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Abstract

This experimental study explored the dynamics of lock-in phenomena associated with upstream

shear layer (USL) instabilities for an equidensity gaseous jet in crossflow (JICF). Axisymmetric

sinusoidal forcing of the jet fluid at different forcing amplitudes and frequencies was used to explore

lock-in under flow conditions corresponding to naturally occurring absolutely/globally unstable and

convectively/locally unstable shear layers, at relatively low and high jet-to-crossflow momentum

flux ratios J , respectively. Dynamical phenomena were quantified via hotwire anemometry, which

not only documented differences in spectral characteristics but also in Poincaré maps obtained via

time-delay embedding in the temporal data. The experiments provided evidence of unconditional

lock-in as well as quasi-periodicity in response to forcing, reflective of marginal lock-in phenomena;

these phenomena were observed for both globally unstable and convectively/locally unstable shear

layers in the absence of forcing. The free jet limit in the absence of crossflow also exhibited

unconditional lock-in, with some characteristics similar to those for the JICF at applied forcing

frequencies above the fundamental mode. For the globally unstable JICF, a simple van der Pol

non-linear oscillator model used to represent the dynamics of the USL showed consistency with

experimental findings and thus provided additional insights into the nature of shear layer dynamics.
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FIG. 1. Schematic of the transverse jet, introduced flush with respect to the injection wall, and

relevant vortical structures, including the counter-rotating vortex pair (CVP). Here (x, y, z) refer to

the jet coordinate system, and s refers to the upstream shear layer trajectory coordinate. Adapted

from Fric and Roshko [9].

I. INTRODUCTION

The canonical jet in crossflow (JICF) or transverse jet typically consists of a round jet

issuing perpendicularly into crossflow [1–3], generating diverse vortical structures as shown

schematically in Fig. 1. Here the jet has a mean velocity of Uj at the exit plane, exhausting

into crossflow with a freestream velocity U∞ (outside of the injection wall boundary layer)

in the positive x direction. The trajectory of the transverse jet’s upstream shear layer (USL)

is parameterized by the coordinate s. Commonly used non-dimensional parameters used to

characterize JICF behavior include the jet-to-crossflow density ratio, S = ρj/ρ∞, velocity

ratio, R = Uj/U∞, and momentum flux ratio, J ≡ ρjU
2
j /ρ∞U

2
∞

= SR2 [4]. The Reynolds

number of the jet, Rej = ρjUjD/µj, is based on jet diameter, D, and jet dynamic viscosity

µj.

Of the vortical structures shown for the flush-injected JICF, the counter-rotating vortex

pair (CVP) has long been understood to dominate the transverse jet’s cross-section [4–7] and

is thought to enhance the entrainment of crossflow into the jet in comparison to that for the

free jet in quiescent surroundings. Experimental and computational studies demonstrate

the relevance of the transverse jet’s upstream shear layer vorticity to the formation and

evolution of the CVP [6–8].
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A. Unforced JICF Instability, Structures and Mixing

Experimental studies on the gaseous JICF have focused on upstream shear layer (USL)

stability and structural characteristics for a range of flow conditions [8, 10–12] in addition

to explorations of JICF molecular mixing characteristics [13] and strain/scalar dissipation

rate fields [14], all in the absence of any significant external jet excitation. Using hotwire

anemometry, Megerian et al. [10] and Davitian et al. [11] experimentally investigate the

stability characteristics of the equidensity (S = 1) transverse jet’s USL at Rej = 2000 and

3000 for velocity ratios in the range 1.15 ≤ R ≤ ∞, with a nitrogen jet injected flush into a

crossflow of air. The studies demonstrate the transition from a convectively unstable (CU)

USL, for which the instability evolves along the shear layer, to an absolutely unstable (AU)

or globally unstable (GU) USL, with sustained self-excited global oscillations affecting the

entire flowfield. Such instabilities transition as one increases the crossflow velocity, reducing

R or J , for a fixed Rej . For the nitrogen jet injected into a crossflow of air, the transition

from CU to GU occurs at approximately R = 3.1 (J ≈ 10). For separate experiments on the

low density JICF, with 0.25 ≤ S ≤ 1.00 achieved by using mixtures of helium and nitrogen

in the jet fluid, the transition to absolute instability is documented in Getsinger et al. [12] to

occur in the range of either J ∼= 10 or S . 0.40 (at Rej ∼= 1800). Evidence for this transition

for both equidensity and low density transverse jets includes quantification of the growth of

disturbances at various locations along the jet shear layer, frequency tracking and response

of the transverse jet to very strong single-mode forcing, creating a lock-in response in the

shear layer, and evidence of USL dynamics suggesting a Hopf bifurcation to a global mode.

Direct numerical simulation (DNS) of the JICF at R = 4 and 2 by Iyer and Mahesh [15],

with geometry and inlet flow conditions identical to those in Megerian et al. [10], show USL

spectral characteristics that are qualitatively and quantitatively in good agreement with

experiments, including differences in the spectral character for these conditions straddling

the CU to AU transition.

Recent experiments utilizing optical diagnostics (acetone planar laser-induced fluores-

cence or PLIF imaging and stereo particle image velocimetry or PIV) enable investigation

of JICF structural as well as mixing and strain field characteristics [8, 13, 14]. For the

flush nozzle-injected JICF, the formation of the rolled-up vortical structures on the USL

occurs closer to the jet exit as J decreases, especially for J . 10, as expected per spectral
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characteristics. Transverse jets at these lower J values produce a highly symmetric CVP in

the cross-sectional view of the JICF. But interestingly, at higher J values where the USL

is CU, asymmetric cross-sections are observed, for example, for J > 20. A more symmetric

cross-section for the JICF is associated with improved molecular mixing [13], and jet exci-

tation can be used to alter jet structure, documented to improve mixing [16, 17]. Hence the

dynamics of the jet’s upstream shear layer, and the ability to control it via excitation, is of

interest for many applications.

B. Lock-in and Quasi-Periodicity

External periodic excitation of a jet in quiescent surroundings [18] or issuing into crossflow

[10, 19–22] is known to have the ability to change the dynamics and structural characteristics

of the jet, potentially creating an enhancement in molecular mixing. In general, axisymmet-

ric sinusoidal excitation of a flowfield is associated with interactions between a natural or

fundamental mode of the flow in the absence of forcing and the forcing mode itself, poten-

tially causing the flow to be marginally or fully locked-in to the applied forcing frequency

and overcoming the natural mode. This phenomenon is known as “lock-in”, the dynamical

characteristics of which are significant in achieving optimized control of a flowfield (e.g.,

improving molecular mixing) via external forcing.

Lock-in has been observed for a number of unsteady flowfields, for example for vortex

shedding in the wake of a vibrating circular cylinder [23–26]. The cylinder’s natural vortex

shedding frequency in the absence of forcing, fo, can become locked-in, or synchronized, to

the cylinder’s forced vibrational frequency, ff , over a specific range of forcing frequencies

and amplitudes, creating a so-called a lock-in band [27]. Outside of this band of forcing

conditions, the natural frequency fo dominates the shedding phenomena. The Reynolds

numbers explored for wake lock-in (Re ≈ 100− 9200) are such that in all cases the cylinder

wake is AU when unforced [28, 29]. Lock-in phenomena are associated with other self-

excited flows, including low density and reactive free jets in quiescent surroundings [30–

32]. For example, Juniper et al. [30] explore lock-in for a non-reacting helium free jet and

buoyant reactive jet diffusion flame under absolutely unstable flow conditions, with imposed

axisymmetric sinusoidal jet forcing. They demonstrate that there is a critical range of

excitation amplitudes and frequencies at which the global mode of the jet at its natural
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frequency fo (in the absence of forcing) disappears and the forced mode with frequency ff

becomes dominant in shear layer spectra. Juniper et al. [30] thus create a “lock-in” diagram

over a range of frequencies (ff/fo values) and amplitudes (e.g., input voltage to a speaker)

at which lock-in occurs. The lock-in diagram (amplitude vs. forcing frequency or ff/fo at

lock-in) typically takes a V-shape with respect to ff/fo = 1 because of the linear relationship

between critical input voltages and |ff − fo|, although there can be asymmetric skewing of

the V-shape due to differing shear layer responses at higher as compared with lower forcing

frequencies [31]. Li and Juniper [31] actually find several kinds of of non-linear dynamics for

various combinations of ff and amplitude, including: (1) cases where the natural frequency,

fo, or one slightly shifted from fo, can dominate during very low amplitude forcing, (2) cases

where “quasi-periodicity” can occur, where linear combinations of the forcing frequency ff

and fo can appear in spectra during intermediate amplitude forcing, and (3) cases where

“1:1 lock-in” occurs, in which the forcing frequency ff itself dominates and fo is significantly

diminished during excitation at a fairly high amplitude.

Lock-in behavior for the upstream shear layer has been identified for both equidensity

and low density jets in crossflow. For a relatively limited set of hotwire-acquired data, Davi-

tian et al. [11] explore the effect of sinusoidal excitation for the equidensity nitrogen (N2)

jet issuing into a crossflow of air, documenting a lock-in type of response of the globally

unstable USL for forcing frequencies close to the fundamental unforced value (fo) or at high

enough amplitudes of excitation, where amplitude is defined in terms of the jet velocity

perturbation near the jet exit. A slight asymmetry in the lock-in diagram suggests that

the USL is more resistant to lower frequency excitation (ff < fo) than to higher frequency

excitation (ff > fo), requiring higher amplitude forcing to achieve lock-in at lower frequen-

cies. In these equidensity JICF studies, the convectively unstable USL is suggested to be

always (unconditionally) locked-in under axisymmetric sine wave forcing, even at very low

amplitudes, although there are limited datasets at very low frequency forcing conditions. In

contrast, the transverse jet’s globally/absolutely unstable USL locks in only within a lock-in

band (i.e., is conditionally locked-in). For low density jets in crossflow, Getsinger et al. [12]

explore lock-in via sinusoidal excitation of a gaseous jet consisting of mixtures of nitrogen

and helium injected into a crossflow of air, hence enabling variable S and J conditions. A

conditional lock-in response of the jet’s USL to sinusoidal forcing is observed for a range

of frequencies and amplitudes (here, quantified in terms of acoustic pressure perturbation).
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An asymmetry in the lock-in diagram for GU/AU conditions with S = 0.55 and J = 5, for

example, suggests that the USL with a higher forcing frequency (ff > fo) has a greater resis-

tance to lock-in than forcing at lower frequencies ff < fo), consistent with findings of Li and

Juniper [31] for a low density free jet. Other lock-in diagrams for the JICF with S = 0.55

and J = 8 and 10 are relatively symmetric, however, suggesting potential differences in

dynamic response when crossflow conditions are altered.

The goal of the present equidensity JICF experiments is to explore the dynamics of

lock-in for the USL in greater depth, not only as a means of understanding the similari-

ties/differences with respect to other globally unstable flows, but also to inform transverse

jet control strategies. The range of flow conditions here spanned both globally/absolutely

unstable jet shear layers as well as locally/convectively unstable upstream shear layers. De-

tailed examination of and evidence for the phenomena of quasi-periodicity and 1:1 lock-in,

and representation using a simple non-linear Van der Pol oscillator model [31], provide new

insights for the mechanisms of shear layer transition in the JICF and means by which it may

be controlled.

II. EXPERIMENTAL CONFIGURATION

This experimental study utilized a low-velocity wind tunnel to measure gaseous trans-

verse jet upstream shear layer stability characteristics, as done in prior studies [10–12]. A

schematic of the wind tunnel and associated diagnostics is shown in Fig. 2. A centrifugal

blower Baldor M3546-T) upstream of the test section created a crossflow of air in the down-

stream (positive x) direction with freestream velocity, U∞, calibrated in the tunnel using

a pitot probe. The flow from the blower issued into the test section through a 9 : 1 area

ratio contraction section with honeycomb and screens for flow straightening. The maximum

achievable flow velocity in the test section was approximately 7 m/s, with a maximum tur-

bulence intensity was less than 1.5 % in the freestream. The primary test section was 30 cm

× 12 cm × 12 cm, fitted flush with the contraction section, and with quartz windows at the

top for laser sheet access and plexiglass side windows for camera imaging in PLIF or PIV

diagnostics [8, 13, 14]. A black panel with a cut-out could replace one of the side plexiglass

windows to enable access for hotwire anemometry and the traversing mechanism. Another

tunnel section with the same size was placed downstream of the primary one; this section
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FIG. 2. Variable density transverse jet wind tunnel with associated hotwire anemometry and data

acquisition. One additional tunnel section, of identical dimensions, was situated downstream of

the test section shown.

was followed by a wooden chamber which exhausted the gases via a flexible tube connected

to the ventilation system of the lab.

Jet fluid issued perpendicularly into the test section through a contoured nozzle with

a 5th order polynomial contraction, with an exit plane inner diameter 4.04 mm. This

contraction created a top-hat-like spatial velocity profile at the exit of the jet, with a fairly

thin jet boundary layer in the absence of crossflow [10]. The injector exit was mounted

flush to the primary test section’s floor at a location 10 cm downstream of the end of the

tunnel contraction. A longitudinal straight PVC pipe of length 0.9 m was attached to the

bottom of the injector to eliminate swirl or other asymmetries via internal honeycomb flow

straighteners. The other end of the PVC pipe was connected to the jet excitation system.

An acoustic loudspeaker (RadioShack 40-1022B, 4′′ woofer) was situated below the pipe

(see Fig. 2), introducing a sinusoidal oscillation in the jet fluid over time. The speaker

was enclosed by a plexiglass plenum housing attached to the bottom of the PVC pipe, even

for unforced transverse jet experiments. The sinusoidal signal was created by a function

generator (BK Precision Model 4078) at a desired forcing frequency ff and amplitude,

delivered to an amplifier (Adcom GFA-7300) with a constant gain of 30 for all forcing

conditions in this study.

The jet fluid in the present experiments was comprised of mixtures of He, N2, and acetone
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vapor, the latter of which was required for PLIF imaging for separate JICF studies with

and without excitation [8, 13, 16]. Varying the mole fractions of the constituent gases

enabled control of the desired mixture density. Mass flow controllers (Tylan Model FC-

260) were used to alter the He and N2 mass flow rates; these species were mixed in a

long, cylindrical chamber to passively remove non-uniformities in the gases before entering a

temperature-controlled acetone seeder, which maintained the appropriate vapor conditions.

The seeded mixture then entered four symmetrically center-oriented injectors beneath the

injection/excitation system.

In these studies the jet Reynolds number was kept constant at Rej = 2300 and the jet-to-

crossflow density ratio was fixed at equidensity conditions, S = 1.00, while the momentum

flux ratio J was independently varied by altering the crossflow velocity U∞. Prior studies on

shear layer instabilities and jet structure for variable density conditions and at different jet

Reynolds numbers are documented in Getsinger et al. [8]. The specific momentum flux ratios

explored in this lock-in study were J = 61 and 18, corresponding to a convectively/locally

unstable upstream shear layer in the absence of forcing, and J = 7, corresponding to a

naturally absolutely/globally unstable upstream shear layer [8, 14, 16]. The free jet in the

absence of crossflow, J → ∞, was also examined here. In order to achieve jet densities

equal to that of the crossflow, the jet flow consisted of constituent gases with fixed mole

fractions as follows: N2 (ψ ≈ 0.548), He (ψ ≈ 0.234), and acetone (ψ ≈ 0.218). Jet density

and viscosity were determined for these constituents and the relevant flow rates via the

Reichenberg method [33].

The present experiments used constant temperature anemometry (CTA) via a single-

component, boundary-layer type hotwire probe (Dantec 55P15) to quantify local velocity and

shear layer spectral characteristics. The maximum obtainable frequency via CTA was 400

kHz, significantly higher than the Nyquist frequency of 12 kHz, which is twice the maximum

applied sinusoidal forcing frequency of 6000 Hz in these experiments. The hotwire was

inserted through an opening in the black side wall of the test section and could be traversed

in three dimensions with 1 µm accuracy using a triple-axis linearly staged platform. Hotwire

data were delivered first to a 90C10 CTA module in a Dantec StreamLine 90N10 frame

and then to an AC/DC signal splitter with signal conditioning developed by Hendrickson

[34]. The maximum forcing frequency of 6000 Hz resulted from the inherent non-uniform

frequency response of the actuation system, consisting of the amplifier, loudspeaker, hotwire,
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signal conditioner and DAQ board. Rolloff in the signal was pronounced beyond 1000

Hz, and was especially poor above 6000 Hz. Spectral data were fed to a dual channel

dynamic signal analyzer (HP Model 35665A) and averaged over 40 instantaneous frequency

distributions. The spectral measurements were applied over a 6.4 kHz range, with 8 Hz

resolution.

The amplitude of excitation of the perturbed jet was quantified via the hotwire-measured

vertical jet velocity, uj(t), measured at a location 0.2 jet diameters above the center of the jet

exit plane. The root mean square (RMS) of the jet velocity perturbation, u′j,rms, relative to

the time-averaged jet velocity at the same location, uj, was used to quantify the amplitude

of jet excitation:

u′j,rms ≡

√

1

T

∫ t1+T

t1

(uj − uj)2dt (1)

where T ≡ 1/ff is the period of excitation. The matching of u′j,rms amongst different flow

and excitation conditions enabled appropriate comparison of the range of jet responses. The

RMS values of velocity perturbations explored were in the range 0.008 ≤ u′j,rms/Uj ≤ 0.23,

where the mean jet velocity averaged over the exit plane was Uj ≈ 7.9 m/s. It is important

to note that, because the jet consisted of a mixture of helium, nitrogen, and acetone in

these experiments, the hotwire was calibrated in this mixture. As discussed in detail in

Shoji [16] and Shoji et al. [17], a separate flush round pipe with a known fully-developed

laminar velocity distribution at the injector exit in the absence of crossflow was used for this

calibration, quantified in the jet Reynolds number range 360 ≤ Rej ≤ 2800.

III. RESULTS

A. Lock-in Characteristics

To investigate lock-in behavior of the JICF upstream shear layer, a frequency sweep (in

input forcing frequency ff ) was applied by the loudspeaker at a fixed amplitude of forcing,

u′j,rms, as measured within the USL at a shear layer trajectory location s/D = 2.0 (see

Figure 1). The general method for determining the critical forcing frequency for lock-in at

each u′j,rms amplitude thus contrasted that used in Davitian et al. [11] and Getsinger et al.
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[12], where the frequency ff is fixed and the amplitude of excitation (pressure perturbation

associated with applied excitation) is systematically increased until lock-in is observed in

the spectra. The criteria for determining lock-in of the upstream shear layer to ff were also

slightly different in the present study. In previous studies of the transverse jet [11, 12] and of

the low density free jet [30], lock-in is considered to occur when the USL spectral peak at the

unforced natural mode fo disappears under external forcing, with ff dominating the spectra.

But in the present study, a more precise set of criteria was used: the USL was considered

to be locked-in to ff when sinusoidal forcing caused the amplitude of the fundamental peak

at fo to be reduced by at least three orders of magnitude and, in addition, when there was

no evidence of quasi-periodic spectral behavior, as defined in [31].

For example, USL power spectra for J = 7, with a relatively low forcing amplitude

corresponding to approximately 1% of the mean jet velocity, matched amongst variable

forcing frequencies, are shown in Fig. 3. Note that the J = 7 transverse jet creates an

absolutely unstable USL in the absence of forcing. In Fig. 3, black lines represent hotwire

voltage spectra in the absence of forcing, with a single strong peak at the fundamental

frequency fo = 2000 Hz and with higher harmonics at 4000 Hz and 6000 Hz, with very low

level disturbances at other frequencies. In this figure, the red lines represent spectra resulting

from sine wave forcing for the conditions shown, with a variety of different responses denoted

by the spectral peaks. In Fig. 3(a), the forced spectrum shows a strong peak at ff = 1200

Hz and a weaker peak at fo = 2000 Hz, in addition to multiple peaks which in some cases

are harmonics of the forcing frequency. Other peaks correspond to frequencies representing

linear combinations of the frequencies |pff ± qfo| (where p and q are integers), representing

the interaction between the forcing and natural modes. These forced spectral characteristics

in Fig. 3(a) demonstrated quasi-periodicity, similar to observations for the phenomenon in

low density free jets, per Li and Juniper [31]. According to the present criteria, ff = 1200

Hz in Fig. 3(a) did not represent a lock-in condition. As forcing frequency increased for the

same amplitude, ff became more dominant in the spectrum, and the peak at fo lessened as

compared with that for the unforced case. In Fig. 3(b) for ff = 1400 Hz, the peak at fo was

reduced by over 3 orders of magnitude and essentially disappeared; this represented complete

dominance of the forcing frequency ff over the natural mode as well as the disappearance

of mode interactions and quasi-periodicity seen at lower frequency forcing. These features

provided evidence of a so-called 1:1 lock-in [31]. In Fig. 3(c), forcing at ff = 2500 Hz also
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(a) ff = 1200 Hz (b) ff = 1400 Hz
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FIG. 3. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory

coordinate s/D = 2.0 for the JICF at J = 7 with/without sinusoidal forcing at forcing frequencies

indicated, where u′j,rms/Uj
∼= 0.01. The USL had a natural (unforced) USL frequency of fo = 2000

Hz and was considered to be locked-in for conditions shown in (b) and (c).

led to a significantly diminished peak at fl with minimal evidence of quasi-periodicity. At

higher forcing frequencies (ff = 3500 Hz and 5000 Hz in Figs. 3(d) and (e), respectively),

in contrast, there was little difference between unforced and forced power spectra, although

at ff = 3500 Hz there were a few minor peaks at linear combinations of fo and ff , created

by the interaction between forcing frequency ff and the fundamental frequency fo. These

higher forcing frequencies hence were not found to create lock-in.

One can perform the same USL spectral evaluation for other forcing amplitudes and

frequencies. Fig. 4 shows power spectra for J = 7 at a higher forcing amplitude with

u′j,rms/Uj = 0.08, matched among variable forcing frequencies. At ff = 300 Hz and 460

11



(a) ff = 300 Hz (b) ff = 460 Hz

ff fo|fo-ff|
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(c) ff = 590 Hz (d) ff = 620 Hz
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FIG. 4. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory

coordinate s/D = 2.0 for the JICF at J = 7 with/without sinusoidal forcing at forcing frequencies

indicated, where u′j,rms/Uj = 0.08. The USL had a natural (unforced) USL frequency of fo = 2000

Hz and was considered to be locked-in above ff ≈ 590 Hz (e.g., shown in (c) and (d)).

Hz (Figs. 4(a) and (b)), the interaction between the natural and forcing modes created

complicated spectral patterns with spectral peaks at the forcing frequency as well as har-

monics of ff and |pff ± qfo|, again, indicators of mode interactions and quasi-periodicity

[31]. At ff = 590 Hz (Fig. 4(c)), the spectral peak at the natural frequency fo virtually

completely disappeared and the forcing frequency and its higher harmonics dominated on

the USL, corresponding to 1:1 lock-in. The critical minimum forcing frequency for lock-in

for the JICF with J = 7 at u′j,rms/Uj = 0.08 was determined from data in Fig. 4 as well

as additional data [16] to be ff ∼= 590 Hz, at least, as ff was increased toward fo = 2000

Hz. Because the maximum achievable forcing frequency with the current actuation system

at u′j,rms/Uj = 0.08 was 1210 Hz (due to a significant roll-off in frequency response above

1000 Hz) [16], lock-in at higher frequencies could not be determined.

Similar determinations of lock-in bands could be made for other forcing amplitudes and
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(a) ff = 500 Hz (b) ff = 1400 Hz

fo

2fo

ff
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(c) ff = 2000 Hz (d) ff = 3500 Hz

ff 2ff
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(e) ff = 5000 Hz

ff

FIG. 5. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory

coordinate s/D = 2.0 for the JICF at J = 18 with/without sinusoidal forcing at forcing frequencies

indicated, where u′j,rms/Uj = 0.01. The USL had a natural (unforced) USL frequency of fo ≈ 2200

Hz and was considered to be locked-in for conditions shown in (b) and (c).

frequencies, and for different momentum flux ratios J for the present equidensity studies.

Power spectra for J = 18, corresponding to the convectively unstable shear layer in the ab-

sence of forcing, are shown, for example, in Fig. 5, comparing the unforced spectra with those

for sinusoidal excitation at a low forcing amplitude u′j,rms/Uj = 0.01. Without excitation,

the black lines in Fig. 5 show multiple weaker peaks around the fundamental at fo ≈ 2200

Hz, in addition to higher harmonics and a subharmonic. In general these multiple frequen-

cies shift slightly and then return to the original values as the hotwire is traversed along the

upstream shear layer for CU conditions, as documented extensively in Megerian et al. [10];

the frequency shifting is associated with tonal interference between the strengthening shear
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layer instability and the hotwire probe [12]. Interestingly, with sinusoidal excitation at am-

plitude u′j,rms/Uj = 0.01, quasi-periodicity in the USL was observed in Fig. 5(a) (ff = 500

Hz), suggesting that even the CU USL was not always locked-in to axisymmetric forcing, an

unexpected finding based on earlier (less precise) exploration of lock-in for this regime [11].

At ff = 1400 Hz and 2000 Hz (Figs. 5(b) and 5(c), respectively), the fundamental mode

disappeared and forcing modes dominated the instability, corresponding to lock-in. But as

forcing frequency was increased well above the fundamental mode (fo ≈ 2200 Hz), for exam-

ple, at ff = 3500 Hz and 5000 Hz (Figs. 5(d) and 5(e), respectively), axisymmetric forcing

had little to no effect on spectral characteristics, with minor evidence of quasi-periodicity

for ff = 5000 Hz. The CU USL responded to axisymmetric forcing similarly to the AU

USL despite the fact that the lock-in band was larger in extent for the convectively unstable

flow. When excitation of the CU USL was studied for J = 61 (Fig. 6), similar trends were

observed as those for J = 18.

One can apply the same analysis to the shear layer for the free jet injected into quiescent

surroundings, which under equidensity conditions is known to be convectively unstable [35,

36]. Here power spectra were taken at the shear layer location s/D = 4.0 instead of s/D =

2.0 because there was no clear peak in the fundamental mode at s/D = 2.0, and at that

location one could not distinguish whether lock-in occurred. And because the free jet is

more susceptible to external forcing than the JICF due to its significantly weaker shear

layer instability (with fo ≈ 1200 Hz), a forcing amplitude u′j,rms/Uj = 0.008 was applied,

the minimum achievable amplitude for the current experimental configuration. Even at a

relatively low forcing frequency ff = 500 Hz, as shown for the free jet in Fig. 7(a), the

fundamental mode already completely disappeared and the forcing frequencies dominated,

clearly indicating shear layer lock-in to ff . For forcing frequencies lower than 500 Hz, the

shear layer was always locked-in. But as forcing frequency was increased, the free jet shear

layer continued lock-in behavior until a high enough frequency, e.g., ff = 3000 Hz, was

applied (Fig. 7(d)), where the weak fundamental mode was still observed. At higher forcing

frequencies, e.g., ff = 5000 Hz (Fig. 7(e)), the shear layer never became locked-in again,

and the natural mode was always observed to be dominant over the forcing mode for this

amplitude. Remarkably, therefore, the shear layer for the free jet was found to be always

locked-in to axisymmetric forcing for ff < fo at the minimum forcing amplitude with the

current setup, but the shear layer could not achieve lock-in when ff ≥ 3000 Hz.
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FIG. 6. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory

coordinate s/D = 2.0 for the JICF at J = 61 with/without sinusoidal forcing at forcing frequencies

indicated, where u′j,rms/Uj = 0.01. The USL had a natural (unforced) USL frequency in the range

fo = 1600-1900 Hz and was considered to be locked-in for conditions shown in (b) and (c).

Based on results shown in Figs. 3-7 and in additional datasets, the lock-in diagram can be

extracted for a range of J values. Fig. 8 shows a lock-in diagram for different J values, that

is, the combination of the scaled amplitude u′j,rms/Uj and scaled critical forcing frequency

ff/fo producing 1:1 lock-in for JICF conditions J = 7, 18, and 61, as well as for the free jet,

J → ∞. Prior experimental studies on the transverse jet [11, 12] and the low density free

jet [30] indicate that the lock-in diagram shows a linear relationship between |ff − fo| and

the critical acoustic pressure perturbation amplitude in jet forcing, p′crit, suggesting a Hopf

bifurcation to a global mode [30, 37] and producing a “V” shape in the lock-in diagram

involving p′crit. Fig. 8 does not show a linear relation between |ff − fo| and u′j,rms/Uj,
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FIG. 7. Power spectra of the hotwire-measured velocity perturbations at the USL trajectory

coordinate s/D = 4.0 for the free jet with J → ∞ with/without sinusoidal forcing at forcing

frequencies indicated, where u′j,rms/Uj = 0.008. The USL had a natural (unforced) USL frequency

at fo ≈ 1200 Hz and was considered to be locked-in for forcing frequencies ff < 3000 Hz (shown

in (a), (b), and (c)).

since clearly, u′j,rms and p
′

crit do not have a linear relationship, but the figure does produce a

minimum at ff = fo, as expected. As in other studies, Fig. 8 demonstrated that, as forcing

frequency approached fo, or as the amplitude of forcing frequency increased for a given ff ,

the forcing could overtake fo even if the shear layer was naturally absolutely unstable.

Interestingly, the V-like shape in Fig. 8 displays an asymmetric slope between the lower-

and higher-frequency regimes for the transverse jet on either side of ff/fo = 1, where the

slope was much shallower for ff > fo than for ff < fo. This trend suggested that the

upstream shear layer was more responsive to external forcing at higher ff than at lower
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FIG. 8. Lock-in diagrams for the JICF at J = 7, 18, and 61, as well as for the free jet, J → ∞,

in response to sine wave excitation at various forcing frequencies and scaled amplitudes u′j,rms/Uj ,

measured at the shear layer locations s/D = 2.0 for the transverse jets and s/D = 4.0 for the free

jet. All symbols represent critical forcing conditions required for 1:1 lock-in of the upstream shear

layer to the forcing frequency ff .

forcing frequencies. This same orientation in asymmetry is observed for the equidensity

JICF (under naturally AU conditions) in earlier studies [11]. But the asymmetry in Fig. 8

was opposite in orientation to the lock-in diagrams in Getsinger et al. [12] and Juniper et al.

[30] for the low density JICF and free jet, respectively, with a shear layer that was more

resistant to excitation at higher frequencies (ff > fo) than at lower frequencies. Clearly,

the dynamics of shear layer instabilities and lock-in are different for flows with a variable

density than for equidensity conditions, and the influence of crossflow in the transverse jet

affects those dynamics.

Observations of quasi-periodicity in the run-up to 1:1 lock-in for the equidensity transverse

jet and free jet provided interesting new insights into the complex dynamics of shear layer

instabilities. But among the more surprising outcomes of the lock-in study here was the

observation that the convectively unstable JICF USL for J = 18 and 61 was not always

locked-in to external forcing, in contrast to conclusions from more limited datasets for J =

41 in Davitian et al. [11]. Moreover, the CU free jet shear layer was always found to

be locked-in for ff < fo in the present studies, but not always locked-in for ff > fo, a

remarkable observation for an equidensity free jet, given that lock-in phenomena for this
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and other flowfields are more often associated with globally unstable conditions [30–32].

Some of these features may be reminiscent of “marginally” globally unstable flows, which

are locally convectively unstable in the entire flowfield but where absolute instability could

be incipient at streamwise location(s). These phenomena are discussed in detail by Huerre

and Monkewitz [37], Li [38] and Li and Juniper [31].

This lock-in behavior for convectively/locally unstable jet shear layers may be associated

with the intrinsic nature of axisymmetric shear layer stability modes and their growth rates

in the absence of external forcing. Linear stability analysis (LSA) of the equidensity free jet

and transverse jet by Alves et al. [39] reveal trends in growth rates for both axisymmetric

and helical shear layer stability modes. As indicated in Fig. 7 of Alves et al. [39], the

free jet’s shear layer has a positive axisymmetric growth rate, even at natural frequencies

approaching zero, and the growth rates remain positive until a relatively high (but finite)

frequency, identical to observations from classical LSA for the equidensity free jet, e.g., per

Michalke [40]. This implies that the free jet would require much higher amplitude forcing to

achieve a response to excitation at higher frequencies than at lower frequencies, consistent

with the ease with which lock-in can be achieved in the latter case. In contrast, for the

equidensity jet in crossflow, the LSA by Alves et al. [39] indicates that the upstream shear

layer has stable axisymmetric modes at very low frequencies, consistent with greater difficulty

to achieve lock-in for this regime (e.g., as shown in Fig. 8). The LSA also indicates positive

axisymmetric growth rates that start at a relatively low frequency and remain so until a

relatively high but finite natural frequency which decreases with decreasing J or R, that is,

for frequencies below that for the free jet. These axisymmetric growth rate trends are also

qualitatively consistent with transverse jet lock-in observations at higher frequencies in Fig.

8. While not conclusive, the unexpected trends in lock-in phenomena here were generally

consistent with linear stability analysis trends for axisymmetric modes of the transverse jet

and the free jet, and bear more extensive exploration.

B. Poincaré Maps

Additional evidence and insights may be found for transverse jet and free jet shear layer

lock-in via non-linear time-series analysis, which can be a useful tool for studying dynamical

features of physical systems whose intrinsic dynamics are governed by non-linear processes
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[41]. In the present study on the JICF, one can reconstruct the phase space for various

conditions using state variables extracted from experimental time-series data. In the typical

phase space, the state variable of a dynamical system at a given instant of time appears

as a single point, while multiple points of the state variable as time t → ∞ create a tra-

jectory in the phase space, with topological features which can be interpreted in terms of

dynamical characteristics of the system. For example, as described in Li and Juniper [31]

for the low density free jet, although the phase space cannot be directly measured, it can

be reconstructed from experimentally (or computationally) extracted temporal data using

time-delay embedding [42], since many measurable state variables are intrinsically coupled to

one another. The present study applied time-delay embedding to the measured temporally

variable hotwire voltage, Vhw, acquired at the USL trajectory coordinate s/D = 2.0 to char-

acterize the dynamics of the JICF USL with and without axisymmetric sinusoidal forcing

for J = 7 and 61, corresponding to naturally absolutely/globally and convectively/locally

unstable upstream shear layers in the absence of external forcing, respectively. Note that

local fluctuations in the acetone mole fraction made it difficult to correlate the temporally

varying hotwire voltage directly to vertical jet velocity along the USL, although the hotwire

voltage itself contains the same frequency and spectral content as velocity, as confirmed sep-

arately [16]. The optimal time delay parameter τ , required for time-delay embedding, was

chosen to be the first zero-crossing of the autocorrelation function applied to the temporal

hotwire voltage, consistent with the methods in Li and Juniper [31, 32].

To extract dynamical characteristics of the JICF, we utilized a two-dimensional section

through the three-dimensional phase space [31, 32]. The two-dimensional section consisted

of a one-way intersection of the phase space trajectory with the plane Vhw(t − 2τ) = 0+,

called a “one-sided” Poincaré map. Per Strogatz [43] and Balanov et al. [44], for example, in

a Poincaré map, a periodic limit cycle appears as a point, while a quasi-periodic oscillation

with two incommensurate modes appears as a continuous ring or a two-dimensional torus.

Based on these topological features, one can extract non-linear dynamical characteristics of

the unforced and forced JICF. The Poincaré map analysis will be relevant to van der Pol

oscillator modeling for the flowfield, described in Sec. IIIC.

Fig. 9 represents Poincaré maps (Vhw(t− τ) vs. Vhw(t)) for J = 7, at a matched forcing

amplitude of u′j,rms/Uj = 0.01 for a range of frequencies ff . In the absence of forcing, in

Fig. 9(a), the Poincaré map shows a small blob, which is a typical topological characteristic
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(d) ff = 2500 Hz (e) ff = 3500 Hz (f) ff = 5000 Hz
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FIG. 9. Poincaré maps of the hotwire voltage at the USL trajectory coordinate s/D = 2.0 for

the JICF at J = 7 with/without sinusoidal forcing at forcing frequencies as indicated, for forcing

amplitude u′j,rms/Uj
∼= 0.01 (c.f. Fig. 3). The USL was considered locked-in for forcing conditions

shown in (c) and (d), and quasi-periodic for conditions in (b) and (e).

for the global instability as extracted from experimental data points. A global instability

(or a periodic limit cycle) ideally would show a single data point for temporal data without

any noise [44], but with experimental noise, a blob would be present. With increasing

forcing frequency, from ff = 1200 Hz to 2500 Hz (Figs. 9(b-d)), the blob became gradually

smaller, suggesting stronger periodicity caused by the lock-in of the USL to ff . It should

be noted that, at ff = 1200 Hz, the shape of the blob in Fig. 9(b) became smaller than

for the unforced case but was less circular, with a cusp-like structure, suggesting that there

was a slight propensity for the initiation of quasi-periodicity. The Poincaré map in Fig.

9(b) appeared to be consistent with the quasi-periodicity observed in spectra corresponding

to this excitation condition (Fig. 3(a)). And when the USL was forced fairly close to the

fundamental frequency fo = 2000 Hz, e.g., ff = 1400 Hz (Fig. 9(c)) and 2500 Hz (Fig. 9(d)),

the Poincaré map became smaller in size than for the unforced case, consistent with spectral

lock-in behavior as documented in Figs. 3(b) and (c), respectively. As forcing frequency was

increased further, to 3500 Hz (Fig. 9(e)) and 5000 Hz (Fig. 9(f)), at which the USL spectra
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(a) Unforced (b) ff = 300 Hz (c) ff = 460 Hz
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(d) ff = 590 Hz (e) ff = 620 Hz
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FIG. 10. Poincaré maps of the hotwire voltage at the USL trajectory coordinate s/D = 2.0 for

the JICF at J = 7 with/without sinusoidal forcing at forcing frequencies as indicated, for forcing

amplitude u′j,rms/Uj = 0.08 (c.f. Fig. 4). The USL was considered locked-in for forcing conditions

shown in (d) and (e) and quasi-periodic for conditions in (b) and (c).

were nearly identical to the unforced USL (Figs. 3(d) and 3(e), respectively), Poincaré

maps were topologically nearly identical to those for the unforced case (Fig. 9(a)). Hence

the Poincaré maps here showed very good consistency with the spectral-based categorization

of USL instability response to axisymmetric forcing.

Poincaré maps also can be created for other flow conditions, e.g., for J = 7 at a higher

forcing amplitude of u′j,rms/Uj = 0.08 (Fig. 10) and for J = 61 at an amplitude of u′j,rms/Uj =

0.01 (Fig. 11). At J = 7 at this higher forcing amplitude, when the USL was not locked-in

at ff = 300 Hz (Fig. 10(b)), the Poincaré map showed a slightly larger blob shape than

for unforced conditions, generally consistent with a periodic limit cycle. But at a higher

forcing frequency in the run-up to lock-in (at ff = 460 Hz, in Fig. 10(c)), a torus-like shape

appeared in the Poincaré map. Per Li and Juniper [31] and Kashinath et al. [45], the creation

of a torus-like shape can be labeled a “torus-birth bifurcation”, a topological characteristic

indicating the transition from periodicity (for the naturally occurring instability) to quasi-
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(a) Unforced (b) ff = 500 Hz (c) ff = 1400 Hz
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(d) ff = 2000 Hz (e) ff = 3500 Hz (f) ff = 5000 Hz
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FIG. 11. Poincaré maps of the hotwire voltage at the USL trajectory coordinate s/D = 2.0 for

the JICF at J = 61 with/without sinusoidal forcing at forcing frequencies as indicated, for forcing

amplitude u′j,rms/Uj = 0.01 (c.f. Fig. 6). The USL was considered locked-in for forcing conditions

shown in (c) and (d), and quasi-periodic for conditions in (b) and (e).

periodicity. Such quasi-periodicity was indeed observed in power spectra under the forcing

conditions in Fig. 10(c), as shown in Fig. 4(b). Then once the USL became locked-in, as

defined for higher frequency forcing via the spectra in Figs. 4(c) and (d), the corresponding

Poincaré maps (Figs. 10(d) and (e), respectively) returned to smaller blob shapes, although

the slight cusp observed at ff = 590 Hz reflected the additional peaks and a transition from

quasi-periodicity observed in the spectra.

In Fig. 11 for the J = 61 case, which in the absence of forcing had a convectively unstable

USL, Poincaré maps showed a blob which became smaller as forcing frequency increased to

approach the fundamental frequency range of fo = 1600 − 1900 Hz (Figs. 11(c) and (d)).

While spectra at ff = 500 Hz (Fig. 6(a)) showed relatively weak quasi-periodicity, the

corresponding Poincaré map in Fig. 11(a) did not produce clear topological features for

quasi-periodicity, such as a torus structure, likely due to the fairly low forcing amplitude

used here, as also seen in the J = 7 results in Fig. 9.
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C. van der Pol Oscillator Model

The van der Pol (VDP) oscillator is a well-known second-order ordinary differential equa-

tion (ODE) capable of representing self-excited dynamical systems [46]. The VDP oscillator

model has been successfully applied to represent the forcing response of a number of flow-

fields, including the reactive/non-reactive free jet in quiescent surroundings [31, 32, 45].

This particular oscillator is a fairly simple non-linear model for self-excited flow systems,

and is able to replicate trends in experimental data and hence to capture essential dynamical

features. In the present study on the equidensity JICF, the VDP model was used to model

self-excited upstream shear layer dynamics for the J = 7 case with and without sinusoidal

excitation at a relatively strong forcing amplitude corresponding to uj,rms/Uj = 0.08. A

range of forcing frequencies was explored, with the aim of having the model approximate

the measured temporal hotwire voltage variation, power spectra (Fig. 4) and Poincaré map

(Fig. 10) for the J = 7 condition.

With an external sinusoidal forcing source term as in the present experiments, the general

VDP oscillator model can be formulated as follows:

z̈ − ǫ(1− z2)ż + ω2

oz = Bsin(ωf t) (2)

where z is the dynamical variable in question and ωo is the natural angular frequency of the

dynamical system. The forcing term on the right-hand side of eq. (2) represents external,

sinusoidal excitation of a system with forcing amplitude B and a forcing frequency ωf , while

the feedback parameter, ǫ, controls the degree of linear self-excitation and non-linear self-

limitation of the system. In the present study, following the same procedure as for the low

density free jet in Li and Juniper [31], the feedback parameter ǫ was specifically chosen to

be a fixed value of 0.41, corresponding to a matching of the lock-in frequency extracted from

this model to the experimentally observed value (ff/fo ≈ 0.295). The selection of ǫ = 0.41

also represented lock-in and quasi-periodic dynamical characteristics of the self-excited JICF

with forcing at u′j,rms/Uj = 0.08 quite well, as will be shown.

The second-order ODE in eq. (2) was solved using a multiple variable-order algorithm

[47]; the procedure followed that in Li and Juniper [31], and details on this approach may

be found in that study. Note that, in the absence of external forcing in eq. (2), i.e., B = 0,
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(a) Unforced (b) ff = 460 Hz (ωf/ωo = 0.23) (c) ff = 620 Hz (ωf/ωo = 0.31)
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FIG. 12. VDP oscillator model results representing spectral dynamics (a)-(c) and Poincaré maps

(d)-(f) corresponding to the USL trajectory coordinate s/D = 2.0 for the JICF at J = 7

with/without sinusoidal forcing at an amplitude equivalent to u′j,rms/Uj = 0.08. The USL had

a natural (unforced) USL frequency of fo = 2000 Hz, corresponding to ωo = 1, and was considered

to be locked-in via experiments for ff > 590 Hz, shown in (c) and (f)).

the system modeled by the VDP oscillation contains a weak nonlinearity with a perfectly

circular phase trajectory in the phase space for ǫ ≪ 1, while the system contains a strong

nonlinearity without a circular phase trajectory for ǫ ≫ 1. Yet a dynamical system for

either condition converges to a stable limit cycle, regardless of initial conditions, due to

its intrinsic behavior as a periodic attractor of the VDP oscillator. The natural angular

frequency ωo was set to 1 for relative scaling of all conditions, although of course the actual

natural frequency was not necessarily 1 because of intrinsic nonlinearities when ǫ > 0. As

done for the experimental data (see Sec. III B), a two-dimensional section, or “one-sided”

Poincaré map through the three-dimensional phase space, was again utilized in extracting

the dynamical maps.

Fig. 12 shows power spectra (Figs. 12(a-c)) and Poincaré maps (Figs. 12(d-f)) extracted

from the temporal results of the VDP model with ǫ = 0.41, corresponding to data for the

experimental case of J = 7 with forcing amplitude u′j,rms/Uj = 0.08. Here the forcing
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amplitude parameter B was selected to be 0 for the unforced case and 1.13 for the forced

cases, the latter of which was chosen to produce good qualitative agreement between the

model and experiments for a fixed forcing amplitude at a range of different frequencies,

per the approach in Li and Juniper [31]. For the unforced case (Figs. 12(a) and (d)),

consistent with an absolutely unstable USL with strong natural periodicity, power spectra

showed a strong peak at the fundamental frequency ωo, and the Poincaré map reduced to

a single data point (i.e., the theoretical limit of an infinitely small blob), consistent with

a periodic limit cycle. At forcing frequency ff = 460 Hz, corresponding to ωf/ωo ≈ 0.23

in the VDP model, the solution produced multiple peaks, at forcing frequency ωf and at

frequencies |pωf ± qωo|, where p and q are integers, in the predicted power spectra (Fig.

12(b)). Correspondingly, there was a torus-like structure predicted in the Poincaré map

(Fig. 12(e)). These characteristics suggested quasi-periodicity at this forcing condition due

to the interaction between natural modes of the instability and the forcing mode, consistent

with experimental observations for this condition (Fig. 4(b) for the spectra and Fig. 10(c) for

the Poincaré map). For a higher forcing frequency of ff = 620 Hz (ωf/ωo ≈ 0.31 in the VDP

model), at which the USL for J = 7 was locked-in for the experiments, per Fig. 4(d), the peak

in the spectrum at the naturally occurring fundamental frequency completely disappeared,

and the forcing frequency and its higher harmonics dominated the power spectra, shown

in Fig. 12(c). This strong periodicity produced a single data point in the Poincaré map

(Fig. 12(f)), as expected for 1:1 lock-in, with general consistency with the experimental

data (Fig. 10(e)). Overall, the instability characteristics from these model results for power

spectra and topological features in Poincaré maps were qualitatively consistent with results

from experiments for the J = 7, u′j,rms/Uj = 0.08 conditions in Figs. 4 and 10. The simple

VDP model for this transverse jet condition not only replicated the dynamics of lock-in and

quasi-periodicity, but also provided additional evidence that the unforced condition for the

transverse jet at a low momentum flux ratio demonstrated self-excitation, consistent with

long-standing observations in earlier transverse jet experiments [8, 10, 11].

IV. DISCUSSION AND CONCLUSIONS

This largely experimental study explored the dynamical characteristics of the equidensity

transverse jet, with a special focus on lock-in and quasi-periodicity generated via axisym-
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metric sinusoidal jet forcing for different jet-to-crossflow momentum flux ratios J , span-

ning conditions producing both naturally occurring convectively and absolutely unstable

upstream shear layers. For the JICF with an absolutely/globally unstable USL in the ab-

sence of external excitation (J = 7), as observed in other AU/GU flows, power spectra

showed that the USL can be made to lock-in to sinusoidal forcing at a large enough am-

plitude, with virtually complete disappearance of its natural mode fo and dominance of a

forcing mode ff . For certain forcing amplitudes, lock-in as well as quasi-periodicity, as the

lock-in band was approached, were observed in upstream shear layer spectra. These phe-

nomena were also visible in Poincaré maps extracted from the experimental measurements,

with the so-called “torus-birth” structure consistent with quasi-periodicity. The results in

this low momentum flux ratio (J = 7) regime were consistent with predictions of shear layer

dynamics from a Van der Pol (VDP) oscillator model, which demonstrated clear global in-

stability behavior without sinusoidal forcing and quasi-periodicity and lock-in for specific

forcing conditions. For the JICF with a naturally AU/GU USL, these findings provide addi-

tional evidence for consistency with upstream shear layer self-excitation. Indeed, the VDP

modeling also demonstrates that lock-in and quasi-periodic dynamics observed for the JICF

are not restricted to this specific flow system, but are generic features of forced self-excited

oscillators.

An unexpected finding in the present studies occurred for JICF flow conditions for which a

convectively/locally unstable upstream shear layer formed in the absence of external forcing

(here, momentum flux ratios J = 18 and 61). In the present experiments with sinusoidal jet

excitation, the USL was not always observed to be locked-in to applied sinusoidal forcing,

in contrast to prior limited experimental conditions explored by Davitian et al. [11] and in

contrast to the typical expectation of straightforward lock-in for a weakly unstable shear

layer. As indicated in Fig. 8, lock-in bands for these convectively unstable conditions were

nearly identical to one another, and were broader in frequency range than that for the JICF

with a globally unstable shear layer at J = 7. Remarkably, even the equidensity free jet (J →

∞) with a CU shear layer demonstrated lock-in behavior in the higher forcing frequency

range, but not at low forcing frequencies. These findings on lock-in for CU flows were in fact

consistent with theoretically determined axisymmetric growth rates for transverse jet shear

layer instabilities observed in the linear stability analysis of Alves et al. [39], where positive

growth rates for instabilities within specific frequency ranges suggest that lock-in bounds
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should exist for convectively unstable flow conditions. Quasi-periodicity in the run-up to

lock-in was also observed in the present study for the convectively unstable USL, not only

via spectral characteristics but also in experimentally-derived Poincaré maps.

The evidence for complex dynamics associated with sinusoidal excitation of the equiden-

sity transverse jet is not only interesting and consistent with the VDP dynamical model for

a self-excited flow, but it also suggests that the control of JICF behavior via external forcing

could have differing effects on jet behavior. The implications for jet structure and mixing

when the upstream shear layer is locked-in as opposed to quasi-periodic or only weakly af-

fected by external forcing are subject of several alternative excitation modalities currently

under exploration.
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