (A1) at η = 0, with an additional 3 equations obtained
by comparing the η log(η) asymptotic dependencies on both sides of Eqs. (A1). One of the equations can be shown to
be redundant, leading to 3n+ 5 linear equations in 3n+ 5 parameters. Numerical results of this procedure are given
in Appendix B.

2. Second-order integral equations (n = 2)

The same procedure results in the following integral equations,
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The solution procedure is identical to that used for first-order equations above.
The Abramowitz functions, Js(η), all decay exponentially with η. Expressing each of the Knudsen corrections as a

sum of Abramowitz functions, as performed in the refined moment method above, is consistent with the constraint
that the Knudsen corrections decay faster than any inverse power of η.
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Appendix B: Slip coefficients

In this Appendix, we give numerical coefficients for the first-order and second-order slip conditions specified in
Table III.

1. First-order slip coefficients (n = 1)

The first-order slip conditions in Table III use the expansions in Eqs. (A4) whose coefficients are given in Table IV,
and

Z0 = 1.01619, W0 = 1.30271. (B1)

These numerical coefficients are converged to the number of significant figures shown (n is increased systematically
to n = 7).

TABLE IV: First-order slip formula coefficients for Table III.

s y1,s y2,s x1,s x2,s

0 −0.398944 0.199472 0.464527 −0.475877
1 1.04374 −0.462149 −1.38268 1.03227
2 −3.37502 1.17618 2.23484 −0.699085
3 6.04351 −1.62725 3.33904 −7.00658
4 −6.21114 1.14194 −13.3644 17.7204
5 3.42892 −0.717878 14.3498 −17.1407
6 −0.973953 0.206404 −6.43631 7.33731
7 0.104732 −0.0224174 1.06521 −1.18676

The slip coefficients agree with Refs. [32, 34, 47, 49] where Z0 = −k0,W0 = d1. Using the notation of [47],
x1,s = as, x2,s = bs. Similar coefficients for other collision models may also be found in the above literature.

2. Second-order slip coefficients (n = 2)

The second-order slip conditions in Table III use

A1 = −0.701586, A2 = 1.71307, A3 = 1.30271, A4 = −0.660690,

G1 = −0.766322, G2 = 1.01619, G3 = 0.383161, G4 = 1.01619, (B2)

together with the following expansions,

Bp(η) =

n
∑

s=0

bp,sJs(η), p = 1, 2, 3, 4, Cq(η) =

n
∑

s=0

cq,sJs(η), q = 1, 2, 3, 4,

Md(η) =
n
∑

s=0

md,sJs(η), d = 1, 2, ..., 8, (B3)

whose coefficients are given in Tables V – VII. It is noted that A3 = W0, G2 = G4 = Z0 and m2,s = m4,s = m8,s =
y1,s, c3,s = m5,s = x2,s, b3,s = x1,s,m1,s = m7,s.
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TABLE V: Second-order slip formula coefficients for Table III; Part 1.

s b1,s b2,s b3,s b4,s c1,s c2,s

0 −0.807885 0.514976 0.464527 0.696851 0.330651 −0.725157
1 0.350937 0.423607 −1.382680 −0.950013 0.560246 0.861140
2 9.694015 −19.37118 2.234843 4.830153 −15.07515 23.30687
3 −52.43104 89.83990 3.339041 −11.19334 66.024046 102.9827
4 97.13291 160.6297 −13.36439 14.93035 −114.8504 179.451043
5 −82.78990 134.7080 14.34987 −10.52311 94.573433 −148.3773
6 32.84557 −52.99919 −6.436309 3.730840 −36.71110 57.83930
7 −4.950295 7.976728 1.065214 −0.551286 5.466471 −8.671018

TABLE VI: Second-order slip formula coefficients for Table III; Part 2.

s c3,s c4,s m1,s m2,s m3,s m4,s

0 −0.475877 0.229181 0.405403 −0.398944 −0.202702 −0.398944
1 1.032274 0.020771 −0.710548 1.043738 0.355274 1.043738
2 −0.699085 0.694151 3.178705 −3.375020 −1.589352 −3.375020
3 −7.006582 3.946670 −6.524735 6.043511 3.262367 6.043511
4 17.720385 −7.175464 7.931401 −6.211141 −3.965701 −6.211141
5 −17.140687 6.517195 −5.034212 3.428925 2.517106 3.428925
6 7.337307 −2.772651 1.627366 −0.973953 −0.813683 −0.973953
7 −1.186757 0.471311 −0.181370 0.104732 0.090685 0.104732

TABLE VII: Second-order slip formula coefficients for Table III; Part 3.

s m5,s m6,s m7,s m8,s

0 −0.475877 0.229181 0.405403 −0.398944
1 1.032274 0.020771 −0.710548 1.043738
2 −0.699085 0.694151 3.178705 −3.375020
3 −7.006582 3.946670 −6.524735 6.043511
4 17.720385 −7.175464 7.931401 −6.211141
5 −17.140687 6.517195 −5.034212 3.428925
6 7.337307 −2.772651 1.627366 −0.9739533
7 −1.186757 0.471311 −0.181370 0.104732

Appendix C: Transport equations in the viscous region in terms of principal curvature

In this Appendix, we express the governing equations for the viscous region in Table II in terms of the principal
surface curvature defined in Eq. (55).
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1. Leading-order transport equations (n = 0)
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where ai,0 = ai|y=0.

2. First-order transport equations (n = 1)
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3. Second-order transport equations (n = 2)
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