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Abstract

Using 3D Voronöı analysis, we explore the local dynamics of small, settling, inertial particles

in isotropic turbulence using Direct Numerical Simulations (DNS). We independently vary the

Taylor Reynolds number Reλ ∈ [90, 398], Froude number Fr ≡ aη/g ∈ [0.052,∞] (where aη is

the Kolmogorov acceleration, and g is the acceleration due to gravity), and Kolmogorov scale

Stokes number St ≡ τp/τη ∈ [0, 3]. In agreement with previous results using global measures of

particle clustering, such as the Radial Distribution Function (RDF), we find that for small Voronöı

volumes (corresponding to the most clustered particles), the behavior is strongly dependent upon

St and Fr, but only weakly dependent upon Reλ, unless St > 1. However, larger Voronöı volumes

(void regions) exhibit a much stronger dependence on Reλ, even when St ≤ 1, and we show that

this, rather than the behavior at small volumes, is the cause of the sensitivity of the standard

deviation of the Voronöı volumes that has been previously reported. We also show that the largest

contribution to the particle settling velocities is associated with increasingly larger Voronöı volumes

as the settling parameter Sv ≡ St/Fr is increased.

Our local analysis of the acceleration statistics of settling inertial particles shows that clustered

particles experience a net acceleration in the direction of gravity, while particles in void regions

experience the opposite. The particle acceleration variance, however, is a convex function of the

Voronöı volumes, with or without gravity, which seems to indicate a non-trivial relationship between

the Voronöı volumes and the sizes of the turbulent flow scales. Results for the variance of the fluid

acceleration at the inertial particle positions are of the order of the square of the Kolmogorov

acceleration and depend only weakly on Voronöı volumes. These results call into question the

“sweep-stick” mechanism for particle clustering in turbulence which would lead one to expect that

clustered particles reside in the special regions where the fluid acceleration is zero (or at least

small).

We then consider the properties of particles in clusters, which are regions of connected Voronöı

cells whose volume is less than a certain threshold. The results show self-similarity of the clusters,

and that the statistics of the cluster volumes depends only weakly on St, with a stronger dependance

on Fr and Reλ. Finally, we compare the average settling velocities of all particles in the flow with

those in clusters, and show that those in the clusters settle much faster, in agreement with previous

work. However, we also find that this difference grows significantly with increasing Reλ and exhibits

a non-monotonic dependence on Fr. The kinetic energy of the particles, however, are almost the
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same for particles whether they are in clusters or not.
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I. INTRODUCTION

Turbulent multiphase flows have been the subject of a numerous studies for many years

because of their broad range of applications in nature and industrial contexts such as dis-

tribution of greenhouse gases [1], cloud formation [2], volcanic eruptions [3], contaminant

transport [4], heat exchangers [5], boiling heat transfer [6], combustion processes [7], air-lift

pumps [8], cavitating flows [9], sedimentation process in settling tanks [10], thermosyphons

[11] and fluidized bed reactors [12] to name a few. The present work explores the class of

multi-phase flows involving the motion of small, settling inertial particles in turbulent flows.

A well-known and striking effect of particle inertia is that it leads to the spatial clustering

of the particles in turbulent flows [4, 13]. This has important implications for the rate

at which particles collide in turbulent flows [14, 15, 16, 17]. It is also important since

regions with a high concentration of particles have the potential to significantly modify

the underlying turbulent flow in those same regions, through momentum coupling with the

fluid [18]. Several different methods and techniques have been used to analyze the particle

clustering, such as box-counting ([19]), Voronöı analysis ([20]), Lyapunov exponents ([21]),

Minkowski functionals ([22]) and radial distribution functions (RDFs) ([14, 17, 23]). These

methods can provide different insights and perspectives into the spatial clustering, and two

of the most commonly used methods are the RDF and Voronöı analysis.

The RDF, defined by the probability of finding a particle at a given distance from a refer-

ence particle, is unaffected by variation in the number of particles in the domain (except for

statistical noise) and is directly related to the particle collision kernel ([14]). However, since

it is constructed using spatial averages, the RDF cannot be used to consider the properties

of individual clusters of particles, and only provides global information on the clustering. In

Voronöı analysis, the domain is divided into cells associated with each individual particle,

where any point in a given cell is closer to that particle than any other. This approach gives

local insight into the particle clustering, with the local particle concentration field given by

the inverse of the volume of the Voronöı cell. Using this technique enables characterization

of the topology, kinematics and dynamics of individual clusters in the turbulent flow. How-

ever, a disadvantage is that unlike the RDF, the results of Voronöı analysis are sensitive

to the number of particles in the flow, at least quantitatively ([24]). As discussed in [25],

since the RDF and Voronöı analysis provide different information on the particle cluster-
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ing (e.g. global vs. local information), they can both be used to provide a more complete

understanding of the problem.

Recently, extensive investigations into the effects of the flow Taylor Reynolds number,

Reλ, and the Froude number Fr (quantifying the effect of gravity) on the particle clustering

have been performed using the RDF computed from Direct Numerical Simulations (DNS)

[17, 23, 26]. These studies have shown that when the Kolmogorov-scale Stokes number of

the particle, St, is . 1, there is virtually no effect of Reλ on the clustering, whereas the

clustering increases with increasing Reλ when St > 1. Concerning the effect of gravity,

it was found that for St . 1, gravity leads to a reduction in the clustering, while for

St > 1 it enhances the clustering. In contrast, it appears that such a systematic study of

the parametric dependence of clustering as quantified by a Voronöı analysis has not been

undertaken. We now summarize what has been done on this.

The experimental study of [27] considered the clustering of small water droplets in

isotropic turbulence using Voronöı analysis. They examined the range 200 ≤ Reλ ≤ 400

and 2 ≤ St ≤ 10, and reported that the level of clustering was enhanced with increasing

Reλ. The experimental study of [28] considered 170 ≤ Reλ ≤ 450, 0.1 ≤ St ≤ 5 and found

that the clustering is strongly enhanced with increasing Reλ, but with weak dependence on

St. These studies focused on the regime of large Fr, where the effects of gravity on the

particle motion are weak. The recent experimental study of [25] also used Voronöı analysis

to quantify the clustering and explored the range 200 ≤ Reλ ≤ 500, 0.37 ≤ St ≤ 20.8, and

0.73 ≤ Fr ≤ 3.7. They found that the clusters exhibit a range of sizes (up to the integral

scale of the flow), posses self-similarity, and are elongated and aligned with the gravity di-

rection [25]. They also found that the clustering is enhanced with increasing Reλ, and in

agreement with the RDF analysis in [17, 23, 26], that gravity can enhance the clustering

of the inertial particles. A limitation of these experimental results is that their Voronöı

analysis is only two-dimensional, and it is known that at least in the context of the RDF,

two-dimensional analysis of particle clustering can differ significantly from the full three-

dimensional results [29]. Moreover, and perhaps more importantly, in these experiments it

was not possible to independently vary Reλ and Fr, and so a systematic understanding of

their individual effects on the clustering as quantified by Voronöı analysis is lacking. DNS

investigations into the effect of Reλ on the Voronöı analysis of particle clustering have been

undertaken, and in agreement with the experimental results, they show that the clustering
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is enhanced with increasing Reλ [24]. However, only the limited range 75 ≤ Reλ ≤ 180 was

considered, and they did not consider the effect of gravity.

In addition to analysis of the local particle concentration using Voronöı analysis, the

DNS study of [30] explored the idea of coherent clusters of inertial particles, with Fr = 0.1

in a low Reynolds number flow, Reλ = 65. They defined a coherent cluster as a group of

connected Voronöı cells whose volumes are smaller than a certain threshold. Moreover, they

specified that the total volume of the cluster of connected cells must exceed 8η3 (where η

is the Kolmogorov length scale) in order to be considered a coherent cluster. They found

that the coherent clusters exhibit a tendency to align with the direction of the local vorticity

vector, and that the cluster volume depends strongly on St. Furthermore, in the presence of

gravity, coherent clusters were found to be elongated and aligned with the gravity direction,

as also found experimentally in [25]. Since they only considered a single set of values for

Reλ and Fr, the effects of these parameters on the coherent clusters is not known.

In addition to using Voronöı analysis to quantify the particle clustering, this analysis

has also been used to understand the settling rates of particles in turbulence and how this

is related to the local particle concentration and turbulence properties [19, 31, 32, 33, 34].

Again, however, the effects of Reλ and Fr on the results was not systematically explored.

It has also been recently shown theoretically and numerically how the settling of particles

in turbulence is affected by a range of flow scales that depends on St,Reλ, and Fr [35]. It

is therefore of interest to explore the effect of St,Reλ, and Fr on the particle settle speeds

using Voronöı analysis in order to gain further insights into the multiscale nature of the

problem.

A recent striking finding concerning the effect of gravitational settling is that it can

dramatically enhance the fluctuating accelerations of inertial particles in turbulence [23,

36], which in turn can profoundly affect collision and mixing rates of settling particles in

turbulence [26, 37, 38]. An analysis of how these enhanced accelerations might be related

to the local particle concentration has not yet been undertaken, but which would provide

insights concerning the physical mechanism responsible for the effect, and also the scales at

which it occurs.

In summary of this brief review, it is clear that there is a need to systematically explore

the effects of Reλ, and Fr on particle clustering and geometry of clusters as analyzed us-

ing Voronöı analysis, and to understand how this might differ from the perspective gained
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using the RDF analysis in [17, 23, 26]. Moreover, there is a need to explore how the en-

hanced fluctuating particle accelerations due to gravitational settling might be connected to

the properties of the local particle concentration in order to gain further insights into the

mechanisms responsible for this effect. In the present work we address these issues.

II. COMPUTATIONAL DETAILS

Since one of the main goals of this work is to understand how the Reλ, F r dependence

of particle clustering as determined by Voronöı analysis might differ from that based on an

RDF analysis in [17, 23, 26], we therefore consider the same description for the particles

and fluid as that in [17, 23, 26]. In particular, we focus on the motion of a dilute suspension

of one-way coupled, small, heavy, spherical inertial particles whose motion is governed by a

simplified version of the equation of Maxey & Riley ([39])

ẍp(t) ≡ v̇p(t) =
u(xp(t), t)− vp(t)

τp
+ g, (1)

where xp(t),vp(t) are the particle position and velocity vectors, u(xp(t), t) is the fluid veloc-

ity at the particle position, g is the gravitational acceleration, and τp is the particle response

time. Furthermore, fluid particles are tracked by solving ẋp(t) ≡ u(xp(t), t).
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Parameter DNS 1 DNS 2 DNS 3 DNS 4

N 128 128 1024 512

Reλ 93 94 90 224

Fr ∞ 0.3 0.052 ∞
L 2π 2π 16π 2π

ν 0.005 0.005 0.005 0.0008289

ε 0.324 0.332 0.257 0.253

l 1.48 1.49 1.47 1.40

l/η 59.6 60.4 55.6 204

u′ 0.984 0.996 0.912 0.915

u′/uη 4.91 4.92 4.82 7.60

TL 1.51 1.50 1.61 1.53

TL/τη 12.14 12.24 11.52 26.8

κmaxη 1.5 1.48 1.61 1.66

Np 262,144 262,144 16,777,216 2,097,152

Parameter DNS 5 DNS 6 DNS 7 DNS 8

N 512 1024 1024 1024

Reλ 237 230 398 398

Fr 0.3 0.052 ∞ 0.052

L 2π 4π 2π 2π

ν 0.0008289 0.0008289 0.0003 0.0003

ε 0.2842 0.239 0.223 0.223

l 1.43 1.49 1.45 1.45

l/η 214 213 436 436

u′ 0.966 0.914 0.915 0.915

u′/uη 7.82 7.7 10.1 10.1

TL 1.48 1.63 1.58 1.58

TL/τη 27.36 27.66 43.0 43.0

κmaxη 1.62 1.68 1.60 1.60

Np 2,097,152 16,777,216 2,097,152 2,097,152

TABLE I: Simulation parameters for the DNS study of isotropic turbulence (arbitrary

units). N is the number of grid points in each direction, Reλ ≡ u′λ/ν is the Taylor

micro-scale Reynolds number (Reλ ≡
√

15Re for homogeneous and isotropic flows),

λ ≡ u′/〈(∇u)2〉1/2 is the Taylor micro-scale, L is the box size, ν is the fluid kinematic

viscosity, ε ≡ 2ν
∫ κmax

0
κ2E(κ)dκ is the mean turbulent kinetic energy dissipation rate,

l ≡ 3π/(2k)
∫ κmax

0
E(κ)/κdκ is the integral length scale, η ≡ ν3/4/ε1/4 is the Kolmogorov

length scale, u′ ≡
√

(2k/3) is the fluid r.m.s. fluctuating velocity, k is the turbulent kinetic

energy, uη is the Kolmogorov velocity scale, TL ≡ l/u′ is the large-eddy turnover time,

τη ≡
√

(ν/ε) is the Kolmogorov time scale, κmax =
√

2N/3 is the maximum resolved

wavenumber, and Np is the number of particles per Stokes number.
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The relevant non-dimensional parameters in this problem are the Stokes number (St ≡

τp/τη), the settling parameter (Sv ≡ τpg/uη, where the numerator represents particle’s

terminal velocity in the laminar flow) and the Froude number (Fr ≡ aη/g = ε3/4/(ν1/4g))

which characterize the particle’s inertia, the effect of gravity on inertial particles and the

effect of gravity on the flow, respectively. Here aη is the Kolmogorov acceleration, τη is the

Kolmogorov timescale, uη is the Kolmogorov velocity scale, and ε is the mean turbulent

kinetic energy dissipation rate.

Direct Numerical Simulations (DNS) of the incompressible Navier-Stokes equation are

performed on a triply periodic cube of length L , using a pseudo-spectral method on a

uniform mesh with N3 grid points. A deterministic forcing scheme is used to generate

statistically stationary, isotropic turbulence. Details of numerical setup and simulations can

be found in [17, 23, 40], and information on the simulations are provided in Table I. In table

II we also provide information on the particle parameters considered in the DNS, to aid the

reader in following the parameter values in the figures that follow.

As mentioned in the introduction, Voronöı analysis can be sensitive to the number of

particles used in the analysis. Therefore, when comparing results from different DNS with

St Sv (forFr = 0.3) Sv (forFr = 0.052)

0 0 0

0.05 0.1667 0.96

0.1 0.3333 1.93

0.2 0.6667 3.86

0.3 1 5.79

0.4 1.3333 7.71

0.5 1.6667 9.64

0.6 2 11.6

0.7 2.3333 13.5

0.8 2.6667 15.4

0.9 3 17.4

1 3.3333 19.3

1.5 5 28.9

2 6.6667 38.6

3 10 57.9

TABLE II: Particle parameters considered in the DNS. For each value of the Stokes

number St, the associated settling number Sv is shown for both Fr = 0.3, 0.052.
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different Reλ and Fr we choose the number of particles such that the average distance

between the particles is the same in each study, r ≡ L /N
1/3
p = 7.9η. This number is

comparable to that in the studies of [20, 24, 41]. A smaller value for r would be desirable,

especially for performing the coherent cluster analysis [30]. However, the computational

expense for the higher Reλ cases we consider make it unfeasible to consider significantly

smaller values of r. In order to provide some insight, however, concerning how our results

might depend upon r̄, in the appendix we provide results from a simulation with Reλ = 90,

and a range of St, Fr and for r̄ = 1.8η, and we compare the results with those having r̄ =

7.9η. Consistent, with previous findings, we observe that while the results are quantitatively

affected by the choice of r̄, they are not affected qualitatively, with the dependence of the

results on St, Fr being the same in each case.

Using our DNS data, we perform a 3D Voronoi analysis of the particles, and then compute

a range of statistical quantities using the information from the analysis.

In order to address the issue of open Voronoi cells at the boundaries of the domain,

the particles across the boundaries are periodically repeated to ensure that all the cells

are closed and the sum of Voronoi volumes is equal to the domain volume Therefore, the

Voronoi volumes associated with the particles adjacent to the boundaries are ill-defined and

so are ignored in our analysis. Following [30], particles at the boundaries of the domain are

removed for the cluster analysis, in order to ensure our cluster analysis is fully consistent

with theirs. Nevertheless, we also compared the results to those obtained where periodic

boundary conditions were applied to the particles. We did not find any noticeable difference

when using these two methods, as expected, given the statistical homogeneity of the flow.

III. RESULTS AND DISCUSSION

A. Voronöı volume distributions

In figure 1, the Probability Distribution Function (PDF) of the Voronöı cell volumes

(normalized by the mean Voronöı cells volume) for different St and with different Fr and

Reλ combinations are shown. The small/large Voronöı volumes represent the high/low

concentration regions of the flow. For St = 0 the particles are randomly distributed, and

their PDF follows that of a random Poisson process (RPP), described by [42]. Compared to
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the St = 0 case, the PDFs for St > 0 are significantly higher at small volumes, indicating an

enhanced probability of finding regions with high local particle concentration, i.e. clustering.

In the experimental study of [43] they observed a crossover, such that at sufficiently small

volumes, the PDFs of the Voronöı volumes for inertial particles drops below that for fluid

particles. They conjectured that this effect was due to interactions between the particles

when they are sufficiently close. In our results we do not observe this crossover, and neither

did the numerical studies of [24, 30]. While this may be due to our neglect of the effect

of particle interactions, we note that the crossover was also not observed in the recent

experimental work of [25].

Concerning the effect of Reλ, the results in figure 1 indicate that with respect to the

behavior at small volumes, the effect of Reλ depends on both St and Fr. When St < 3,

the effect of Reλ is quite weak, sometimes leading to a slight increase of the PDF at small

volumes that then saturates as Reλ is increased (e.g. for the case St = 0.5, Fr = 0.052),

while in other cases it leads to a slight decrease of the PDF at small volumes (e.g. for

the case St = 0.7, Fr = 0.3). However, for St = 3, the sensitivity of the Voronöı volume

PDF to Reλ becomes much more apparent, with the clustering becoming stronger as Reλ is

increased. This dependence of the clustering on Reλ is similar to that found in [17, 23] where

the RDF was used to analyze the clustering. Arguments in [17, 23, 44] suggest that this

behavior arises because unless St is sufficiently large, particles in the dissipation range are

not able to remember their interaction with the inerital-range turbulence along their path-

history. In this case, their motion is dominated by the dissipate range dynamics of the flow,

and their dissipation range motion is not affected by the changing size of the inertial range

as Reλ is increased. Nevertheless, even if their dissipation range clustering is not affected

by the inertial range, the clustering could still be affected by the strong intermittency of

the dissipation range turbulence [45]. In [17, 46] it was argued that because the RDF is

a low-order measure of the particle phase-space dynamics, it is not very sensitive to the

flow intermittency that as is most apparent in the high-order moments. However, the PDF

of the Voronöı volumes is not confined to low-order information, and could in principle be

sensitive to intermittent fluctuations in the particle motion, yet our results imply that the

particle clustering is only weakly affected by the flow intermittency. One possible explanation

for this surprising behavior is that due to the preferential sampling of the flow by the

inertial particles, the inertial particles avoid the intermittent regions of the flow [17, 23, 47],
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and as a result their spatial clustering is not affected by the increased intermittency in

the underlying turbulence as Reλ is increased. The other possible explanation is that the

average inter-particle distance r̄ in our simulations is too large for us to be able to obtain

statistically reliable results at Voronöı volumes that are small enough to be strongly affected

by dissipation range intermittency. To address this issue, future efforts would need to explore

the problem using r̄ ≤ O(η), something that is not currently feasible for the higher Reλ cases.

Concerning the effect of Fr, the results in figure 1 indicate that with respect to the

behavior at small volumes, the clustering initially becomes stronger as Fr is reduced from

∞ (no gravity case) to 0.3, but then becomes weaker as Fr is further reduced. Therefore,

gravity has a non-monotonic effect on the clustering, and whether it enhances or reduces

the clustering depends on St and Fr.
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FIG. 1: PDF of the Voronöı volumes (normalized by the mean volume) at different cases of

Fr and Reλ combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e)

St = 1, and (f) St = 3. Different colors represents different cases. The dashed line

represents the Random Poisson Distribution.
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This effect of gravity on clustering agrees with the conclusions based on the RDF analysis

in [23], although in that analysis the non-monotonic dependance of the clustering on Fr was

not so clear since only the values Fr =∞, 0.052 were considered, and not the intermediate

value Fr = 0.3. However, such non-monotonic dependence was observed using an RDF

analysis in our previous study [26]. Physical arguments for the effect of gravity on clustering

can be found in [23].

Not shown here, concerning the effect of St we found, in agreement with previous studies,

that for Fr = ∞, the probability of finding highly concentrated regions enhances with St,

peaks at St = 1 and then drops for larger St. Furthermore, we observed that the presence of

gravity can lead to the enhancement of clustering when St ≥ O(1), with its effect becoming

more apparent at higher Rλ. Interested readers can find the the details in [48].

To obtain more insight into the Reλ dependence, in figure 2 we plot the standard deviation

(s.d.) of the Voronöı volumes as a function of St. In agreement with the experimental study

of [43], we observe that for Reλ = 90, the s.d. increases with increasing St until it reaches a

peak around St ≈ 2, after which it decreases. Also in agreement with their results we find

that the s.d. becomes larger and the peak shifts to higher values of St as Reλ is increased.

This is essentially due to the fact that as Reλ is increased, more flow scales are present in the

turbulence at which the particles can cluster. However, for any finite St, the growth of the

s.d. with increasing Reλ must saturate, since at sufficiently large scales the particles behave

as fluid particles and do not cluster [49]. The results in figure 2 reveal a stronger sensitivity

to Reλ than is implied by the results in figure 1 which may indicate that the sensitivity of

the s.d. to Reλ is mainly in the behavior of the PDF of Voronöı cells with large volume,

whose behavior is not clear in a loglog plot. To consider this, in figure 3 we plot the PDF

of Voronöı volumes in a log-lin plot. Comparing the results with those in figure 1 confirms

that it is the Voronöı cells with larger volumes that exhibit the strongest sensitivity to Reλ

and that the sensitivity to Reλ is generally stronger in the presence of gravity.

The data in figure 1 shows that the PDF for inertial particles intersects that for fluid

particles at two points, denoted by ϑC and ϑv, respectively. These points are often used

to define thresholds for detecting clusters and voids, with volumes less than ϑC denoting

clustered regions, and volumes greater than ϑv denoting void regions. In view of these

definitions, it is then apparent that the Reλ dependence of the s.d. of the Voronöı volumes

comes mainly from the Reλ of the void regions, and not the clustered regions. In this way our
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FIG. 2: Standard deviation of Voronöı cells normalized by their mean as a function of St.

conclusions are consistent with the findings in [17, 23, 26] based on the RDF that the small-

scale clustering is quite insensitive to Reλ when St . 1, and the strong Reλ dependence of

the s.d. of the Voronöı volumes does not contradict this.

A related point is that the results in figure 2 indicate that gravity suppresses the s.d. of

the Voronöı volumes, while for the same cases (e.g. St = 3, Reλ = 398), figure 1 indicates

that gravity enhances the small-scale clustering. This is again because the s.d. is dominated

by the behavior of the void regions rather than the clustered regions, and the void regions

tend to be suppressed by gravity. This shows again the non-trivial effect of gravity on the

particle clustering; while the probability of clustered and void regions both increase with

increasing St, for a given St, decreasing Fr can enhance the probability of clustered regions

while lowering the probability of void regions. These points illustrate that using the s.d.

Voronöı volumes as a measure of clustering should be used with caution, since its properties

are dominated by void, rather than clustered regions of the flow.
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FIG. 3: PDF of the Voronöı volumes (normalized by the mean volume) at different cases of

Fr and Reλ combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e)

St = 1, and (f) St = 3. Different colors represents different cases. The dashed line

represents the Random Poisson Distribution.
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In a number of previous studies it has been reported that the PDF of Voronöı volumes

follows a log-normal distribution [20, 25, 27, 28, 31]. In figure 4 the centered and normalized

PDFs of the logarithm of the Voronöı volumes are presented. The results show that for St ≥

0.5 a Gaussian distribution can approximate the shape of log(ϑ) in the interval ±2σlog(ϑ),

while large deviations from the Gaussian PDF are found outside of this range. In particular,

the tails of the PDF are heavier than a Gaussian distribution, as also observed in [31].

However, the PDF seems to approach a Gaussian shape as St increases. For smaller St the

Gaussian PDF is not followed, which is to be expected since in the limit St → 0 the PDF

follows that for a RPP, a shown earlier. Therefore, the log-normal shape for the PDF of

Voronöı volumes is only a reasonable approximation in certain regimes. Departures from

the log-normal behavior exhibit different (and not entirely clear) dependencies on Reλ and

Fr for the left and right tails of the PDF, an explanation for which is not clear.
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FIG. 4: PDF of the log-normal (natural logarithm) distribution of Voronöı volumes

(centered at the mean and normalized by standard deviation) at different cases of Fr and

Reλ combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and

(f) St = 3. Different colors represents different cases and dashed line denotes the Gaussian

distribution.
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B. Particle settling velocities

We now turn to consider the average velocity of particles conditioned on the Voronöı

volumes to explore how the particle settling velocities depend upon the local particle con-

centration. In our notation, the subscript “x” denotes the direction of gravity, so that

positive velocities correspond to particle motion in the direction of gravity. We will also

later use y to denote the direction perpendicular to gravity.

The results in figure 5 clearly illustrate the correlation between the particle settling

velocity and the local concentration (inverse of the Voronöı volumes), as also observed over

smaller ranges of Reλ and Fr in the DNS studies of [30, 32, 50] as well as the experimental

study of [19]. The recent experiments of [25] also considered this quantity under a wide range

of particle loadings, to examine the influence of two-way coupling between the particles and

fluid on the particle settling velocities and its relation to the local concentration. Their

results at low particle loadings are similar to ours, suggesting, as expected, that the one-way

coupled assumption yields physically realistic results in that regime.

The results show that the Fr for which the settling velocity reaches the largest value

depends upon St, which is simply because in the particle equation of motion, the important

non-dimensional number is the settling number Sv ≡ St/Fr. However, for St > 0.2, the

settling enhancement is strongest for intermediate values of Fr, in agreement with the DNS

study of [31]. For Fr = 0.3, the average settling velocity enhances almost monotonically with

increasing particle concentration (the decrease observed at small volumes for St = 0.2 may

be due to noise). However, for Fr = 0.052, there is a local concentration at which the mean

settling velocity is maximum, and then decreases for higher concentrations. If we assume

that larger Voronöı volumes are associated with larger flow scales, then this is consistent

with the arguments in [35] that as Fr is decreased, the scales of the flow responsible for

enhancing the particle settling velocity increase. The results also show that increasing Reλ

can significantly increase the settling velocities, especially for St ≥ 0.5. This is explained by

the recent theoretical analysis of [35] that shows that as Reλ is increased, more and more

energetic flow scales are introduced to the flow that are able to contribute to the particle

settling velocity enhancement through the preferential sweeping mechanism described below.

Concerning the physical mechanism underlying the correlation between the settling ve-

locity and concentration/clustering, since our DNS are one-way coupled the effect cannot be
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explained in terms of the particles modifying the local flow field, but in terms of the way the

particles passively sample the underlying flow field. [4] provided a theoretical analysis and

on the basis of this proposed that in the regime St� 1, the particles are preferentially swept

around the downward (direction of gravity) moving side of vortices in the flow, and that as

a result of this preferential sweeping, their average settling velocity exceeds the Stokes set-

tling velocity. This is the so-called “preferential sweeping mechanism” [51]. This theoretical

analysis was recently extended by [35] to arbitrary St, wherein the basic mechanism is the

same as that proposed by Maxey, except that now the size of the vortices around which the

particles are preferentially swept is shown to depend essentially on St, Fr and Reλ, and is a

multiscale preferential sweeping mechanism. However, it was pointed out in [35] that unlike

the regime St � 1, in the regime St ≥ O(1) the mechanism generating the clustering is

distinct from the preferential sweeping mechanism. Indeed, for St ≥ O(1) the clustering is

generated by a non-local mechanism and not the preferential sampling of the local flow field

[44, 49]. As a result, while the results in figure 5 for St � 1 can be directly explained in

terms of the preferential sweeping mechanism, the same does not apply for St ≥ O(1). A

direct and unambiguous test of the preferential sweeping mechanism would be to condition

the average particle velocity not on the concentration, but on some measure of the local

preferential sampling of the flow.
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FIG. 5: Average velocity of particles conditioned on the PDF of the Voronöı volumes at

different cases of Fr and Reλ combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d)

St = 0.7, and (e) St = 1. Different colors represents different cases.

C. Local Analysis of Particle Accelerations

In [23, 36] it was shown that settling can significantly enhance the accelerations of inertial

particles in turbulent flows, and in [26] it was also shown that the variance of the particle

accelerations generally increase with increasing Reλ and/or with decreasing Fr. To gain

further insight into the behavior of the particle accelerations, we perform a local analysis by

conditioning the particle acceleration behavior on the local Voronöı volume, to understand

how the accelerations are linked to the concentration field.
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Figures 6 and 7 show results for the particle acceleration (ap(t) ≡ v̇p(t)) conditioned on

the local Voronöı volume, in the direction of gravity (which points along the positive x axis)

and perpendicular to gravity (along y axis), respectively.

According to these results, in the absence of gravity (Fr =∞), the particle accelerations

are zero (to within statistical noise) in both directions, independent of St and Reλ. In the

presence of gravity, this same behavior is observed for the accelerations in the direction

normal to gravity, however, in the direction of gravity the quantity becomes finite for finite

St. In particular, 〈apx〉ϑ becomes negative (denoting accelerations in the direction opposite

to gravity) at small volumes and positive for large volumes. Moreover, 〈apx〉ϑ becomes in-

creasingly negative at small ϑ as Reλ is increased. Some of this behavior may be understood

by considering the following identity

〈apx〉 ≡
∫ ∞
0

〈apx〉ϑP (ϑ) dϑ. (2)

Since P (ϑ) ≥ 0, and 〈apx〉 = 0 for statistically stationary, homogeneous turbulence, then

the only way for (2) to be satisfied is if either 〈apx〉ϑ = 0∀ϑ, or else its sign varies with ϑ.

The latter situation is what we observe in the presence of gravity, with particles in high

concentration regions (small ϑ) exhibiting a net acceleration in the direction of opposite to

gravity even though the net acceleration of all the particles is zero, i.e. 〈apx〉 = 0. However,

we are not able to explain why 〈apx〉ϑ is negative, rather than positive at small ϑ.
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FIG. 6: Average acceleration of particles, in the gravity direction, conditioned on the PDF

of the Voronöı volumes at different cases of Fr and Reλ combinations for (a) St = 0, (b)

St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and (f) St = 3. Different colors represents

different cases.
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FIG. 7: Average acceleration of particles, in the plane normal to the gravity direction,

conditioned on the PDF of the Voronöı volumes at different cases of Fr and Reλ

combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and (f)

St = 3. Different colors represents different cases.
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Figures 8 and 9 show results for the second moment of the particle accelerations condi-

tioned on the Voronöı volumes, in the direction parallel and perpendicular to gravity, respec-

tively. The results reveal a surprising nonlinear dependence on ϑ, that is present irrespective

of Fr,Reλ, that disappears for sufficiently small or large St. If one adopts a standard view

that the Voronöı volumes are connected to the different range of scales in a turbulent flow,

with small volumes associated with small turbulent flow scales etc, then this would explain

why the acceleration variances increase with decreasing ϑ, since accelerations are largest at

the smallest scales of a turbulent flow. However, this explanation cannot account for why

at sufficiently large ϑ, the acceleration variances increase with increasing ϑ. The results in

figures 8 and 9 therefore perhaps indicate that there is not a simple relationship between

the size of the Voronöı volumes and the size of the turbulent flow scales. Furthermore, the

strong dependence of this behavior on St indicates that the nonlinear dependence of the

acceleration variances on ϑ is related to the spatial clustering of the particles.

This nonlinear dependence of the acceleration variances on ϑ is not qualitatively affected

by Fr,Reλ, however, the results show that decreasing Fr and/or increasing Reλ lead to an

enhancement of the particle accelerations at all ϑ (to within statistical noise). This would

seem to imply, in agreement with the physical arguments in [23], that the enhancement of the

inertial particle accelerations due to gravitational settling are not fundamentally associated

with a change in how gravity causes the particles to cluster. Rather, it is caused by the

fact that gravity causes the particles to experience rapid changes in the fluid velocity along

their trajectory, which in turn leads to large particle accelerations. This effect, described

more fully in [37], would operate even if the particles were uniformly distributed throughout

the flow. Indeed, our results in figures 8 and 9 for St = 3 reveal strong enhancements of

the particle accelerations due to gravity, even though the acceleration variances are almost

independent of ϑ.

In figure 10 we show results for the variances of the fluid acceleration (aF ) at the inertial

particle positions, conditioned on ϑ, and for the direction of gravity. These results also

exhibit, in general, a convex functional shape with respect to ϑ. They also show that as

Fr is decreased, the accelerations become stronger, even for cases where the St = 0 are

independent of Fr St = 0 cases which are independent of Fr (in general the fluid particle

accelerations should be independent of Fr, however since the different Fr cases correspond to

different simulations, the results can depend on Fr, for example due to different domain sizes
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in the simulations). Since the fluid acceleration measured at the inertial particle positions

can only differ from the fluid acceleration at fluid particle positions due to preferential

sampling of the flow by the particles, this indicates that the settling causes the inertial

particles to sample regions of the flow exhibiting strong accelerations.

The results in figure 10 also present a challenge to the “sweep-stick” mechanism that

has been proposed to explain particle clustering in turbulent flows [52]. The sweep-stick

mechanism states that inertial particles stick to points in the flow where the fluid acceler-

ation is zero, and since these acceleration stagnation points are themselves clustered, this

therefore explains the clustering of the inertial particles. In [49] a number of theoretical

arguments were given that call into question the validity of this proposed mechanism for

particle clustering, supported by results from DNS. If the sweep-stick mechanism were cor-

rect, we should expect to find that in regions where the particles are clustered (i.e. where ϑ

is small), the fluid acceleration at the particle position should be zero, or at least very small

compared with aη. The results in figure 10 show, however, that in the regions where the

particles are clustered, the fluid accelerations at the inertial particle positions are large, i.e.

their magnitudes are ≥ O(aη). Moreover, over a significant range of ϑ, the accelerations are

almost independent of ϑ. These results therefore strongly call into question the validity of

the sweep-stick mechanism. We refer the reader to [49] for a detailed discussion concerning

theoretical issues with the sweep-stick mechanism.
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FIG. 8: Second moment of particle accelerations, in the gravity direction, conditioned on

the PDF of the Voronöı volumes at different cases of Fr and Reλ combinations for (a)

St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and (f) St = 3. Different colors

represents different cases.
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FIG. 9: Second moment of particle accelerations, in the plane normal to the gravity

direction, conditioned on the PDF of the Voronöı volumes at different cases of Fr and Reλ

combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and (f)

St = 3. Different colors represents different cases.
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FIG. 10: Second moment of fluid accelerations at the particle position, in the gravity

direction, conditioned on the PDF of the Voronöı volumes at different cases of Fr and Reλ

combinations for (a) St = 0, (b) St = 0.2, (c) St = 0.5, (d) St = 0.7,(e) St = 1, and (f)

St = 3. Different colors represents different cases.
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IV. CLUSTER ANALYSIS

We now turn our attention to the results for clusters of particles, which are defined

as connected Voronöı cells that have volumes ≤ ϑC [30]. Figure 11 shows the PDF of

cluster volumes normalized by the Kolmogorov scale. The results show that cluster sizes are

distributed over a wide range of scales, from the dissipation up to integral range scales. In

agreement with previous studies ([20, 27, 30, 32, 50]), we find that the right hand side of

the PDF is well described as a power law with exponent −2, which implies self-similarity

of the clusters, in line with results in [20, 53]. This slope was found to be ∼ −5/3 in the

experimental study of [28].
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FIG. 11: PDF of the coherent cluster volumes (normalized by the Kolmogorov scale) at

different cases of Fr and Reλ combinations for (a) St = 0.4, (b) St = 0.7, (c) St = 1, (d)

St = 1.5, and (e) St = 3. Different colors represents different cases. The dashed line

represents a power law with exponent −2.
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The results in Figure 11 reveal a much weaker dependence on St,Reλ and Fr than the

PDF of the Voronöı volumes considered earlier. Figure 12 shows the same results in a log-lin

plot to emphasize the behavior for larger clusters, and again we find a weak dependence on

St,Reλ and Fr. One possible reason for the weak dependence is related to the fact that

given that the average inter-particle distance is 7.9η, the clusters are quite large and so the

effects of inertia are weaker than they would be for smaller clusters. Indeed, the study of

[30] had a much smaller average inter-particle distance of ≈ 2.2η, and in their results the

strongest effects of the particle inertia were found for the smallest clusters, as expected.
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FIG. 12: PDF of the coherent cluster volumes (normalized by the Kolmogorov scale) at

different cases of Fr and Reλ combinations for (a) St = 0.4, (b) St = 0.7, (c) St = 1, (d)

St = 1.5, and (e) St = 3. Different colors represents different cases. The dashed line

represents a power law with exponent −2.
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To obtain clearer quantitative insight, the standard deviation (s.d.) of the coherent cluster

volumes is shown in the figure 13. The results reveal a quite weak dependence on St, which

was also reported in the experimental study of [28]. This is in striking contrast to the results

for the s.d. of the Voronöı volumes shown in Figure 2, for which a very strong dependence

on St was observed. However, the effect of Fr and Reλ on the s.d. of the coherent cluster

volumes is much stronger. In particular, the s.d. increases strongly with increasing Reλ,

while it increases only slightly in going from Fr =∞ to 0.3, and then increases substantially

in going from Fr = 0.3 to 0.052.
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FIG. 13: Standard deviation of Voronöı cells of clusters as a function of St.
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In figure 14, the average percentage of particles within clusters compared with the number

in the whole domain is shown. In agreement with [30], we observe that this percentage

increases with increasing St, though for lower (or Reλ = 90 ) Reλ this reaches a maximum

at St ≈ 2 and then reduces. We expect that a maximum would also be observed for the

higher Reλ, but at larger St (a maximum must occur since in the limits St→ 0 and St→∞

the percentage must go to zero). The results show that generally, increasing Reλ leads to

an increase of the percentage, while the dependence on Fr is non-monotonic, with the

percentage generally being largest for the intermediate value Fr = 0.3. It is important to

note, however, that the percentages we observe are much larger than those observed by [30].

This difference is likely due to the fact that in their simulations the average inter-particle

distance was 2.2η, while in ours it has the significantly larger value 7.9η. If this indeed is

the explanation, then it shows that the significance of the particle clusters, in terms of the

number of particles contained within them as a fraction of the total number in the flow,

depends essentially on the particle loading in the flow.
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FIG. 14: Average percentage of total particles in clusters to the total number of particles

in the whole domain, as a function of St and for different cases
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Figure 15 shows results for the average cluster size as a function of the number of particles

in the clusters, which provides information on the relationship between the coherent cluster

sizes and the particle concentrations within them. (For brevity we only show the results

for St = 1, but the behavior is the same for the other St cases). This relationship is found

to be approximately linear, and is independent of all the control parameters over the range

we have explored. Such a linear relationship, and its lack of sensitivity to St and Fr, were

already reported in [30] for Reλ = 65, however, our results confirm that this quantity is also

independent of Reλ.
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FIG. 15: The cluster volume normalized by the Kolmogorov scale versus particle counts in

clusters normalized by the whole particles in the domain, for St = 1.
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FIG. 16: Difference between the average velocity of particles within the clusters and the

whole particles in the domain.
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Finally, we turn to consider the velocity statistics of the particles in coherent clusters as

compared with those in the entire domain. In figure 16 we show results for the difference

in the average velocity of particles in clusters to that based on all particles in the flow. In

agreement with those of [30], our results show that the mean settling velocity of particles in

clusters can be significantly larger than than based upon averaging over all particles in the

flow. Our results also show that this difference increases with increasing Reλ, with a non-

monotonic dependence on Fr (since the results are zero for Fr =∞). The average settling

velocity of all particles is known to increase with increasing Reλ, which is principally due to

the enhanced range of scales for the particles to interact with as Reλ grows [35]. However,

the Reλ dependence of the results in figure 16 would seem to be due to something more

subtle to this, since all particles in the flow, whether clustered or not, would be subject to

the enhanced range of scales available for the particles to interact with as Reλ grows.

The results for the particle fluctuating kinetic energy K(St) ≡ (1/2)〈‖vp(t)− 〈vp(t)〉‖2〉

are shown in figure 17. The results show that while the settling velocity of particles in

coherent clusters is significantly different from that of all the particles in the flow, there is

only a small difference for their kinetic energy. In the absence of gravity, the particles in

coherent clusters have slightly less kinetic energy compared with the average based on all

particles in the flow. The most likely explanation for this is that the difference is caused

by the preferential sampling of the turbulent flow, which is known to be suppressed in

the presence of gravity [23]. As explained in [17], the decrease of the kinetic energy with

increasing St is due to the inertial particles filtering out fluctuations in the turbulent flow,

while the increase of the kinetic energy with increasing Reλ (for a fixed St and Fr) is due to

a reduction of the filtering effect owing to the increased timescale separation in the turbulent

flow as Reλ is increased. Finally, the decrease of the kinetic energy as Fr is decreased (for

a fixed St and Reλ) is because the filtering effect is enhanced due to the timescale of the

fluid velocity seen by the particle becoming shorter as the particles settle faster.

39



0 0.5 1 1.5 2 2.5 3
0

0.2

0.4

0.6

0.8

1

FIG. 17: Average kinetic energy of particles within the clusters (solid lines) and the whole

particles in the domain (dashed lines).

V. CONCLUSIONS

In this work, we have used DNS and three-dimensional Voronöı analysis to explore the

local distribution, settling velocity and acceleration of inertial particles (in the point particle

limit) in statistically stationary, isotropic turbulence. In these simulations, we independently

varied the Taylor Reynolds number Reλ ∈ [90, 398], Froude number Fr ≡ aη/g ∈ [0.052,∞]

(where aη is the Kolmogorov acceleration, and g is the acceleration due to gravity), and

Kolmogorov scale Stokes number St ≡ τp/τη ∈ [0, 3]. Independently varying these parame-

ters was not possible in previous experimental investigations on the problem. The average

inter-particle distance was held fixed in all the DNS for consistency when comparing the

Voronöı analysis results for different Reλ.

In agreement with previous results using the Radial Distribution Function (RDF) to

quantify particle clustering [17, 23], which is a global measure, we find that for small Voronöı

volumes (corresponding to the most clustered particles), the behavior is strongly dependent

upon St and Fr, but only weakly dependent upon Reλ, unless St > 1. However, larger

Voronöı volumes (void regions) exhibit a much stronger dependence on Reλ, even when
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St ≤ 1, and we show that this, rather than the behavior at small volumes, is the cause of

the sensitivity of the standard deviation of the Voronöı volumes that has been previously

reported. Our results also show that the standard deviation of the Voronöı volumes is

dominated by the behavior of the void regions, rather than the clustered regions. As a

result, the results show that the standard deviation of the Voronöı volumes is reduced by

gravity at all St, even though the Probability Density Function (PDF) results show that

gravity can enhance the small-scale clustering, as was also observed using the RDF analysis in

[23]. This is because gravity seems to always suppress the void regions. This highlights that

using the standard deviation of Voronöı volumes as a measure of particle clustering (which

has been done in many previous studies) can be somewhat misleading, since its properties

are dominated by void, rather than small-scale clustered regions of the flow. We also show

that the PDF of Voronöı volumes exhibits a quasi-lognormal behavior over a certain range

of volumes, as previously reported. However, we show that this is only approximate, and

does not describe well Voronöı volumes that are sufficiently large or small. The validity of

the log-normal assumption also depends in a rather complex way on Reλ and Fr.

We find that the average settling velocities conditioned on the Voronöı volumes exhibits

a non-monotonic dependence on the Voronöı volumes, with the largest contribution to the

particle settling velocities being associated with increasingly larger Voronöı volumes as the

settling parameter Sv ≡ St/Fr is increased. This non-monotonic behavior does not seem to

have been previously reported, likely because the Sv considered were not sufficiently large.

It can be explained by the recent work of [35] who show theoretically and numerically that

as Sv is increased, the scales responsible for the particle settling velocities shift to larger

scales.

Even though the globally averaged particle acceleration is zero in the system we are con-

sidering, our local analysis of the acceleration statistics of settling inertial particles shows

that clustered particles experience a net acceleration in the direction of gravity, while par-

ticles in void regions experience the opposite. In the direction normal to gravity, and in

the absence of gravity, the average particle accelerations are independent of the Voronöı

volumes. The particle acceleration variance, however, is a convex function of the Voronöı

volumes, with or without gravity, which seems to indicate a non-trivial relationship between

the Voronöı volumes and the sizes of the turbulent flow scales. Results for the variance of

the fluid acceleration at the inertial particle positions are of the order of the square of the
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Kolmogorov acceleration and depend only weakly on Voronöı volumes. These results call

into question the “sweep-stick” mechanism for particle clustering in turbulence which would

lead one to expect that clustered particles reside in regions where the fluid acceleration is

zero [52].

We then consider the properties of particles in clusters, which are regions of connected

Voronöı cells whose volume is less than a certain threshold. The results for the PDFs of

the cluster volumes reveal significant self-similarity of the clusters. The standard deviation

of the cluster volumes provides further insight and shows that the statistics of the cluster

volumes depends only weakly on St, with a stronger dependance on Fr and Reλ. The weak

dependence upon St may however be due to the fact that given the average inter-particle

distance in our simulations, the cluster sizes are comparable to scales of the flow where

one might expect the effects of particle inertia to be weak anyway. Finally, we compared

the average settling velocities of all particles in the flow with those in clusters, and showed

that those in the clusters settle much faster, in agreement with previous work. However,

we also find that this difference grows significantly with increasing Reλ and exhibits a non-

monotonic dependence on Fr. The kinetic energy of the particles, on the other hand, is

almost the same for particles in and not in the clusters, especially in the presence of gravity.
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VII. APPENDIX

As discussed earlier, computational resources limit the values of the average inter-particle

distance r that we are able to explore in this study. Essentially, the value of r determines

the smallest scales at which we are able to probe the particle motion in the flow. In this

appendix, we provide some preliminary results to consider how the choice of r might affect

the results of the analysis. We performed new simulations (table III) to study the impact

of r̄, where we increased the number of particles such that r ≡ L /N
1/3
p = 1.8η, almost

four times smaller than that used in the results in the main body of this paper. The DNS

was for Reλ = 90, and for a range of St, Fr. This allows us to explore how the St, Fr

dependencies of the results might be affected by r. Unfortunately, due to the enormous

computational expense of such simulations, we are not able to repeat this for higher Reλ

to see how the effect of Reλ on the results might depend on r. The results shown below

demonstrate that the behavior for r̄ = 1.8η and r̄ = 7.9η is qualitatively the same. The
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Parameter DNS 1 DNS 2 New DNS 1 New DNS 2

N 128 128 128 128

Rλ 93 94 90.1 90.1

Fr ∞ 0.3 ∞ 0.3

L 2π 2π 2π 2π

ν 0.005 0.005 0.005 0.005

ε 0.324 0.332 0.3144 0.3142

l 1.48 1.49 1.45 1.45

l/η 59.6 60.4 55.6 57.87

u′ 0.984 0.996 0.960 0.960

u′/uη 4.91 4.92 4.82 4.82

TL 1.51 1.50 1.51 1.52

TL/τη 12.14 12.24 11.99 11.99

κmaxη 1.5 1.48 1.52 1.52

Np 262,144 262,144 2,621,440 2,621,440

TABLE III: Simulation parameters for new DNS simulations to study the impact of the

average inter-particle distance (arbitrary units).

quantitiative diifference are due to the well-known sensitivity of the Voronöı analysis to the

number of particles in the domain (see [41]). Here we briefly explain the results of these

simulations corresponding to each section in the main body of the paper.

A. Voronöı volume distributions

According to the figure 1, decreasing r̄ does not change the trend of the PDF of Voronöı

cell volumes qualitatively and still we observe that decreasing Fr enhances the probability

of finding highly concentrated regions, especially for St > 1. Due to the formation of smaller

Voronöı volumes with increasing number of particles in domain, we obtain a well-converged

statistics at the left tail of PDF which confirms the trend seen where r̄ = 7.9η.
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FIG. 18: PDF of the Voronöı volumes (normalized by the mean volume) at different cases

of Fr and Rλ combinations for (a) St = 1 and (b) St = 3. Different colors represents

different cases. The dashed line represents the Random Poisson Distribution.

The standard deviation of Voronöı volumes, shown in the figure 2 also exhibits almost

the same qualitative pattern, except the effect of Fr at St ≥ 1.5 which is not so clear as

the case with r̄ = 7.9/η. As reported in [41], increasing the sub-sampling ratio decreases

this quantity (here we can consider the cases with r̄ = 7.9η as a sub-sample of cases with

r̄ = 1.8η).
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FIG. 19: Standard deviation of Voronöı cells normalized by their mean as a function of St.
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B. Particle settling velocities

Looking at the average velocity of particles conditioned on the PDF of the Voronöı

volumes, shown in the figure 5, we again observe the same trend but now with a better

statistical convergence in the clustered regions.
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FIG. 20: Average velocity of particles conditioned on the PDF of the Voronöı volumes at

different cases of Fr and Rλ combinations for (a) St = 0.2 and (b) St = 1. Different colors

represents different cases.
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C. Local Analysis of Particle Accelerations

The results of fluid acceleration at the inertial particles position conditioned on the

Voronöı volumes, shown in the figure 10, still call into question the validity of sweep-stick

mechanism and show a lack of a systematic relationship between the fluid accelerations and

Voronöı volumes.
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FIG. 21: Second moment of fluid accelerations at the particle position, in the gravity

direction, conditioned on the PDF of the Voronöı volumes at different cases of Fr and Rλ

combinations for (a) St = 0.2 and (b) St = 3. Different colors represents different cases.
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D. Cluster Analysis

Looking at the PDF of cluster volumes in the figure 11, we observe that smaller r̄ leads to

the formation of smaller clusters which still display the self-similarity behavior, broad range

of scales and weak sensitivity to the control parameters. More importantly, our results for

the standard deviation of cluster volumes shown in the figure 13 confirms the weak sensitivity

of this quantity to St and the quantitative difference can be explained by the same argument

we brought for the standard deviation of Voronöı volumes (sub-sampling).
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FIG. 22: PDF of the cluster volumes (normalized by the Kolmogorov scale) at different

cases of Fr and Rλ combinations for (a) St = 1 and (b) St = 3. Different colors represents

different cases. The dashed line represents a power law with exponent −2.
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FIG. 23: Standard deviation of Voronöı cells of clusters as a function of St.
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FIG. 24: Average percentage of total particles in clusters to the total number of particles

in the whole domain, as a function of St and for different cases

Regarding the average percentage of particles that form clusters among all the particles

in the domain, our results, presented in the figure 14, show the same qualitative trend as

seen in the larger r̄ but a larger percentage of total particles in clusters due to the presence

of larger number of particles in the domain.

The results of average settling velocity of particles in cluster shown in the figure 16 again

confirms that the particles settle faster in clusters and shows the same qualitative behavior

with increasing St. The results of the kinetic energy of particles in clusters, shown in the

figure 17, also indicate the same sensitivity to Fr and St.
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FIG. 25: Difference between the average velocity of particles within the clusters and the

whole particles in the domain.
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FIG. 26: Average kinetic energy of particles within the clusters (solid lines) and the whole

particles in the domain (dashed lines).
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