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A theoretical investigation is presented for a linear viscoelastic flow induced by an

oscillatory colloidal particle in nonadsorbing polymer solutions. At small-amplitude

oscillation, the polymer distribution is assumed at equilibrium and forms a depletion

zone around the particle based on the mean field approximation. The goal of the

theoretical approach is to predict the apparent complex viscosity sensed by the

particle and compares this to the actual viscosity of the bulk fluid. Due to the

local inhomogeneity, substantial deviation between the apparent and true viscosity

in the bulk needs to be corrected quantitatively. The resulting apparent complex

viscosity or friction coefficient in the Fourier domain will help to interpret active

and passive microrheological measurements of colloid-polymer mixtures that take

polymer depletion into account.
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I. INTRODUCTION

Viscoelastic properties of complex fluids are fundamental concerns for many applications

in food, biomedical, pharmaceutical, coating, and petroleum industries since they influ-

ence (bio)colloidal transport phenomena and nanoparticle stability [1]. From a property

measurement point of view, understanding viscoelastic flows induced by a small-amplitude

oscillation of a colloidal particle is important for inferring the local microstructure in a

suspension through the complex viscosity, typically measured by microrheology using dif-

fusing wave spectroscopy. Microrheology has been widely used to aim at probing the de-

gree of viscous dissipation and stored elastic energy in complex fluids, such as polymer gel

and solutions, charged colloidal dispersions, and (bio)soft materials [2–7]. Waigh [8] and

Squires and Mason [9], and more recently Zia [10] have provided comprehensive reviews

about recent experimental and theoretical advances on microrheology. A broad range of

topics on rheology of colloidal suspensions has been compiled and discussed by Mewis and

Wagner [11]. A large amount of theoretical analyses, simulations, and experiments [12–28]

have addressed linear and nonlinear viscoelasticity and diffusional properties of concentrated

colloidal dispersions. The evolution of the pair probability distribution function, and the

force and stress of the hard sphere suspensions were derived, computed and experimen-

tally observed to infer nonlinear viscoelastic and diffusional properties of the suspensions

with shear-dependent nonequilibrium microstructure. Microrheological measurements only

require a small amount of sample, and the method is capable of probing a broad range of

frequency-dependent properties beyond what conventional rheometers can access, which is

a great advantage for precision and localized measurements on complex fluids.

In a presumed homogeneous medium at thermal equilibrium, the hydrodynamic mobil-

ity, the resistance coefficient, mechanical response function, and the general or frequency-

dependent Stokes-Einstein relationship for a spherical colloidal probe are well estab-

lished [29]. The Stokes-Einstein relation connects fluid properties, friction constant, mean

square displacement, and auto- or cross-correlation functions of the colloidal motion in a

homogeneous fluid medium, and is used for both active (resistance is measured directly)

and passive (based on statistics of Brownian motion) probing techniques. From such mea-

surements on a uniform fluid one can extract rheological properties such as the complex

shear viscosity or shear modulus, which is composed of elastic and viscous contributions
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in the response of the medium. However, if the microenvironment is heterogeneous with

respect to the probe size, or the microenvironment is perturbed by the appearance of the

colloidal probe, interpretation of experimental data can be challenging. To overcome this

difficulty, Crocker et al. [30] developed two-point microrheology that relies on the cross-

correlated thermal motion that appears to be more sensitive to the fluid medium in between

than the autocorrelated motion, which is mostly determined by the local inhomogeneity

around the caged colloid. The theoretical bases and methodologies were first provided by

Levine and Lubensky [31–33] by approximating the general displacement compliance or re-

sponse function that couples the permeable and elastic network to a viscous solvent. Chen

et al. [34] have applied this approximation to estimate the properties of the λ-DNA solution

and found a depletion thickness twice as large as the mean field approximation. A deple-

tion layer appears around a protein when considering the mobility of protein molecules in

crowded macromolecular media such as concentrated DNA and/or polysaccharide biopoly-

mers in living cells or many biological systems [35]. To enhance the statistics, an optically

clamped two-point measurement was developed by Starrs and Bartlett [36]. They found

that the polymer depletion effect on hydrodynamics may change the ratio of auto- and

cross-correlated response functions significantly. The microdynamics of stochastic interac-

tions of a pair of Brownian hard spheres in a nonadsorbing polymer solution was simulated

by Karzar-Jeddi et al. [37] by including a complete pair mobility analysis with the depletion

effect. Since an explicit description and characterization of the viscoelastic flow near the

polymer depleted region is not available, there is a need to revisit the one- and two-point

microrheological models and to quantify the apparent viscoelasticity under various polymer

conditions. Such investigations give insights into the influence of the presence of particles to

(nonadsorbing) polymer solutions, and on the transport properties of such fluid mixtures.

The polymer depletion effect in colloid-polymer mixtures and the resulting attractive

potential between colloidal particles were first understood by Asakura and Oosawa in the

1950s [38, 39]. Later investigations were mainly on the phase behaviors, depletion forces,

and equilibrium properties of colloid-polymer mixtures [40–47], including rod-shaped deple-

tants [48–50]. It is clear that the presence of the depletion layer around a colloidal sphere

affects its mobility [51]. The change of diffusivity or Stokes resistance (frictional coefficient)

experienced by a Brownian sphere in polymer solutions have been investigated extensively,

both experimentally and theoretically, see [52–67]. However, only few experimental studies
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have addressed the mediation of polymer depletion on the apparent rheological properties

and colloidal motion in non-Newtonian nonadsorbing polymer solutions [36, 68–70]. Sellers

et al. [71] provided an analytical expression of translational oscillatory motion of a sphere

within an incompressible and uniform viscoelastic medium. The model also includes the

small nonlinear inertial effect. The dynamic response of a polymer depletion layer near a

planar and oscillatory interface was investigated by Sozanski et al. [72] experimentally using

a quartz tuning fork. The fully coupled convective polymer transport with polymer deple-

tion effect was developed by Taniguchi et al. [73] using the ground-state approximation and

dynamic self-consistent field theory for a polymer solution in a slit. As far as we are aware

of, theory for the flow induced by an oscillatory sphere in a nonuniform viscoelastic polymer

medium has not yet been developed. Here we extend the reduced-order, quasi-stationary

continuum models for Newtonian fluids [61, 62] to resolve the transient dynamics of linear

viscoelastic flow induced by a translationally oscillating sphere in the small amplitude limit.

The general Maxwell model is applied to demonstrate the modified complex drag force con-

tributed by the dissipation, added mass, and multi-scale polymer relaxation along with the

depletion effect.

II. THEORETICAL ANALYSIS

A. Polymer Conditions and Simplified Segment Distribution

There exists a wide variety of viscoelastic fluids with different microstructure. To simplify

the analysis we limit the scope of this study to a class of fluids that follows single- or

multi-mode Maxwell relationships. The apparent values of frequency-dependent properties

obtained are compared to the assumed measurable bulk properties. The oscillatory flow

pattern is explicitly provided in real space for weakly entangled, dilute to semi-dilute polymer

solutions under various solvency conditions. In the dilute to semi-dilute regime of interest,

e.g., polymer segment volume fraction φ <∼ φ∗ << 1, where φ∗ is the polymer overlap

concentration, above which polymer coils overlap significantly. Within this regime, the

complex viscosity increases gradually as the concentration increases, and the bulk solution

is assumed to be a uniform viscoelastic fluid.

The characteristic length of the flow induced by the colloidal probe is defined by the
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FIG. 1: Polymer depletion zone around a spherical particle undergoing a small amplitude, axisym-

metric oscillation along the vertical direction. Rc is particle radius, d is the characteristic depletion

thickness, θ is the polar angle, r indicates radial position, z is the symmetry axis along θ = 0, and

ω is the oscillation frequency. The three-dimensional toroidal vortexes are first introduced at the

turns of moving directions and later expand and dissipate into the bulk.

colloid radius Rc (see Fig. 1), and we consider cases of linear polymer chains with radius

of gyration Rg larger than or about the order of the polymer correlation length ξ, i.e.,

a << ξ <∼ Rg
<∼ Rc, where a is the effective polymer segment length. The equilibrium

polymer depletion thickness can be characterized by a range in between the radius of gyration

in the limit of infinite dilution and the correlation length [45], depending on solvency and

the bulk polymer concentration. During fluid motion, the polymer-solvent interfacial friction

coefficient ζ is a local quantity and is related to the polymer correlation length ξ, segment

or persistence length a, solvency scaling exponent m (m = 1 for a Θ-solvent and m = 3/4

for a good solvent), solvent viscosity ηs, and the volume fraction of polymer segments φ [81],

expressed as

ζ(φ) ' 6πηs
ξ2

=
6πηs
a2

φ2m, (1)

where ξ(φ) ' aφ−m. The elasticity at the probing time scale is assumed due to the weak

entanglement between polymer chains or relaxation of their internal configuration. A linear

polymer with an assumed segment length a ' 0.40 to 4.0 nm and a radius of gyration

Rg ' 50 to 500 nm is selected for the case study. Considering a and Rg as input parameters,

and Rg ' a(N/6)ν , where the Flory exponent ν=3/5 for a good solvent and ν=1/2 for a
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Θ-solvent, and the estimated degree of polymerization N = 93, 750 >> 1 and as an ideal

chain. The polymer segment volume fraction at overlap is therefore

φ∗ ' 3

4π
(6)3νN1−3ν ' 0.00063

(
for ν =

3

5

)
to 0.011

(
ν =

1

2

)
<< 1.

In our studies the bulk polymer concentration is assumed up to about 3φ∗ in the semi-

dilute regime. Considering φ∗ as a characteristic volume fraction, the corresponding polymer

correlation length is ξ(φ) ∼ aφ−m ' 100 to 1000 nm for a good solvent with solvency factor

m = 3/4 and a ' 0.4 to 4 nm, and ξ(φ) ' 34.9 and 349 nm for a Θ-solvent with m = 1. Note

that (3ν − 1)(3m− 1) = 1. As a result, the polymer blob diffusion time τξ, which indicates

the relaxation of the blob distribution around the colloids due to thermal fluctuation, can

be estimated by polymer correlation length and the blob diffusivity as

τξ ∼
ξ2

Dblob

∼ a2(φ∗)−2m

(φ∗)1−2mDseg

∼ 6πηsa
3

φ∗kT
' 2.6× 10−8 to 4.7× 10−4 s

for both segment lengths under Θ- or good solvents, where Dseg is the segment diffusivity.

This time scale is considered to be equal to fundamental relaxation time λ1.

For ω ' 1 to 105 s−1, the shear effect induced by the oscillatory motion on the distribution

of polymers can be estimated by the Peclet number as

Pe = τξω ' 10−8 to 10.

As a first approximation at a relatively low Peclet number regime, we assume that the small-

amplitude oscillation is within the depletion zone such that the distortion of the depletion

layer due to transient and convective effects is negligible. This implies that the depletion

zone surrounding the sphere does not deform and the distribution of nonadsorbing polymers

is approximately at equilibrium. The flow dynamics is periodic while the local viscosity and

polymer concentration are quasi-stationary. Although the Reynolds number is small and

the nonlinear inertial effect for the fluid motion is negligible, the local acceleration of the

fluid motion is significant in the oscillatory motion. Here we simplify the problem by con-

sidering a monochromatic, small-amplitude (smaller than the apparent depletion thickness),

translational, oscillatory motion of a colloidal sphere in an otherwise quiescent polymer

fluid (Fig. 1). We first present a simplified two-layer analytical result and then a numerical

model that incorporates a continuous polymer concentration profile based on the mean-field

approximation for polymer solutions. Both single mode and multimode Maxwell models
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are demonstrated for extracting the apparent complex viscosity. In summary, modeling of

the oscillatory colloidal probe in a polymer solution is determined by the following key pa-

rameters: (i) solvent condition described by the Flory exponent υ and solvency factor m,

Huggins coefficient kH , thermal energy kT at the assumed ambient temperature, and the

solvent viscosity ηs, (ii) size parameters including the probe radius Rc, polymer segment

length a, polymer radius of gyration Rg, and the degree of polymerization N , (iii) polymer

bulk concentration φb and the overlap fraction φ∗, and (iv) probe oscillating frequency ω

and an amplitude much smaller than the apparent depletion thickness d.

B. Two-layer approximation

In the simplified two-layer approximation, the small-amplitude oscillatory flow in a linear,

incompressible, viscoelastic continuum can be described by the momentum equations:

ρ(i)∂v
(i)(r, θ, t)

∂t
' −∇p(i)(r, θ, t) + η∗(i)(ω)∇2v(i) (2)

for Rc ≤ r ≤ Rc + d, and

ρ(o)∂v
(o)(r, θ, t)

∂t
' −∇p(o)(r, θ, t) + η∗(o)(ω)∇2v(o) (3)

for Rc + d ≤ r < ∞, where v(i), p(i), v(o), and p(o) are the complex velocity and pressure

fields in the inner and outer domains, denoted by (i) and (o), respectively, t is time, ω is the

circular frequency of the oscillation, η∗ is the complex viscosity, Rc is the colloidal radius, r is

the radial coordinate, and d is the mean-field approximation of the depletion thickness based

on polymer chain length, correlation length, solvency and bulk polymer concentration [45].

The complex viscosity is introduced to model the Maxwell viscoelastic fluid. The inner

layer fluid density is approximately the same as the outer layer, i.e., ρ(i) ' ρ(o) = ρ. The

incompressible continuity equations are

∇ · v(i) = 0 and ∇ · v(o) = 0, (4)

respectively.

The velocity boundary condition on the sphere is

v(i) = Ueiωtêz at r = Rc, (5)
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where U is the real velocity amplitude of the oscillatory sphere, êz is the unit vector along

the axis of symmetry. The velocity and pressure conditions at the far field are

p→ p∞ and v→ 0 as r →∞. (6)

At the interface between both domains we assume that there exists no interfacial energy

and the velocity and stress fields are continuous, written as

v(i) = v(o) and τ (i) = τ (o) at r = Rc + d. (7)

Hereafter τ indicates the stress field including pressure contribution, and σ denotes the

deviatoric part of the stress.

The complex viscosity for the generalized Maxwell model [74, 75] can be expressed as

η∗ = η
′ − iη′′

=
n∑
j=1

η
j

1 + ω2λ2
j

− i
n∑
j=1

η
j
ωλj

1 + ω2λ2
j

, (8)

where λ1 > λ2 > ... > λn represents the spectrum of discrete relaxation times for the complex

medium fluid, n is the number of modes, and η
j

is the discrete viscosity corresponding to

relaxation mode i, which may be reduced to the following format:

η
j

= η0

λj∑
j λj

, and λj =
λ1

jq
, (9)

where η0 is the zero-frequency (zero-shear) viscosity of the polymer solution, λ1 is the largest

relaxation time, and q ' 2 for the Rouse model [74, 76]. In the two-layer approximation,

we approximate the local value of η0 within and outside the depletion zone using a step

function:

η0(r) =

 ηs or η(i)
0

for Rc ≤ r ≤ Rc + d

η(o)
0

for Rc + d ≤ r <∞,
(10)

where the subscript 0 indicates the Newtonian or zero-frequency limit, superscripts (i) and

(o) represent the inner and outer layers, respectively, η(i)
0

is essentially the solvent viscosity ηs,

while η(o)
0

represents the bulk viscoelastic fluid outside the depletion layer. The corresponding

polymer mass concentration is c(r) = 0 in the inner layer, and c(r) = cb as the bulk polymer

concentration for the outer domain. Here the single-mode Maxwell model is applied to

the two-layer analytical approximation, while both single- and multi-scale Maxwell models
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are applied for the numerical approach with a continuous distribution of polymer segment

concentration.

Considering the oscillatory fluid motion with the same frequency as the moving sphere,

the characteristic scales for the length, time, velocity, complex viscosity, stress and pressure,

and drag force can be selected and expressed as

r ∼ Rc, t ∼ 1/ω, v ∼ U, η∗ ∼ ηs (11)

and

τ and p ∼ ηsU/Rc, Drag F ∼ 6πηsRcU, (12)

where the total force is scaled by the steady Stokes drag in solvent. Hereafter formulations

are in dimensionless form unless further notification. By substituting the location- and

time-dependent periodic velocity and pressure fields, i.e.,[
v(i)(r, θ, t), v(o)(r, θ, t)

]
=
[
ṽ(i)(r, θ), ṽ(o)(r, θ)

]
eit, (13)

and [
p(i)(r, θ, t), p(o)(r, θ, t)

]
=
[
p̃(i)(r, θ), p̃(o)(r, θ)

]
eit + [p∞, p∞] (14)

into the momentum equations, with the tilde on variables indicating the complex amplitudes

of the transient fields, and in terms of the scaled variables, we obtain

iβṽ(i) = −∇p̃(i) + η∗∇2ṽ(i) (15)

for 1 ≤ r ≤ 1 + d, and

iβṽ(o) = −∇p̃(o) + αbη
∗∇2ṽ(o) (16)

for 1 + d ≤ r < ∞, where d here is the dimensionless depletion thickness. The three

characteristic numbers are defined as

αb =
η(o)
0

ηs
, β =

ρωR2
c

ηs
, De = λ ω, (17)

and the single-mode complex viscosity can be written as

η∗

ηs
= αb η

∗, where η∗(De) =
1− iDe

1 + De2 . (18)

Here αb is the dimensionless, zero-shear, bulk-to-solvent viscosity ratio for the two-layer

model, the frequency parameter β determines the degree of local acceleration, and the Deb-

orah number De is the ratio of material stress relaxation (λ) to the active oscillation (1/ω)
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time scales, or the scaled material relaxation time. Both β and De are proportional to the

driving frequency ω. The material expresses fluid-like behavior at small De.

At least two approaches can be applied to resolve the transient Stokes flow problems in

hand: the pseudo vector [77, 78] and the stream function method [79, 80]. Here we follow the

pseudo vector methodology for its concise algebraic operation by representing the complex

velocity amplitudes in terms of radially dependent functions, f (i) and f (o), expressed as

ṽ(i) = ∇×
[
∇f (i) × êz

]
= ∇×∇× (f (i)êz), (19)

ṽ(o) = ∇×
[
∇f (o) × êz

]
= ∇×∇× (f (o)êz), (20)

where the terms within the brackets are arbitrary pseudo vectors so that the velocity satisfies

the continuity equation. Only the first- and second-order derivatives of the function f are

needed for solving this problem. By taking curl of both momentum equations (15) and

(16) to eliminate pressure terms and substituting the above expressions, the momentum

equations reduce to

∇2∇2∇f (i) − iβ

η∗
∇2∇f (i) = 0 (21)

and

∇2∇2∇f (o) − iβ

αbη
∗∇

2∇f (o) = 0 (22)

for the corresponding inner and outer domains. Integrating above momentum equations

once, we obtain

∇2∇2f (i) + k(i)2∇2f (i) = A, (23)

∇2∇2f (o) + k(o)2∇2f (o) = B, (24)

respectively, where the constant A is to be determined by matching the interfacial bound-

ary conditions between the inner and outer domains, and the constant B vanishes in the

outer domain due to the quiescent far-field velocity boundary condition determined by the

derivatives of the f function. The characteristic inner and outer complex wave numbers are

associated with the complex viscosity as

k(i) = (i− 1)

√
β

2η∗
=
i− 1

δ(i)
, (25)

k(o) = (i− 1)

√
β

2αbη
∗ =

i− 1

δ(o)
, (26)
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where the resulting δ(i) and δ(o) are characteristic penetration depths of the decayed viscous

wave in each domain. The factor 2 inside the square roots in equations (25) and (26) comes

from
√
−i = (1− i)/

√
2, and the sign for the wave vector k is determined in a way that the

velocity field shows an exponential decay with radial distance r, and the derivatives of the

function f vanishes at far field. The intermediate general solutions of equations (23) and

(24) in terms of the second-order derivatives are

∇2f (i) =
C1eik

(i)r

r
+
C2e−ik

(i)r

r
+

A

k(i)2 , (27)

∇2f (o) =
D1eik

(o)r

r
. (28)

Note that the growing term vanishes for the outer domain due to the far-field boundary

condition. Integrating equations (27) and (28) once and combining unknown coefficients we

obtain the general solutions of the 1st-order derivatives of both f functions:

df (i)

dr
=

A

3k(i)2 r +
1

r2

[
a(i)eik

(i)r

(
r − 1

ik(i)

)]
+
b(i)

r2

+
1

r2

[
c(i)e−ik

(i)r

(
r +

1

ik(i)

)]
,

(29)

and
df (o)

dr
=

1

r2

[
a(o)eik

(o)r

(
r − 1

ik(o)

)]
+
b(o)

r2
, (30)

respectively, where a(i) = C1/ik
(i), c(i) = C2/ik

(i), a(o) = D1/ik
(i). Only the derivatives

instead of the actual forms of the f functions are used in solving the velocity field. The

six unknown coefficients A, a(i), b(i), c(i), a(o), and b(o) are to be determined by the no-slip

boundary condition on the particle surface, and continuous velocity and stress conditions

across the interface of the depletion zone:

ṽ(i)
r = cos θ, ṽ

(i)
θ = − sin θ at r = 1, (31a)

ṽ(i)
r = ṽ(o)

r , ṽ
(i)
θ = ṽ

(o)
θ at r = 1 + d, (31b)

σ̃
(i)
rθ = σ̃

(o)
rθ at r = 1 + d, (31c)

and

−p̃(i) + σ̃(i)
rr = −p̃(o) + σ̃(o)

rr at r = 1 + d. (31d)

Note that the far field velocity and stress vanish as r → ∞, and the polymer induced
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osmotic pressure in the outer fluid has been included in p̃(o) as a modified pressure. The six

coefficients can be determined by substituting the f -derivatives into equations (19) and (20)

and then into the velocity and stress boundary conditions. The pressure field is determined

by integrating the momentum equation directly. The lengthy derivation can be simplified

by applying the vector identity,

∇×∇× (f êz) ≡ ∇(∇ · f êz)−∇2(f êz) , (32)

into the algebraic operations. In summary, the resulting analytical solution for the six

unknown coefficients can be obtained and presented by the following matrix form:



A

a(i)

b(i)

c(i)

a(o)

b(o)


=



−2/3k(i)
2

B(k(i), 1) −2 C(k(i), 1) 0 0

−2/3k(i)
2

D(k(i), 1) 1 E(k(i), 1) 0 0

−2/3k(i)
2
B(k(i), ds) −2/d3s C(k(i), ds) −B(k(o), ds) 2/d3s

−2/3k(i)
2
D(k(i), ds) 1/d3s E(k(i), ds) −D(k(o), ds) −1/d3s

2ds/3 2F (k(i), ds) (12/d4s )− (k(i)/ds)
2 2G(k(i), ds) −2αbF (k(o), ds) αb(k

(o)2/d2s − 12/d4s)

0 H(k(i), ds) −6/d4s I(k(i), ds) −αbH(k(o), ds) 6αb/d
4
s



−1 

1

1

0

0

0

0


,

(33)

where ds = 1 + d, and

B(k, r) = eikr
(
−2

r2
+

2

ikr3

)
, (34)

C(k, r) = e−ikr(
−2

r2
− 2

ikr3
),

D(k, r) = eikr
(

1

r2
− 1

ikr3
− ik

r

)
,

E(k, r) = e−ikr
(

1

r2
+

1

ikr3
+
ik

r

)
,

F (k, r) = eikr
(
−6

ikr4
+

6

r3
− 2ik

r2

)
,

G(k, r) = e−ikr
(

6

ikr4
+

6

r3
+

2ik

r2

)
,

H(k, r) = eikr
(

6

ikr4
− 6

r3
+

3ik

r2
+
k2

r

)
,

I(k, r) = e−ikr
(
−6

ikr4
− 6

r3
− 3ik

r2
+
k2

r

)
.
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Finally, the resulting complex amplitudes of the velocity field can be expressed as

ṽ(i)
r = cos θ

[
−2A

3k(i)2 + a(i)B(k(i), r)− 2b(i)

r3
+ c(i)C(k(i), r)

]
, (35a)

ṽ
(i)
θ = − sin θ

[
−2A

3k(i)2 + a(i)D(k(i), r) +
b(i)

r3
+ c(i)E(k(i), r)

]
, (35b)

ṽ(o)
r = cos θ

[
a(o)B(k(o), r)− 2b(o)

r3

]
, (35c)

ṽ
(o)
θ = − sin θ

[
a(o)D(k(o), r) +

b(o)

r3

]
, (35d)

and therefore the deviatoric stress amplitudes in both domains are

σ̃(i)
rr =2η∗ cos θ

[
a(i)F (k(i), r) +

6b(i)

r4
+ c(i)G(k(i), r)

]
, (36a)

σ̃(o)
rr = 2αbη

∗ cos θ

[
a(o)F (k(o), r) +

6b(o)

r4

]
, (36b)

σ̃
(i)
rθ =− η∗ sin θ

[
a(i)H(k(i), r)− 6b(i)

r4
+ c(i)I(k(i), r)

]
, (36c)

and

σ̃
(o)
rθ = −αb η∗ sin θ

[
a(o)H(k(o), r)− 6b(o)

r4

]
. (36d)

From momentum equations (15) and (16), both pressure amplitudes can be obtained and

expressed as

p̃(i) = η∗ cos θ

[
− 2A

3
r +

k(i)2
b(i)

r2

]
(37a)

and

p̃(o) = αb η
∗ cos θ

[
k(o)2

b(o)

r2

]
. (37b)

Finally from the area integration of the surface stress, we obtain the overall hydrodynamic

drag acting on the sphere, F = F̃eit, where the complex amplitude is

F̃2M(αb, β,De, d) = −η∗
{

2

9

[
− 2

3
A+ k(i)2

b(i)
]

− 4

9

[
a(i)H(k(i), 1)− 6b(i) + c(i)I(k(i), 1)

]}
,

(38)

where the subscript 2M indicates the two-layer Maxwell model.
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C. Numerical validation using continuous concentration profile

The apparent depletion thickness based on the mean field approximation is roughly the

polymer radius of gyration in dilute polymer solutions and the polymer correlation length in

semi-dilute solutions [45]. The two-layer model can better describe the Stokes drag for cases

with relatively thin depletion layer thickness as compared to the particle radius [62]. Simi-

larly, the two-layer viscoelastic model and its applicability can be validated numerically using

continuous and spherically symmetric polymer concentration profile, schematically shown in

Fig. 2a, and Fig. 2b demonstrates the corresponding zero-shear viscosity. Firstly, the di-

mensional momentum equation for a nonuniform linear viscoelastic fluid can be expressed

as

ρ
∂v

∂t
' −∇p+∇ ·

{
η∗
[
∇v + (∇v)T

]}
, (39)

where ρ is fluid density, η∗ here represents complex viscosity as a continuous function of

local polymer concentration, which gradually increases from the surface to the bulk. In

terms of the characteristic depletion thickness d [81], the mean-field approximation of the

concentration for a spherical surface [45, 82] gives

ρp(r) =
c(r)

cb

'
[
r − 1 + tanh

(
r − 1

d

)]2

/r2 (40)

for 1 ≤ r < ∞, which represents the ratio of local to bulk polymer concentration. Here we

assume that the local zero frequency viscosity η0(r), which appeared in Eq. (8), connects

the scaled polymer concentration ρp(r) through the Martin’s equation [83, 84], expressed as

an exponential function as

α(r) =
η0(r)

ηs

= 1 + [η]cbρp(r)ekH [η]cbρp(r), (41)

where kH is the Huggins coefficient (assumed 0.5 for all test cases in this study as a value

close to what is found from rheology studies of polymer solutions), [η] is the intrinsic viscosity

of polymer solutions, and [η]cb = φ/φ∗b represents the scaled local polymer concentration.

Following equations (8) and (9), the scaled complex viscosity therefore can be written as

η∗

ηs
= α(r) η∗(De), (42)
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FIG. 2: (a) A schematic showing the equilibrium polymer concentration profiles with various

characteristic depletion thickness d, and their corresponding two-layer approximations. (b) The

scaled zero-shear viscosity with respect to polymer local concentration for the case with bulk

viscosity about ten times of the solve viscosity ([η]cb ' 2.534).

where α gives the local effect to the zero-shear viscosity, and the contribution of the multi-

mode effect is expressed as

η∗(De) =
1− iDe

1 + De2 +
1− i2−qDe

(1 + 2q)
(
1 + 2−2qDe2

)
+

2q − i2q3−qDe

(6q + 3q + 2q)
(
1 + 3−2qDe2

) + ... ,

(43)

where the Deborah number De= λ1ω corresponds to the slowest relaxation time λ1.

Similar to the two-layer model we apply the characteristic scales in Eqs. (11) and (12)
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and consider the following periodic velocity and pressure fields:

[v(r, θ, t), p(r, θ, t)] = [ṽ(r, θ), p̃(r, θ)] eit + [0, p∞]. (44)

Substituting the velocity and pressure into the scaled momentum equation, and then com-

bining it with the local complex viscosity we obtain the reduced form:

iβṽ = −∇p̃+ η∗∇ ·

{
α(r)

[
∇ṽ + (∇ṽ)T

]}
, (45)

The pressure term can be eliminated by taking curl of the momentum equation. Considering

the axisymmetric flow, the velocity amplitude can be further represented by the Stokes

stream function ψ̃(r, θ) as

ṽr =
−1

r2 sin θ

∂ψ̃

∂θ
, ṽθ =

1

r sin θ

∂ψ̃

∂r
. (46)

By applying the following identity to the curl of the Laplacian term in equation (45),

−∇×∇×∇× ṽ = êϕ
1

rsinθ

(
E4ψ̃

)
, (47)

where the differential operator

E4 ≡
[
∂2

∂r2
+

sin θ

r2

∂

∂θ

(
1

sin θ

∂

∂θ

)]2

,

and the trial solution ψ̃(r, θ) = f(r) sin2 θ to satisfy the complex velocity boundary condi-

tions, ṽr = cos θ, ṽθ = − sin θ at r = 1, the momentum equation reduces to a fourth-order

differential equation for the unknown radial complex function f(r):

f (4) +
2α′

α
f ′′′ −

[
4

r2
+

2α′

rα
− α′′

α
+

iβ

αη∗

]
f ′′

+

(
8

r3
− 2α′

r2α
− 2α′′

rα

)
f ′

−
[

8

r4
− 8α′

r3α
− 2α′′

r2α
− 2βi

r2αη∗

]
f = 0

(48)

for 1 ≤ r <∞. The corresponding velocity boundary conditions are

f(1) = −1/2, (49)

f ′(1) = −1, (50)
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and
f

r2
→ 0 and

f ′

r
→ 0 as r →∞. (51)

The 4th-order equation (48) can then be solved by combining the Runge-Kutta integration

and the shooting algorithms to obtain the unknown surface boundary conditions f ′′ and f ′′′

at r = 1 based on the vanishing far-field conditions. The corresponding stress and pressure

amplitudes can then be derived from the obtained velocity field. The amplitude of the

normal stress is

σ̃rr = −4α(r)η∗ cos θ

[
f ′

r2
− 2f

r3

]
, (52)

which vanishes at the particle surface. The shear stress amplitude is

σ̃rθ = α(r)η∗ sin θ

[
f ′′

r
− 2f ′

r2
+

2f

r3

]
. (53)

The pressure amplitude is

p̃ = (iβ cos θ) f ′ − η∗ cos θ×[
αf ′′′ + α′f ′′ −

(
2α

r2
+

2α′

r

)
f ′ +

(
4α

r3
+

2α′

r2

)
f

]
.

(54)

Finally, the resulting surface integration of the local stress leads to total drag force amplitude:

F̃cM = −η∗
[

4

9
+

4

9
f ′′(1)− 2

9
f ′′′(1)

]
+

2

9
iβ, (55)

with α(1) = 1 and α′(1) = 0. The subscript cM indicates Maxwell model with continuous

concentration profile. The first part accounts for complex viscous effect, whereas the last

term contributes to the imaginary part of the force amplitude due to pressure distribution

introduced by the transient inertial (added mass) effect. The transient resistance during the

oscillatory motion therefore is FcM = F̃cM(β,De, α, d) eit, where the local viscosity α and

depletion thickness d are accounted for by computation of f ′′(1) and f ′′′(1). For a uniform

Newtonian fluid with a finite β value, f ′′(1) = 1/2 − 3ki/2 and f ′′′(1) = −3/2 + 3k2/2 +

3ki/2, where k = (i − 1)
√
β/2α, β = ρωR2

c/ηs and α = η0/ηs. The resulting formulation

and numerical results are consistent with the quasi-stationary approximation in Newtonian

fluids [62] as β → 0 and De→ 0.

D. Limiting cases

(i) For a single-mode uniform Maxwell fluid, A = 0 and complex wave vector k(i) = k(o) =

kM = (i−1)
√
β(1 + iDe)/(2αb), where the ratio of zero-frequency to solvent viscosity αb is a
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constant. Furthermore, a(i) = a(o) = −3e−ikM/(2ikM), b(i) = b(o) = −(1− 3/ikM − 3/kM
2)/2,

c(i) = 0, and the complex amplitude of the total drag reduces to

F̃M = −αbη∗M
(

1− ikM −
1

9
k2

M

)
, (56)

where αbη
∗
M is the scaled complex viscosity and η∗M is defined by Eq. (18).

(ii) In case of depletion of Newtonian polymer solutions, the two-layer approximation of

Newtonian fluids leads to De = 0, k(i) = (i − 1)
√
β/2α(i), and k(o) = (i − 1)

√
β/2α(o).

The viscosity ratio α(i) = 1 for the viscosity of the depletion zone simply approximated by

solvent viscosity, and α(o) = αb. For a special case of uniform Newtonian fluid, both the

constants A and Deborah number De vanish, and k(i) = k(o) = kN = (i − 1)
√
β/2αb. Also

a(i) = −3e−ikN/(2ikN), b(i) = −(1− 3/ikN− 3/kN
2)/2, a(o) = a(i), b(o) = b(i), c(i) = 0, and the

drag amplitude [77] becomes

F̃N = −αb
(

1− ikN −
1

9
k2

N

)
. (57)

The first term in parenthesis represents the typical Stokes drag contributed by both pressure

and shear viscous stress on surface. The kN term is known as the Basset history effect

relevant to both particle velocity and acceleration, also contributed by flow pressure and

shear stress acting on the particle surface. The k2
N term is known as the added or additional

effective mass effect which only comes from pressure, and is related to the acceleration of

the particle. A similar mathematical form can be casted for uniform Maxwell fluid with

stress relaxation taken into account.

(iii) In the quasi-steady or zero-frequency limit, β → 0 and De → 0, k(i) = k(o) = 0, the

total drag of the two-layer model [61] reduces to

F2s = −
[
2

(
2 +

3

α

)
d6

s − 4

(
1− 1

α

)
ds

]
/Γ (58)

where ds = 1 + d, and Γ = 2(2 + 3/α)d6
s − 3(3 + 2/α)(1 − 1/α)d5

s + 10(1 − 1/α)d3
s − 9(1 −

1/α)ds + 4(1− 1/α)2.

Next we demonstrate the transient flow patterns and the apparent complex viscosity

sensed by the particle to distinguish the apparent value from the actual viscosity of the
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FIG. 3: Instantaneous flow patterns near the reversal point of the moving direction, showing

streamlines and contour map of scaled velocity magnitude in polymer solutions with (b, d) and

without (a, c) polymer depletion effect. Newtonian fluids (a, b) are compared with Maxwell

viscoelastic fluids (c, d). Parameters used are listed in text. The dashed line appeared in (b, d)

gives the location of the depletion interface at r = 1 + d.

bulk fluid. The roles of dimensionless parameters including viscosity ratio α, frequency

parameter β, Deborah number De, and the apparent depletion thickness d are discussed.

III. RESULTS AND DISCUSSION

Figure 3 demonstrates the streamlines and contour map for the scaled velocity magnitude

on the transient flow driven by a vertically oscillating sphere. The cases include: (a) uniform

Newtonian fluid with bulk-to-solvent viscosity ratio αb = 100 and frequency parameter

β = 1, (b) nonuniform Newtonian fluid with αb = 100, β = 1, and depletion thickness

d = 1, (c) uniform Maxwell fluid with αb = 100, β = 1, Deborah number De = 100, and (d)

nonuniform Maxwell fluid with αb = 100, β = 1, De = 100, and d = 1. The nonuniform cases
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(b) and (d) are obtained from the numerical model presented above. The local acceleration

of the fluid is significant and the transient flow constantly evolves with a toroidal vortex

initiated periodically at the particle surface. The Newtonian fluids (a, b) have a typical

diffusive behavior showing viscous dissipation into the nearby domain, while the Maxwell

fluids (c, d) exhibit a mixed diffusive and elastic behavior with an oscillatory diffusion wave

expanding and propagating laterally into the far field. The sustained elastic wave on top of

the migrating toroidal vortex is formed by alternating circulations around the particle. A

spatially oscillatory pattern reveals itself clearly. The structure with higher wave number,

which is proportional to the square root of the Deborah number, is due to the longer stress

relaxation time. Furthermore, comparing the depletion cases (b, d) with uniform cases (a,

c), because of the much lower viscosity within the depletion zone, the flow is relatively

confined within the depletion zone (b, d) and the velocity quickly damps out in the bulk.

Under the same bulk properties, cases with depletion are expected to have less dissipation

loss and smaller resistance to the particle motion. A small toroidal circulation appears in

the depletion zone from time to time during the periodic motion is similar to the cage effect

due to the high viscosity ratio.

Figure 4 compares the two-layer analytical approximation (a to d) with the numerical

result (a’ to d’) of the continuous model on a transient Maxwell fluid flow induced by a

vertically oscillating sphere. Streamlines and scaled velocity magnitude for approximately a

quarter of the cycle are shown, starting from the instant that the sphere reverses its moving

direction (a). The toroidal vortex is first introduced at the turn of moving direction and is

attached to the sphere’s surface (b) while the rest of the domain is not yet perturbed due

to the lag of inertial effect. In the later stages the vortex expands and migrates laterally (c

and d) and dissipates into the far field. The flow gradually changes its direction completely

from nearby to the far field (a and d), followed by the next quarter of the cycle. At the end

of the half cycle the vortex dissipates and velocity decays significantly, and a new vortex is

about to appear right after the reversal of the moving direction. Higher velocity appears

near the north and south poles of the sphere most of the time as expected. In this case

at frequency parameter β = 1 the transient flow already deviates significantly from the

stationary Stokes flow. The elastic effect is relatively weak (De = 10) and the bulk-to-

solvent viscosity ratio (αb = 10) is low to represent an unentangled, dilute polymer solution,

so that the overall flow patterns are very similar to a uniform Maxwell fluid except in the
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FIG. 4: Streamlines and scaled velocity amplitude around a vertically oscillating sphere in a

linear viscoelastic fluid with bulk-to-solvent viscosity ratio αb = 10, frequency parameter β = 1,

Deborah number De = 10, and apparent depletion thickness d = 1. Left and right panels are the

corresponding two-layer and continuous models, respectively, at four scaled time instants: t = 0.5π

(a, a’), 0.53π (b, b’), 0.6π (c, c’), and 0.9π (d, d’). The scaled period T = 2π. At t = 0 the particle

is located at the mean position of the oscillation. Dashed lines indicate the depletion interface at

r = 1 + d.
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near-field region. The depletion thickness, d = 1, is about the particle radius, and the

depletion zone can be observed from the slightly distorted streamlines across the depletion

interface. Steeply connected (c and d) versus smooth (c’ and d’) streamlines appear at the

interface, indicating the difference between two-layer and continuous approximations of the

flow field. In the limiting case where β → 0 and De → 0, the resulting flow pattern is

consistent with the quasi-steady model [61, 62].

In Figure 5 we compare the velocity profiles extending from the equator (θ = π/2)

of the oscillating sphere at various bulk-to-solvent viscosity ratio, Deborah number, and

depletion thickness. The two-layer approximation agrees well with the continuous model

for cases with (i) a relatively thin depletion thickness, where particle size is relatively large

compared with the polymer radius of gyration or polymer correlation length, and (ii) a

relatively small bulk-to-solvent viscosity ratio that corresponds to dilute polymer solutions.

Near the particle surface the velocity gradient based on both models are very close to each

other so that the two-layer analytical result provides a reasonable estimation of resistance

that the sphere experiences, as long as the depletion thickness is approximately less than

1. In the semi-dilute regime with higher viscosity ratio, the deviation between the two

models near the depletion zone increases, see the comparison in Fig. 5c. The continuous

model has a more realistic smooth transition for the circulation from the particle surface

to the depletion interface, while under the same apparent depletion thickness the two-layer

approximation requires a larger circulation in the depletion zone in order to satisfy the

coupled dynamic boundary conditions at the depletion interface. At lower viscosity ratio

the scaled velocity magnitude has a larger domain of influence, while at large viscosity ratio

the velocity variation is relatively confined within the depletion zone. Comparing Fig. 5a

with 5c, it is observed that at higher Deborah number the velocity profiles oscillates a few

times before vanishing into the far field, which is consistent with the elastic-diffusive waves

observed earlier with alternating toroidal vortices expanding and propagating into the far

field. In Fig. 5d we consider a case with dimensionless parameters based on, for example,

dilute solution with polymer radius of gyration slightly smaller than the particle size, d ' 0.5,

solution mass density ρ ' 103 kg·m−3, solvent viscosity ηs ' 10−3 Pa·s, particle radius R = 1

µm, driving frequency ω = 105 rad·s−1, and solution stress relaxation time λ = 5 × 10−4 s

and thus De = 50, or another example with a relatively large colloidal sphere with R = 10

µm, ω = 103 rad·s−1, and λ = 5 × 10−2 s. In these cases, the velocity profiles predicted
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FIG. 5: Comparison on velocity profiles based on two-layer (solid lines) and continuous (dashed

lines) models at θ = π/2 and 1 ≤ r ≤ 6 to 10, at the time instant when the sphere passes through

its mean position. Parameters are listed in the figure.

by both the two-layer and continuous models are consistent to each other within the fluid

domain. At lower viscosity ratio α, the depth of viscous penetration, given by Eq. (25), is

relatively short, resulting a higher wave number k and thereby more oscillation appears in

space as shown in Fig. 5d.

Figure 6 compares the modeling results of transient resistance based on the same viscos-

ity ratio and Deborah number. The resistance can be obtained by taking the real part of
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FIG. 6: Scaled transient resistance acting on a translationally oscillating sphere versus time. The

dash-dotted line indicates the scaled velocity v(r = 1, t)·êz of the sphere as a reference for comparing

the phase behaviors. Subscript N indicates uniform Newtonian fluid, M for uniform Maxwell fluid,

cM for nonuniform Maxwell fluid with continuous concentration profile, and 2M for two-layer

Maxwell fluid. Only the real part of the complex drag force is shown for the force models with

αb = 10 and β = 1. Deborah number De = 1 for all Maxwell models, and the characteristic

depletion thickness d = 1 is used for both continuous and two-layer Maxwell models. T is the

oscillation period.

the scaled complex drag, F = Re
[
F̃eit

]
, which carries a phase lag relative to the particle’s

velocity. Under the same particle size and polymer conditions, overall the particle experi-

ences the highest drag in uniform Newtonian fluid F̃N for a given viscosity ratio αb, which

has a phase difference close to but not equal to π relative to the particle velocity due to

the inertial effect in the transient flow. The uniform Maxwell fluid has a phase lag, π/4,

compared to the uniform Newtonian model because De = 1 and the loss tangent of the lag

is tan δ = De−1 = 1. At significant depletion thickness d = 1, both the continuous and

two-layer models have significant reduction of the overall resistance force compared with

the uniform Maxwell model. This is similar to an effective slip mediated by the depletion

zone [61, 84]. Such deviation increases as the viscosity ratio and depletion thickness increase.

The forces FM and FcM are in-phase under the same Deborah number. The two-layer model
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slightly underpredicts the resistance. The solvent inner layer has no elastic effect, which

causes a small phase lag compared to the uniform or continuous model.

From an experimental perspective, for a given particle size, fluid density, solvent viscosity,

driving frequency, and a nonadsorbing polymer solution described by αb, d, and De, the

apparent complex viscosity to be sensed by an oscillating sphere can be casted into a form

derived for the single-mode uniform Maxwell fluid, Eq. (56), and formulated as

η∗M, 2M, cM

ηs
=

−F̃M, 2M, cM

1− ik − k2/9
, (59)

where the complex viscosity is scaled by the solvent viscosity ηs. The complex wave number

is given by

k(αb, β,De) = (i− 1)

√
β

2αbη
∗ = (i− 1)

√
β

2αb
(1 + iDe) . (60)

Presumably, F̃M is the force amplitude in an assumed uniform Maxwell fluid that one may

hope to measure directly using the colloidal probe, and F̃2M and F̃cM are the more realistic

amplitudes of the corresponding resistances with polymer depletion effect taken into account.

The theoretical model would help to better understand the deviation between the inferred

and true bulk properties.

Figure 7a demonstrates the numerical results of (η̄∗cM) under various depletion thickness

with αb = 10, β = 0.01, and De ranging from 10−1 to 30. For example, ρ ' 103 kg·m−3,

ηs ' 10−3 Pa · s, R = 1 µm, ω = 104 s−1, and stress relaxation time of the sample polymer

solution ranges from λ = 10−5 to 3× 10−3 s. Three cases with scaled depletion thicknesses,

d = 0.1, 0.5, and 1.0 are computed to compare with the corresponding uniform Maxwell

model without depletion. The intercepts of solid and dashed lines are the corresponding

crossover points where De ' 1 and η′ = η′′ for a small β value 0.01. It is found that the

deviation of the apparent versus true viscosity in the bulk can be significant, especially when

the depletion thickness is large. In the demonstrated case, a thickness of only 10% of the

particle radius corresponds to a reduction of about 20% of the complex viscosity at low

De. At low Deborah number (fluid-like material) the numerical results using continuous

viscosity profiles are compared with the corresponding two-layer Newtonian model. The

three asymptotes (dash-dotted lines) for De→ 0 are obtained from the two-layer Newtonian

model, Eq. (58). As expected, the simplified two-layer model slightly overpredicts the

reduction of η′, but is fairly accurate as d is approximately less than 0.5. Note that the
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FIG. 7: Reduction of resistance due to the presence of the depletion zone represented by the scaled

apparent complex viscosity η∗/ηs = (η′ − iη′′)/ηs, where ηs is the viscosity of a pure solvent. The

solid curves represent η′/ηs, whereas the dashed curves represent the corresponding η′′/ηs values.

(a) Comparison of uniform (no depletion), two-layer model as De → 0 (dash-dotted lines), and

continuous Maxwell models at α = 10, β = 0.01, and d = 0.1, 0.5 and 1.0. (b) Comparison of

cases with α = 10, d = 0.5, and β from 0.01 to 1.0.
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crossover viscosity does not recover to αb as d → 0 due to the apparent slip effect at the

nonadsorbing surface [61]. Figure 7b shows the sensitivity tests on the frequency parameter

β. The crossover viscosity shifts to a Deborah number De < 1 as β increases. This is due

to inertial contribution to the imaginary part of the drag force. At a higher β value the

inertial effect is stronger, for example, as the probe size increases, η′′ increases slightly as

η′ decreases, and the crossover viscosity corresponds to a lower Deborah number. However,

inertial effect is convoluted with the apparent slip phenomena as higher β value also enhances

the apparent slip effect due to depletion, which reduces the complex viscosity.

If the elastic energy in the polymer solutions comes from several sources, phenomenologi-

cally the general Maxwell model with multiple relaxation modes is more flexible in analyzing

the experimental data. Figures 8a demonstrates that the depletion effect can be resolved for

each mode of the general Maxwell model. The overall contribution of discrete viscosity from

the assumed three-scale Maxwell model with the descrete relaxation times defined based

on the Rouse model, Eqs. (8) and (9). The higher mode has less contribution in the low

Deborah number, and more in the high Deborah number regime as expected, and the three

crossover points correspond to the discrete relaxation times. Figure 8b shows the sensitivity

tests on the zero-shear viscosity αb from 2 to 100 in the bulk with a relative large depletion

thickness d = 1.

Furthermore, experimentally if the monochromatic resistance (rather than full-spectrum

response in Brownian motion) acting on the oscillatory sphere is directly measured, in prin-

ciple an inverse formulation can be applied to extract the unknown zero-frequency viscosity

ratio αb and the sample relaxation time λ, and thus to obtain the actual complex viscosity

that represents the bulk material. The inverse formulations based on the two-layer and

continuous models, Eqs. (38) and (55), however are implicit formulations of αb and De.

They may be determined by monochromatic measurement of force amplitude and phase

lag using optical or magnetic tweezer. The zero-frequency viscosity αb can be measured at

ω → 0 and be predicted by the stationary model in the Newtonian limit, such as Eq. (58).

Oftentimes microrheology experiments are performed on a passive mode. Either the mean

square displacement of the trajectory of the Brownian particle or the autocorrelation of the

scattering light intensity is recorded to approximate the self diffusivity of the particle. The

resistance data involves the contribution from the whole spectrum. In principle they can

be transformed to the frequency domain to obtain the monochromatic complex viscosity
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FIG. 8: Depletion effect on the general Maxwell model in terms of the scaled complex viscosity

versus Deborah number. (a) The solid and dashed lines represent η′/ηs and η′′/ηs, respectively,

and the contributions of the three individual modes with discrete relaxation times λj defined in

Eq. (9) at αb = 10, β = 0.01 and d = 1. (b) Comparison of apparent complex viscosity at various

bulk values of αb and at β = 0.01 and d = 1.
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based on the general Stokes-Einstein relation [3, 4, 8, 9, 85]. At the lower frequency range

where inertial effect is negligible, the complex viscosity η∗eff(ω) ' kBT/(−πRω2〈∆r2(ω)〉),

where η∗eff corresponds to η∗2M, cM in our models. Inferring the spectral relaxation times of

linear viscoelastic materials from experimental data is an inverse problem that may rely on

additional dynamic regression and inference analysis [86, 88, 89]. Further investigation is

needed to validate the proposed theoretical models in terms of apparent complex viscosity

and the corresponding spectral relaxation times under various polymer conditions.

IV. CONCLUSION

A new theoretical approach is presented to describe viscoelastic flow induced by

monochromatic, small-amplitude, translational oscillatory motion of a colloidal sphere

in nonadsorbing polymer solutions. The viscoelastic flow patterns influenced by local

inhomogeneity and stress relaxation are revealed in detail, and the overall drag coefficient

and the corresponding apparent complex viscosity are quantified based on the general

Maxwell model. The models aim for local analysis of microrheological measurements of

complex fluids using active and passive colloidal probing methods.
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[79] J.D. Schieber, A. Córdoba, T. Indei, The analytic solution of Stokes for time-dependent

creeping flow around a sphere: Application to linear viscoelasticity as an ingredient for the

generalized Stokes-Einstein relation and microrheology analysis, J. of Non-Newtonian Fluid

Mechanics 200, 3-8, 2013.

[80] S. Temkin,Suspension Acoustics: An Introduction to the Physics of Suspensions, Cambridge

Press, New York, 2005.

[81] P.G. De Gennes, Scaling Concepts in Polymer Physics, Cornell University Press, Ithaca, 1979.

[82] R. Tuinier, and H.N.W. Lekkerkerker, Polymer density around a sphere, Macromolecules, 35,

3312-3313, 2002.

[83] Rodriguez, F., Graphical solution of the Martin equation, Polym Lett Ed., 11, 485-486, 1973.

[84] R. Tuinier and T. Taniguchi, Polymer depletion-induced slip near an interface,

J.Phys.:Condens.Matter, 17, L9, 2005.
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