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Abstract

The energy cascade is the most significant feature that separates turbulence from other unsteady

flows, and results from the behavior of the nonlinear term in the Navier–Stokes equations. The

mathematical form of of this term, however, places constraints on exactly how it can act. Here,

we consider the action of the nonlinear term in physical space rather than in Fourier space, where

the energy transfer between scales can be interpreted as a mechanical process where some scales

do work on others. This formulation reveals the fundamental role played by geometry, as work

can only be done when the eigenframes of the turbulent stress and strain rate are appropriately

aligned. By comparing a direct numerical simulation of the Navier–Stokes equations, an ensemble

of random solenoidal vector fields, and a random sampling of uniform eigenframe alignments, we

show that this geometric alignment plays a much stronger role in determining the flux between

scales than do the magnitudes of the stress and strain rate. We also show that when the alignment

is effectively two-dimensional, even when embedded in a three-dimensional flow, that the energy

flux is typically inverse, suggesting that the inverse cascade in two-dimensional turbulence may

have a kinematic origin. Our results point to some potentially fruitful directions for turbulence

modeling.

I. INTRODUCTION

Nonlinearity is common in fluid mechanics as well as in complex systems more broadly,

with consequences ranging from unpredictable, chaotic dynamics to the emergence of coher-

ent structures. The most salient effect of nonlinearity that distinguishes turbulence from

more generic unsteady flows is the cascade of energy from the scales at which it is injected

into the flow to the scales at which it is dissipated. Appropriately accounting for this cas-

cade process is thus a key goal in turbulence modeling, ideally with the result of being able

to capture the outcome of the cascade without explicitly representing all scales. Statistical

models of the cascade, going back to the pioneering work of Kolmogorov [1] with more recent

refinements such as multifractality [2–4], have had success in describing some aspects of the

cascade, but still struggle to completely capture effects such as intermittency [5, 6]. Fully
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statistical pictures may also hide the underlying physical mechanisms that drive the cas-

cade, making it difficult to see what aspects of the model ought to be modified on physical

grounds.

To attempt to remedy this situation, any number of physical mechanisms for the cascade

have been proposed over the years. The most persistent go back to Taylor [7–9] and suggest

that vortex stretching is the fundamental ingredient that drives the transfer of energy from

large to small scales in three-dimensional (3D) turbulence. This phenomenology considers

turbulence to be an ensemble of vortex tubes embedded in a strain field. Due to vortex tilting

and stretching, these tubes are imagined to align locally with the extensional directions of

the strain field, at which point they are stretched. Conservation of angular momentum then

suggests that the vorticity of the tubes should be increased while their diameters shrink,

thereby energizing smaller and smaller scales of motion until they are finally small enough

that viscous forces can dissipate the energy [10].

With the rise of high-Reynolds-number direct numerical simulation (DNS) and preci-

sion experimental measurements, however, many of the assumptions of this phenomenology

have been challenged. The notion that vortex stretching drives the cascade suggests that,

on average, the vorticity vector ought to be aligned with the most extensional eigenvector

of the strain rate. But while there is a tendency toward this alignment when viewed in

an appropriate Lagrangian setting [10, 11], there is little instantaneous alignment between

the vorticity and the extensional strain [12–16]. There is increasing skepticism about the

dynamical relevance of concentrated vorticity in turbulence [17], and recent mathematical

results have provided strong arguments against vortex stretching as the dynamical mecha-

nism responsible for the cascade [18]. The case of 2D turbulence, where the energy cascade

reverses direction and transport energy to scales larger than the injection scale, also presents

a different kind of challenge to the notion of a vorticity-driven cascade. Vortex stretching is

geometrically forbidden in 2D Navier–Stokes systems, and so clearly cannot be the mecha-

nism responsible for the inverse cascade. Thus, even though a conceptually similar cascade

still exists in 2D, its physical mechanism would have to be wholly distinct from the 3D case

if the mechanism for the 3D cascade were indeed vortex stretching. While it is certainly

possible that the 2D and 3D situations could simply be different, it would be more appealing

to be able to find similarities between the two.

To gain a fresh perspective on the cascade, we consider it not in Fourier space, as is
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typically done, but rather in physical space [15, 19], and treat it as a mechanical process

[20, 21]. In contrast to vorticity-based phenomenologies, this re-framing allows us to make

a direct connection between a physical picture of the flow and the term in the equations of

motion that drives energy between scales. The key quantity in the equations of motion is the

inner product between the turbulent stress and strain-rate tensors, as we show below. When

the eigenframes of these tensors are well aligned, energy is transferred between scales; but

when they are misaligned, the scale-to-scale energy flux is suppressed. As we have reported

previously, these tensors tend to be surprisingly poorly aligned in turbulence, with the

implication that much less energy is actually transferred through the cascade than would be

theoretically possible. These results hold both in 3D [21] and 2D turbulence [22], suggesting

a possible dynamical similarity between the two cases.

Here, we study the degree to which these fundamentally geometric properties are driven

by the turbulence dynamics (that is, the specific equations of motion that determine the

evolution of the flow), as compared with the constraints imposed on them by the mathe-

matical form of the energy transfer term in the Navier–Stokes equations and the embedding

dimension. To do so, we compare three kinds of numerical data: a DNS of Navier–Stokes

turbulence, a random, multiscale solenoidal vector field (akin to those used in so-called

kinematic simulations [23]), and uniform Monte Carlo sampling of the space of possible ge-

ometric alignments between two tensors. Our results indicate that many of the properties

of the cascade are indeed kinematic, in that they are reproduced without Navier–Stokes

dynamics. We find that although the magnitudes of these tensors depend on the dynam-

ics, the efficiency of the scale-to-scale energy transfer (that is, the ratio of the amount of

energy actually transferred between scales to the maximum possible amount) is set almost

entirely by the tensor alignment. The flow dynamics do control the statistics of these flow

alignments, but in ways that can to a degree be reproduced by the simpler models. In

particular, the tensor alignments observed in the DNS are surprisingly similar on average to

those from the uniform random sampling case in the inertial range, while in the dissipation

range they are more similar to the random vector fields. We argue that this difference sug-

gests that in the dissipation range, turbulence tends to exhibit alignments sampled directly

from the space of possible geometric configurations, while in the inertial range, it appears

to sample from the space of rotation operators instead. Perhaps most intriguingly, we also

find that the embedding dimension plays a very strong role in setting the behavior of the
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scale-to-scale energy flux. In particular, when we project the alignment into the space of

2D configurations, we see net inverse energy transfer regardless of the dynamics, consistent

with the expected inverse energy cascade in 2D turbulence. This finding suggests that the

inverse cascade in 2D turbulence may be largely kinematic, which could offer an explanation

for its observed lack of intermittency [24] (and indeed the conjectured lack of intermittency

for all 2D cascades [25]). Taken together, these results present new ways of thinking about

scale-to-scale energy transfer in turbulence, and suggest potentially fruitful directions for

turbulence modeling.

We begin below in sec. II by setting out the theoretical background for our study and

describing our data sets. In sec. III, we present the results of our work: that the alignment

between the turbulent stress and strain rate plays a larger role in the cascade than their

magnitudes, that these alignments are determined partially by the flow dynamics, and that

inverse energy flux generically results from projecting into 2D configurations. Finally, in

sec. IV, we discuss and contextualize the implications of these results.

II. BACKGROUND AND METHODOLOGY

A. Defining scale-to-scale flux

The origin of the coupling between scales in fluid flow is the quadratic nonlinearity in

the Navier–Stokes equations. This scale coupling is evident in the wavevector triads that

appear when the equations are transformed into Fourier space [26], but also has a signature

in physical space. The application of any linear operator P that projects away some of the

degrees of freedom of the flow to the momentum equation results in the appearance of the

new quantity [21]

τ̃ij = P(uiuj)−P(ui)P(uj), (1)

where ui is the velocity and the tilde denotes a quantity defined for the projected flow so

that, for example, P(ui) ≡ ũi. τ̃ij plays the role of a stress, as its divergence appears as

a source term in the momentum equation. Depending on the exact form of the projector

P, τ̃ij goes by different names; for example, if P is a Reynolds averaging operator, τ̃ij is a

Reynolds stress, while if P is a low-pass filter deeper in the inertial range, τ̃ij is a subgrid

stress. Here, we will generically refer to τ̃ij as a turbulent stress, since its form does not
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depend on the details of P. As detailed below, we will take P to be a low-pass filter, but

will vary the filter scale.

This turbulent stress also appears in the energy equation for the projected field [27–29],

most notably in the term

Π̃ = −τ̃ij s̃ij , (2)

where s̃ij = (1/2)(∂ũi/∂xj + ∂ũj/∂xi) is the rate of strain of the projected field. Note that,

in incompressible flow, s̃ii = 0; thus, the trace of the stress tensor, which does not in general

vanish, does not contribute to Π̃. In the following, we will therefore always make the stress

tensor deviatoric by removing its trace. This Π̃ term appears as a source or sink in the

energy equation, and physically represents the transfer of energy between scales. We will

refer to Π̃ as the spectral energy flux; note that Π̃ > 0 means a flux of energy to smaller

scales (i.e., forward cascade), and Π̃ < 0 means a flux of energy to larger scales (i.e., inverse

cascade). Although this term is the physical-space analog of the usual triad interactions, it

takes the form of a mechanical work term—that is, the action of a stress (arising from the

degrees of freedom that have been projected away) against a rate of strain. In this way, the

energy cascade can be interpreted as the result of some scales doing work on others, and

thereby transferring their energy.

Both the form of eq. 2 and its interpretation as a mechanical work term, however, imply

that the relative alignment of the turbulent stress and strain rate is essential for determining

whether energy is actually transferred between scales: regardless of the magnitude of each

of these two tensors, if they are orthogonal to each other then Π̃ = 0. Previously, we

studied the geometric properties of the alignment of these tensors in turbulence [21]. In

3D, quantifying this alignment requires choosing a representation of the 3D rotation group

SO(3); here, we choose to use the ZXZ Euler angles φ, θ, and ψ. For convenience, we here

absorb the negative sign in eq. 2 into the stress τ̃ij , so that we study the alignment between

the negative stress and the strain rate. Let us label the (unit) eigenvectors of −τ̃ij as λ̂α

(where α ∈ {1, 2, 3}) and of s̃ij as σ̂α. Transforming from the eigenbasis of the stress to

the strain rate then corresponds to a rotation by φ around λ̂3, a rotation by θ about the

rotated λ̂1, and finally a rotation by ψ about the rotated λ̂3. A sketch of how this sequence

of operations is applied is given in fig. 1. Note that these Euler angles (and the associated

coordinate system) are local, in that they map between the eigenframes of the stress and

strain rate, which vary spatially in the flow field. If we additionally label the eigenvalues of

6



λ̂1

λ̂2

λ̂3

φ

φ

θ

θ

ψ

ψ

σ̂1

σ̂2

σ̂3

FIG. 1. Sketch of the eigenframes of the stress and strain rate and the ZXZ Euler angles used to

move between the two. Transforming from the eigenbasis of the stress to the strain rate corresponds

to a rotation by φ around λ̂3, a rotation by θ about the rotated λ̂1, and finally a rotation by ψ

about the rotated λ̂3.

the stress as λ1 > λ2 > λ3 and of the strain rate as σ1 > σ2 > σ3, we can write the spectral

energy flux as [21]

Π̃ = λ1σ1
[

(1 + cos2 θ) cos 2ψ cos 2φ− 2 cos θ sin 2φ sin 2ψ
]

+ λ3σ3

[

(1 + cos2 θ)(1 + cos2 φ)(1 + cos2 ψ)− 3(cos2 ψ + cos2 φ)−
1

2
cos θ sin 2φ sin 2ψ

]

+ λ1σ3
[

cos 2φ
(

(1 + cos2 θ)(1 + cos2 ψ)− 3
)

− cos θ sin 2φ sin 2ψ
]

+ λ3σ1
[

cos 2ψ
(

(1 + cos2 θ)(1 + cos2 φ)− 3
)

− cos θ sin 2φ sin 2ψ
]

, (3)

where we have used the incompressibility condition to eliminate the intermediate eigenvalues.

This expression is quite complex; but its two most salient features for our purposes are that

(a) it cannot be factored into a part depending only on the eigenvalues and a part depending

only on the alignment of the eigenframes, and (b) that it cannot vanish due to misalignment

alone [21]. Both of these aspects are different from the 2D case, where we only need to

consider a representation of SO(2). In that case, the spectral energy flux does factor, and

can be fully suppressed only by alignment [22, 30]. Thus, in 3D, both the eigenvalues and

the Euler angles are in principle necessary to determine the flux of energy between scales.

An additional key difference between 3D and 2D becomes apparent when we make the
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distinction between a geometric configuration of the stress and strain rate (that is, the

particular directions of the eigenvectors of the two tensors in space) and the rotation operator

(or, equivalently, set of Euler angles) that one must apply to move from the eigenbasis of

one tensor to the other. In both 3D and 2D, each geometric configuration is unique. In 2D,

there is a one-to-one mapping between the value of the single Euler angle and each unique

configuration. But in 3D, some geometric configurations can be achieved by many different

Euler-angle triplets, each one an independent element of SO(3). We will return to this point

below.

Finally, we note that just because it cannot be suppressed fully by misalignment alone

does not mean that the energy flux is always large. To quantify the amount of energy

transferred between scales relative to the maximum amount possible, we recently introduced

the notion of an efficiency for the cascade [21, 22]. We define this efficiency as

Γ =
Π̃(λα, σα, φ, θ, ψ)

maxφ,θ,ψ

[

sign(Π̃)Π̃(λα, σα, φ, θ, ψ)
]. (4)

The numerator of this expression is the actual energy flux that occurs, while the denominator

is the maximum possible energy flux for the same flow conditions given optimal choices for

the Euler angles. Because of the sign term in the denominator, Γ > 0 means that the flux is

in the same direction (in a spectral sense; that is, to larger or smaller scales) as the maximum

possible flux, while Γ < 0 means that it is in the opposite direction. The denominator of Γ

cannot in general be computed a priori, so in practice we evaluate it by simply numerically

optimizing eq. 3 given a particular set of eigenvalues. As we have reported before, Γ is on

average not very large; for both 3D and 2D turbulence, 〈Γ〉 ≈ 20−25% in the inertial range

[21, 22], where the angle brackets denote an average over space and time.

B. Data sets

To explore the relative contributions of tensor magnitude, eigenframe alignment, flow

dynamics, and geometric constraints on the scale-to-scale energy flux, we analyzed three

different data sets: a DNS of forced homogeneous, isotropic turbulence, an ensemble of

random, multiscale, solenoidal vector fields, and simple Monte Carlo sampling from uniform

distributions of the relevant parameters in eq. 3.
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The DNS data were obtained from the Johns Hopkins Turbulence Database (JHTDB).

Details of the simulation are given on the JHTDB website and are reported in ref. [31]. The

Navier–Stokes equations were solved using a pseudo-spectral algorithm on a 10243 grid in a

triply periodic domain, achieving a Taylor-microscale Reynolds number of Rλ = 433.

The random vector fields were constructed similarly to those used in kinematic simulation

[23]. We specified these fields on the same 10243 grid as used for the DNS. A number of

different scales of motion were defined ranging from the grid spacing up to the domain size

and separated algebraically (that is, linearly spaced between the minimum and maximum

values). For each scale, a vector field was defined via a collection of Fourier modes with

random phases and directions, with the imposed constraint of incompressibility. The total

energy of the flow was apportioned between scales following a Kolmogorov k−5/3 energy

spectrum. The final velocity field was then obtained by summing over all the scale-local

fields, after which it was treated just as if it had come from the DNS. An ensemble of such

fields was generated. Due to the way they were constructed, the spatial correlation length of

each random field is finite, but each member of the ensemble is uncorrelated with the other

members.

Random sampling was done simply by choosing uniformly distributed values from the

appropriate ranges for the relevant variables in eq. 3: φ, θ, ψ, λ1, λ3, σ1, and σ3. The

eigenvalues were sampled ensuring that λ1 and σ1 were greater than zero, λ3 and σ3 were

less than zero, and that their values could correctly generate deviatoric tensors with possible

choices for the intermediate eigenvalues. Given that an overall factor of λ3σ3 can be scaled

out of our calculations (comparing eqs. 3 and 4), this amounted to choosing λ3 = σ3 = −1

and allowing λ1 and σ1 to vary between 1/2 and 2.

In all cases, we used 10243 samples per scale to compute statistics for eigenvalues and

Euler angles. We determined statistical convergence empirically, by subsampling the data

sets to see when distributions no longer changed as more data was added. Convergence was

typically attained for order 10× 10242 samples.

Finally, we note that for both the random vector field and uniform random sampling cases,

we do not expect any actual scale-to-scale energy flux, since these synthetic fields have no

dynamics. However, we can still discuss the geometric alignment properties between τij and

sij, which are both still definable, and will tend to describe these alignments in terms of the

flux they would produce if the two tensors had dynamical importance.
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C. Flux calculation

Actually computing energy fluxes requires us to specify the operation P that projects

away some of the degrees of freedom of the flow. As we are interested in the energy cascade

and the directed flux of energy between scales, we define it to be a low-pass filter, concep-

tually similar to what is used in large-eddy simulation. This filtering approach allows us to

specify the spectral energy flux in a spatiotemporally resolved way, as has been extensively

documented in previous work [20, 27–29, 32–35]. Specifically, we define the filtered velocity

field to be

P(ui) = ũi(x) =

∫

Gr(x− x′)ui(x
′)dx′, (5)

where Gr is a filter kernel that suppresses components of the velocity field with spatial scales

smaller than r. The detailed form ofGr does not strongly influence our results [21, 28, 30, 36];

thus, for convenience, we take Gr to be the product of a sharp spectral filter (that is, a step

function in Fourier space) mutiplied by a sine function with a small bandwidth to avoid

ringing. We implement this operation numerically on the simulation grid. Though this

simple filter may not be the best choice for large-eddy simulation (LES) due to realizability

considerations [37], it is satisfactory for our purposes in that it simply separates the effects

of large and small scales. Prior studies have found that the use of a sharp spectral filter is

not likely to change nature of the results for the type of geometric analysis we investigate

here [38–40].

With this choice of P, Π̃ should properly be interpreted as the flux of energy between all

of the retained larger spatial scales of the turbulent field and all of the suppressed smaller

scales. However, given the local nature of the energy transfer in the cascade, most of the

flux should be localized to interactions between the scales just larger than the filter scale r

and those just smaller than it. This interpretation has been confirmed by previous studies

using the filtering approach [40–42]. We also note that there is nothing in this definition

that presupposes what direction the flux should go (that is, from large to small or small to

large scales).

We compute Π̃ using this method for both the DNS and random vector fields. In each

case, we can perform this for any filter scale r that is in the computed range of scales. For

the case of randomly sampled angles and eigenvalues, we simply compute the flux Π̃ directly

from the definition in eq. 3.
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FIG. 2. Mean efficiencies 〈Γ〉 as a function of scale r/η for combinations of eigenvalues and Euler

angles taken from different data sets. The line styles distinguish the data sets from which the angles

were drawn. Data with blue solid lines correspond to angles taken from the DNS, with red dashed

lines to angles taken from the random vector fields, and with black dash-dotted lines to uniformly

sampled random angles. The symbols distinguish the data sets from which the eigenvalues were

drawn. Triangles correspond to eigenvalues taken from the DNS, circles to eigenvalues taken from

the random vector fields, and crosses to uniformly sample random eigenvalues.

III. RESULTS

A. Effects of tensor magnitude and alignment on scale-to-scale flux

As described above, both the eigenvalues of the turbulent stress and strain rate and the

Euler angles that describe the relative alignment of the two eigenframes are in principle

necessary to determine the spectral energy flux Π̃ and efficiency Γ, since the two are inex-

tricably linked in eq. 3. Empirically, however, we find that the angles play a much more

signifiant role in setting these quantities than do the eigenvalues.

To test the relative importance of the eigenvalues and the angles, we computed the spa-

tiotemporally averaged efficiency 〈Γ〉 for different combinations of Euler angles and eigen-

values drawn from our three different data sets. We did these calculations for many several

spatial scales ranging from the top of the dissipation range into the middle of the inertial
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range. As shown in fig. 2, 〈Γ〉 is primarily set by the angles chosen: the three curves gener-

ated using angles taken from the DNS but eigenvalues from all three data sets are similar

to each other but quite different from those with randomly sampled angles or angles taken

from the random vector fields, which are themselves internally consistent but different from

each other. Thus, it is clear that the eigenvalues play less of a role in setting the efficiency,

and therefore the fundamental properties of the cascade, than the Euler angles do.

Even though there is a sense in which Γ normalizes out the eigenvalues, given that we

optimize over the eigenframe alignment in eq. 4, the result that the eigenvalues do not

significantly determine Γ is not obvious, given the complexity of eq. 3 and the fact that

the eigenvalues cannot be factored out. And indeed, empirically, fixing the eigenframe

alignment and varying the eigenvalues changes the efficiency aside from the special cases of

eigenframe alignments that lead to Γ = 100% or −100%. These cases bear some additional

discussion, as they reveal some of the purely geometric aspects of the cascade. Regardless of

the eigenvalues, the minimum efficiency (that is, Γ = −100%) occurs when the eigenvectors

of the stress and strain rate corresponding to their largest (in magnitude) eigenvalues are

perfectly anti-aligned—that is, when σ̂1 points along λ̂3, σ̂3 points along λ̂1, and σ̂2 points

along λ̂2. This is the only configuration that will produce Γ = −100%. As one would

expect, the perfectly aligned case (that is, the case when σ̂α points along λ̂α for all α) leads

to Γ = 100%, the maximum value. However, although there is only a single set of Euler

angles that produces the perfectly anti-aligned case (given by φ = θ = ψ = π/2)), there

are many sets of Euler angles that give the perfectly aligned case. For example, if θ = 0,

any choice of φ and ψ with φ = −ψ will lead to perfectly aligned eigenvectors, and so will

produce Γ = 100%. Because there are more ways to sample the space of angles and achieve

high efficiency than low efficiency in 3D space, there is an inherent and purely geometric

bias toward forward energy flux in 3D turbulence.

The data in fig. 2 for randomly sampled angles and random vector fields show little

variation with scale, which makes sense since these fields have no dynamics, let alone scale-

dependent dynamics. The efficiency for the random vector fields is close to zero regardless

of the eigenvalues chosen, which is to be expected since these fields are multiscale but

uncorrelated across scales; thus, there is no reason to expect any net scale-to-scale energy

flux or coupling of any kind. It is somewhat surprising, however, to see that uniformly

sampling random angles does lead to configurations that would produce a non-zero scale-
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to-scale flux. We interpret this as further evidence of the geometric bias toward forward

energy flux described above. Even more intriguingly, the DNS results essentially interpolate

between the random vector field limit in the dissipation range to the random sampling limit

in the inertial range. We can interpret this result by appealing to the expected turbulence

dynamics. In the dissipation range, the local Reynolds number is less than unity, and

so while the dissipation-range velocity fields are unsteady and may be spatiotemporally

chaotic, they are no longer turbulent. In that limit, then, the flow field should be well

approximated as a random vector field. At larger scales in the inertial range, however, the

flow is more vigorous and the scale-local velocity fields are expected to be rough. Thus,

in the inertial range the turbulent dynamics serve to scramble the Euler angles that map

between the stress and strain-rate eigenframes, a process that is reasonably approximated

by pure random sampling.

As a caveat, however, we note that fig. 2 shows only the average efficiency. Even though

the mean values for the DNS are well reproduced by uniform random sampling in the inertial

range, the full distributions of efficiency may not be the same. To illustrate this point, in fig. 3

we show the probability density functions (PDFs) of Γ for eigenvalues taken from the DNS

and angles taken from the three different data sets at three different scales: r/η = 8, near

the dissipation range; r/η = 40, in the transitional range of scales between the dissipation

range and the inertial range; and r/η = 200, well into the inertial range. As expected

given that the mean values are close to zero, the PDFs for the random vector fields are

close to symmetric and peaked at Γ = 0. The PDFs for both the DNS and the uniform

random sampling case are skewed toward positive values of Γ; but even though the DNS

PDF begins to approach that of the random sampling as r increases and has a similar

mean value, it maintains a clearly different shape even in the inertial range. These findings

augment the conclusion drawn in the previous paragraph. The random vector fields appear

to sample from the space of geometric configurations and thus shows efficiency PDFs with

no skewness, while the uniform random sampling case (by construction) samples instead

from the space of Euler angles and shows highly skewed efficiency PDFs. Real turbulence

falls somewhere between these two limiting cases, but is closer to sampling configurations

at small, dissipation-range scales and sampling Euler angles (or, equivalently, elements of

SO(3)) at larger, inertial-range scales.

Finally, we note that the PDFs of Γ for the random sampling cases have an additional and
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FIG. 3. Probability density functions (PDFs) of Γ for (a) r/η = 8, (b) r/η = 40, and (c) r/η = 200.

All eigenvalues were taken from the DNS. As in fig. 2, the line style shows the data set from which

the angles were taken. Blue solid lines correspond to the DNS, red dashed lines to the random

vector fields, and black dash-dotted lines to uniformly sampled random angles.

instructive interpretation that bolsters our discussion above of the inherent geometric bias

toward positive efficiency in 3D space. These PDFs were constructed using the particular

ensembles of eigenvalues found from the DNS but randomly sampling over the full ranges of

possible Euler angles. Thus, each of these PDFs can be interpreted essentially as a density

of states for the efficiency—that is, a representation of the number of different Euler-angle

combinations that can produce a given efficiency given specified eigenvalues. As argued

above, there is a clear and strong bias toward positive efficiency states purely given the

geometric constraints. In contrast, this density of states in 2D is symmetric about Γ = 0,
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FIG. 4. Marginal PDFs of the Euler angles φ, ψ, and θ for (a-c) the DNS and (d-f) the random

vector fields. Data are shown for r/η = 8, 12, 16, 20, 40, 80, 120, 160, and 200, as distinguished by

color. The dot-dashed horizontal lines show the corresponding PDFs for the uniformly distributed

case.

showing no bias.

B. Angle statistics

Given that the eigenvalues of the stress and the strain rate play only a secondary role

in setting the character of the energy flux through the cascade, the differences between the

three cases we have studied must primarily come from the eigenframe alignment. These

angles are at least partially determined by the flow dynamics, as can be seen by studying

their statistics.

First, we examined whether the three Euler angles were statistically independent by

comparing their joint PDFs to the product of their marginal PDFs (not shown). In all

cases, we found that the ratio of these quantities was close to unity everywhere, indicating
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statistical independence; thus, we report here only the marginal PDFs of the three angles.

In fig. 4, we show these PDFs for both the DNS velocity fields and the random vector fields;

our random angles case corresponds to choosing all these PDFs to be uniform (shown by

the horizontal lines in fig. 4). We note that, due to the symmetries that arise because we

are considering eigenvectors that are essentially apolar, φ and ψ need only be considered on

the interval [0, π], and θ, as a polar angle, only on the interval [0, π/2].

The PDFs for the DNS and the random vector fields are clearly different from each other

and from the uniform case, supporting our conclusion that the dynamics of the flow play

a role in setting the eigenframe alignments. At very small filter scales, the PDF of φ is

similar for the DNS and the random vector field, showing a bimodal distribution with peaks

at approximately π/4 and 3π/4. This bimodal shape can qualitatively be understood by

nothing that, first, that φ is constrained to lie between 0 and π and that the efficiency tends

to be lowest when φ = π/4 or 3π/4 [21]. In this dissipation range where Γ is small, then,

we would expect the PDF of φ to be peaked at (at least) one of these values. Since there

is no reason to expect one of them to be preferred over the other statistically, we see the

observed bimodal shape.

This shape does not vary with scale for the random field, but does for the DNS. As the

filter scale increases, the PDF of φ for the DNS case becomes unimodal and develops a peak

at π/2; but as the filter scale increases further into the inertial range, the peak decays and

the PDF approaches the uniform case. This shift of the DNS data from being similar to

the random field at small scales but closer to the uniform case at inertial-range scales (as

observed above for the mean efficiency) is also apparent for ψ, where the PDF for the DNS

data shows a peak at π/2 at small scales that relaxes as the filter scale increase. In contrast,

this peak actually grows with filter scale for the random field case.

The PDFs for θ are somewhat different from those for φ and ψ, because for both the DNS

and the random vector field they show a pronounced skewness toward θ > π/4 at all scales,

never relaxing to the uniform case. As we discuss further below, this skewness has significant

consequences, as it can be tied to upscale energy transfer. As with the φ statistics, the PDF

of θ is nearly independent of filter scale for the random vector field. For the DNS case, the

skewness of the PDF and the position of the peak both decrease as the filter scale increases

in the inertial range, shifting away from the random vector field result. At present, we do

not have a detailed explanation for the shape of these PDFs; however, some simple tests
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implicate both the mathematical forms of the stress and strain rate (i.e., that the stress is

constructed from the square of the velocity field and the strain rate from its gradient) and

the incompressibility condition in setting the PDF shapes.

We note also that these results make it clear that the random solenoidal vector fields are

“random” in the sense that the phases of the Fourier modes that make up the fields are

random numbers; but this does not mean that the angles between the stress and strain rate

are random. Rather, as is clear from fig. 4(d-f), the statistics of these angles are far from

random—and indeed, far from the DNS results in the inertial range, which are in fact better

represented as random. This finding is part of why a uniform angle approximation does a

better job of reproducing 〈Γ〉 from the DNS than does the random vector field approximation

(fig. 2), though the residual non-uniformity of the angles—particularly for θ—leads to an

incorrect PDF of Γ (fig. 3).

C. 2D configurations

These results suggest that the polar Euler angle θ deserves a closer look to understand

the role it plays in the scale-to-scale energy transfer. Thus, we would like to isolate only

the θ dynamics out of our data sets. One way to accomplish this task would be to compute

statistics of θ conditioned on φ and ψ taking particular, specified values. Such an approach,

however, would significantly decrease the size of the ensemble, leading to poorly converged

statistics. Instead, we can take advantage of the near statistical independence of the three

angles and simply set φ and ψ to whatever we wish (effectively replacing their PDFs with

delta functions), but leave θ free. Physically, this can be thought of as projecting the full 3D

structure of the eigenframe alignment problem down to 2D, where a single angle is sufficient

to define the energy flux and the efficiency [22]. Given our definition of Euler angles, the

most interpretable 2D projection is to set φ = π/2 and ψ = −π/2, so that θ gives the angle

of a pure rotation about the intermediate eigenvector of the stress [21]. With this choice,

the energy flux defined in eq. 3 reduces to

Π̃θ = [λ1σ1 + λ3σ3 − λ1σ3 − λ3σ1] cos
2 θ + [λ1σ1 + λ3σ3 + 2λ1σ3 + 2λ3σ1] . (6)
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FIG. 5. Mean efficiency as a function of scale for combinations of eigenvalues and angles taken

from different data sets, as in fig. 2, but for the case of 2D configurations. As in fig. 2, the line

styles show the data sets from which the angles were taken: solid lines correspond to (projected)

angles from the DNS, dashed lines to the random vector fields, and black dash-dotted lines to

uniformly sampled random angles. Symbols show the data sets from which the eigenvalues were

taken. Triangles correspond to eigenvalues taken from the DNS, circles to eigenvalues taken from

the random vector fields, and crosses to uniformly sampled random eigenvalues.

If this were true (incompressible) 2D turbulence, we would also have λ1 = −λ3 = λ2D and

σ1 = −σ3 = σ2D, leading to

Π̃2D = 2λ2Dσ2D cos 2θ, (7)

the expected 2D turbulence result [22, 35, 43]. We note that the flux in the true 2D case

factors into a part dependent only on the eigenvalues and a part dependent only on the

eigenframe alignment, unlike in 3D. This factorization cannot be done, however, when we

retain the eigenvalues from the full 3D dynamics.

As is well known, 2D turbulence shows on average an inverse cascade of energy, so that

energy propagates spectrally from the scales at which it is injected into the flow to larger

scales [44–46]. What is surprising is that we recover this result when we measure the

efficiency computed using eq. 4 but replacing the full energy flux Π̃ with the projected flux

computed from eq. 6. As shown in fig. 5, 〈Γ〉 is either negative (signifying inverse energy
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flux) or close to zero regardless of the eigenvalues chosen, and for values of θ taken from any

of our data sets. Indeed, 〈Γ〉 is even more strongly negative when the angles are taken from

the random fields and is zero for the randomly sampled angles, suggesting that (as expected)

the geometric bias toward forward flux is not present in 2D. This result is consistent with

the PDFs shown in fig. 4(c,f), where the distributions of θ are clearly skewed toward values

larger than π/4. When inserted into eq. 7, noting that λ2D and σ2D are positive definite,

θ > π/4 makes Π̃2D < 0, signifying inverse energy flux in 2D turbulence. Our findings show

that this pattern holds in 3D turbulence as well, so that regions of the flow where φ is close

to π/2 and ψ is close to −π/2 will tend to have inverse energy transfer, and thus will be

regions of backscatter.

IV. DISCUSSION AND CONCLUSIONS

By writing the flux of energy between scales in turbulence as the inner product of the tur-

bulent stress that accounts for the transfer of momentum between scales and the strain rate

of the resolved scales, we have been able to study independently the roles of the magnitudes

of these tensors in the turbulent cascade, as encoded by their eigenvalues, and the alignment

between their eigenframes. As we argued, the sizes of the eigenvalues are determined almost

completely by the dynamics of the flow, with their only constraint being that they need to

sum to zero; but the alignment between the eigenframes has strong geometric constraints

due to the embedding dimension and the properties of the rotation group. In particular, we

showed that these purely geometric properties impose a bias toward forward energy transfer

in 3D space.

Mathematically, the energy flux is determined by both the eigenvalues of the stress and

the strain rate and the alignment of their eigenframes in a complex way, since eq. 3 does

not factor. However, as we showed, the eigenvalues play a much less significant role in

determining the behavior of the flux, since swapping the eigenvalues in one data set with

those from another change the efficiency by only a small amount compared to the difference in

efficiency found for the different eigenframe alignments. Thus, although it cannot be shown

analytically since eq. 3 does not factor, the character of the flux is determined primarily

by the eigenframe alignment and not the magnitude of the tensors involved—and thus is

essentially a kinematic quantity once the Euler angles have been specified. This finding

19



suggests surprisingly that the well known patchy spatial distribution of the local energy

flux, which is often implicated as a cause of intermittency, may not be linked to the heavy

tails in the distributions of the magnitudes of the stress and strain rate, but rather to

something else.

The kinematic nature of how the character of the flux is determined by the Euler angles is

bolstered by our finding that projecting the alignment into two-dimensional configurations

generically leads to inverse energy flux regardless of the eigenvalues or the flow dynamics:

when the tensors are aligned and moving in essentially a 2D fashion, energy is transferred

upscale. This result is conceptually similar to the recent demonstration that some mode

triads with particular senses of helicity always show inverse transfer even in 3D turbulence

[47]. The kinematic nature of this inverse flux is also intriguing given that inverse cascades

are widely thought to be non-intermittent [25], whereas direct cascades clearly can be. Such

a lack of intermittency could potentially arise from a lack of dynamics driving inverse energy

flux, as opposed to direct flux. This conjecture would be interesting to investigate in future

work.

It would also be interesting to use the ideas and framework we have described here to

study anisotropic or inhomogeneous turbulence. The presence of the wall in a channel flow

or a boundary layer, for example, breaks symmetries and has been shown to modify the

alignment between the turbulence stress and strain rates [48].

Finally, our results here are suggestive of some potentially fruitful directions to take in

turbulence modeling. Standard Smagorinsky-type LES models assume that the turbulent

stress and strain rate are perfectly aligned but scale the magnitude of one relative to the

other via an eddy viscosity. Our results point toward a wholly different strategy for closing

the filtered equations of motion, since the eigenframe alignment appears to play a more

important role than the tensor magnitudes. On average, the simple assumption of random

alignment with uniformly distributed Euler angles does a reasonable job of replicating the

mean efficiency found in the DNS, given that (empirically) turbulence appears to sample

elements of SO(3) rather than geometric configurations in the inertial range; it would be

interesting to see how well an LES closure that makes this assumption would perform.
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