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Abstract7

The anisotropy and structure of turbulence simulated by large eddy simulations with and without8

Stokes-drift forcing are analyzed, with an emphasis on the linkage between the distinctive structure9

of Langmuir turbulence near the surface where cellular vortices aligned with the wind and wave10

propagation direction are apparent and the Langmuir-enhanced mixed layer entrainment at the11

base of the ocean surface boundary layer (OSBL) where turbulent structures differ. The tensor12

invariants of the Reynolds stresses, the variance of vertical velocity and buoyancy, and the velocity13

gradient statistics are used to categorize turbulence structures as a function of depth, including14

an extension of the barycentric map to show the direction as well as the magnitude of turbu-15

lence anisotropy and a vector-invariant extension of the Okubo-Weiss parameter. The extended16

anisotropic barycentric map and the velocity gradient statistics are demonstrated to be useful,17

providing compact information of the anisotropy, orientation, and structure of turbulent flows. It18

is found that the distinctive anisotropy and structures of Langmuir turbulence are quickly lost19

below regions where Stokes drift shear is significant and vortices are apparent, consistent with past20

observations and model results. As a result, the turbulent structures near the base of the OSBL are21

not significantly affected by the presence of Stokes drift above but are instead dominated by local22

Eulerian shear, except in one important manner. Langmuir turbulence does affect the mixed layer23

entrainment by providing extra available turbulent kinetic energy (TKE) via enhanced near-surface24

TKE production and higher vertical TKE transport energizing the turbulent structures near the25

base of the OSBL. The additional TKE is utilized by structures similar to those that exist without26

Stokes drift forcing in terms of anisotropy of their Reynolds stresses, but they are more energetic27

because of the Langmuir turbulence. Thus, parameterizing the major aspects of Langmuir turbu-28

lence on entrainment at the base of the OSBL can be incorporated through enhancing available29

energy without other modifications.30

I. INTRODUCTION31

Shear turbulence and convective turbulence are two important types of turbulence that32

are commonly present in the planetary boundary layers and parameterized in various bound-33
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ary layer turbulent closure schemes for geophysical fluid problems [e.g., 1–4]. Surface gravity34

waves at the free interface between the atmosphere and the ocean give rise to different types35

of turbulence–including wave breaking turbulence and Langmuir turbulence [5]. Langmuir36

turbulence results from interactions between the Stokes drift of ocean surface gravity waves37

[6–8] and Eulerian flows through the Stokes-vortex force [9], or equivalently Stokes shear38

force [10], and has distinctive structures than convective and shear turbulence [11, 12].39

Langmuir turbulence is the focus of this work, because it has been shown to be important40

in energizing the turbulent mixing thoughout the ocean surface boundary layer (OSBL) and41

affecting the ocean mixed layer depth, thereby affecting the weather and climate through42

the air-sea exchange of heat, momentum and tracers on a global scale [13–15].43

Windrows commonly observed at the sea surface aligned with the wind and wave propa-44

gation are indicators of the presence of Langmuir turbulence. These windrows are debris ag-45

glomerations associated with parallel bands of convergent surface flows, with enhanced down-46

ward vertical velocity and downwind horizontal velocity located at the windrows, namely47

Langmuir circulation [16–18]. Such coherent circulation structures are responsible for the48

enhanced vertical velocity variance and vertical mixing as observed in a wavy OSBL com-49

pared with a wall-bounded layer, especially near the surface [14, 19, 20], although they are50

often found to be disordered–a condition called Langmuir turbulence [5]. These structures51

are frequently observed from bubble tracks and other methods detecting their strong verti-52

cal and cross-wind velocities [reviewed by 21]. These structures can also interact with the53

bottom boundary layer in a shallow coastal region and thereby affect the sediment transport54

[22]. As a practical observational and modeling alternative to mapping coherent structures55

within the complexity of Langmuir turbulence, sometimes Langmuir turbulence is taken to56

be any additional velocity variance or covariances beyond those expected from convective57

or shear forcing alone [e.g., 14]. Through this statistical approach, the authors have previ-58

ously identified additional entrainment at the OSBL base due to Langmuir turbulence [23].59

However, it is less clear what mechanisms Langmuir turbulence affects to enhance mixing60

and entrainment at the base of the OSBL–typically deeper than these coherent structures61

recognizably extend. Categorizing these mechanisms is the focus of this study.62

In particular, direct observations of the three-dimensional flow in the open ocean show63

that distinctive structures of Langmuir circulation only appear within the upper half of a64

40-60 m OSBL and find no direct effect of Langmuir circulation on the mixing near the65
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base [24, 25]. On the other hand, large eddy simulations (LES) under similar conditions66

show enhanced vertical mixing at the base of the OSBL, thereby enhanced mixed layer67

entrainment, in the presence of Langmuir turbulence [5, 23, 26–28]. How can we reconcile68

the model results with the observations?69

Langmuir turbulence derives additional energy from the Stokes drift of the ocean surface70

waves which decays exponentially or faster with depth [e.g., 29], producing vanishingly small71

contributions below a few meters typically. Thus, there is usually no additional production72

of turbulent kinetic energy (TKE) due to Stokes drift near the base of the OSBL which is73

tens to hundreds of meters deep [e.g., 23, 27]. The energy required by the Langmuir turbu-74

lence enhanced entrainment has to be from either the enhanced downward TKE transport75

or Stokes drift-modulated shear production at the base of the OSBL. Indeed, the deeply76

penetrating jets associated with the counterrotating Langmuir cells [30] may act as a me-77

dia transporting TKE downward. On the other hand, enhanced shear instabilities beneath78

downwelling regions of Langmuir cells have been observed and are thought as mechanisms79

for thermocline erosion [31–33].80

The above two mechanisms can each be predominant depending on the surface forcing81

regimes, e.g., (1) under weak to moderate wind conditions, downward TKE transport may82

dominate the energy source for the entrainment [e.g., the LES cases explored in 23], and83

(2) under strong wind conditions, such as tropical cyclone conditions normally accompanied84

by strong inertial oscillation of the whole mixed layer, the local shear production near85

the base of the OSBL may be predominant [e.g., the LES cases explored in 34]. Note86

that while downward TKE transport sustains entrainment by providing necessary energy,87

entrainment reduces the local shear and thereby reduces the local shear production (increases88

the local Richardson number). Therefore, shear instability alone cannot sustain continuous89

entrainment without energy supply from above [35].90

Focusing on the former regime, the authors [23] have shown that the effects of Langmuir91

turbulence on the entrainment can be represented by modifying the unresolved shear term92

in the bulk Richardson number in the K-Profile Parameterization [KPP, 2], from which93

the OSBL depth is diagnosed. While a quantification of the Langmuir turbulence effects on94

modulating the shear instability near the base of the OSBL, and thereby on the entrainment,95

may require significant further work, this study aims at providing a clean description of the96

structure and anisotropy of Langmuir turbulence and their connections to the entrainment97
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process at the OSBL base.98

The structure and anisotropy of Langmuir turbulence have been studied in comparison99

with shear turbulence in LES studies [e.g., 5, 11, 27, 36], as well as using rapid-distortion100

theory [12, 37, 38]. However, none of them particularly discuss the structure of Langmuir101

turbulence at the base of the OSBL versus its signature structure near the surface and the102

implications for modeling the entrainment processes, which are the emphases of this study.103

The remainder of this paper is structured as follows. The primary tool, a LES model is104

introduced in Section II. The structure and anisotropy of Langmuir turbulence simulated105

by LES, in comparison to shear turbulence, are explored in various ways in Section III. The106

linkage between these distinctive features of Langmuir turbulence and the entrainment at107

the base of the OSBL is discussed in Section IV. This paper ends with a brief discussion and108

main conclusions in Section V.109

II. METHODS110

A. Governing Equations111

The dynamics of Langmuir turbulence is governed by the wave-averaged Boussinesq equa-112

tion [e.g., 9, 17], written in its Stokes shear force form [10],113

∂ui
∂t

+ uLj
∂ui
∂xj

= −fεi3kuLk −
∂p

∂xi
− uLj

∂uSj
∂xi

+ bδi3 +
∂

∂xj
(2νtsij) ,

∂ui
∂xi

= 0,

∂b

∂t
+ uLj

∂b

∂xj
=

∂

∂xj

(
κt
∂b

∂xi

)
,

(1)

with uLi = ui + uSi the Lagrangian velocity, uSi the Stokes drift (constant in time), p the114

pressure divided by the reference density ρ0, b the buoyancy, νt the turbulent viscosity, sij the115

symmetric part of the velocity gradient tensor, κt the turbulent diffusivity, δij the Kronecker116

delta and εijk the alternating tensor. Here the indices i, j and k all take the values 1, 2, and117

3, and summation over repeated indices is implied. All variables can be expressed as a sum118

of the mean and the perturbation using Reynolds decomposition, i.e., v = v+ v′ and v′ = 0.119

Here it is assumed that uSi is not affected by the turbulent flow and therefore is assumed to120

be known. In addition, uSi = (uS1 , u
S
2 , 0) is assumed to be a function of only the depth, x3,121

so that if () is taken as a temporal average or a horizontally spatial average, uSi = uSi .122
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B. Large Eddy Simulation With Stokes Forcing123

Equations (1) are solved using large eddy simulation technique [5, 39] with a modi-124

fied Smagorinsky [40] sub-grid-scale (SGS) scheme that solves a prognostic equation for125

SGS TKE [41]. The model and setup are essentially the same as Li and Fox-Kemper126

[23] and therefore only briefly described here. The simulation domain size is Li =127

(320, 320, 162.84) m, with Ni = (256, 256, 256) computational cells in each direction, cor-128

responding to a spatial resolution of dxi = (1.25, 1.25, 0.64) m. Integration time steps129

vary to satisfy the CFL condition (∼ 3 s for non-rotating cases and ∼ 6 s for rotating130

cases to be introduced below). All simulations are initialized from rest with small random131

perturbation in velocity near the surface to aid the development of turbulence. Initial strat-132

ification is neutral in the upper 42 m and stable below, where the Brunt-Väisälä frequency133

is N = 6.2× 10−3 s−1.134

Two pairs of simulations are conducted in this study. In each pair, simulations with135

Stokes forcing (denoted by a prefix LT ) and without (denoted by a prefix ST ) are con-136

ducted to highlight the effects of Langmuir turbulence. All four simulations are forced by137

identical surface stress, corresponding to a 10-meter wind of U10 = 5 m s−1, and weak surface138

cooling of Q0 = 5 W m−2 to promote the development of turbulence without significantly139

affecting the shear and Langmuir turbulence. The only difference between the two pairs is140

the Coriolis parameter, i.e., f = 1.028 × 10−4 s−1 (corresponding to the value at 45◦N) in141

one pair (denoted by a suffix R) whereas f = 0 in the other (denoted by a suffix NR). The142

mean horizontal velocity profiles in the former pair (ST-R and LT-R) exhibit Ekman spiral143

structure due to the rotation, and therefore a quasi-equilibrium with the surface forcing is144

possible, in which the vertical shear near the base of the OSBL is weak. On the contrary,145

horizontal velocity in the latter pair (ST-NR and LT-NR) continues to grow as a result of the146

surface wind forcing, and relatively strong vertical shear near the base of the OSBL devel-147

ops. The goal of having the latter pair of simulations is to contrast the effects of Langmuir148

turbulence on the entrainment with the effects of shear near the base of the OSBL.149

For simplicity, an idealized Stokes drift profile for a monochromatic wave propagating in150

the same direction as the wind (x1) is used.151

uS1 (x3) = ωkA2e2kx3 , uS2 (x3) = 0, (2)

where k is the wavenumber, A is the wave amplitude, ω =
√
gk is the angular frequency152

6



with deep-water wave dispersion relation, and g is the gravitational acceleration. Following153

McWilliams et al. [5], a typical wave condition with k = 0.1 m−1 and A = 0.8 m is adopted,154

which gives a turbulent Langmuir number Lat = (u∗/uS)1/2 ≈ 0.3 (with u∗ the friction155

velocity and uS the magnitude of Stokes drift at surface) under the wind condition used156

here.157

To minimize the inertial oscillation associated with a sudden onset of wind forcing at the158

beginning of the simulations, which may cause significant shear at the base of the boundary159

layer, ST-R and LT-R are initialized with a smooth onset of wind and Stokes forcing by160

applying a time filter during spin-up,161

F (t) =
1

2

[
1− cos

(
πt

T0

)]
, 0 ≤ t ≤ T0, (3)

where T0 = 86400 s is the spin-up time, which is
√

2 times the inertial period in the rotating162

(R) cases–slow enough to significantly reduce resonance. After spin-up, the two simulations163

are carried on for about 105 s under constant forcing to reach quasi-equilibrium. For ST-NR164

and LT-NR, such smooth spin-up is not necessary. The OSBL depth in these two simulations165

starts to increase with a constant rate after about 104 s and the total simulation time is166

about 105 s. Unless otherwise noted, all mean profile results are averaged over the last167

inertial oscillation period (T = 2π/f ≈ 6.1× 104 s). The same averaging window is used for168

the non-rotating (NR) cases. Snapshots of velocity field shown are taken at the end of the169

simulations.170

A summary of the four simulations is given in Table I, and the vertical profiles of the171

normalized horizontal mean Lagrangian velocity, vertical velocity variance and mean vertical172

buoyancy flux are shown in Fig. 1. For clarity the vertical x3-direction is normalized by the173

boundary layer depth hb.174

No strong vertical shear is developed at the base of the OSBL in ST-R and LT-R (Fig. 1a,175

blue and red). On the contrary, significant vertical shear near the base of the OSBL is evident176

in both ST-NR and LT-NR (Fig. 1a, cyan and magenta). Near the surface, all four cases177

have similar Lagrangian velocity shear, but the velocities in ST-NR and LT-NR are shifted178

toward larger values to accommodate their near-OSBL base shear. It is expected that the179

near surface turbulence structure in ST-NR resembles that in ST-R, both dominated by shear180

turbulence, and LT-NR resembles LT-R, both dominated by Langmuir turbulence. Indeed,181

such similarities and discrepancies of near surface turbulence structure among the four cases182
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FIG. 1. Vertical profiles of the normalized (a) horizontal mean Lagrangian velocity, (b) vertical

velocity variance and (c) mean vertical buoyancy flux. Simulations ST-R, LT-R, ST-NR and LT-

NR are represented by blue, red, cyan and magenta, respectively. Solid and dashed curves in (a)

show uL1 and uL2 , and dash-dot curve in black shows the Stokes drift. Plus signs in (b) mark the

four specific depths at which more analyses will be conducted to reveal the vertical variation of the

turbulence structure: (1) near the surface, (2) depth at which its root-mean-square (RMS) value

reaches the maximum, (3) middle of the OSBL and (4) near the base of the OSBL. The last one is

also marked in (c) to illustrate that this location lies near the maximum downward buoyancy flux.

The dashed curves in (c) show the Langmuir turbulence enhanced buoyancy flux, estimated from

the difference between LT-R and ST-R (black), and between LT-NR and ST-NR (gray).

can be inferred from the vertical velocity variance profiles, which are significantly enhanced183

by the presence of Langmuir turbulence in LT-R and LT-NR. However, the turbulence184

structure near the base of the OSBL should be different between ST-R (LT-R) and ST-NR185

(LT-NR) due to the different local velocity shear, limiting shear production in the R cases.186

This is already evident in the buoyancy flux profiles. For example, LT-R (red) and LT-NR187

(magenta) have very different buoyancy flux in Fig. 1c, although their respective vertical188

velocity variance profiles are very similar in Fig. 1b. Note that the small peak of vertical189

velocity variance at the OSBL base in ST-NR and LT-NR (Fig. 1b) may be due to non-190

breaking internal waves, which contribute to vertical velocity variance but not entrainment,191

though entrainment processes may also contribute as the buoyancy flux at that level is not192

zero (Fig. 1c).193
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It will be examined in the next section whether Langmuir turbulence has any signature194

on the turbulence structure near the OSBL base, and whether the presence of strong shear195

alters that signature–if there is any. Note, however, that the magnitude of the Langmuir196

turbulence induced buoyancy flux is very similar with or without rotation, as shown by197

the black and gray dashed curves in Fig. 1c. This suggests that, whatever the signature of198

Langmuir turbulence at the OSBL base is, its effect on the entrainment buoyancy flux may199

not be significantly affected by the presence of shear.200

TABLE I. A summary of simulations. Acronyms in the name of simulations are as follows, ST:

Shear turbulence; LT: Langmuir turbulence; R: Rotating; NR: Non-rotating.

Simulations f (s−1) uSi Description

ST-R 10−4 0 w/o LT, weak shear at OSBL base

LT-R 10−4 Eq. (2) w/ LT, weak shear at OSBL base

ST-NR 0 0 w/o LT, strong shear at OSBL base

LT-NR 0 Eq. (2) w/ LT, strong shear at OSBL base

III. STRUCTURE AND ANISOTROPY OF LANGMUIR TURBULENCE201

Snapshots of the normalized vertical velocity in ST-R and LT-R at four different depths,202

as an illustration of the turbulence structure, are shown in Fig. 2. Bands of downwelling203

zones in LT-R nearly parallel to the wind and waves (x1-direction) near the surface, veering204

clockwise due to the Coriolis force and merging and increasing in spatial scales with depth205

(see the cross section at x3/hb = −0.5 in Fig. 2b), are distinctive features of Langmuir206

turbulence [5]. In contrast, the vertical velocity in ST-R appears more disordered. Note207

that although evidence of downwelling bands or waves in LT-R are noticeable at the base of208

the OSBL (i.e., wave-like structure are more aligned with the bands of downwelling zones),209

the smaller scale structure (e.g., a plume) is not so different from that in ST-R. Similar210

comparison can also be made between ST-NR and LT-NR as in Fig. 3, and the footprint of211

Langmuir turbulence near the base of the OSBL is even smaller due to the predominance of212

shear and internal waves there (Fig. 1a,b).213

To quantify such similarities and discrepancies of turbulence structure seen in the ver-214

tical velocity field beyond artistic imaginings, the Reynolds stress tensor and the velocity215
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(a) (b)

FIG. 2. Snapshots of vertical velocity for (a) ST-R and (b) LT-R at the four depths marked

in Fig. 1b. The vertical velocity is normalized by its RMS value at each depth to highlight the

turbulence structure. Positive values are shown in red and negative values in blue. The horizontal

and vertical axes are normalized by the horizontal dimensions of the domain (L1, L2) and the

boundary layer depth hb, respectively, both defined in Section II B.

gradient tensor will be analyzed in the following sections, which emphasize the anisotropy216

of turbulence and vortical structures, respectively.217

A. Reynolds Stress Tensor and Anisotropic Barycentric Map218

The anisotropy of turbulence can be described by the anisotropy tensor [42, 43], which is219

just the deviatoric Reynolds stress scaled by twice the TKE,220

aij =
u′iu
′
j

2e
− δij

3
. (4)

where e = u′iu
′
i/2 is the TKE.221
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(a) (b)

FIG. 3. Same as Fig. 2, but for (a) ST-NR and (b) LT-NR.

The three tensor invariants–i.e., the three scalar quantities that categorize the second-rank222

tensor aij that are unaffected by a change in coordinate system–are a useful dimensionless223

quantification of the geometric characteristics of turbulent structures in a flow. The first224

(isotropic) principal tensor invariant of aij is zero by definition (due to cancellation with the225

isotropic second term in (4)), i.e., I = aii = 0. The second and third principal invariants of226

aij,227

II = aijaji, III = aijajkaki, (5)

when plotted against each other in the anisotropy invariant map (also known as the Lumley228

triangle), describe the level of turbulence anisotropy [42, 44]. This technique has been used229

to quantify anisotropy of Langmuir turbulence versus shear turbulence in both observations230

and LES of a shallow coastal region [22, 36]. Alternatively and equivalently, one can use a231

barycentric map derived from the eigenvalues of aij, which is easier to read than the Lumley232

triangle [45] and proves useful in categorizing structures in tidally-generated turbulence [46].233
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The idea is to represent any anisotropy tensor (in its rotated and reordered form, âij) as a234

convex combination of three limiting states,235

âij = diag (λ1, λ2, λ3) = C1câ1c + C2câ2c + C3câ3c, (6)

where λ1, λ2 and λ3 are the eigenvalues of aij in descending order, and236

â1c = diag (2/3,−1/3,−1/3) , (7)

â2c = diag (1/6, 1/6,−1/3) , (8)

â3c = diag (0, 0, 0) , (9)

represent the one-component, two-component and three-component limiting states, respec-237

tively. Here diag(d1, d2, . . . , dn) represent a n-by-n diagonal matrix with main diagonal238

entries d1, d2, . . . , dn. The normalizing coefficients {C1c, C2c, C3c} are chosen in a manner239

such that,240

C1c + C2c + C3c = 1, {C1c, C2c, C3c} ∈ [0, 1]. (10)

They are related to the eigenvalues of aij by241

C1c = λ1 − λ2, (11)

C2c = 2(λ1 − λ2), (12)

C3c = 3λ3 + 1. (13)

A barycentric map can be drawn given the barycentric coordinates {C1c, C2c, C3c}. The242

position of a point in the barycentric map then illustrates how close the turbulence state is243

to each of the three limiting states. For example, a point with the barycentric coordinates244

of {0, 0, 1} is on the vertex labeled as “3 comp” in Fig. 4a, corresponding to pure three-245

component (or isotropic) turbulence. The vertices labeled as “2 comp” and “1 comp” in246

Fig. 4a correspond to pure two-component and pure one-component turbulence, respectively,247

with the former having equal velocity fluctuations in two directions and zero in the other,248

and the latter having non-zero velocity fluctuations only in one direction. The three edges249

labeled as “Axisymmetric expansion”, “Axisymmetric contraction” and “Two component”250

show the transition paths between any two of the three limiting states. The “Plane strain”251

limit (III = 0 in Lumley triangle) shows a special path between the three-component and252

the two-component states along which the velocity fluctuation in one direction is constant.253
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More detailed discussion and comparison with the Lumley triangle is given by Banerjee et al.254

[45].255

While the anisotropic barycentric map illustrates the level of anisotropy by using the256

eigenvalues of aij, because these eigenvalues are scalars and thus insensitive to coordinate257

systems, the barycentric map does not inform the directions of principal axes of anisotropy258

when it exists, which are determined by comparing the eigenvectors of aij to other key259

directions in the physical situation, such as the direction of the local vertical, gravity, the260

down-wind or Lagrangian shear direction. A natural extension of the anisotropic barycentric261

map includes the directional information of the anisotropy by reference to these key broken262

symmetries.263

There are three eigenvectors of aij, {v̂1, v̂2, v̂3}, associated with the three eigenvalues,264

{λ1, λ2, λ3}. However, it is not necessary to show all their directions. Indeed, directions are265

important only for two limiting states of anisotropy: one-component and two-component,266

for which the directions of interest are along the major axis (the orientation of the one-267

component turbulence) and minor axis (the orientation of the axis perpendicular to the268

planar, or transversely isotropic, turbulence), respectively. To illustrate the direction of269

anisotropy we will only need the direction of the major axis for nearly one-component (N1C)270

regime, or cigar-like, and the minor axis for nearly two-component (N2C) regime, or pancake-271

like. The direction of interest for each regime and the criterion distinguishing these two are272

273 N1C, Major axis, if C1c > C2c,

N2C, Minor axis, if C1c < C2c.
(14)

Note that we use different symbols to mark the direction of the major (◦) and minor (×)274

axes in Fig. 4b,d and Fig. 5b,d. The terms cigar-like and pancake-like describe the relative275

magnitude of velocity fluctuations along three principal axes, not the spatial scales in a276

typical visualization of coherent structures. For example, the elongated rolls typical of277

Langmuir circulations are pancake-like in terms of velocity fluctuations (or the Reynolds278

stresses), for which the minor axis points to the axis direction of the rolls.279

The direction of a unit vector in three dimensional space can be represented by two280

angles: the azimuth, or horizontal angle away from a chosen horizontal direction, θ, and281

the elevation angle above the local horizontal toward the zenith, φ. These two directions282

play equivalent roles to longitude and latitude, respectively, in a local spherical coordinate283
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system. The directions of interest here are the along-wind (x1-direction, the direction of284

wind and waves in these simulations and the direction of mean flow in the non-rotating285

simulations), cross-wind (x2-direction), and vertical (x3-direction) directions. The azimuth286

angle θ measures the along-wind versus cross-wind directionality, while the elevation angle φ287

measures horizontal versus vertical. Both angles illustrating the direction of anisotropy can288

be shown in a two dimensional map as is done in Fig. 4b. Black arrows indicate the along-289

wind (x1) and cross-wind (x2) directions, with labels on the edge of the gray circle showing290

θ. The x3-direction is represented by the center of the gray concentric circles (pointing291

out of the paper), with the labels on each concentric dashed circle showing the value of φ292

indicating horizontal versus vertical orientation of the unit vector direction of anisotropy.293

Here we are not distinguishing between positive and negative along a particular direction,294

so that pointing up and upwind is equivalent to pointing down and downwind (e.g., dark295

red circles in Fig. 4b).296

Note that the absolute value of C1c and C2c measure the level of one- and two-component297

anisotropy. When both C1c → 0 and C2c → 0, three-component regime is approached and298

then directional information becomes irrelevant. The relevance of the directional information299

should then be weighted by the level of anisotropy. To emphasize greater anisotropy, we set300

the marker size for the major and minor axis directions proportional to the magnitude of301

C1c and C2c, respectively. Then the relevance of the direction is illustrated by the marker302

size and the marker automatically vanishes for three-component turbulence.303

For horizontally homogeneous turbulence in the LES, the level of anisotropy can be304

analyzed at each depth to illustrate the structure of turbulence throughout the OSBL.305

Fig. 4 shows the anisotropic barycentric map and direction of anisotropy for simulations306

ST-R and LT-R, respectively, as a function of the normalized depth x3/hb. Color marks307

the depth, with red showing the surface and blue showing the base of the OSBL. Both308

the instantaneous flow field at the end of the simulation and the mean flow field averaged309

over the last inertial period are analyzed, shown by the dots and solid curves, respectively.310

For clarity the direction of anisotropy for the mean flow are shown in gray. Note that the311

sudden jump in the orientation angle as depth increases in Fig. 4b,d is a result of showing312

the direction of major and minor axes for N1C and N2C regimes, respectively. Both the level313

of anisotropy and its direction, as well as their vertical structures throughout the OSBL,314

are generally consistent between the instantaneous flow and mean flow. This suggests that315
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FIG. 4. Left panels show the anisotropic barycentric map as a function of normalized depth, x3/hb

(color), for simulations (a) ST-R and (c) LT-R. Colored dots show the anisotropy of the instanta-

neous, horizontally-averaged Reynolds stresses at the end of the simulation, whereas solid curves

show the Reynolds stresses averaged horizontally over space and averaged over time over the last

inertial period. Right panels show the direction of anisotropy as a function x3/hb for (b) ST-R

and (d) LT-R, using the same color scheme to indicate depth for reference to (a) and (c). The

direction of major axis (greatest eigenvalue) is marked by circles for cigar-like (longitudinal) struc-

ture, whereas the direction of minor axis (smallest eigenvalue) is marked by crosses for pancake-like

(transverse) structure, with color for the instantaneous flow and gray for the mean flow. The size

of the markers is proportional to the degree of anisotropy (see more details in the text). Black

circle and cross in the upper right corner show the sizes corresponding to pure one-component and

two-component turbulence. Filled squares and diamonds at the edge mark the mean direction of

〈∂uLi /∂x3〉0.25hb
and 〈∂ui/∂x3〉0.25hb

, respectively, averaged over the upper 25% of the boundary

layer for the instantaneous flow (black) and mean flow (gray). Empty squares and diamonds at

the edge mark the mean direction of 〈uLi 〉0.25hb
and 〈ui〉0.25hb

, respectively.
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FIG. 5. Same as Fig. 4, but for (a,b) ST-NR and (c,d) LT-NR.

the statistics of turbulence structure from a horizontal average of the instantaneous flow is316

representative of the temporally averaged statistics.317

Comparison between Fig. 4a,b and Fig. 4c,d reveals the differences in the anisotropy318

between ST-R and LT-R, especially near the surface where substantial Stokes shear exists in319

LT-R but not ST-R (Fig. 1). At the surface, though both exhibit two dimensional structure320

primarily due to the blocking effect where motions in the vertical direction are suppressed,321

the dominant directions are different, namely, along-wind for ST-R versus cross-wind for322

LT-R (dark red circles). Right below the surface, turbulence in LT-R (red crosses) indicates323

a pancake-like turbulence with a minor direction being nearly along-wind, which is a direct324

result of the tilted counter-rotating vortices about an axis oriented along the shear direction325

typical of Langmuir turbulence [47]. Those tilted counter-rotating vortices correspond more326

with the near surface mean Lagrangian shear, 〈∂uLi /∂x3〉0.25hb
(filled squares), than the327

mean Eulerian shear, 〈∂ui/∂x3〉0.25hb
(filled diamonds), consistent with the vortex tilting328
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and stretching mechanisms of Langmuir circulation [9, 37, 47]. Note that the near surface329

averaged Lagrangian shear and Eulerian shear are deflected to the right of the wind direction330

by the Coriolis force, though the shear exactly at the surface is aligned with the wind. These331

features in anisotropy distinguish Langmuir turbulence from the shear-induced turbulence332

near the surface, which exhibits a cigar-like structure as in ST-R. Near the base of the333

OSBL, however, both ST-R and LT-R exhibit pancake-like structure about a minor axis334

direction that is nearly vertical, though quantitative differences between x3/hb = −0.5 and335

x3/hb = −0.8 are noticeable. In addition, in both ST-R and LT-R these structures tilt336

towards the direction of the mean surface Lagrangian velocity, 〈uLi 〉0.25hb
, which suggests337

a mean vertical shear ∼ 〈uLi 〉0.25hb
/hb is important in breaking the azimuthal symmetry in338

both cases. These results show that the distinctive features of the anisotropy of Langmuir339

turbulence are not retained at the base of the OSBL.340

Similarly, significant distinctions near the surface and general similarities at the base341

of the OSBL in the anisotropy of turbulence are also observed in ST-NR and LT-NR, as342

illustrated by Fig. 5. The primary difference is that in these two simulations there exists a343

strong mean vertical shear near the base of the OSBL. As a result, the turbulence there in344

both cases exhibit cigar-like structure in the along-wind direction, just like those structures345

near the surface induced by the surface shear in ST-R and ST-NR. Again, the distinctive346

pancake-like structure of Langmuir turbulence tilted to align with the Lagrangian shear347

(along-wind in LT-NR) does not extend to the base of the OSBL, ending near x3/hb = −0.4.348

Near the surface, the key distinction in anisotropy is based on whether or not there349

is Stokes shear. Comparing the near surface (red to yellow crosses) Langmuir turbulence350

simulation pair in LT-R (Fig. 4d) and LT-NR (Fig. 5d) illustrates the Langmuir turbulence351

orientation, while the distinctive leftward cusp (reddish symbols) across the plane strain line352

in LT-R (Fig. 4c) and LT-NR (Fig. 5c) shows the change in anisotropy with depth across353

the Stokes shear typical of this Langmuir turbulence. The shear turbulence pair of cases354

ST-R (Fig. 4a) and ST-NR (Fig. 5a) lack this cusp in their near-surface anisotropy (reddish355

symbols).356

Near the OSBL base, the key distinction in anisotropy relies on whether or not there357

is Eulerian shear, which depends on rotating versus non-rotating scenarios. Comparison358

between Fig. 4 and Fig. 5 reveals the differences in the turbulence anisotropy at the base359

of the OSBL in the two entrainment regimes, i.e., a “plume regime” where downward TKE360
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transport associated with deep penetrating plumes may provide the energy for entrainment361

of denser water from below, and a “shear regime” where shear production by the local shear-362

induced instabilities may provide the energy for entrainment. At depth (bluer symbols), the363

opposite pairing to that at the surface occurs in anisotropy, where ST-R (Fig. 4a) and LT-R364

(Fig. 4c) resemble one another and ST-NR (Fig. 5a) and LT-NR (Fig. 5c) resemble one365

another. As if in a square or group dance, the turbulence partners that pair at the surface366

are traded over depth for the other pairing of partners at the OSBL base. So, in both367

regimes, the presence or absence of Langmuir turbulence that dominates near the surface368

does not significantly affect the turbulence anisotropy and structure near the base of the369

OSBL, which is governed by the Eulerian shear distinction between rotating and non-rotating370

partner pairs.371

Note that these results are not inconsistent with the fact that the downwelling plumes372

may be somewhat more organized (e.g., they tend to be aligned into parallel bands) in373

the presence of Langmuir turbulence Fig. 2. However, when averaged over a domain much374

larger than the individual plumes, as is the case here to emphasize on the mean effects,375

these more organized structures do not affect the turbulence anisotropy as seen in Fig. 4376

and Fig. 5. Great care is therefore required when applying the same analysis to a smaller377

domain. It is likely that higher order statistics (e.g., the triple correlation or third-order378

structure function) would reflect these distinctions, while the second-order covariances of379

the Reynolds stresses are relatively insensitive.380

B. Velocity Gradient Tensor and Invariant Diagram381

While the invariants of the Reynolds stress tensor are useful in describing the anisotropy382

of turbulence, the invariants of the velocity gradient tensor are commonly used to identify383

and describe the structures of turbulent flows [e.g., 48–51]. The velocity gradient tensor can384

be broken into a symmetric and an antisymmetric part, Tij = ∂ui/∂xj = Sij + Aij, where385

Sij = (Tij +Tji)/2 and Aij = (Tij−Tji)/2 are the rate-of-strain and rate-of-rotation tensors,386
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tively. Yellow, green, light blue and dark blue show the highest 50%, 75%, 90% and 95% centered

distribution, respectively. For example, 50% of all occurrence in the parameter space with the

highest probability density is shown in yellow.

19



respectively. For an incompressible fluid, the three matrix invariants of Tij are387

P = −Tii = 0, (15)

Q = −1

2
TijTji = −1

2
(SijSji + AijAji) =

1

2
(AijAij − SijSij) , (16)

R = −1

3
TijTjkTki =

1

3
(−SijSjkSki − 3AijAjkSki) . (17)

The invariants of Sij are defined by letting Aij = 0 in (15)-(17), i.e., PS = 0, QS = −1
2
SijSij388

and RS = −1
3
SijSjkSki. The first and third invariants of Aij are identically zero. So the only389

nonzero invariant of Aij is QA = 1
2
AijAij and is related with Q and QS by Q = QS + QA.390

Note the close relation of Q to the Okubo-Weiss parameter in 2D flow, which is strain rate391

squared minus vorticity squared [52–55]. Q is a vector-invariant, arbitrary-dimensionality392

generalization of the same concept.393

Those invariants, when plotted against each other, provide abundant information on the394

topology of flow patterns [e.g., 48, 49]. Commonly used pairs include (R,Q), (RS, QS) and395

(QA,−QS). We are going to focus on the last pair, (QA,−QS), as it effectively distinguishes396

shear structures from vortical structures.397

To see this, consider the fact that QA = 1
2
AijAij = 1

4
ωiωi, with ωi = εijkTkj the vorticity,398

is proportional to the enstrophy density which represents the strength of rotation, whereas399

−QS = 1
2
SijSij > 0 is proportional to the local dissipation of kinetic energy. Regions of400

large QA correspond to structures with strong rotation, either vortex tubes or vortex sheets.401

On the other hand, regions of large −QS correspond to strong strain, either rotational or402

irrotational. Therefore, co-occurrence of large QA and large −QS indicates a predominance403

of vortex sheets, with large QA and small −QS a predominance of vortex tubes, and small QA404

and large −QS a predominance of irrotational dissipation. For the same reason, isosurfaces405

of positive Q (QA > −QS) are commonly used to visualize vortex tubes in a turbulent flow406

field [e.g., 51].407

Fig. 6 shows the joint distribution of normalized QA and −QS for the four simulations408

(columns) in different depth ranges throughout the OSBL (rows). Consistent with the struc-409

tures revealed by the analyses of turbulence anisotropy, the distinctive features of Langmuir410

turbulence only exist within the surface 25% of the OSBL where Stokes shear is significant.411

For example, evidence of vortex tubes is observed near the surface in LT-R and LT-NR, but412

not in ST-R and ST-NR, where vortex sheets predominate. Near the base of the OSBL,413

turbulence structures look quite similar between ST-R and LT-R, and between ST-NR and414
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LT-NR, respectively, with evidence of combined vortex tubes and vortex sheets in the former415

pair, and predominance of vortex sheets in the latter pair. In the middle of the OSBL, where416

no strong shear exists, turbulence structures look very similar among all four simulations.417

The group dance, where partners are traded with depth, also appears in the statistics of the418

velocity gradient.419

IV. ENTRAINMENT420

The entrainment at the base of the OSBL is strongly affected by the structure and421

anisotropy of the turbulence, which determine the partition of the available TKE at the422

base of the OSBL into potential energy creation (i.e., mixing) and dissipation. To demon-423

strate this, Fig. 7 shows the joint distributions of normalized vertical velocity and buoyancy424

fluctuations at the entrainment level (as marked in Fig. 1c) for all four cases. Both vertical425

velocity and buoyancy fluctuations are normalized by their standard deviation to highlight426

their correlations instead of their magnitudes, which are quite different as expected. The427

joint distributions are estimated from the time series of the buoyancy flux snapshots at428

the entrainment level taken approximately every 3 min over the analyzing window (the last429

∼ 6.1 × 104 s of the simulations). Four quadrants of each panel show the four regimes430

that contribute to the entrainment: (I) rarefied updraft, (II) rarefied downdraft, (III) dense431

downdraft, and (IV) dense updraft. A negative entrainment buoyancy flux as in all four432

cases may result from either light downdraft or dense updraft.433

The resulting probability density function (PDF) of entrainment buoyancy flux for the434

four cases are shown in Fig. 8. Again, the entrainment buoyancy fluxes are normalized435

by their standard deviation to emphasize the shape of the distribution and to allow direct436

comparison among different cases. Note again that their mean values and standard devia-437

tions are significantly different (see Fig. 1c). In addition to the four cases analyzed in this438

study, the same PDF for a pure convection case, in which convective plumes energize the439

entrainment, is shown in gray as a reference. The PDFs are plotted in logarithmic scale to440

highlight the extreme values whose asymmetry between positive and negative leads to the441

net negative entrainment buoyancy flux as shown in Fig. 1c.442

Similarities and discrepancies among the four cases are immediately evident, reminiscent443

of those in the turbulent velocity gradient statistics structure at the base of the OSBL shown444
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FIG. 7. The joint distribution of the normalized fluctuations of vertical velocity and buoyancy

at the entrainment level (x3 ≈ −0.9hb) for (a) ST-R, (b) LT-R, (c) ST-NR and (d) LT-NR. The

fluctuations of both variables are normalized by their standard deviation. Yellow, green, light blue

and dark blue show the highest 50%, 75%, 90% and 95% centered distribution, respectively. The

numbers at each quadrant shows the fractional area of (I) rarefied updraft, (II) rarefied downdraft,

(III) dense downdraft, and (IV) dense updraft.

in the previous section. As this is a statistic of the OSBL base turbulence, the PDF of LT-R445

resembles that of ST-R, and LT-NR resembles ST-NR, while the two pairs differ a lot from446

each other. The entrainment processes in ST-R and LT-R are dominated by plume-like447

structures that resemble convective plumes, indicated by the exceptionally strong rarefied448

downdrafts shown in the upper left quadrant (II) of Fig. 7a,b. The partitioning of the449
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pure convection case is shown in gray. An arbitrary normal distribution is shown by the dashed

curve for reference. Note the logarithmic scale in the vertical axis.

joint distribution of vertical velocity and buoyancy fluctuations in ST-NR and LT-NR are450

more symmetric among the rarefied updraft, rarefied downdraft, dense downdraft and dense451

updraft. This is due to the predominance of non-breaking internal waves in these cases:452

linear internal plane waves would be equally partitioned among the quadrants. As a result,453

the PDFs of entrainment buoyancy flux in ST-NR and LT-NR both have a more symmetric454

shape and the entrainment is less efficient than the plume-like structure in ST-R and LT-R.455

The resemblances between ST-R and LT-R, and between ST-NR and LT-NR, in both456

Fig. 7 and Fig. 8 suggest that the presence of Langmuir turbulence does not appear to affect457

the predominant character of processes that drive the entrainment or turbulence statistics458

near the OSBL base. On the other hand, Stokes drift versus shear forcing dominates the459

near-surface normalized statistics. However, despite the similarities in normalized, dimen-460

sionless turbulence metrics near the OSBL base (Figs. 4-8), significant differences of the461

net entrainment buoyancy flux in Langmuir versus shear cases remain as shown in Fig. 1c.462

Therefore, the Langmuir turbulence enhanced entrainment appears to be a result of extra463

energy through enhanced downward TKE transport [e.g., 5, 27] without major changes to464

the structural character or normalized turbulence statistics. The implication for parameter-465

izations of turbulence covariances and their effects and dependence on mean shear is that an466

existing OSBL model (e.g., KPP) can be modified in a straightforward way to incorporate467
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the effects of Langmuir turbulence on entrainment [per 23]. In the regime of weak shear at468

the OSBL base (ST-R and LT-R), this can be achieved mostly by enhancing entrainment due469

to unresolved shear associated with the plume-like structures of the deeply penetrating jets470

[30], which is the approach taken in Li and Fox-Kemper [23]. In the regime of strong shear471

at OSBL base (ST-NR and LT-NR), enhanced entrainment may also result from enhanced472

shear-induced mixing as reported in Kukulka et al. [33].473

V. DISCUSSION AND CONCLUSIONS474

Structure and anisotropy of turbulence in four LES experiments simulating the OSBL,475

with and without Stokes forces, with and without rotation, are analyzed. Similarities and476

distinctions between Langmuir turbulence and shear turbulence throughout the OSBL are477

highlighted. This study distinguishes itself from previous studies of similar topics such as478

Li et al. [11] and Teixeira and Belcher [12] by its emphasis on the turbulence structure479

and anisotropy near the base of the OSBL and their relation to the Langmuir turbulence-480

enhanced mixed layer entrainment, as well employing newer and cleaner diagnostic methods.481

The anisotropic barycentric maps with accompanying eigenvector direction maps are482

demonstrated to be useful diagnostics for identifying the turbulence structure from the483

Reynolds stresses. Though gridded model data are used in this demonstration, these di-484

agnostics can potentially be applied to observational data, such as the Reynolds stress485

measured by an Acoustic Doppler Velocimeter [ADV, e.g., 46, 56, 57], or even a five-beam486

Acoustic Doppler Current Profiler (ADCP) if the turbulent structures are sufficiently large to487

have velocity covariances across the beam spread as used by Gargett et al. [22] in coastal re-488

gions. The agreement between results from temporally and horizontally averaged Reynolds489

stresses and from snapshots of velocity field suggests the robustness of these diagnostics.490

MATLAB tools to generate these diagnostics from Reynolds stresses are hosted on Github491

(github.com/qingli411/anisotropic barycentric map).492

Consistent with previous studies, Langmuir turbulence has distinctive structures and493

anisotropy near the surface of the OSBL versus those of shear turbulence. In particular,494

Reynolds stresses of Langmuir turbulence exhibit pancake-like structure with a minor direc-495

tion nearly down-wind and waves near the surface, in contrast to Reynolds stresses of shear496

turbulence which exhibit cigar-like structure with a down-wind major direction. Note again497
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that we are using these geometrical terms (e.g., pancake-like and cigar-like) in this paper to498

describe the turbulence anisotropy in velocity fluctuations, in contrast to the anisotropy in499

spatial scales in a typical visualization of turbulence structures. These features illustrated in500

the anisotropic barycentric maps and directional maps are further confirmed by the vortex501

tubes and vortex sheets structures in the velocity gradient invariant diagrams for Langmuir502

turbulence and shear turbulence, respectively.503

Such distinctive features of Langmuir turbulence are direct results of the Stokes-vortex504

force or Stokes shear force exerted by the Stokes drift shear [9, 10], and can also be under-505

stood using the rapid distortion theory [12, 37]. The statistics connected to these distinctive506

features are quickly lost at depths below where the Stokes drift shear is significant, though507

somewhat more organized larger scale structure associated with the downward jet of the508

Langmuir cells are still noticeable throughout the OSBL. This disappearance with depth509

probably explains the open ocean observations in which no significant structural evidence510

of Langmuir circulation was found in the lower half of a 40-60 m OSBL [e.g., 24, 25], as511

the coherent structures of Langmuir turbulence may have been too weak to be observed512

there. Nonetheless, the results here indicate that the near-surface Langmuir turbulence may513

energize the turbulence below without changing most of its low-order normalized statistics.514

Therefore, the presence of Langmuir turbulence does not seem to strongly affect the515

structure and normalized statistics of the predominant processes at the base of the OSBL516

that drive entrainment. However, this conclusion does not imply that Langmuir turbulence517

has no effect on the entrainment. Enhanced entrainment is commonly seen in LES with518

Langmuir turbulence [5, 23, 27]. Instead, such Langmuir turbulence-enhanced entrainment519

results from extra energy supply, which animations of the simulations indicate are due to520

enhanced downward TKE transport by more frequent and more energetic downward plumes521

and through enhanced vertical shear near the OSBL base resulting from enhanced downward522

momentum transport above (Fig. 1).523

The implication of these results for parameterizing the entrainment process at the base524

of the OSBL is that small scale turbulence that induces entrainment does not depend signif-525

icantly on the form of energy source near the surface, i.e., wind, waves or convection. The526

difference, however, is how efficient the energy being transported down to the base, which527

determines how much energy is available to lift the denser water from below the OSBL.528

Existing models for entrainment based on conservation of energy, convective plumes or local529
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shear instabilities can therefore be easily modified to incorporate the effects of Langmuir530

turbulence by just increasing the energy sources. Examples of this approach include Li and531

Fox-Kemper [23] and Reichl and Li [58].532

Here the effects of Langmuir turbulence on entrainment are assessed in two limiting533

regimes where the shear at the base of the OSBL is either strong or negligible. This corre-534

sponds to entrainment induced by resolved and unresolved shear parameterized separately in535

first moment closure models such as KPP. A mixture between these two limiting regimes is536

probably more common in reality. A direct step forward would apply the same analysis and537

metrics illustrated here on more realistic LES cases with surface forcing of mixed wind, wave538

and surface buoyancy flux so that the transitioning of turbulence structure and anisotropy539

can be studied. Such knowledge is also relevant to the second moment closure models of540

Langmuir turbulence, such as Harcourt [59] and Harcourt [60], and these closures might541

also selectively drive consideration of higher-order statistics. For example, the closure of the542

pressure-strain rate correlations in second moment closure models depends on assumptions543

of the rate of return-to-isotropy [61], which differ for different types of anisotropic turbulence544

[e.g., 44]. The return-to-isotropy term may also need to be modified for Langmuir turbulence545

in addition to the distortion term as in Harcourt [59] and Harcourt [60].546
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