
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Asymmetric rectified electric fields generate flows that can
dominate induced-charge electrokinetics

S. M. H. Hashemi Amrei, Gregory H. Miller, and William D. Ristenpart
Phys. Rev. Fluids 5, 013702 — Published  8 January 2020

DOI: 10.1103/PhysRevFluids.5.013702

http://dx.doi.org/10.1103/PhysRevFluids.5.013702


Asymmetric Rectified Electric Fields Generate Flows that can Dominate
Induced-Charge Electrokinetics

S. M. H. Hashemi Amrei, Gregory H. Miller,∗ and William D. Ristenpart†

Department of Chemical Engineering, University of California Davis, Davis, California 95616, United States

We derive a generalized induced-charge electrokinetic (ICEK) velocity around a conducting object
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asymmetric rectified electric fields (AREFs), which have recently been established to occur in liquids
where the ions present have unequal mobilities. Including the AREF yields fluid velocities in which
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results provide a new explanation for the long-standing question of flow reversals observed in ICEK
systems.
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I. INTRODUCTION

Nonlinear electroosmotic flows around colloidal particles, also known as electrokinetic phenomena of the 2nd kind,
were first formulated theoretically by Dukhin and co-workers in the 1980s [1–3]. They demonstrated that application
of an external electric field induces a charge cloud near the surface of a polarizable object; the field then creates a
body force on the charge cloud, creating an electroosmotic fluid flow. In contrast to standard electroosmosis, the
fluid velocity scales as the square of the electric field, so that flow results from both steady and oscillatory applied
fields. One early application of nonlinear electroosmotic flows was liquid pumping via asymmetric electrodes subject
to AC electric potentials, also known as AC electroosmosis (ACEO) [4–7]. More recently, Bazant and Squires [8, 9]
unified nonlinear electrokinetic phenomena around polarizable objects (particles, electrodes, etc.) under the name
induced charge electrokinetics (ICEK) [10–13]. The general theoretical approach has been to solve either the Laplace
equation or the standard electrokinetic model (Poisson-Nernst-Planck) to predict the electric field distribution and
polarization of the charge layer around the objects, and then determine the induced flow. The archetypal example
of ICEK theory is the quadrupolar fluid flow around a conducting sphere or cylinder in response to steady or time
varying electric fields [8, 9], a system which has been experimentally observed in a number of studies using metallic
spheres [14, 15] and wires [16–18].

Despite extensive research, however, there are several unresolved discrepancies between theoretical predictions and
experimental observations [10, 11]. In particular, extant theories fail to predict the observed reversal in the direction
of fluid flow in ACEO pumps at sufficiently high frequencies [7, 19–22]. Similarly, experimental work revealed that
the flow direction in ACEO pumps also depends on the identity of the electrolyte present; for example, at particular
voltages and frequencies, simply swapping KCl with KOH caused the flow to reverse direction. Because neither
the frequency nor electrolyte dependence are explicable in terms of the standard ICEK theory, much work focused
on whether the continuum approximation incorrectly neglected ion-ion interactions and steric effects, thus yielding
unrealistically high ion concentrations near the electrodes [21, 23–26]. By introducing the effective ion size as a
fitting parameter, Bazant and co-workers qualitatively predicted a fluid flow reversal in AC electroosmosis pumps
upon changing the applied frequency. However, an unrealistically large ion size (several nanometers) was found to be
necessary, casting doubt on this approach.

Notably, all theoretical studies on ICEK to date have assumed that the dissolved ions have equal mobilities, an
assumption that considerably simplifies the modeling but rarely pertains to real electrolytes. Recent work by Hashemi
Amrei et al. [27, 28] has demonstrated that application of a perfectly sinusoidal oscillating potential generates a
highly multimodal, long-range electric field between parallel electrodes. Furthermore, if the ions present have unequal
mobilities, the multimodal field has a non-zero time average, i.e., the sinusoidal applied potential generates a steady
field component. This phenomenon, referred to as Asymmetric Rectified Electric Field (AREF), acts like a DC field
and induces electrophoretic motion consistent with experimental observations of particle levitation against gravity
[29]. These findings suggest that AREFs will also generate a net fluid flow around a charged object placed in the field
via electroosmosis, and thus affect ICEK flows. It remains unclear, however, under what conditions AREFs play a
significant role in ICEK flows, and whether they are associated with the flow reversals observed experimentally.

In this work, we analyze theoretically the impact of AREFs on ICEK flows. Because extant theories only consider
unimodal electric fields, we begin by deriving a generalized ICEK model valid for arbitrary, multi-modal electric
fields. We then insert numerical solutions to the fully nonlinear standard electrokinetic model to assess the impact
of AREFs on the ICEK flow. Focusing on the flow around a conductive cylinder, we demonstrate that under many
conditions the higher order modes and the zeroth mode (the AREF) dominate the overall flow velocity around the
cylinder. In particular, the calculations predict significant flow reversals with respect to frequency, electrolyte type,
and even the exact placement of the cylinder between conducting electrodes. Our results point toward a resolution
of the long-standing discrepancies between ICEK theory and experiments.

II. GENERALIZED ICEK FOR ARBITRARY ELECTRIC FIELD

The central idea of ICEK is that the electric field induces a charge cloud (or an equivalent zeta potential) immediately
adjacent to a conductive surface. The tangential component of the same electric field then acts on the induced charge
cloud, creating an electroosmotic fluid flow with a slip velocity given by Smoluchowski’s formula. Bazant and Squires
[8, 9] showed that for a steady electric field of magnitude E, i.e., E(t) = E, the angular slip velocity around a
conductive cylinder of radius a is

usθ = 2
εaE2

µ
sin (2θ) + 2

εζ0E

µ
sin (θ) (1)
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FIG. 1. Schematic diagram of the problem. Left: a conducting cylinder of radius a is immersed in an electrolyte between two
parallel electrodes at height h. An oscillatory electric potential is applied on one electrode while the other is grounded. Right:
problem in cylindrical coordinates with scalar velocity components in r and θ directions.

where θ is the polar angle (cf. Fig. 1), ε and µ are the permittivity and viscosity of the electrolyte, respectively,
and ζ0 is the intrinsic zeta potential of the cylinder surface. The first term on the right hand side is the quadrupolar
flow due to the action of the tangential component of the electric field on the surface of the cylinder (Eθ|r=a) on the
induced zeta potential, while the second term is the dipolar flow due to the same field acting on the intrinsic zeta
potential. Depending on the relative strength of these two terms, various net flows of different shapes that are more
or less quadrupolar occur for a steady applied electric field.

In contrast, for a sinusoidal electric field of amplitude E and angular frequency ω0, i.e., E(t) = E cos (ω0t), the
time average of the slip velocity is [8, 9]

〈usθ〉 =
εaE2

µ

sin (2θ)

ω2
0τ

2
c + 1

. (2)

Here τc = κ−1a/D̂ is the charging time scale of the ionic cloud around the cylinder, where κ−1 is the Debye length

scale and D̂ is a characteristic diffusivity of the dissolved ions. Importantly, the electroosmotic flow due to the action
of the sinusoidally varying electric field on the constant intrinsic zeta potential has zero time average, and hence the
dipolar component is identically zero for a unimodal applied field. Note also that the velocity is expected to decay
monotonically as frequency increases or the electrolyte diffusivity decreases, i.e., no reversals in the flow direction are
predicted to occur as frequency changes or for different electrolytes.

We now ask, what happens if the applied field is multimodal? We follow the same basic framework proposed by
Bazant and Squires [8, 9], but we generalize it to find the slip velocity when E(t) is an arbitrary function of time.
Assuming a thin double layer limit (κa � 1), the solution to the Laplace equation for the electric potential around
the cylinder is

ψ = −E(t)r cos (θ)

(
1 + g

a2

r2

)
, (3)

where g is the induced dipole strength, and (r, θ) are the cylindrical coordinates (cf. Fig. 1). The induced surface
charge on the cylinder, q, obeys charge conservation such that conduction of ions from the bulk in the radial direction
are balanced by charge accumulation, such that

∂q

∂t
= σEr|r=a = σE(t) cos (θ)(1− g). (4)

Here σ is the effective electrolyte conductivity and Er = −∂ψ∂r is the radial component of the electric field. Simulta-
neously, the induced zeta potential is

ζ = −ψ|r=a = E(t)a cos (θ)(1 + g), (5)

where we assumed that electric potential of the perfectly conducting cylinder remains zero at all times. The induced
zeta potential is then related to the surface charge with q = εκζ. Note that this equality is justified only at low
voltages and is used for simplicity; use of more sophisticated models is straightforward but complicates interpretation.
Substituting this equality into Eq. 5 and differentiation with respect to time yields

∂q

∂t
= εκa cos (θ)

[
dE(t)

dt
(1 + g) + E(t)

dg

dt

]
. (6)
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Combining Eqs. 4 and 6 yields an ordinary differential equation for g that can be solved for an arbitrary electric field
E(t),

g = 2

∫
et̂E(t̂)dt̂

et̂E(t̂)
− 1, (7)

where t̂ = t/τc is a dimensionless time, normalized on the charging time scale τc = κ−1a/D̂ = εκa/σ [30, 31], and the

term
∫
et̂E(t̂)dt̂ is an indefinite integral. Substituting the obtained induced dipole g into Eq. 3 yields the potential

distribution, which is subsequently used to find the induced zeta potential and tangential component of the electric
field (Eθ = − 1

r
∂ψ
∂θ ) on the cylinder surface. Finally, Smoluchowski’s formula for electroosmosis gives the induced slip

velocity for an arbitrary field,

usθ = −ε(ζ + ζ0)Eθ|r=a
µ

=
2εa

µ

[∫
et̂E(t̂)dt̂

et̂

]2
sin (2θ) +

2εζ0
µ

[∫
et̂E(t̂)dt̂

et̂

]
sin (θ). (8)

If the product et̂E(t̂) is simply integrable, then analytical simplifications are straightforward. For a steady (time
invariant) applied field, Eq. 1 is immediately recovered. Likewise, for a unimodal oscillating field E(t) = E cos (ω0t),
the instantaneous slip velocity is

usθ =
2εaE2

µ

[ω0τc sin (ω0t) + cosω0t

1 + ω2
0τ

2
c

]2
sin (2θ) +

2εζ0E

µ

[ω0τc sin (ω0t) + cosω0t

1 + ω2
0τ

2
c

]
sin (θ), (9)

which upon time averaging reduces to the classic ICEK flow velocity for oscillatory fields (cf. Eq. 2),

〈usθ〉 =
ω0

2π

∫ 2π
ω0

0

usθdt =
εaE2

µ

sin (2θ)

ω2
0τ

2
c + 1

. (10)

III. SOLUTION TO THE ELECTROKINETIC MODEL

With a generalized ICEK model for arbitrary electric fields in hand, we now ask what happens for the multimodal
fields that occur in electrolytes at sufficiently high applied voltages. The details of these fields have been elaborated
elsewhere [27, 28]; here we provide a brief summary. We focus on 1-1 binary electrolytes between parallel electrodes
separated by a distance H (cf. Fig. 1), and we assume that the presence of the cylinder and any resulting flows do
not appreciably alter the electric field between parallel electrodes. In other words, we assume that both a/H � 1
and a/h � 1 so that we can use the electric field solution E(t, z) in the absence of the cylinder, and we then take
E(t, h) (the electric field at the cylinder height, z = h) as the field to implement the generalized ICEK velocity. We
emphasize that this approach is approximate since it neglects the impact of the cylinder itself on the applied electric
field, but our goal is to examine the limiting case of ‘small’ cylinders to shed light on the influence of AREFs on the
ICEK flow and to serve as a limiting case for more detailed future calculations.

To obtain the multimodal electric field (in the absence of the cylinder), the Poisson equation relates the free charge
density to the electric field gradient,

−ε∂
2φ

∂z2
= e(n+ − n−), (11)

while the transport of ions is governed by Nernst-Planck equations,

∂n±
∂t

= D±
∂2n±

∂z2
± e D±

kBT

∂

∂z

(
n±

∂φ

∂z

)
. (12)

Here the symbols stand for permittivity of the electrolyte, ε; electric potential, φ; elementary charge, e; number
concentration of ion, n±; diffusivity, D±; Boltzmann constant, kB ; absolute temperature, T ; location with respect to
the lower electrode, z; and time, t. The terms on the right-hand-side of the Nernst-Planck equation represent diffusive
(thermal) motion and electromigration of the ions; the nonlinearity of the problem stems from the latter term. To
close the problem we apply the initial conditions

n±(0, z) = n∞± , (13a)
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φ(0, z) = 0, (13b)

and specified potential and no-flux boundary conditions,

−D±
(∂n±
∂z
± en±
kBT

∂φ

∂z

)
z=0,H

= 0, (14a)

φ(t, 0) = φ0 sin(ω0t), φ(t,H) = 0. (14b)

Note that we assume blocking electrodes where no electrochemistry occurs, such that the flux of ions through
the electrodes is identically zero (Eq. 14a). In addition, we neglect the formation of a compact Stern layer at the
electrodes. A sinusoidal electric potential of amplitude φ0 and angular frequency ω0 = 2πf0 is applied on the lower
electrode at z = 0 while the upper electrode at z = H is kept grounded (Eq. 14b and Fig. 1). Here we use the
approach outlined by Hashemi Amrei et al. [28] to non-dimensionlize the system of equations. The electrode spacing
H and inverse frequency 1/f0 are taken as the characteristic length and time scales, while φ0/H is used to normalize
the electric field:

z̃ =
z

H
, t̃ = f0t, Ẽ =

EH

φ0
. (15)

Moreover, for binary 1-1 electrolytes, there are four dimensionless parameters that uniquely describe the system:

Φ0 =
φ0e

kBT
, δ =

D−
D+

, κH =

√
n0e2

εkBT
H, LD =

√
D̂/f0

H
. (16)

Here n0 = 2n∞, where n∞ is the bulk electrolyte concentration, and we have defined D̂ =
√
D+D− as the charac-

teristic diffusivity [28]. Alternatively, we could use the ambipolar diffusivity [32]; however, Hashemi Amrei et al. [28]

showed that choosing D̂ =
√
D+D− yields accurate predictions of the AREF length scale and its spatial structure,

which are key elements of the present study (cf. Sec. III B).

A. Linear Solution

A linearized approximate solution to the problem was derived by Hollingsworth and Saville for low applied voltages
and equal ionic mobilities (i.e., Φ0 � 1 and δ = 1) [33]. The linearized solution is necessarily unimodal, albeit with
phase lag and amplitude that depend on the system properties and location:

Ẽ=Im

[
α cosh (αỹ) csch (α)+iαν2 coth (α)

1+iαν2 coth (α)
ei2πt̃

]
, (17)

where ỹ ≡ 2z̃ − 1 and the coefficients are

α2 ≡ 1

4

[
(κH)2 + i

2π

L2
D

]
, ν2 ≡ 2π

(κH)2L2
D

. (18)

Note that only two dimensionless groups, κH and LD, contribute to the approximate linear electric field solution
because low applied potential and equal mobilities are assumed. In these limits, then, Eq. 17 can be written in the
form

Ẽ(t̃) = Ẽ1 cos (2πt̃+ γ1), (19)

where the amplitude Ẽ1 and phase lag γ1 are functions of both position and the system properties (i.e., κH and
LD). The subscript 1 denotes the frequency mode of the solution; for this unimodal field, there is only one mode
corresponding to the applied frequency f0.
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FIG. 2. Representative examples of the one-dimensional AREF. (a) Effect of the applied voltage on time variations of the

harmonic electric field (Ẽ) at z̃ = 0.04 for δ = 1 (dashed) and δ = 3 (solid), at applied potentials of Φ0 = 1 (red) and Φ0 = 15

(blue). (b) Spatial distribution of the time average electric field (Ẽ0 = 〈Ẽ〉, AREF) for δ = 1 (dashed) and δ = 3 (solid). Note
that for δ 6= 1, at locations very close to the electrodes (z̃ → 0 or 1), the AREF reaches a maximum magnitude before sharply
decaying toward zero (not discernible here; cf. references [27, 28]). (c) & (d) FFT analysis of the harmonic electric field for
δ = 1 (c) and δ = 3 (d). Parameters: Φ0 = 15 (b, c, d), LD = 0.2, κH = 2600.

B. Nonlinear Solution

As reported by Hashemi Amrei et al. [27, 28], numerical calculations show that the full nonlinear electrokinetic
model yields an electric field with much more complicated spatial and temporal structures than the linearized result.
See references [27, 28] for details on the numerical methodology and solutions; here we focus on the results and how
they pertain to ICEK. Figure 2(a) shows representative examples of the numerically calculated instantaneous electric
field versus time at z̃ = 0.04 for low and high dimensionless applied voltages and for electrolytes of equal or non-equal
ionic mobilities. At the low voltage Φ0 = 1 and for δ = 1 (Fig. 2(a), dotted red curve, Φ0 = 1), the electric field
solution is a simple unimodal sinusoid consistent with the linearized prediction; indeed, the linearized result in Eq. 17
is not distinguishable from the nonlinear result at this scale. At a higher applied voltages, the contribution from
the nonlinear electromigrative terms yield multimodal peaks (Fig. 2(a), dotted blue curve, Φ0 = 15). Qualitatively
similar results are obtained for δ 6= 1; the electric field is close to a sinusoid at low voltages and develops nonlinear
behavior upon increasing voltage (Fig. 2(a), solid red (Φ0 = 1) and blue (Φ0 = 15) curves, respectively).

The time average of the electric field (E0 = 〈E〉), however, shows a significant difference between the cases of δ = 1
and δ = 3 (Fig. 2(b)). For δ = 1 the electric field time average is identically zero everywhere. In contrast, there
is a significant nonzero time average electric field (i.e., a DC field) generated for δ 6= 1. The first peak location of
this AREF outside the Debye layer closely follows a diffusive length scale, z̃peak ≈ 0.83LD (cf. Fig. 10 of reference
[28]). Also note that the peak occurs far away from the electrode (≈ 5 µm in Fig. 2(b)); this behavior, along with the
spatially non-uniform AREF, stem from a non-zero time average free charge density far outside the Debye layer. While
the magnitude of AREF appears small when compared to the magnitude of the harmonic electric field, the AREF-
induced electrophoretic force was shown to be several order of magnitudes larger than gravitational and colloidal
forces [27]. Although indiscernible from Fig. 2(b), as z → 0 or 1, within a few Debye lengths from the electrodes,
AREF reaches to a peak and then drops toward zero (cf. references [27, 28]).

An FFT analysis of the electric field modes shows that for δ = 1 (Fig. 2(c)) the field has frequency components
at odd integer multiples of the applied frequency. In other words, the multimodal electric field can be modeled by a
sum of sinusoids with frequencies of f0, 3f0, 5f0, . . . and amplitudes that depend on system properties and location.
For δ 6= 1 (Fig. 2(d)), in contrast, the electric field has frequency components at all integer multiples of the applied
frequency, including zero (i.e., a steady field). In this case the electric field includes a sum of sinusoids with frequencies
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of f0, 2f0, 3f0, . . . plus a steady contribution. Note that the effect of δ on these frequency modes is consistent with a
simpler toy model of just two ionic oscillators (see reference [27] for details).

Based on these numerical results, the instantaneous nonlinear electric field at any location can be expressed as

Ẽ(t̃) = Ẽ0 +

∞∑
j=1

Ẽj cos (2πjt̃+ γj), (20)

where Ẽj and γj are the z-dependent amplitude and phase lag of the frequency component jf0, respectively. Note
that there are two key differences compared to the linearized result (Eq. 19). First, the full nonlinear expression has

a steady component, Ẽ0, whereas the linearized solution does not. Second, the nonlinear expression has an infinite
series of all the multiple modes of the imposed frequency, whereas the linear solution is unimodal. In the limit where
δ → 1, the steady component Ẽ0 and the even modes Ẽ2j = 0 for any integer j all vanish. The higher order odd
modes, however, are retained even when δ → 1.

IV. ICEK FLOW WITH AREFS

The sinusoidal nature of the linearized solution (Eq. 19) indicates that the induced fluid flow pattern is quadrupolar
and symmetrical. Substitution of Eq. 19 into Eq. 8 and subsequent time averaging gives the linear ICEK slip velocity
as

〈ũsθ〉 =
〈uθ〉

εaφ20/(µH
2)

= Ẽ2
1

sin (2θ)

ω2
0τ

2
c + 1

. (21)

Inserting the nonlinear electric field solution from Eq. 20 into Eq. 8 and time averaging gives the nonlinear ICEK
slip velocity:

〈ũsθ〉 =

∞∑
j=1

[
Ẽ2
j

sin (2θ)

j2ω2
0τ

2
c + 1

]
+ 2Ẽ2

0 sin (2θ) + 2ζ̃0Ẽ0 sin (θ), (22)

where ζ̃0 = ζ0H
aφ0

. Note that Eq. 22 has three contributions: (i) an ICEK quadrupolar flow due to the first and all higher

order modes of the nonlinear field, (ii) an ICEK quadrupolar flow due to the steady AREF, and (iii) an electroosmotic

dipolar flow due to the action of the steady AREF on the intrinsic charge on the cylinder. For δ = 1 (Ẽ0 = 0), as

voltage goes to zero Ẽj 6=1 → 0, and the nonlinear and linear slip velocities asymptotically converge. Unlike the linear
slip velocity which predicts an invariably quadrupolar and symmetrical fluid flow, the nonlinear one is in general
asymmetrical due to the dipolar electroosmotic term stemming from the steady field component. In other words, any
mismatch in the mobilities of the dissolved ions breaks the symmetry and induces net fluid flow around a charged
cylinder under AC polarization.

As discussed in detail by Hashemi Amrei et al. [28], Ẽ0 and Ẽj are complicated functions of the four dimensionless

parameters Φ0, LD, δ, and κH. Equation 22 introduces two more dimensionless groups, ζ̃0 and ω0τc, that also affect
the flow behavior. Under typical experimental conditions, however, ω0τc � 1 and its impact is negligible; we do not
consider it further here. A parameter that is important, however, is the location of the cylinder between the two
electrodes (i.e., h), which is included in the dimensionless group h̃ = h/H. In other words, the flow structure and

magnitude is governed by the six dimensionless parameters Φ0, LD, δ, κH, ζ̃0, and h̃.
Using the slip velocity given by Eq. 22 for nonlinear ICEK, we find the radial velocity, angular velocity, and

corresponding stream function around the charged cylinder are respectively

ũr =
( 1

r̃2
− 1
)
ζ̃0Ẽ0 cos (θ) + 2

(1− r̃2

r̃3

)
Ẽ2

0 +

∞∑
j=1

(1− r̃2

r̃3

) Ẽ2
j

(ω2
0τ

2
c + 1)

cos (2θ), (23a)

ũθ =
( 1

r̃2
+ 1
)
ζ̃0Ẽ0 sin (θ) +

2

r̃3
Ẽ2

0 sin (2θ) +

∞∑
j=1

1

r̃3
Ẽ2
j

(ω2
0τ

2
c + 1)

sin (2θ), (23b)

Ψ̃ =
(1

r̃
− r̃
)
aζ̃0Ẽ0 sin (θ) +

( 1

r̃2
− 1
)
aẼ2

0 sin (2θ) +

∞∑
j=1

( 1

r̃2
− 1
) aẼ2

j

2(ω2
0τ

2
c + 1)

sin (2θ). (23c)
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FIG. 3. Effects of (a) mobility mismatch, (b) frequency-dependent diffusive length scale, and (c) cylinder position on the induced
fluid flow pattern around the cylinder, as calculated using Eq. (21) and the nonlinear solution to the standard electrokinetic

model [cf. Eq (19)]. Parameters: Φ0 = 10, δ = 3 (b, c), LD = 0.2 (a, c), κH = 2600, ζ̃0 = −10, h̃ = 0.22 (a, b).

Here Ψ̃ = ΨµH2/(εa2φ20) is the dimensionless stream function and r̃ = r/a. (Please refer to the Appendix for detailed
derivation.) For linear ICEK, note that the velocity and stream function are simply expressed by the first series terms

on the right hand side of Eq. 23 (i.e., Ẽj = 0 for j 6= 1).

The streamlines for the linearized solution are invariably quadrupolar, i.e., the shape of the flow never changes
in the linearized field limit (although the flow velocity varies). In contrast, the flow structure for the full nonlinear
solution is highly sensitive to the system parameters. Representative streamlines for the induced fluid flows from the
nonlinear solution are provided in Fig. 3. Focusing first on the mobility mismatch (Fig. 3(a)), the fluid flow pattern for
an electrolyte with δ = 1 is perfectly quadrupolar. In contrast, electrolytes with an ionic mobility mismatch (δ 6= 1)
generate a net fluid flow as a result of the dipolar contribution of the slip velocity (i.e., standard electroosmosis due
to the AREF). Note that the direction of the fluid flow depends sensitively on the magnitude of δ; in other words,
swapping out an electrolyte with δ < 1 (e.g., HCl) with an electrolyte that has δ > 1 (e.g., NaOH) and holding all
other parameters constant will result in a reversal in the direction of flow.

A similar flow reversal also occurs for different magnitudes of the frequency-dependent diffusive length scale, LD
(Fig. 3(b)). For sufficiently large values of LD, i.e., sufficiently low frequencies, the fluid flow is dominated by the

dipolar steady AREF-driven electroosmosis. For LD = 0.55 and h̃ = 0.2 the flow is directed downward (in the
negative z-direction). This particular directionality stems from the direction of the steady field component at this
specific frequency and location. As discussed by Hashemi Amrei et al. [28], the direction of the steady field at a given
location depends sensitively on the applied frequency; note in Fig. 2(b) that the direction of the field is negative for
0 < z̃ < 0.1, positive for 0.1 < z̃ < 0.5, and antisymmetric for z̃ > 0.5. The precise positions where the field direction
changes depend on frequency, with more zeros in the field strength (i.e., reversals in the field direction) as frequency
increases (LD decreases). The corresponding flow thus changes dramatically, with the direction of the steady dipolar
flow switching as LD decreases to 0.33 (Fig. 3(b)). Further decreases in LD (increases in frequency) further diminish

the dipolar contribution, and the fluid flow pattern becomes increasingly quadrupolar because Ẽ0 at this particular
location tends to decrease as LD decreases. The effect of cylinder location, with all other parameters fixed, is shown
in Fig. 3(c). At the midplane (i.e., h̃ = 0.5) where AREF necessarily vanishes due to symmetry, the fluid flow is
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FIG. 4. Influence of the six dimensionless parameters that govern ũsθ, evaluated at r = 2a and θ = π/6. In all figures, dashed
black lines represent the velocity calculated using the linearized electric field, while solid colored lines represent the velocity
calculated using the full nonlinear solution for various parametric values. Parameters: Φ0 = 10 (d, e, f), δ = 3 (c, d), LD = 0.2

(a, b, e, f), κH = 2600 (a, b, c, e, f), ζ̃0 = −10 (a, b, c, d, f), h̃ = 0.22 (a, b, c, d, e). The inset of (d) shows a magnification of
the nonlinear solution for LD = 0.17.

entirely quadrupolar. Away from the midplane (any location h̃ 6= 0.5), there can be a net dipolar flow induced with
direction dependent on the sign of AREF.

We emphasize that the exact conditions upon which the flow reversal occurs is a sensitive function of all six
dimensionless parameters governing the system behavior and the location of the cylinder, due to the complicated
spatial structure of AREF [28]. Linearized theories with slip velocity given by Eq. 21 will not capture these flow
reversals, which are a direct result of ionic mobility mismatch and the consquent AREF. In other words, solutions to
the full nonlinear problem with δ 6= 1 will yield flow reversals, whereas more sophisticated solutions to the electrokinetic
model at high voltages [26, 34, 35], but with the assumption of equal ionic mobilities, will not.

To further quantify the induced flow behavior, the effects of the dimensionless parameters on the scalar component
of the fluid velocity in θ direction (ũθ) at a fixed location of r = 2a and θ = π/6 are shown in Fig. 4. We stress
that these results are not general; the curves and critical values of flow reversal are crucially dependent on the system
properties and complicated spatial structure of the AREF. Figure 4(a) shows the effect of mobility mismatch (δ) on
ũθ at three different applied potentials. Changes in δ have no impact on the linear solution, but δ dramatically affects
the predictions of the nonlinear solution. As expected, at a low voltage of Φ0 = 1, the linear and nonlinear solutions
converge at δ = 1. However, even when the steady AREF component is zero for δ = 1, there is a considerable difference
between the linear and nonlinear predicted velocities, stemming from the contribution of the higher order frequency
modes. Furthermore, changing the mobility mismatch alters the fluid flow both qualitatively and quantitatively. For
instance, at Φ0 = 10, the fluid velocity varies from ũθ ≈ 4.5× 10−4 at δ = 1.04 (e.g., KCl) to ≈ −2× 10−4 at δ = 3.95
(e.g., NaOH).

An important point to consider, as discussed in reference [28], is that the effect of δ is non-monotonic. The AREF
is always identically zero at δ = 1, and vanishes as δ → ∞. Where the peak AREF magnitude occurs as a function
of δ, however, depends on the applied voltage. At low voltages, the peak occurs near δ ≈ 5 (or δ ≈ 1/5). Thus in
the representative examples shown in Fig. 4(a), the absolute magnitude of the velocity tends to peak near δ ≈ 5 and
δ ≈ 1/5; for the range of Φ0 shown here, these are the specific values of δ where the field strength is greatest. As the
applied voltage increases, however, the AREF peaks in magnitude at values of δ closer to 1. In other words, at higher
voltages, AREF in electrolytes with δ close to 1 (e.g., KCl with δ ≈ 1.04) might be stronger than that in electrolytes



10

with a significant ionic mobility mismatch (e.g., NaOH with δ ≈ 3.95). Indeed, many of the peculiar experimental
observations such as fluid flow reversal upon changing the frequency and voltage were reported for KCl electrolyte at
relatively large voltages [7, 10, 20, 36].

The effect of the applied potential Φ0 is shown in Fig. 4(b) for different values of δ. Again, the linearized dimen-
sionless solution is insensitive to changes in Φ0; dimensionally, the flow is predicted to increase as φ20 (cf. Eq. 21).
At low applied voltages and regardless of δ = 1, the nonlinear solution approaches the linear solution (dashed black
curve). As Φ0 increases, however, the velocity increases rapidly, i.e., the velocity increases faster than quadratically.
For δ = 1/2, the increase is even steeper. Interestingly, for δ = 2, increasing the applied voltage sufficiently will alter
the fluid flow direction. In contrast, for cases of δ = 1 and δ = 1/2 it is only the magnitude of ũθ that is affected by
Φ0 and no change in direction is observed.

Figure 4(c) illustrates the effect of LD on the fluid velocity. The linear solution predicts an exponential decay in
ũθ with no direction change. In contrast, the nonlinear solution predicts multiple direction changes upon varying
LD. Recalling that the dimensionless parameter LD has an inverse frequency dependence (Eq. 16), increasing LD
can be seen as deceasing the applied frequency f0. Therefore, the results indicate how solutions to the full nonlinear
electrokinetic model are capable of capturing the fluid flow reversal by changing the applied frequency.

The effect of κH on the induced fluid velocity is depicted in Fig. 4(d) for two different values of LD. The results are
presented only for high κH values, where the assumption of ω0τc � 1 holds. Note that for the most part the linear
and nonlinear solutions predict the fluid flow in opposite directions, which is a consequence of δ 6= 1 (cf. Fig. 4(a)).
The magnitudes of both the linear and nonlinear solutions drops by increasing κH, which corresponds to increasing
the ionic concentration. At higher concentrations, the Debye layer shrinks and it becomes less effective in micron scale
electrokinetic phenomena. Likewise, some experimental studies have reported a strong concentration dependence of
the fluid velocity magnitude in ACEO micropumps that tends to strongly suppress the flows [7, 20]. Hence, any
future interpretation of the concentration effect in ACEO pumps and similar systems should take into account the
potentially confounding impact of AREFs. Also, a peculiar direction change in the nonlinear solution happens for the
case of LD = 0.17 at κH ≈ 500. This result is qualitatively similar to a flow reversal with electrolyte concentration
that was reported in a different geometry of ACEO experiments [20].

Figure. 4(e), demonstrates the effect of dimensionless zeta potential ζ̃0 on the fluid velocity. The linear solution

prediction has no electroosmotic contribution, making it insensitive to ζ̃0. Regarding the nonlinear solution, for δ = 1,
AREF is zero and again the cylinder charge has no impact on the fluid velocity. When δ 6= 1 however, the fluid
velocity linearly depends on the zeta potential, but with direction that depends on the sign of the AREF.

Finally, the location of the cylinder h̃ has a significant impact on the fluid velocity distribution. As shown in
Fig. 4(f), the linear solution has no dependency on h̃, at least when, like in all practical examples, the cylinder is

placed far outside the Debye layer (κHh̃ � 1 and κH(1 − h̃) � 1 for h̃ < 1/2 and h̃ > 1/2, respectively). For the
nonlinear solution and for δ = 1, again the cylinder location does not affect the model predictions. This location
independence is due to the fact that AREF, which is responsible for the spatial non-uniformity of the electric field,
is zero when δ = 1. Therefore, we conclude that for electrolytes with δ = 1, regardless of the cylinder location, the
fluid flow pattern would be quadrupolar. When δ 6= 1, interesting behavior is observed (Fig. 4(f), δ = 1/2 and 2).
Changing the location dramatically alters both the magnitude and direction of the fluid velocity. Moreover, the cases
of δ = 1/2 and 2 predict the same fluid velocity at the midplane. Knowing that AREF is always zero at the midplane,
the fluid flow pattern would again be quadrupolar there, regardless of the precise value of δ.

V. CONCLUSIONS

A key implication of the results presented here is that they point toward a resolution of long-standing shortfalls of the
ICEK theory, in particular the reversals in fluid flow direction upon changes in the applied frequency and electrolyte
type in AC electroosmosis pumps. To our knowledge, the model presented here is the first to predict a flow reversal in
an ICEK system that retains the continuum approximation, i.e., without invoking finite ion size or crowding effects.
The model predicts that the flow structure will depend sensitively on several dimensionless parameters, including ionic
mobility mismatch (δ = D−/D+), diffusive length scale (LD, defined based on the applied frequency), and even the
location of cylinder between the electrodes, all of which complicate experimental interpretation. To date, all reported
experiments on ICEK around charged cylinders or spheres have placed the object exactly at the midplane between the
two electrodes, or used an electrolyte solution with δ ≈ 1 (e.g., KCl). In both of these cases, the results provided here
predict a quadrupolar fluid flow pattern, in qualitative agreement to the experiments. We are unaware of published
experimental results where the object is placed at a location other than the midplane in an electrolyte with δ 6= 1.

A key limitation of our model is that it pertains only in the limits a/h � 1 and a/H � 1, so that the presence
of the cylinder has negligible impact on the electric field distribution obtained from the one-dimensional solution.
An improved model would take into account the effect of the cylinder presence on the electric field itself, and how
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that alters the consequent flow. Such a full two-dimensional numerical simulation for the electrokinetic equations will
remove the necessity of the above assumptions and will provide a better understanding of the phenomena. Likewise,
ACEO pumps intrinsically involve two-dimensional electrode arrays, so the influence of AREFs in these systems will
also require more sophisticated numerical techniques. Furthermore, we focused here on the consequence of asymmetries
in the ionic mobility and cylinder position, but the symmetry of the system can be broken in other ways, including in
the shape and/or surface chemistry of the object or the applied electric field gradient, all of which have been shown
to generate net fluid flows and electrophoretic motion of conducting particles [8, 37–39]. Finally, we focused here on
dilute solutions, but transport in more concentrated solutions will require consideration of Stefan-Maxwell coupled
ionic fluxes [32, 40]. The influence of AREFs on ICEK flows in two dimensional systems with these more complicated
broken symmetries is deferred to future studies.
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APPENDIX: VELOCITY PROFILES & STREAMLINES

Given the time average slip velocity in θ direction around the surface of a cylinder (〈usθ〉), the time average fluid
flow profile (ur(r, θ) and uθ(r, θ)) is derived. We consider two different cases of standard electroosmosis (EOS) and
induced-charge electrokinetics (ICEK).

Standard Electroosmosis (EOS)

For a cylinder of radius a and intrinsic surface zeta potential of ζ0 subject to a far-field E(t) = E, the slip velocity
due to standard electroosmosis is given by

〈usθ〉 = −εζ0Eθ|r=a
µ

= 2
εζ0E

µ
sin (θ) = 2U sin (θ). (A1)

We use stream function to solve this axisymmetric flow problem [41]. For a steady, creeping flow, the stream
function equation is [

1

r

∂

∂r

(
r
∂

∂r

)
+

1

r2
∂2

∂θ2

]2
Ψ = 0, ur =

1

r

∂Ψ

∂θ
, uθ = −∂Ψ

∂r
, (A2)

subject to the following boundary conditions at r = a:

ur(a, θ) = 0, uθ(a, θ) = 〈usθ〉. (A3)

In addition, as r →∞ the velocities must remain finite.
We now guess a solution of the form

Ψ = f(r) sin θ. (A4)

On substitution into Eq. A2 we get

r4f ′′′′ + 2r3f ′′′ − 3r2f ′′ + 3rf ′ − 3f = 0. (A5)

Inserting f = crn, we find the roots as n = −1, 3 and a double root for n = 1. The latter yields r ln (r) as another
linearly independent solution. Therefore, the general solution to the stream function equation (Eq. A2) becomes

Ψ =
(c1
r

+ c2r + c3r ln (r) + c4r
3
)

sin (θ), (A6)

which subsequently yields the velocity distributions as

ur =
( c1
r2

+ c2 + c3 ln (r) + c4r
2
)

cos (θ), uθ =
( c1
r2
− c2 − c3(ln (r) + 1)− 3c4r

2
)

sin (θ). (A7)
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For velocities to remain finite far from the cylinder, c3 and c4 must be zero. Finally, applying the boundary conditions
at r = a from Eq. A3, we find the velocity distributions and stream function as

ur =
( 1

r̃2
− 1
)
U cos (θ), (A8a)

uθ =
( 1

r̃2
+ 1
)
U sin (θ), (A8b)

Ψ =
(1

r̃
− r̃
)
aU sin (θ). (A8c)

where r̃ = r/a.

Induced-Charge Electrokinetics (ICEK)

The slip velocity for ICEK is given by

〈usθ〉 = 2
εaE2

µ
sin 2θ, (A9)

for a steady field E(t) = E, and

〈usθ〉 =
εaE2

µ(ω2
0τ

2
c + 1)

sin 2θ, (A10)

for an oscillatory electric field E(t) = E cos (ω0t+ γ). For generality, we write

〈usθ〉 = 2U sin 2θ, (A11)

where the U expression depends on the electric field type.
This time we guess Ψ = f(r) sin (2θ) and insert into Eq. A2 to get

r4f ′′′′ + 2r3f ′′′ − 9r2f ′′ + 9rf ′ = 0. (A12)

Substituting f = crn, the roots are obtained as n = −2, 0, 2, 4; therefore the general solution is

Ψ =
( c1
r2

+ c2 + c3r
2 + c4r

4
)

sin (2θ). (A13)

The scalar velocity components are therefore

ur = 2
( c1
r3

+
c2
r

+ c3r + c4r
3
)

cos (2θ), uθ =
(2c1
r3
− 2c3r − 4c4r

3
)

sin (2θ). (A14)

Again, the condition of finite velocities as r →∞, eliminates c3 and c4 terms. Applying the boundary conditions at
r = a (Eq. A3), the final forms of the velocity and stream function profiles are obtained as

ur = 2
(1− r̃2

r̃3

)
U cos (2θ), (A15a)

uθ =
2

r̃3
U sin (2θ), (A15b)

Ψ =
( 1

r̃2
− 1
)
aU sin (2θ). (A15c)
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Superposition

Now consider an electric field of the form

E(t) = E0 +

∞∑
j=1

Ej cos (jω0t+ γj). (A16)

By superposition one can find the distributions of scalar velocity components and stream function as given in Eq. 23
of the text.
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