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Motivated by the laboratory experiments of Rodenborn et al. [Physics of Fluids 23,

026601 (2011)], a weakly nonlinear model is developed that accounts for viscous dissipation

in the reflection of a finite-width internal wave beam from a uniform slope. Asymptotically,

at high Reynolds number, viscous effects come into play predominantly in the immediate

vicinity of the critical slope angle equal to the propagation angle to the horizontal of the

incident wave beam. However, in the experiments of Rodenborn et al. where the Reynolds

number is moderately large, it turns out that viscosity is important throughout the slope

range considered, which explains the overall poor agreement of their observations with earlier

inviscid models. The predictions of the proposed model, by contrast, are in good qualitative,

and in some respects quantitative, agreement with these experiments and also they compare

favorably against numerical Navier–Stokes simulations.

I. INTRODUCTION

Internal gravity wave propagation in continuously stratified fluids is anisotropic due to

gravity which provides a preferred direction. This inherent anisotropy manifests, among
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other interesting phenomena, in the way internal waves reflect at sloping boundaries: incident

and reflected wave rays make the same angle to the direction of gravity [1], rather than the

direction perpendicular to the boundary as would be the case for isotropic wave motion. As a

result of this unusual rule, wavelengths are reduced when internal waves reflect from a slope

in the upslope direction [1]. Thus, upon upslope reflection, energy is transferred to smaller

scales – a focusing effect that promotes instabilities and mixing close to boundaries [2, 3]

– which supports the belief that internal wave reflections by topography play a part in the

redistribution and eventual dissipation of tidal energy in the ocean [4, 5].

This focusing due to reflection is most dramatic when the angle of incidence to the hori-

zontal matches the boundary slope: at this critical condition, the reflected wavelength tends

to zero while the velocity amplitude becomes infinite. This singular behavior that follows

from linear inviscid considerations [1], was reexamined by Dauxois and Young [6] using a

weakly nonlinear, slightly viscous approach for a reflecting nearly monochromatic sinusoidal

plane wave. They came to the conclusion that near-critical reflection may lead to overturning

of the isopycnals close to the slope, suggesting the occurrence of convective instability, which

has been confirmed experimentally [7] and numerically [8]. An asymptotic theory for near-

critical reflection of a plane wave beam with locally confined spatial profile [9] was developed

by Tabaei [10], following a similar approach to Ref. [6] but under the assumption of inviscid

flow.

Another notable feature of internal wave reflections is the generation of higher harmonics

due to nonlinear interactions of the incident and reflected waves. This type of interaction

was first studied theoretically assuming weakly nonlinear sinusoidal plane waves in an in-
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viscid fluid, by Thorpe [11], who pointed attention to certain special configurations where

resonances of the induced second- and third-harmonic waves are possible. These resonances

were revisited in very recent theoretical and numerical work [12], which indicates that, un-

like monochromatic sinusoidal waves, in the case of finite-width wave beams the resonant

response is bounded. Furthermore, when the boundary slope is increased towards critical,

viscous dissipation dominates over the energy transfer to the second harmonic due to nonlin-

ear interactions.

Aside from possible resonances, however, reflections of internal wave beams with locally

confined profile are generally accompanied by radiating higher harmonics. Such secondary

reflected beams were brought out by numerical simulations of the ocean internal tide [13],

which prompted Tabaei et al. [14] to propose a weakly nonlinear inviscid model for the reflec-

tion of a locally confined beam with constant frequency ω from a uniform slope. According

to this model, the leading-order (quadratic) nonlinear interactions in the overlap region of

the incident and the primary reflected beam drive a mean-flow and a second-harmonic dis-

turbance; the former stays in the vicinity of the slope while the latter, assuming 2ω is less

than the background buoyancy frequency, radiates away along a direction specified by the

dispersion relation. These predictions are consistent with laboratory experiments [15, 16] as

well as numerical simulations [17, 18].

The main motivation for the present paper comes from the experimental and numerical

study by Rodenborn et al. [19] (hereafter referred to as RKZS), which aimed at quantitative

comparison with the analyses of Thorpe [11] and Tabaei et al. [14]. Their laboratory exper-

imental setup used a moving-plate wave generator [20, 21] at one end of a tank to excite a
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finite-width wave beam with prescribed profile and frequency which travelled along the tank

at the angle θ = 22.7◦ to the horizontal in keeping with the dispersion relation. The beam

was then reflected from an inclined plate at the other end of the tank, and by varying the

plate inclination α to the horizontal, RKZS made a systematic study of the strength of the

radiated second harmonic as a function of the boundary slope in the range 0 < α < 30◦. The

experimental observations, however, did not corroborate the theoretical predictions for the

slope that gives the strongest second-harmonic response. According to Tabaei et al. [14] this

maximum would be expected at the critical condition α = θ = 22.7◦, where the (inviscid)

theoretical response features an infinite resonance peak. Instead, the experimental second-

harmonic response is a bell-shaped curve with peak at α = 13.2◦, which is also quite different

from 8.2◦, the slope angle at which second-harmonic resonance is predicted by Thorpe [11] for

a sinusoidal wave incident at θ = 22.7◦. Furthermore, RKZS conducted numerical Navier–

Stokes simulations for various incident-beam peak amplitudes and fluid viscosities. These

numerical results support the experimental observations and, moreover, appear to suggest

that the poor agreement with the model by Tabaei et al. [14] is due to the weakly nonlinear

assumption which limits the validity of the model to very small-amplitude incident beams,

weaker than those measurable experimentally.

Here, we reexamine the experimental observations of RKZS in the light of a weakly non-

linear model that includes the dominant effects of viscous dissipation in the reflection of an

internal wave from a slope. In view of the experimental setup of RKZS, our analysis focuses

on finite-width wave beams and is distinct from an earlier viscous treatment of reflecting

modulated wavetrains [22]. It is argued that viscous effects cannot be ignored close to the
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critical condition α = θ, and the range of near-critical slope angles where dissipation plays an

essential part is controlled by the flow Reynolds number. Under the experimental flow condi-

tions of RKZS, in particular, we find that viscosity is important throughout the slope range

0 < α < 30◦, while for Reynolds number 10 times the experimental value this range shrinks

to 10◦ . α < 30◦. Thus, the main reason for the poor agreement between the experimental

observations and the model of Tabaei et al. [14] is viscous dissipation, in contrast to the

incident-beam amplitude which is a secondary factor. In addition, our theoretical results for

the primary- and second-harmonic responses compare favorably against numerical Navier–

Stokes simulations. Specifically, in regard to the strength of the radiated second-harmonic

beam, the present model predicts a maximum close to the experimental value α = 13.2◦.

Furthermore, the theoretical estimates for the ‘intensity’ defined in RKZS to measure the

second-harmonic response show similar qualitative behavior to the observations as the slope

is varied. Quantitatively, however, they are an order of magnitude smaller (by a constant

scaling factor) than the experimental ones (reported in Fig. 7 of RKZS); the reason for this

discrepancy is not known.

II. VISCOUS SCALINGS

Apart from assuming a viscous fluid (kinematic viscosity ν∗), the present formulation par-

allels that of the inviscid model in Tabaei et al. [14]. Specifically, we consider the reflection

of internal waves from a rigid slope (constant angle α to the horizontal) in a non-rotating,

incompressible, uniformly stratified Boussinesq fluid (constant buoyancy frequency N∗). Fur-

thermore, there are no variations along the slope isobaths (transverse direction) so the flow is
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two-dimensional. Under these flow conditions, employing a slope-oriented coordinate system

with x in the upslope direction and y perpendicular to the slope (see Fig. 1), the streamfunc-

tion ψ(x, y, t) and the reduced density ρ(x, y, t) are governed by the dimensionless equations

ρt + ψx cosα− ψy sinα+ J(ρ, ψ) = 0, (1a)

∇2ψt − ρx cosα+ ρy sinα+ J(∇2ψ,ψ) =
1

Re
∇4ψ, (1b)

where J(a, b) = axby − aybx is the Jacobian. To make variables dimensionless, we have used

the time scale 1/N∗ and a characteristic wave length L∗ (to be specified later). Based on

these scales, the Reynolds number is defined as

Re =
N∗L

2
∗

ν∗
. (2)

Furthermore, for a viscous fluid, the tangential u = ψy and the normal v = −ψx to the slope

velocity components vanish on the slope

ψx = ψy = 0 (y = 0). (3)

Before discussing the nonlinear reflection of internal wave beams, it is useful to estimate

the effects of viscosity on the linear reflection of a sinusoidal plane wave. To this end, we
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FIG. 1. Geometry of internal wave beam reflection from a slope of angle α, for the case when the
incident beam hits the slope at an angle θ < α, to the horizontal. The primary reflected beam is also
inclined to the horizontal by θ, while the radiated second-harmonic beam stretches along θ2 to the
horizontal, where sin θ2 = 2 sin θ < 1.

consider disturbances in the form

(ψ, ρ) ∝ eil(x+my)e−iωt, (4)

where the frequency ω and the upslope wavenumber l are taken to be real while m, which

controls the behavior normal to the slope, is possibly complex. (For algebraic convenience,

rather than the wavenumber normal to the slope, here we work with m, the ratio of the

normal to the tangential wavenumber.) Upon substitution of expressions (4) into Eqs.(1),

ignoring the nonlinear terms, it is found that

m2(ω2 − sin2 α) +m sin 2α− cos2 α+ ω2 +
i

Re
ωl2(1 +m2)2 = 0. (5)
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In the inviscid limit (Re → ∞), Eq.(5) reduces to the familiar internal wave dispersion relation

which is quadratic in m. For given 0 < ω = sin θ < 1 and l > 0 the two (real) roots

minc = cot(α+ θ), mrefl = − cot(θ − α) (6)

then correspond to an incident and a reflected wave at the angle θ to the horizontal (see Fig.

1). These two waves can be readily combined to satisfy the inviscid condition v = −ψx = 0

on the slope y = 0

ψ = eilx
{

eilmincy − eilmrefly
}

e−iωt + c.c.. (7)

For finite Re, by contrast, Eq.(5) is quartic in m and has four roots m = m1, · · · ,m4.

Assuming Re ≫ 1, m1 and m2 are slightly perturbed from the inviscid roots in Eq.(6),

m1 = minc − i
s1
Re

+ · · · , m2 = mrefl + i
s2
Re

+ · · · , (8a)

where

s1 =
l2

2 cos θ sin4(α+ θ)
, s2 =

l2

2 cos θ sin4(θ − α)
. (8b)

Since Im {lm1} < 0 and Im {lm2} > 0, viscous dissipation attenuates the incident/reflected

wave as it approaches/leaves the slope, in keeping with causality. The other two roots of
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Eq.(5) are of purely viscous origin

m3,4 ∼ s±Re
1/2, (9a)

where

s± = ±(1 + i)√
2

(sin2 θ − sin2 α)1/2

l
√
sin θ

. (9b)

Out of these, only the root associated with exponential decay for y ≫ 1 is relevant here and

results in a disturbance that is confined in y = O(Re−1/2). This boundary-layer solution can

be combined with the incident and reflected waves corresponding to m1 and m2 in Eqs.(8), to

satisfy the viscous boundary conditions (3). Specifically, for θ > α, the viscous counterpart

of the inviscid reflection in Eq.(3) takes the form

ψ = eilx
{

eilm1y +R eilm2y − (1 +R)eils+Re1/2y
}

e−iωt + c.c., (10a)

where

R = −1 +
minc −mrefl

s+Re
1/2

+ · · · . (10b)

Thus, in addition to introducing an O(Re−1/2) boundary layer next to the slope, viscosity

makes an O(Re−1/2) correction to the reflection coefficient R from its inviscid value of −1 in

Eq.(7).

The effect of viscosity becomes far more pronounced, however, if the angle of incidence

θ is close to the slope angle α. This is to be expected because at the critical angle θ = α

the inviscid reflection is singular: mrefl → ∞ as θ → α according to Eq.(6). As a result,

the reflected wave, which in this limit propagates along the slope, features vanishingly small
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wavelength and the upslope flow velocity ψy → ∞. Viscosity heals this singular behavior

by ensuring that the reflected wavenumber m2 remains finite, but large, when θ ≈ α and

Re ≫ 1. Specifically, returning to Eqs.(8), for |θ − α| = δ ≪ 1, the O(1/Re) contribution to

m2 becomes O(1/δ4Re), so when δ = O(Re−1/3) this viscous correction is comparable to the

inviscid reflected wavenumber mrefl = O(1/δ). Thus, in the near-critical range

α = θ + σRe−1/3, (11)

where σ = O(1), viscous effects come to center stage and no longer can be treated as a small

perturbation.

This elevated role of viscosity is also evident from the characteristic equation (5). In the

near-critical reflection range defined by Eq.(11), for Re ≫ 1, m1 = minc + O(1/Re) as given

in Eq.(8a) is still a root of Eq.(5) and corresponds to the incident, nearly inviscid wave; the

other three roots, however, are controlled by Re

m ∼ p

l
Re1/3, (12a)

where p satisfies

i

2 cos θ
p3 − σp+ l = 0. (12b)

Two of the roots of this cubic have Im{p} > 0, consistent with decaying behavior away from

the slope (y ≫ 1); one of these corresponds to an O(Re−1/3) viscous boundary layer and the

other to the reflected wave, which is confined in an O(Re−1/3) region next to the slope. These

two disturbances can be combined with the incident wave to satisfy the boundary conditions
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(3) on the slope.

From the discussion above, for Re ≫ 1 inviscid analysis is expected to provide a good

approximation to internal wave reflection only if the incidence angle θ is not too close to the

slope angle α; that is, in view of Eq.(11), only if the condition |σ| ≫ 1, or

|α− θ| ≫ Re−1/3, (13)

is also met. Thus, depending on how large Re is, there is a range of incidence angles near the

critical θ = α for which viscous effects cannot be ignored. For instance, in the experimental

setup of RKZS, N∗ = 1.63 rad/s, ν∗ = 0.01 cm2/s and taking the length scale L∗ = 5cm/2π

(carrier wavelength/2π of the incident wave beam), we find Re = 103 so Re−1/3 = 0.21.

Furthermore, in these experiments, the slope angle was varied in the range 0 ≤ α ≤ θ

for three incidence angles θ = 15◦, 22.7◦, 28◦, so |α− θ| ≤ 0.49 radians. Under these flow

conditions, the inviscid criterion in Eq.(13) is met rather marginally even at the extreme

α = 0, and viscous effects are likely to be important throughout the slope range 0 ≤ α ≤ θ.

This claim is supported by the theoretical model and numerical simulations discussed below

(see Sec.V).

III. NEAR-CRITICAL BEAM REFLECTION

Motivated by the above qualitative discussion, we now develop a weakly nonlinear theory

for near-critical reflection of internal wave beams, accounting for viscous effects when Re ≫ 1

under the scaling in Eq.(11). Our approach blends the inviscid analysis of this problem

presented in Tabaei [10] with the slightly viscous treatment of near-critical reflection of a
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sinusoidal plane wave in Dauxois and Young [6]. In view of these earlier closely related

studies, only the main steps of the present analysis will be highlighted.

Assuming steady state, the incident wave beam is a superposition of sinusoidal waves of

the form in Eq.(4) having the same frequency ω = sin θ, which fixes the angle of incidence θ,

ψinc = ε
{

Qinc(x, y)e−iωt + c.c.
}

, (14)

where

Qinc(x, y) =

∫

∞

0
dlA(l) exp {il(x+m1y)} (15)

and m1 = cot(θ + α) + O(1/Re) in accordance with Eq.(8a). Here, A(l) is a prescribed

function that controls the beam profile and ε = U∗/N∗L∗ ≪ 1 is an amplitude parameter

that measures nonlinearity, where U∗ is a characteristic velocity in the incident beam.

Turning next to the reflected wave beam, our discussion in Sec.II suggests that viscosity has

an O(1) effect on near-critical reflection, namely when |α− θ| . O(Re−1/3). Furthermore,

under these flow conditions, the reflected disturbance forms an O(Re−1/3) thick boundary

layer next to the slope. However, when θ is close to α (|α− θ| = δ ≪ 1) nonlinearity is also

expected to come into play because, according to Eq.(6), the inviscid wavenumber normal to

the slope mrefl = O(1/δ) ≫ 1. As a result, the reflected beam behaves as a boundary layer,

whose thickness is O(δ). Furthermore, the upslope beam velocity ψy as well as the density ρ of

the reflected beam become O(ε/δ) and are large relative to the O(ε) incident wave beam. This

resonant behavior, in turn, amplifies the interaction of the reflected beam with the O(ε2/δ2)
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second-harmonic (∝ e−2iωt) and mean-flow disturbances induced by quadratic interactions of

the incident and reflected beams near the slope.

As shown in Refs. [6, 10], this nonlinear interaction mechanism can have an O(1) effect

on the upslope evolution of the reflected beam profile when δ = |α− θ| . O(ε2/3). Thus,

at near-critical reflection, nonlinearity and viscosity are equally important if Re−1/3 ∼ ε2/3.

This balance is achieved by taking

1

Re
= νε2, (16)

where ν = O(1). Then, the near-critical reflection range defined by Eq.(11) may alternatively

be expressed in terms of ε

α = θ + σ̃ε2/3, (17)

where σ̃ = σν1/3 = O(1).

Under the above scalings, we now focus on the boundary layer that forms next to the slope

and contains the reflected wave beam. Employing the boundary-layer coordinate Y = ε−2/3y,

ψ(x, Y, t) and r(x, Y, t) = ε2/3ρ are expanded as follows

ψ = εψ1 + ε4/3ψ2 + ε5/3ψ3 + · · · , (18a)

r = εr1 + ε4/3r2 + ε5/3r3 + · · · . (18b)

Here, ρ has been re-scaled to account for the resonant behavior of ρ = O(ε/δ) = O(ε1/3)

in the near-critical range δ = O(ε2/3) defined in Eq.(17). Substituting these expansions in
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Eqs.(1), to leading order, we obtain

ψ1 = q(x, Y )e−iωt + c.c., (19a)

r1 = iqY e
−iωt + c.c.. (19b)

Here, q(x, Y ) is the yet undetermined boundary layer profile which must also satisfy the

boundary conditions (3) on the slope

qx = qY = 0 (Y = 0). (20)

In addition, matching of the boundary-layer solution in Eq.(19a) with the incident wave in

Eq.(14) at the outer edge of the boundary layer requires that

lim
Y→∞

q = Qinc(x, y = 0). (21)

Proceeding to the next order, from the O(ε2/3) terms in Eq.(1a) and the O(1) terms in

Eq.(1b), along with using Eqs.(19), we find that

ψ2 =

{

i

ω

∫ Y

0
dY ′J(q, qY ′)e−2iωt + c.c.

}

+
i

ω
J(q, q∗), (22a)

r2 =
1

ω

{

J(qY , q)e
−2iωt + J(q, q∗Y )

}

+ c.c.. (22b)

It should be noted that both the second-harmonic and the mean-flow components of ψ2

above automatically satisfy the boundary conditions (3) on the slope (Y = 0) since q does so

according to Eq.(20). In regard to the far-field behavior of ψ2, using the matching condition
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in Eq.(21), it is clear that the induced mean flow vanishes as Y → ∞, so it does not extend

beyond the boundary layer. The induced second harmonic, however, approaches a finite limit

for Y ≫ 1

ψ2 ∼
i

ω

∫

∞

0
dY ′J(q, qY ′)e−2iωt + c.c.. (23)

Thus, to achieve matching, it is necessary to allow for a second-harmonic reflected disturbance

far from the slope (y = O(1)). This ‘outer’ response is driven by quadratic interactions in the

boundary layer and in the case 2ω < 1 takes the form of a radiating beam. We shall return

to this point in Sec.IV.

To determine the boundary-layer profile q(x, Y ), we return to Eqs.(1) and collect primary-

harmonic (∝ e−iωt) terms to the next order, namely O(ε) in Eq.(1a) and O(ε1/3) in Eq.(1b).

These terms also include contributions from the interaction of the leading-order disturbance in

Eqs.(19) with the induced second-harmonic and mean-flow corrections in Eqs.(22). However,

similar to the analyses in Refs. [6, 10], after significant algebra it turns out that these nonlinear

(cubic) terms cancel out, leaving the following linear evolution equation for q

iν

2 cos θ
qY Y Y Y + σ̃qY Y − qxY = 0. (24)

This equation is solved by taking Fourier transform in x

iν

2 cos θ
q̂Y Y Y Y + σ̃q̂Y Y − ilq̂Y = 0, (25)
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along with the boundary conditions in Eq.(20)

q̂ = q̂Y = 0 (Y = 0), (26)

and the matching condition in Eq.(21)

lim
Y→∞

q̂ = Q̂inc(l, y = 0), (27)

where

q(x, y) =

∫

∞

−∞

dleilxq̂(l, Y ). (28)

Furthermore, Eq.(15) indicates that

Q̂inc(l, 0) = A(l) (l > 0), Q̂inc(l, 0) = 0 (l < 0). (29)

In view of Eq.(29), the solution to the boundary-value problem for q̂(l, Y ) governed by

Eqs.(25)–(27) takes the form

q̂ = A(l)

{

1 +
p̃1 exp(ip̃2Y )− p̃2 exp(ip̃1Y )

p̃2 − p̃1

}

(l > 0), (30a)

q̂ = 0 (l < 0), (30b)
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where p̃1,2 are the roots of the cubic equation

iν

2 cos θ
p̃3 − σ̃p̃+ l = 0 (31)

with Im {p̃1,2} > 0, in keeping with the matching condition (27). Recalling that σ̃ = σν1/3,

where ν = 1/(Reε2) according to Eq.(16), these roots are related to those of the cubic in

Eq.(12b) via p̃1,2 = ν−1/3p1,2.

Finally, upon inverting the Fourier transform in Eq.(28) with q̂ given by Eqs.(30) and

making use of Eqs.(14) and (15), the overall solution for the incident and the (primary)

reflected beam can be expressed as

ψ = εQ1(x, y)e
−iωt + c.c., (32a)

where

Q1(x, y) = Qinc(x, y) +

∫

∞

0
dleilxA(l)

p1 exp(iRe
1/3p2y)− p2 exp(iRe

1/3p1y)

p2 − p1
. (32b)

Since the leading-order nonlinear terms in Eq.(24) drop out, this linear viscous solution is

expected to be also valid for small but finite ε.

IV. RADIATED SECOND HARMONIC

While the primary reflected beam is not affected by nonlinearity to leading order, quadratic

nonlinear interactions between this and the incident beam give rise to a second-harmonic

reflected disturbance that extends away from the slope. Furthermore, if 2ω < 1 this nonlinear

feature manifests as a radiating beam at the angle θ2, where 2ω = sin θ2 (see Fig. 1). Based on
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the asymptotic theory outlined in Sec.III, it is possible to compute the radiating beam profile

via matching with the second-harmonic response at the outer edge of the boundary layer

(Y ≫ 1) in Eq.(23). In this asymptotic approach, as the angle θ2 is far from critical, viscous

effects on the second-harmonic beam propagation would be entirely absent because in the

limit Re ≫ 1 they are of higher order in comparison with the near-critical primary reflected

beam. However, in situations such as the experiments of RKZS where Re is moderately

large, evidently, the induced second-harmonic beam is attenuated away from the slope due

to viscous dissipation.

To allow for this possibility, rather than employing asymptotic matching, we shall compute

the radiated second harmonic directly from Eqs.(1), using Eqs.(32) to estimate the quadratic

interactions of the incident and the primary-harmonic reflected beam. Specifically, assuming

0 < ε≪ 1, we first expand ψ in harmonics

ψ = ε
{

Q1(x, y)e
−iω t + c.c.

}

+ ε2
{

Q2(x, y)e
−2iω t + c.c.

}

+ · · · (33)

with an analogous expansion for ρ, where the O(ε) term accounts for the incident and the

primary-harmonic reflected beam in Eqs.(32). These expansions are then substituted into

Eqs.(1) with the viscous term in Eq.(1b) intact. Upon collecting second-harmonic (∝ e−2iωt)

terms, after some algebra, we obtain the following equation for the second-harmonic profile

Q2

(

4ω2 − sin2 α
)

Q2yy + sin 2αQ2xy +
(

4ω2 − cos2 α
)

Q2xx −
2i

Re
ω∇4Q2 = f, (34)
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where

f = iω

{

−2J(∇2Q1, Q1) +
∂

∂χ
J(Q1χ, Q1)

}

, (35)

with ∂/∂χ ≡ i (cosα∂/∂x− sinα∂/∂y)/sin θ. As expected, the forcing term f(x, y) in

Eq.(35) derives from quadratic interactions of the incident and the primary reflected beam

near the slope. In addition, Q2 must obey the boundary conditions (3) on the slope

Q2x = Q2y = 0 (y = 0) (36)

and should also decay far from the slope

Q2 → 0 (y → ∞). (37)

The above boundary-value problem forQ2 is tackled by a similar procedure to that followed

earlier for solving Eqs.(25)–(27) that govern the primary reflected beam. Briefly, taking

Fourier transform in x as before, Eq.(34) becomes

(

4ω2 − sin2 α
)

Q̂2yy + il sin 2α Q̂2y − l2
(

4ω2 − cos2 α
)

Q̂2 −
2iω

Re

(

d2

dy2
− l2

)2

Q̂2 = f̂ . (38)

Since Q1 in Eq.(32b) involves l > 0 only (Q̂1 = 0 for l < 0), f̂ = 0 for l < 0; hence,

Q̂2 = 0 for l < 0 as well. Focusing then on l > 0, the characteristic equation for determining

homogeneous solutions (∝ eilm̃y) of the ordinary differential equation (38) is readily deduced

from Eq.(5) by letting ω → 2ω = sin θ2, m → m̃. Out of the four characteristic roots,
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only two are consistent with the causality condition (37), one corresponding to a radiating

wave attenuated by viscosity at the angle θ2 and the other to a boundary-layer disturbance

confined near the slope. These two homogeneous solutions are combined with a particular

solution of Eq.(38) that decays as y → ∞ (obtained via variation of parameters) to satisfy the

boundary conditions (36) on the slope. Finally, once Q̂2(l, y) is computed as outlined above,

the second-harmonic profile Q2(x, y) is found by inverting the Fourier transform similar to

Eq.(28).

V. RESULTS AND DISCUSSION

We now apply our theoretical model to an incident wave beam whose profile Qinc+c.c. in

Eq.(14) consists of a sinusoid (with wavelength normalized to 2π, which fixes the characteristic

length L∗) multiplied by the Gaussian exp
(

−(η/4.4)2
)

, where η denotes the (dimensionless)

across-beam coordinate (Fig. 1). For L∗ = 5cm/2π, this incident beam profile mimics the

one generated in RKZS. Furthermore, the amplitude parameter ε = U∗/N∗L∗ is defined with

the maximum beam velocity as U∗. In the experiment of RKZS, where N∗ = 1.63 rad/s and

U∗ = 0.25 cm/s, ε = 0.2.

For comparison against the theoretical predictions, we also conducted numerical simula-

tions of the reflection of incident wave beams with the profile specified above. The simu-

lations are based on the Navier–Stokes equations subject to no-slip conditions on the slope

as in Eq.(3), and with a suitable forcing term added on the right-hand side of the momen-

tum equation to drive the incident wave. The numerical solution procedure is similar to the

MAC method introduced in Harlow and Welch [23]. It focuses on the Poisson equation for
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the pressure that follows from taking the divergence of the momentum equation and apply-

ing continuity. The flow field is obtained by solving this Poisson equation iteratively until

convergence. Spatial discretization is carried out using third-order upwind and second-order

centered finite differences for the convective and the viscous terms, respectively. The com-

putational domain is taken to be wide enough (−380 < x < 380, 0 < y < 130) such that

during the computation artificial reflections at the boundaries do not interfere with the beam

reflection from the slope. Furthermore, to improve resolution, grid points (typically 600×600

in x× y) are spaced unevenly, with higher concentration in the overlap region of the incident

and the reflected waves as well as in the boundary layer along the slope. Time stepping is

made by a predictor–corrector scheme with ∆t = 0.015. The computation is continued until

steady state is reached to a reasonable approximation, which typically takes 20 − 30 wave

beam periods.

A. Primary reflected wave

Figure 2 shows plots, for different Re and ε, of the amplitude of the primary-harmonic

reflected beam Aprim (normalized with the incident beam amplitude ε) at fixed angle of

incidence θ = 22.7◦, as the slope angle α is varied in the range 0 ≤ α ≤ 30◦. This particular θ

is also used for the majority of the experimental results reported in RKZS. Aprim is defined as

the (dimensionless) maximum velocity of the reflected beam at 25 dimensionless units (about

20cm) from the reflection point A (see Fig. 1). For the parameter values Re = 103 and

ε = 0.2 which correspond to the experiment of RKZS, the viscous solution for the primary

reflected beam in Eqs.(32) is in satisfactory agreement with our numerical simulations. Under



22

FIG. 2. Plots of normalized amplitude of primary-harmonic reflected beam as function of the slope
angle 0 < α < 30◦, for angle of incidence θ = 22.7◦ and two values of Re: solid line (Re = 103);
dashed-dotted line (Re = 1030). The dotted line corresponds to the inviscid (Re = ∞) response,
which features an infinite peak at α = αcrit = θ. Symbols denote results of numerical simulations for
certain values of Re and ε: × (Re = 103, ε = 0.2); © (Re = 103, ε = 0.04); △ (Re = 1030, ε = 0.04).

these flow conditions, as suggested by the criterion in Eq.(13), viscous effects have a dominant

role throughout the slope range 0 ≤ α ≤ 30◦: the resonance peak at the critical slope angle

αcrit = θ = 22.7◦ predicted by the inviscid theory is completely suppressed, and the response

exhibits a broad maximum within 0 ≤ α . 5◦. Overall, this viscosity-dominated response is

also consistent with the results of numerical simulations in Fig. (10b) of RKZS. Furthermore,

decreasing the incident wave amplitude ε to 0.04 for the same Re = 103 has a relatively minor

effect, confirming that the linear viscous solution in Eqs.(32) is generally valid for small but

finite ε. In contrast to ε, the response is quite sensitive to the choice of Re, as illustrated in

Fig. 2 for the value Re = 1030, which is 10 times that in the experiment of RKZS. In this
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FIG. 3. Plots of the slope angle αmax at which the primary-harmonic reflected beam attains the
maximum amplitude as function of the incidence angle 5◦ < θ < 30◦, for two values of Re: solid line
(Re = 103); dashed-dotted line (Re = 1030). The dotted line indicates the inviscid limit (Re = ∞),
where αmax = θ. Symbols denote results of numerical simulations for certain values of Re and ε: ×
(Re = 103, ε = 0.2); © (Re = 103, ε = 0.008); △ (Re = 1030, ε = 0.008).

instance, there is again reasonable agreement between theory and simulation. However, while

viscous effects still dominate near α = αcrit, here the response follows closely the inviscid

result for 0 ≤ α . 7◦ and features a relatively sharp peak around α = 12◦. As Re is further

increased so viscous effects become less important, the range of α where inviscid theory holds

is expected to expand. In addition, the response peak would be steeper and occur closer to

the critical angle αcrit = θ, where viscosity cannot be ignored according to Eq.(13).

The primary-harmonic response discussed above for the incidence angle θ = 22.7◦ is typical

of reflections at other θ. Figure 3 shows plots for different Re and ε of the slope angle α = αmax

at which Aprim/ε attains its maximum for given 5◦ ≤ θ ≤ 30◦. The theoretical predictions
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are generally in good agreement with the numerical simulations and confirm that as Re is

increased αmax approaches the critical angle αcrit = θ from below. Furthermore, varying the

incident wave amplitude ε has little effect on αmax.

B. Second-harmonic response

Figure 4 shows theoretical plots and simulation results for the amplitude of the radiated

second-harmonic beam A2nd (normalized with ε2, as suggested by the weakly nonlinear ex-

pansion in Eq.(33)) when the slope angle α is varied in 0 ≤ α ≤ 30◦, for the same as in

Fig. 2 incidence angle θ = 22.7◦ as well as Re and ε. Similar to Aprim, A2nd denotes the

maximum velocity of the second-harmonic beam 25 dimensionless units (about 20cm) away

from the reflection point A (see Fig. 1). Overall, the second-harmonic response exhibits qual-

itatively similar behavior to the primary reflected beam (see Fig. 2). For the experimental

conditions of RKZS, where Re = 103 and ε = 0.2, again viscous effects dominate throughout

0 ≤ α ≤ 30◦, and the resonance peak of inviscid theory at αcrit = θ = 22.7◦ is replaced by a

bell-shaped curve with a broad maximum around α ≈ 10◦. By contrast, when Re is increased

by a factor of 10, the second-harmonic amplitude is in close agreement with the inviscid limit

for 0 ≤ α . 10◦ and a relatively sharp peak forms at α ≈ 21◦, slightly below αcrit. Thus, in

the limit Re ≫ 1, the response is expected to closely follow the inviscid result except in the

immediate vicinity of αcrit where viscous effects are always important.

The theoretical plots in Fig. 4 are generally in good qualitative, and in certain cases

quantitative, agreement with the results of numerical simulations. The latter indicate that

A2nd ∝ ε2 holds for sufficiently small ε only. For Re = 103, in particular, we find good
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FIG. 4. Plots of normalized amplitude of second-harmonic radiated beam as function of the slope
angle 0 < α < 30◦, for angle of incidence θ = 22.7◦ and two values of Re: solid line (Re = 103);
dashed-dotted line (Re = 1030). The dotted line corresponds to the inviscid (Re = ∞) response of
Ref. [14], which features an infinite peak at α = αcrit = θ. Symbols denote results of numerical
simulations for certain values of Re and ε: × (Re = 103, ε = 0.2); © (Re = 103, ε = 0.04); △
(Re = 1030, ε = 0.04).

agreement between theory and numerics for ε = 0.04, but for the 5 times larger value of

ε = 0.2 as in the experiment of RKZS, the weakly nonlinear theory overestimates the second-

harmonic amplitude roughly by a factor of 2.

For other incidence angles θ, the second-harmonic response exhibits the same behavior

qualitatively as that in Fig. 4. Specifically, Fig. 5 illustrates, for different Re and ε, the

dependence on θ of the slope angle α = α2nd
max at which A2nd/ε

2 attains its maximum value

when 0 < α < 30◦. Similar to αmax for the primary reflected beam (see Fig. 3), α2nd
max

is controlled mainly by Re. Furthermore, α2nd
max is found below αcrit = θ, where the inviscid

second-harmonic response features a resonance peak. In addition, the incident wave amplitude
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FIG. 5. Plots of the slope angle α2nd
max at which the second-harmonic radiated beam attains the

maximum amplitude as function of the incidence angle 5◦ < θ < 30◦, for two values of Re: solid line
(Re = 103); dashed-dotted line (Re = 1030). The dotted line indicates the inviscid limit (Re = ∞),
where α2nd

max = θ. Symbols denote results of numerical simulations for certain values of Re and ε: ×
(Re = 103, ε = 0.2); © (Re = 103, ε = 0.008); △ (Re = 1030, ε = 0.008).

ε has relatively little effect on α2nd
max.

C. Comparison with the experiment of RKZS

The focus of the laboratory experiments of RKZS was on determining the slope angle that

gives the most intense second-harmonic beam due to a primary beam incident at fixed angle θ

to the horizontal. To this end, as a measure of the generated beam intensity, RKZS computed

the integral of the square of the velocity amplitude over a suitably defined region along the

second-harmonic beam. Based on this definition, their experimental data for θ = 22.7◦ and

0 < α < 25◦ indicate that the beam intensity behaves as a bell-shaped function with peak at
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FIG. 6. Intensity of radiated second-harmonic beam as function of slope angle 0 < α < 30◦ for
incidence angle θ = 22.7◦, under the flow conditions of RKZS (Re = 103 and ε = 0.2). The solid line
corresponds to the theoretical predictions. The crosses are results of numerical simulations. The open
triangles denote the experimental results in Fig. 7 of RKZS after being multiplied by the constant
factor 0.1 such that the peak value at α = 13.2◦ matches the theoretical intensity estimate at this α.

α = 13.2◦. We attempted detailed comparison of these experimental results with our weakly

nonlinear viscous theory by computing theoretical estimates for the second-harmonic beam

intensity according to the definition in RKZS. The theoretical results show similar qualitative

behavior to the observations as α is varied and predict a maximum close to the experimental

value α = 13.2◦ (see Fig. 6). Quantitatively, however, the theoretical intensity predictions

turn out to be typically 10 times smaller than the experimental values reported in Fig. 7 of

RKZS. On the other hand, as shown in Fig. 6, we find very good quantitative agreement

between experiment and theory if the experimental intensity results in Fig. 7 of RKZS are

multiplied by the constant factor 0.1 such that the peak value at α = 13.2◦ matches the
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theoretical intensity estimate at this α. Figure 6 also shows computed values of the second-

harmonic beam intensity based on the velocity fields obtained from our numerical simulations.

The numerical estimates for the second-harmonic intensity feature a broad maximum around

α ≃ 10◦ and are smaller, roughly by a factor of 3–4, than the predictions of the theoretical

model. This seems reasonable considering that the weakly nonlinear theory for ε = 0.2

overestimates the numerical second-harmonic amplitudes roughly by a factor of 2 (see Fig.

4) and that the intensity involves the square of the beam amplitude.

In an effort to shed light on the cause of the quantitative discrepancy between the experi-

mental and our theoretical/numerical estimates for the second-harmonic intensity, it was first

verified that the incident beam profile matched to a good approximation the experimental one

in Fig. 4 of RKZS. Secondly, we made a comparison of our theoretical and numerical results

for the square of the second-harmonic amplitude with the contour plot of the measured data

(for θ = 22.7◦, α = 20◦) in Fig. 5 of RKZS. We found overall good agreement between the

numerical results and the experimental observations, while as expected the predictions of the

theoretical model were generally higher roughly by a factor of 4. These findings suggest that

the discrepancy between the experimental intensity values reported in Fig. 7 of RKZS and

the theoretical (by a factor of 10) as well as the numerical (roughly by a factor of 3) results,

is likely due to a different interpretation of the ad hoc method used by RKZS for determining

the intensity. This possible explanation is also hinted by the units of beam intensity stated

in Fig. 7 of RKZS, cm2/s2, which are inconsistent with the expected units, cm4/s2, based on

the definition of beam intensity as the integral of the square of the velocity amplitude over a

certain area.
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VI. CONCLUDING REMARKS

We have extended the inviscid weakly nonlinear model of Tabaei et al. [14] to account for

viscous dissipation in the reflection of a locally confined internal wave beam from a uniform

slope. Asymptotically, at high Reynolds number, viscous effects are expected to come into

play predominantly in the immediate vicinity of the critical condition where the beam angle of

incidence matches the slope angle. However, for quantitative comparison against laboratory

experiments where the Reynolds number is moderately large, it may be necessary to include

viscosity for a broad range of flow conditions. According to our model, the main effect

of viscosity for both the primary- and second-harmonic reflected beams is to replace the

sharp (theoretically infinite) resonance peaks of the inviscid responses at the critical condition

with bell-shaped finite peaks at slope angles below the critical. Under the experimental

flow conditions of RKZS, this viscous modification turns out to be quite significant as it

affects the reflected beam amplitudes throughout the range of slope angles considered in

these experiments, which explains why the agreement with the inviscid theory of Tabaei et

al. [14] is poor. The predictions of the proposed model, by contrast, are generally consistent

with the experimental observations, with the exception of the values of the second-harmonic

intensity as defined in RKZS, which appear to be off by a constant scaling factor for reasons

that are presently unknown. Finally, here it has been assumed that the incident beam planes

of constant phase meet the slope along the isobaths so the flow is two-dimensional. In the

case of oblique reflection [24], the induced mean flow has a more prominent presence, and

including viscous effects would require a separate, more elaborate theory.
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