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Abstract

This work investigates the orbital dynamics of a fluid-filled deformable prolate capsule in un-

bounded simple shear flow at zero Reynolds number using direct simulations. The motion of the

capsule is simulated using a model that incorporates shear elasticity, area dilatation, and bending

resistance. Here the deformability of the capsule is characterized by the nondimensional capil-

lary number Ca, which represents the ratio of viscous stresses to elastic restoring stresses on the

capsule. For a capsule with small bending stiffness, at a given Ca, the orientation converges over

time towards a unique stable orbit independent of the initial orientation. With increasing Ca, four

dynamical modes are found for the stable orbit, namely, rolling, wobbling, oscillating-swinging,

and swinging. On the other hand, for a capsule with large bending stiffness, multiplicity in the

orbit dynamics is observed. When the viscosity ratio λ . 1, the long-axis of the capsule always

tends towards a stable orbit in the flow-gradient plane, either tumbling or swinging, depending on

Ca. When λ & 1, the stable orbit of the capsule is a tumbling motion at low Ca, irrespective of

the initial orientation. Upon increasing Ca, there is a symmetry-breaking bifurcation away from

the tumbling orbit, and the capsule is observed to adopt multiple stable orbital modes including

nonsymmetric precessing and rolling, depending on the initial orientation. As Ca further increases,

the nonsymmetric stable orbit loses existence at a saddle-node bifurcation, and rolling becomes

the only attractor at high Ca, whereas the rolling state coexists with the nonsymmetric state at

intermediate values of Ca. A symmetry-breaking bifurcation away from the rolling orbit is also

found upon decreasing Ca. The regime with multiple attractors becomes broader as the aspect

ratio of the capsule increases, while narrowing as viscosity ratio increases. We also report the

particle contribution to the stress, which also displays multiplicity.
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I. INTRODUCTION

Microcapsules, small liquid droplets enclosed by a thin solid membrane, have been of

increasing significance in the bioengineering, pharmaceutics, and food industries. Examples

include cell encapsulation for tumor progression monitoring [1], encapsulation of cosmetic

active ingredients for topical application [2], development of drug delivery systems [3, 4],

and artificial food particles for aquatic filter feeders [5].

To satisfy engineering needs, many fabrication techniques for artificial capsules have

emerged. Polyelectrolyte capsules (PECs), for example, are a promising vehicle in the

biomedical field to carry a variety of therapeutic molecules (peptides, proteins, etc.) for

targeted delivery to a desired site in the body [6]. Avoidance of immune clearance (cellular

uptake by macrophages), which is critical for the efficiency of carrier particles in delivery

system, has been revealed to greatly depend on particle physical and chemical properties

such as size, shape, deformability, and surface chemistry. A number of studies have reported

that high-aspect-ratio (prolate) microparticles exhibited considerably reduced immune clear-

ance and increased circulation half-time compared to spheres [7, 8]. To this end, Zan et al.

[9] developed a fabrication method to obtain PECs with constant surface chemistry but

independently controlled size and shape by combining soft organic templates created by the

particle stretching method and a modified layer-by-layer (LBL) deposition process, which

may enable both a more systematic investigation on the roles of capsule properties on its ef-

ficiency and the optimization of the design of a delivery system. Furthermore, non-spherical

capsules, because of a higher surface-to-volume ratio than their spherical counterparts, can

be preferable to enhance the transfer of cargoes across the capsule membrane upon arrival

at the target; an example is the fabrication of prolate capsules containing a calcium ion

solution by Schneeweiss and Rehage [10] using a microfluidic channel.

All of the aforementioned situations involve capsule suspensions in a fluid environment,

and the dynamics of these suspensions can be greatly affected by the behavior of single

capsules. Therefore, it is essential to gain a comprehensive understanding of the single

capsule dynamics in a flow. For example, an initially spherical deformable capsule is found

to take a so-called tank-treading motion in simple shear flow with the membrane rotating

periodically around its stationary elongated shape [11]. Here the deformability of the capsule

is characterized by the capillary number Ca, which represents the ratio of viscous stresses
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to elastic restoring stresses on the particle. Non-spherical capsules, such as oblate spheroids

[12–22] and biconcave discoids, a model for red blood cells (RBCs) [23–35], have also been

investigated extensively in both experimental and computational studies. These studies

have explored a wide range of parameters for the capsule membrane mechanics and flow

properties, and revealed rich and complex orbital dynamics for the capsules. Indeed, the

increasing attention that oblate capsules have gained in the past decades may be attributed

to the findings by several studies on RBCs [32–35] that an oblate spheroidal spontaneous

shape has to be assumed for RBCs to maintain the stability of their biconcave shape during

motions, and it provides a better prediction than other spontaneous shapes for cell dynamics

in comparison with experimental observations.

In contrast, to the best of our knowledge, there only exist a limited number of works

on the motion of prolate capsules in shear flow, most of which have focused on the special

case where the fluids inside and outside the capsules have the same viscosity. Walter et al.

[17] numerically studied the motion of an inertialess prolate capsule in shear flow with the

major axis initially positioned in the shear plane. The membrane was modeled as a thin

hyperelastic surface with no bending resistance. Two stable in-plane orbital motions were

found: a rigid-body-like tumbling motion at low Ca, in which the capsule flips continuously,

and a fluid-like motion named swinging at high Ca, which is similar to a tank-treading

motion only with small oscillations in both the deformation and orientation of the capsule.

Richer orbital dynamics have been revealed for a prolate capsule with out-of-shear-plane

initial orientations. In a numerical investigation by Dupont et al. [36], the membrane

mechanics of the capsule was described using a model that includes shear elasticity and

area dilatation described by either the Skalak law [37] or the neo-Hookean law, but again no

bending resistance. They showed that for any initial orientation with respect to the vorticity

axis, the capsule always converges towards a unique stable long-time orbit depending on Ca.

At low Ca, the stable orbit corresponds to a rolling motion about the vorticity axis. As

Ca increases, the capsule precesses around the vorticity axis, and undergoes a so-called

wobbling motion. At high Ca, the capsule assumes a complex motion with oscillations

about the shear plane termed oscillating-swinging, which eventually evolves into a swinging

motion, as described in [17], as Ca further increases. The same qualitative motions were

generally observed in the parameter regimes considered in this work, irrespective of the

capsule membrane law or aspect ratio. Cordasco and Bagchi [20] later incorporated a small
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constant bending stiffness into the membrane for an inertialess prolate capsule with zero

spontaneous curvature, and observed a transition of the stable orbit from a drift precession

(rolling) to a stable precession with a tank-treading motion of the membrane (oscillating-

swinging) as Ca increases, which is qualitatively similar to the observations in [36].

The effect of a small particle inertia was considered by Wang et al. [21] for the three-

dimensional orbital behavior of an isolated prolate capsule in shear flow, in which, again,

bending resistance was neglected and a unity viscosity ratio between the inner and outer

fluids was assumed. With increasing Ca, the dominant stable orbital modes were found to

be tumbling, precessing, rolling, and oscillating-swinging. In contrast to the findings in [36]

and [20], they revealed that multiple stable orbits coexist in the transition regimes, even at

the same capillary number.

None of the preceding studies regarding deformable prolate capsules have addressed the

effects of bending stiffness and viscosity ratio, which may both play a nontrivial role in the

orbital dynamics of the capsules. In fact, in applications, the mechanical properties of the

capsule membrane can vary greatly depending on the materials and fabrication techniques,

and the suspending fluid or solution and the fluid enclosed inside the capsules will generally

have different viscosities. The present work aims to gain an improved understanding of the

dynamics of prolate capsules in shear flow by performing a systematic numerical investi-

gation over a broad domain of parameter space and determining the effects of membrane

deformability, bending stiffness, initial orientation, aspect ratio of the capsule and the vis-

cosity ratio between the inner and outer fluids. In this work, we reveal parameter regimes

for an inertialess deformable prolate capsule in shear flow in which either a single or multiple

attractors exist, and show in particular that the orbits for a capsule lying in the shear plane

and aligned with the vorticity axis are not always stable as the capsule evolves towards the

equilibrium configuration. By computing the particle contribution to the stress, we illustrate

how the multiplicity of stable orbits for a prolate capsule is reflected in the rheology for a

suspension of such capsules in the dilute limit. The connection between orbit dynamics and

rheology for capsules has been reported in a number of prior studies [12, 38–45], but only a

small number have considered prolate capsules.

The rest of the paper is organized as follows: in Section II we present the models for a

deformable prolate capsule and the membrane mechanics, and the numerical method adopted

to calculate the fluid motion; in Section III we provide detailed results and discussion for the
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orbital dynamics of a prolate capsule over a broad range of various parameters, including

membrane deformability, bending stiffness, initial orientation, aspect ratio of the capsule

and the viscosity ratio between the inner and outer fluids. Predictions of the rheological

properties for a dilute suspension of prolate capsules are also reported. Concluding remarks

are presented in Section IV.

II. MODEL FORMULATION

A. Model and discretization

FIG. 1: Schematic of the 3D orientation of a prolate capsule in unbounded simple shear

flow.

We consider an isolated inertialess fluid-filled deformable capsule with a prolate spheroidal

rest shape immersed in unbounded simple shear flow with shear rate γ̇ (FIG. 1). The

undisturbed flow velocity is given by u∞ = (γ̇y, 0, 0). Both the suspending fluid and the

fluid inside the capsule are assumed to be incompressible and Newtonian, with viscosity η

and λη, respectively, where λ is the viscosity ratio. At rest, the prolate capsule has a polar

radius a1 and an equatorial radius a2, with an aspect ratio AR = a1/a2 > 1. Here we define

a characteristic length scale a = (a1a
2
2)

1/3; this is the radius of a sphere having the same
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volume as the prolate capsule. The particle Reynolds number Rep = ργ̇a2/η is assumed

to be sufficiently small so that the fluid motion is governed by the Stokes equation. The

instantaneous orientation of the prolate capsule is given by two angles, as defined by Jeffery

[46]: φ is the azimuthal angle with respect to the y axis, and θ is the polar angle with respect

to the z axis.

To describe the membrane mechanics, we adopt a model that incorporates shear elasticity,

area dilatation, and bending resistance. The total energy E of the capsule membrane S is

given as:

E =
KB

2

∫

S

(2κH + c0)
2dS +KB

∫

S

κGdS +

∫

S

WdS, (1)

where KB and KB are the bending moduli, and W is the shear strain energy density; κH and

κG are the mean and Gaussian curvature of the membrane surface, respectively; c0 = −2H0

is the spontaneous curvature, H0 being the mean curvature of the spontaneous shape. In

this equation, the first two terms represent the Canham-Helfrich bending energy [47, 48],

and the third term corresponds to the shear strain energy. The behavior of the capsule

membrane in response to the in-plane shear elastic force is described using a membrane

model by Skalak et al. [37], in which the shear strain energy density W is given by

WSK =
G

4
[(I21 + 2I1 − 2I2) + CaI

2
2 ], (2)

where G is the in-plane shear modulus of the membrane, and Ca characterizes the energy

penalty for area change of the membrane. The strain invariants I1 and I2 are functions of

the principal stretch ratios λ1 and λ2, defined as

I1 = λ2
1 + λ2

2 − 2, I2 = λ2
1λ

2
2 − 1. (3)

Barthès-Biesel et al. [49] showed that for Ca & 10, the tension of a Skalak membrane

becomes nearly independent of Ca under a simple uniaxial deformation, so Ca is set to 10

for all of the simulations in the present work. The deformability and bending stiffness of the

capsule are characterized by the dimensionless capillary number Ca = ηγ̇a/G and bending

modulus κ̂B = KB/a
2G, respectively. Taking the first variation of the total membrane

energy E in Eq. 1 gives the total membrane strain force density:

fm = fb + f s, (4)

where fb and f s are bending and shear elastic force densities, respectively. Note that ac-

cording to the Gauss-Bonnet theorem, the second term in Eq. 1, i.e., the term involving the
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Gaussian curvature κG, is a constant when no topological changes are involved, so there is

no force density associated with that term [20]. Hence, the force density due to bending

resistance is given by the first variation of only the first term in Eq. 1.

The capsule membrane is discretized into 320 piecewise flat triangular elements, resulting

in 162 nodes. We have verified that increasing the number of membrane elements from 320 to

1280 makes no difference to the orbital dynamics of capsules with varying bending stiffness

and viscosity ratio. Based on this discretization, the calculation of the total membrane force

density fm follows the work of Kumar and Graham [50] and Sinha and Graham [35] using

approaches given by Charrier et al. [51] for the in-plane shear force density f s and Meyer et

al. [52] for the out-of-plane bending force density fb, respectively. Details regarding these

calculations are found in [50] and [35].

B. fluid motion

In the Stokes flow regime, the fluid velocity u at any point x0 in the unbounded domain

can be written in boundary integral form [50, 53] as:

uj(x0) = u∞

j (x0) +

∫

S

qi(x)Gji(x0,x)dS(x), (5)

where q(x0) is a single-layer density that satisfies

qj(x0)+
λ− 1

4π(λ+ 1)
nk(x0)

∫

S

qi(x)Tjik(x0,x)dS(x) = −
1

4πµ

(∆fj(x0)

λ+ 1
+

λ− 1

λ+ 1
f∞

j (x0)
)
. (6)

Here u∞(x0) is the undisturbed fluid velocity at a given point x0, S denotes the surface

of the particle; f∞(x0) is the traction at a given point due to the stress generated in the

fluid corresponding to the undisturbed flow u∞(x0); ∆f(x) is the hydrodynamic traction

jump across the membrane interface, which relates to the total membrane force density by

∆f(x) = −fm assuming the membrane equilibrium condition; G and T are the Green’s

function and its associated stress tensor for Stokes flow in an unbounded domain. Details of

the numerical method are described in [50]. Once the flow field is determined, the positions

of the element nodes on the discretized capsule membrane are advanced in time using a

second-order Adams-Bashforth method with adaptive time step ∆t = 0.02Cal, where l is

the minimum node-to-node distance. Time is nondimensionalized by the shear rate γ̇, and

in this work we define t as the dimensionless time.
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The implementation of the boundary integral method used in this work has been ex-

tensively validated with test problems considering both a rigid sphere and a spherical drop

between parallel walls subjected to pressure driven flow, and the numerical algorithms ap-

plied to calculate the shear and bending elastic force densities in the capsule membrane have

been validated on the deformation of spherical capsules in simple shear flow. We have also

compared the numerically determined inclination profile for a highly stiff prolate capsule

with the prediction by Jeffery’s theory [46] for an inertialess rigid prolate particle in shear

flow, and observed good agreement. See [50], [35] and [54] for details.

C. Particle stress in a dilute suspension of capsules

In addition to the capsule motions, we also compute the particle stress tensor in order

to understand the rheology for a suspension of such capsules in the dilute limit. For a

suspension of Np capsules in a volume V , the contribution of the suspended capsules to the

bulk stress of the suspension, in dimensional form, is given by [12, 42, 55–57]

Σp
ij =

1

V

Np∑

m=1

∫

Sm

[∆fixj + η(λ− 1)(uinj + ujni)]dS, (7)

where Σp is the particle stress tensor. Rewritten in nondimensional variables, x̃ = x/a,

ũ = u/(aγ̇), Ṽ = V/a3, S̃ = S/a2, and ∆̃f = ∆f/(ηγ̇), Eq. 7 becomes

Σp
ij =

ηγ̇

Ṽ

Np∑

m=1

∫

S̃m

[∆̃f ix̃j + (λ− 1)(ũinj + ũjni)]dS̃. (8)

Now we assume that the suspension is dilute, containing Np identical prolate capsules all

undergoing the same stable orbital motion, and that the interparticle hydrodynamic inter-

actions are negligible. The volume fraction of the suspension is given by Φ = NpVp/V =

NpṼp/Ṽ , where Vp is the volume of a single capsule and Ṽp = Vp/a
3 is dimensionless. Eq. 8

now becomes

Σp
ij =

ηγ̇Np

Ṽ

∫

S̃m

[∆̃f ix̃j + (λ− 1)(ũinj + ũjni)]dS̃

=
ηγ̇Φ

Ṽp

∫

S̃m

[∆̃f ix̃j + (λ− 1)(ũinj + ũjni)]dS̃,
(9)

which naturally gives the dimensionless particle stress tensor

Σ̃p
ij =

Σp
ij

ηγ̇
=

Φ

Ṽp

∫

S̃m

[∆̃f ix̃j + (λ− 1)(ũinj + ũjni)]dS̃. (10)
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The dimensionless particle shear stress Σ̃p
xy is identical to the specific viscosity ηsp; for a

dilute suspension of rigid spherical particles ηsp = [η]Φ = 2.5Φ [58], where [η] is the intrinsic

viscosity. The dimensionless first and second normal stress differences are N1 = Σ̃p
xx − Σ̃p

yy

and N2 = Σ̃p
yy − Σ̃p

zz.

III. RESULTS AND DISCUSSION

In this section, the orbital dynamics of a prolate capsule in unbounded simple shear

flow are systematically investigated over a broad domain of parameter space. We focus on

addressing the issue of long-time behavior of the orbits. For a capsule with small bending

stiffness (Section IIIA), all initial conditions we consider evolve towards the same orbit at

long times. For a capsule with large bending stiffness (Section IIIB), in contrast, we reveal

parameter regimes with multiple attractors, i.e., there are multiple stable orbits, and which

one is reached at long times depends on the initial orientation. A corresponding multiplicity

in the rheological properties is predicted for a dilute suspension of such capsules.

A. Dynamics of prolate capsules with small bending stiffness

We first report the dynamics of a deformable prolate capsule with small bending stiffness

(κ̂B = 0.02). The initial orientation of the capsule is set to [φ0, θ0] = [π/2, α]. We begin

with the case where λ = 1 and AR = 2.0, and assume that the spontaneous shape of the

capsule is the same as its rest shape. The effect of spontaneous curvature will be discussed

later. FIG. 2 shows the evolution of the capsule orbit in various regimes of Ca. We are

interested in the long-time limit (dimensionless time t ≫ 1) of the capsule dynamics, so the

evolution data is presented using a running average of θ, defined as θ̄ = 1
tavg

∫ t

t−tavg
θ(t)dt

that averages over the oscillations in θ caused by the rotational motions of the capsule on

the time scale 1/γ̇. Here we set tavg = 50; FIG. 2(b) shows an example of the evolution data

before (light-colored “clouds”) and after (solid colored lines) taking the running average.

The key observation here is that the capsule, irrespective of the initial orientation α,

evolves towards the same orbit at long times, denoted as θ̄eq. In FIG. 2(a) (Ca = 0.08), six

values of α are considered, and the orbit of the capsule always converges towards θ̄eq = 0◦.

For simplicity, results are only shown for four values of α in FIGs. 2(b), 2(c) and 2(d). As
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Ca increases, θ̄eq increases from 0◦ to 90◦. This trend holds qualitatively for λ = 0.2 and

λ = 5, and also as AR increases from 2.0 to 3.0 (not shown). The dependence of θ̄eq on

Ca for a prolate capsule (AR = 2.0) with κ̂B = 0.02 is illustrated in a bifurcation diagram

with varying λ, as shown in FIG. 3. Note that by symmetry, the orbits for a capsule lying

in the shear plane (θ = 90◦) and aligned with the z axis (θ = 0◦) are always solutions

for all parameter values. However, these two solutions may not be stable with respect to

symmetry-breaking perturbations; indeed, in the case of λ = 1 (solid blue line with circles),

for example, there is a symmetry-breaking bifurcation away from θ = 0◦ between Ca = 0.08

and Ca = 0.2, and another one away from θ = 90◦ between Ca = 0.7 and Ca = 1.5.

We now look into the detailed motions of the capsule in different Ca regimes. With

increasing Ca, four orbital modes are determined corresponding to the stable orbits in dif-

ferent regimes. At very low Ca, the major axis of the capsule is observed to evolve towards

the vorticity axis via a process termed drifting precession [20], till the capsule takes a stable

rolling motion (FIG. 4(a)). As Ca increases, the capsule orbit drifts towards an intermediate

equilibrium configuration where the capsule exhibits a wobbling behavior while precessing

about the vorticity axis (FIG. 4(b)); this motion is named stable precession in [20]. In

the regime of higher Ca, the capsule adopts a complex motion termed oscillating-swinging

(FIG. 4(c)), in which the long axis of the elongated capsule oscillates both about the shear

plane and about a mean inclination with respect to the flow direction, while the membrane

of the capsule rotates around its deformed shape with the capsule elongation oscillating

over time, as described by Dupont et al. [36]. With a further increase in Ca (FIG. 4(d)),

the oscillations about the shear plane in the oscillating-swinging motion vanish, and a pure

in-plane fluid-like swinging motion, as described by Walter et al. [17], is assumed eventually.

This qualitative transition of stable orbital motions for a prolate capsule agrees well with

the findings by Dupont et al. [36], which did not include bending resistance.
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(a) (b)

(c) (d)

FIG. 2: Evolution of θ̄ of a prolate capsule (AR = 2.0) with κ̂B = 0.02 and λ = 1 at (a) Ca

= 0.08, (b) Ca = 0.2, (c) Ca = 0.7, and (d) Ca = 1.5. Here the spontaneous shape of the

capsule is assumed to be the same as its rest shape.
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FIG. 3: Bifurcation behavior for a prolate capsule (AR = 2.0) with κ̂B = 0.02 and varying

λ. The black dashed lines at θ = 0◦ and θ = 90◦ represent the orbits for a capsule aligned

with the z axis and in the shear plane, respectively.
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(a)

(b)

(c)

(d)

FIG. 4: Time sequence images (side and front views) of a prolate capsule (AR = 2.0) with

κ̂B = 0.02 and λ = 1 taking a rolling (a, Ca = 0.08), wobbling (b, Ca = 0.2),

oscillating-swinging (c, Ca = 0.7), and swinging (d, Ca = 1.5) motion, respectively. The

initial orientation of the capsule is α = 5◦. The markers indicate the positions of a

membrane point initially on the equator of the capsule for (a), and a membrane point

initially on the major axis of the capsule for (b), (c) and (d).
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In addition, we examine the effect of spontaneous curvature on the orbital dynamics of

the prolate capsule. FIG. 5 shows the orbit evolution for a capsule with zero spontaneous

curvature (c0 = 0) everywhere on the membrane surface. For each Ca, the long-time orbit

is independent of the initial orientation, and thus only the results for α = 5◦ and α = 85◦

are shown here. Similar to the previous case, θ̄eq is observed to increase from 0◦ to 90◦

at increasing Ca. Same stable motion modes are determined, namely, rolling, wobbling,

oscillating-swinging, and swinging, associated with different Ca regimes. Cordasco and

Bagchi [20] also found a qualitatively similar transition of the orbital dynamics at increasing

Ca from drift precession (the rolling regime) to stable precession accompanied by a tank-

treading behavior of the membrane (the oscillating-swinging regime) for a prolate capsule

(AR = 2.0, λ = 1) with zero spontaneous curvature and small bending stiffness (κ̂B = 0.01).

These results suggest that the spontaneous curvature has a minor effect on the orbital

behavior of the capsule.

Using Eq. 10, we can predict the rheology for a suspension of prolate capsules in the

dilute limit. FIG. 6 shows the capillary-number dependence of the time-averaged intrinsic

viscosity and the dimensionless normal stress differences predicted for a dilute suspension of

such capsules all of which assume that same orbit for AR = 2.0 and κ̂B = 0.02. A decrease in

the intrinsic viscosity [η] with increasing Ca, i.e. shear-thinning, is observed for all viscosity

ratios considered here, and [η] decreases with increasing λ at each Ca (FIG. 6(a)). Shear-

thinning is the generally-expected behavior for dilute suspensions of deformable particles,

and indeed has also been observed for dilute suspensions of other types of capsules, such as

spherical capsules [12, 38, 39, 42, 43], oblate capsules [44], and biconcave discoidal capsules

[40, 41, 45]. Results for the dimensionless normal stress differences N1 and N2 are shown in

FIGs. 6(b) and 6(c), respectively. For all cases, N1 > 0 and N2 < 0, with |N2| ≪ N1. In

general, both N1 and |N2| decrease with increasing λ at each Ca, and increase monotonically

with Ca for λ = 1.0 and λ = 0.2. For λ = 5.0, however, N1 is observed to show a non-

monotonic dependency on Ca, while |N2| decreases with Ca.

B. Dynamics of prolate capsules with large bending stiffness

We found in the previous section that the long-time orbits for a prolate capsule with

small bending stiffness are always independent of the initial conditions, although the stable
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(a) (b)

(c) (d)

FIG. 5: Evolution of θ̄ of a prolate capsule (AR = 2.0) with κ̂B = 0.02 and λ = 1 at (a) Ca

= 0.08, (b) Ca = 0.2, (c) Ca = 0.8, and (d) Ca = 1.5. Here the spontaneous curvature is

assumed to be zero (c0 = 0) everywhere on the membrane surface.

orbital motions vary with capillary number. In this section, we investigate the dynamics of a

prolate capsule with large bending stiffness. The spontaneous shape of the capsule is always

assumed to be the same as its rest shape unless stated otherwise. We vary the viscosity

ratio λ, capillary number Ca, initial orientation α and aspect ratio AR of the capsule while

keeping the bending modulus κ̂B = 0.2. We reveal that large bending stiffness coupled with

high viscosity ratio can give rise to a multiplicity of attractors for the capsule dynamics,

which will be presented and discussed below.

Again, we begin with λ = 1 and AR = 2.0. Unlike the case with κ̂B = 0.02, in this case
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(a)

(b) (c)

FIG. 6: Intrinsic viscosity (a) and dimensionless normal stress differences (b,c) predicted

for a dilute suspension (with volume fraction Φ) of identical prolate capsules (AR = 2.0)

with κ̂B = 0.02 taking the same corresponding stable orbit at varying Ca.

the stable orbit for the capsule is always in the shear plane, as shown by the α-independent

convergence of θ̄ towards 90◦ at varying Ca in FIG. 7. The time it takes for this transient

convergence decreases in general with increasing Ca. This conclusion holds as λ decreases

from 1 to 0.2, and also as AR increases from 2.0 to 3.0 (not shown). In a previous numerical

study by Walter et al. [17], two regimes of stable orbital motion were found for a prolate

capsule with the major axis initially lying in the shear plane: a rigid-body-like tumbling

motion at low capillary number, and a fluid-like swinging motion at high shear rate, in
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(a) (b)

(c) (d)

FIG. 7: Evolution of θ̄ of a prolate capsule (AR = 2.0) with κ̂B = 0.2 and λ = 1 at varying

Ca. At low Ca the capsule takes a stable tumbling motion at long times ((a) Ca = 0.08

and (b) Ca = 0.2)). A tumbling-to-swinging transition is observed at moderate Ca ((c) Ca

= 0.8) before swinging becomes the attractor at high Ca ((d) Ca = 1.5).

which the capsule elongation and orientation both oscillate in shear flow with the membrane

continuously rotating around its deformed shape. Here we observe similar dynamics. At

low Ca, the capsule takes tumbling as the stable orbit (FIGs. 7(a) and 7(b)), while at

high Ca swinging becomes the attractor (FIG. 7(d)); a tumbling-to-swinging transition is

observed at moderate Ca (FIG. 7(c)), which is characterized by a nearly circular profile of

the deformed capsule in the shear plane and roughly the same length of the two principal

axes of the capsule during each half-period. A similar transition was also observed for a
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(a) (b) (c)

FIG. 8: Evolution of θ̄ of a prolate capsule (AR = 2.0) with κ̂B = 0.2 and λ = 5 at (a) Ca

= 0.2, (b) Ca = 0.65, and (c) Ca = 2.0.

prolate solid elastic particle in shear flow in both a theoretical prediction by Gao et al. [59]

and a numerical investigation by Villone et al. [60].

Now we consider the cases where the viscosity ratio λ is greater than unity. FIG. 8 shows

the evolution of θ̄ over time for a prolate capsule with AR = 2.0 and λ = 5 at varying Ca. At

low and high Ca regimes, the orbit of the capsule converges towards θ̄eq = 90◦ and θ̄eq = 0◦,

representing a stable tumbling and rolling motion, respectively (FIGs. 8(a) and 8(c)). At

intermediate Ca, however, the orbit taken by the capsule at long times is found to depend

on the initial orientation, as observed in FIG. 8(b). Several values of α ranging from 5◦

to 85◦ are considered here to illustrate the dependence of the long-time orbit on the initial

orientation, and the results for a range of Ca are displayed in FIG. 9. The key characteristic

of this regime is that multiple stable orbits coexist, as observed in FIGs. 9(a), 9(b) and

9(c). In this multiplicity regime, two stable solution branches are found as the capsule with

varying α evolves towards the long-time orbit. The lower branch always corresponds to a

stable rolling motion with θ̄eq = 0◦. For the upper branch, θ̄eq decreases with increasing Ca

from 90◦, which corresponds to a stable tumbling motion, to intermediate values representing

stable precessing motions about the shear plane. The multiplicity of attractors disappears

as Ca further increases, and θ̄eq = 0◦ (rolling) becomes the only stable orbit (FIG. 9(d)).

Another important observation is that the critical value of α for the two branches of the

evolution results, denoted as αc, increases as Ca increases. Here it is not necessary to

determine the exact values for αc; actually, a range for αc at each Ca is sufficient to show
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(a) (b)

(c) (d)

FIG. 9: Evolution of θ̄ of a prolate capsule (AR = 2.0) with κ̂B = 0.2 and λ = 5 at (a) Ca

= 0.65, (b) Ca = 0.8, (c) Ca = 0.9, and (d) Ca = 1.0.

this trend: αc ∈ (15◦, 30◦) at Ca = 0.65 (FIG. 9(a)), αc ∈ (30◦, 45◦) at Ca = 0.8 (FIG. 9(b)),

and αc ∈ (45◦, 60◦) at Ca = 0.9 (FIG. 9(c)).

The global effects of Ca on θ̄eq for the attractors and αc for the multiplicity regime

described above are summarized as a bifurcation diagram in FIG. 10(a). The values for θ̄eq

corresponding to the attractors in different regimes, either single or multiple, are represented

by the solid blue lines with circles, and the estimated values for αc by the dashed blue line

with circles. Again, there are always solutions at θ = 0◦ and θ = 90◦ that correspond to

the orbits for a capsule aligned with the z axis and in the shear plane, respectively. These

solutions are found to be unstable in certain regimes of Ca, as indicated by the dashed black
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(a)

Ca = 0.9 Ca = 1.0

(b)

FIG. 10: (a) Bifurcation behavior for a prolate capsule (AR = 2.0) with κ̂B = 0.2 and

λ = 5. The values for θ̄eq corresponding to the attractors are represented by the solid blue

lines with filled circles, and the estimated values for αc by the dashed blue line with filled

circles (the error bars indicating the range for αc at each Ca in the multiplicity regime).

The unstable solutions at θ = 0◦ and θ = 90◦ are indicated by the dashed black lines with

crosses. (b) Evolution of θ̄ for a capsule with α = 60◦ initially at Ca = 0.9. When a stable

orbit is reached, the value of Ca is suddenly increased to 1.0, and the capsule evolves

towards a new stable orbit.

lines with crosses. Indeed, there is a symmetry-breaking bifurcation away from θ = 90◦

between Ca = 0.6 and Ca = 0.65, and away from θ = 0◦ between Ca = 0.4 and Ca = 0.52.

Two branches of attractors are observed. With any instantaneous orientation θ above the

dashed blue line, the capsule would be attracted to a stable orbit on the upper branch of

the attractors at the corresponding Ca, while any value for θ below the dashed blue line

converges towards a rolling orbit on the lower branch with θ̄eq = 0◦. The turning point at

Ca ≈ 0.9 corresponds to a saddle-node bifurcation – for higher Ca this intermediate solution

loses existence. This loss of existence is indicated by computing the solution at Ca = 0.9

and suddenly increasing Ca from 0.9 to 1.0 (FIG. 10(b)). The capsule now evolves from a

stable precession to a rolling motion as taken by a capsule with the same initial orientation

initially at Ca = 1.0.

Similar to our findings, a tumbling-to-rolling transition was also observed for a prolate
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capsule (AR = 2.0, λ = 1) with zero bending resistance but in the presence of a small particle

inertia [21], and a multiplicity of attractors was found in the transition regime. Other studies

[61–63] have also reported a dependence of the stable orbit on the initial orientation for a solid

prolate particle at certain Reynolds number regimes. A recent experimental investigation

of red blood cells under shear flow in the dilute regime by Minetti et al. [64] has revealed

hysteresis loops in the fraction of tank-treading cells upon increasing or decreasing shear

rate. This result implies the presence of at least two populations of cells with different

orbital dynamics that stably coexist in the same shear flow. This is exactly the situation

that our computational results imply. FIG. 11(a) shows the bifurcation behavior of the

attractors for a prolate capsule (λ = 5) with various aspect ratios. It is observed that as AR

increases from 2.0 to 3.0, the onset of the multiplicity regime occurs at a higher Ca, and this

regime becomes broader. The effect of the viscosity ratio λ is illustrated in FIG. 11(b) for

a capsule with AR = 3.0. In the parameter regime considered here, the multiplicity regime

starts at a lower Ca and becomes narrower with increasing λ, showing an effect opposite to

that of the aspect ratio. The orbital modes are determined for the attractors on the upper

branch of the multiplicity, and summarized in a phase diagram over a wide range of Ca and

λ (FIG. 11(c)). Snapshots of a capsule (λ = 6) taking a stable tumbling, precessing, and

rolling motion are shown in FIGs. 12(a), 12(b) and 12(c), respectively, as examples.

The multiplicity in attractors for a single prolate capsule, as described above, implies a

multiplicity in the rheological properties for a dilute suspension of such capsules (AR = 3.0

and κ̂B = 0.2). Results are summarized in FIG. 13 for two viscosity ratios, λ = 3.0 and

λ = 5.0. For each λ, the squares represent the pure tumbling regime at lower Ca, while the

circles represent the pure rolling regime at higher Ca; the multiplicity regime at intermediate

Ca is bounded by vertical dotted lines, the downward and upward triangles representing the

attractors on the upper branch (either tumbling or precessing) and the stable rolling orbits

on the lower branch, respectively. All capsules are assumed to take the same stable orbit

at each Ca. In this idealized situation, two different stable values for the particle stress can

coexist when Ca is in the multiplicity regime. A general shear-thinning behavior is observed

in FIG. 13(a) for both viscosity ratios, and minor differences are observed between these two

cases. This shear-thinning behavior is also observed for λ = 1.0 and λ = 0.2 (not shown).

Another observation is that [η] is higher when the capsules are taking a stable tumbling

(or precessing) motion than it is when they are rolling. Mueller et al. [65] numerically
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determined the Einstein coefficient for a dilute suspension of inertialess non-spherical solid

particles with a distribution of orientations, and reported similar findings: the contribution

of a prolate particle to the suspension viscosity (i.e. the yx-component of the particle’s force

dipole) decreases as the orbit of the capsule evolves from tumbling to rolling. Huang et al.

[62] showed that this conclusion still holds in the presence of small inertia.

For the dimensionless normal stress differences N1 and N2 (FIGs. 13(b) and 13(c)), again,

the values are always positive for N1 and negative for N2, with |N2| ≪ N1. Specifically,

N1 displays an obvious non-monotonic dependency on Ca when the capsules are tumbling

or precessing, while having smaller values and showing a small variation with Ca for a

suspension of rolling capsules. This trend with Ca is qualitatively similar for both viscosity

ratios, even though the magnitude of N1 corresponding to each line is much smaller for the

higher viscosity ratio (λ = 5.0). A non-monotonicity is also observed for N2. Overall, as a

result of the existence of the multiplicity regime, the values for each quantity of the rheology

follow the path along the upper branch, and eventually fall onto the lower branch through

the right vertical dotted line upon quasi-statically increasing Ca; conversely, the values move

along the lower branch and jump onto the upper branch via the left vertical dotted line upon

quasi-statically decreasing Ca. These processes are illustrated by the arrows in each figure

of FIG. 13.

The presence of this complex rheological behavior naturally raises the question of whether

there might be important fluid-mechanical consequences such as shear banding. In the dilute

regime these phenomena cannot arise because the particle contribution to the total stress

is much smaller than the stress due to the solvent, so the flow curve (shear stress vs. strain

rate) will not deviate substantially from linear. If the multiplicity were to persist to large

concentration, the resulting flow curve is of the type that would lead not to shear banding

(where two shear rates exist for the same shear stress) but to vorticity banding (where two

shear stresses exist for the same shear rate) [66].

More generally, at finite concentration the particles are hydrodynamically coupled, which

may result in changes to the dynamics. One natural question is whether the orbits of

particles can become synchronized. While possible, we consider this unlikely, as while the

particles are rotating, they are also moving past one another due to the mean shear and

thus only in close proximity for a time scale of a few strain units.
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(a) (b)

(c)

FIG. 11: Effects of capsule aspect ratio (a, λ = 5) and the viscosity ratio (b, AR = 3.0) on

the bifurcation behavior of the attractors for a prolate capsule with κ̂B = 0.2. Again, the

black dashed lines at θ = 0◦ and θ = 90◦ correspond to the orbits for a capsule aligned

with the z axis and in the shear plane, respectively. (c) Phase diagram of stable orbital

motions for a prolate capsule (AR = 3.0) with κ̂B = 0.2 over a range of Ca and λ. The

multiplicity regime is shaded in blue, and only the motion modes for the attractors on the

upper branch are shown here (the attractors on the lower branch always correspond to

rolling and thus are not shown here). T denotes tumbling, P precessing, and R rolling.
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(a)

(b)

(c)

FIG. 12: Time sequence images (side and front views) of a prolate capsule (AR = 3.0)

with κ̂B = 0.2 and λ = 6.0 taking a tumbling (a, Ca = 0.6), precessing (b, Ca = 1.4), and

rolling (c, Ca = 2.0) motion, respectively. The initial orientation of the capsule is α = 75◦.

The markers indicate the positions of a membrane point initially on the major axis of the

capsule for (a) and (b), and a membrane point initially on the equator of the capsule for

(c).
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(a)

(b) (c)

FIG. 13: Intrinsic viscosity (a) and dimensionless normal stress differences (b,c) predicted

for a dilute suspension (with volume fraction Φ) of identical prolate capsules (AR = 3.0)

with κ̂B = 0.2 taking the same corresponding stable orbit(s) at varying Ca for λ = 3.0 and

λ = 5.0. In each case, the squares represent the pure tumbling orbits at lower Ca, and the

circles represent the pure rolling orbits at higher Ca; the downward and upward triangles

represent the attractors on the upper branch (either tumbling or precessing) and the stable

rolling orbits on the lower branch of the multiplicity regime (bounded by vertical dotted

lines), respectively.
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IV. CONCLUSION

In this work we have systematically explored the orbital dynamics of an inertialess

neutrally-buoyant deformable prolate capsule in unbounded simple shear flow using direct

simulations. For a capsule with small bending stiffness, we revealed that the orbit always

converges towards a unique stable equilibrium state independent of the initial orientation.

As Ca increases, the stable orbit evolves from the z (vorticity) axis to the shear plane. This

trend holds qualitatively for all values of λ and AR considered in this study. Four dynamical

modes for the stable orbit, namely, rolling, wobbling, oscillating-swinging, and swinging, are

determined at increasing Ca, similar to the findings by Dupont et al. [36]. The spontaneous

curvature is shown to have a minor effect on the orbital dynamics of the capsule, although

we believe that the artificial capsules in experiments are more likely to adopt a spontaneous

shape the same as or close to the rest shape, instead of a flat sheet, which would lead to

higher stress and strain energy in the membrane surface.

For a capsule with large bending stiffness, we found that the viscosity ratio λ plays a

significant role in the determination of the stable orbits. When λ . 1, the stable orbit is

always in the shear plane. Two regimes of stable orbital motions are identified: a rigid-

body-like tumbling motion at low Ca, and a fluid-like swinging motion at high Ca. When

λ > 1, the stable motion is tumbling and rolling at low and high Ca regimes, respectively,

independent of the initial orientation. During the transition, however, the capsule is found

to adopt multiple stable orbital modes including tumbling, precessing and rolling, depending

on the initial orientation. This multiplicity regime becomes broader as the aspect ratio of

the capsule increases, while showing an opposite dependency on the viscosity ratio. We also

predicted a general shear-thinning behavior and a multiplicity in the rheological properties

for a dilute suspension of prolate capsules all assuming the same orbit, as a result of the

multiplicity in the attractors for the capsule dynamics.

We note, though, that the membrane model adopted in this work has limitations. The

model assumes that the capsule membrane is infinitely thin, while incorporating bending

resistance by simply adding a bending energy cost function to account for the effect of finite

thickness of the capsule membrane. Such a decoupled energy-based model, as pointed out

in a prior work by Dupont et al. [67], may be most suitable for particles with a composite

membrane such as RBCs, which have a membrane comprising a fluid lipid bilayer tethered
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to an elastic spectrin network [68]. However, for artificial capsules that may likely have a

homogeneous membrane with finite thickness, the accuracy of this model may need further

investigation. In addition, the feasibility of this model in terms of describing large bending

resistance of the membrane, as considered in this study, may be questionable. Future works

should examine the robustness of this model against other membrane models that consider

non-zero thickness.

Overall, this work has revealed rich orbital dynamics for single prolate capsules in shear

flow over a broad domain of parameter space, and illustrated how the stable orbits for a

prolate capsule can be linked to the rheological properties for a suspension of such capsules

in the dilute limit. We hope that these results will motivate experiments to probe the

phenomenon of multiplicity of stable orbits predicted here.
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