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Numerical studies of passive scalars in 3D periodic box turbulence have often used arbitrary scalar
forcing schemes to sustain the variance. These existing methods represent certain flow configura-
tions, but they have not been derived using specific velocity and scalar profiles. In this work, a
forcing technique is devised to generate centerline scalar mixing of round jets in a triply periodic
box. It is derived from the scalar transport equation using a Reynolds-like decomposition of the
scalar field. The equation is closed by applying the known mean velocity and scalar profiles of
axisymmetric jets. The result is a combination of a mean gradient term and a li near scalar term.
Direct numerical simulations at different Reλ have been performed with these source terms for unity
Schmidt numbers. Scalar flux values and scaling exponents of energy spectra from simulations are
comparable to experimental values. In addition, a dimensional analysis shows that the normalized
scalar statistics, such as variance, flux, and dissipation rate, should only be a function of Reynolds
number; indeed, such quantities computed from our simulations approach constant values as the
Reynolds number increases. The effects of velocity forcing on scalar fields are also investigated;
changing velocity forcing terms may result in unstable scalar fields even under the same scalar forc-
ing. It may indicate that an appropriate relation between the velocity and scalar forcing schemes
can help producing a proper scalar mixing environment.

I. INTRODUCTION

Passive scalars refer to diffusive scalar quantities that
are convected by the velocity field but do not influence
the fluid motion itself. The transport of passive scalars
in an incompressible flow is governed by the following
equation:

∂C

∂t
+ u · ∇C = ∇ · (D∇C) , (1)

where C is the scalar, D is its diffusivity, and u is the
velocity. Numerical computations are often used to ex-
amine the mixing characteristics of passive scalars, but
the computational cost and complexity of geometry can
make it difficult to conduct them. To cope with these
problems, a 3D periodic box with zero mean scalar and
velocity has been used intensively to study scalar turbu-
lence [1–12]. Unfortunately, the solution of Eq. (1) with
triply periodic boundary conditions is that of a decaying
scalar field.
Scalar variance can be prevented from decaying by in-

cluding a source term in the scalar transport equation.
Below is the incompressible advection-diffusion equation
with a forcing term:

∂C′

∂t
+ u · ∇C′ = ∇ · (D∇C′) + f, (2)

where C′ is the forced scalar and f is a forcing term.
Three main schemes have been proposed in the litera-
ture: mean gradient forcing (MG) [1], linear scalar forc-
ing (LS) [11], and reaction analogy forcing (RA) [12].
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The mean gradient forcing technique (MG) [1] models
a passive scalar in the presence of a mean gradient G

(e.g. 〈−g, 0, 0〉) across the scalar field. The forcing term
can be derived by imposing a mean gradient:

C = C′ +G · x. (3)

Then, the derived forcing term is f = −u · G. Various
numerical studies with the MG method have been con-
ducted to examine the scalar mixing characteristics over
a range of Schmidt numbers [1–4], with a particular em-
phasis on scalar flux [5], dissipation [6, 7], spectrum [8],
and structure functions [9, 10].
The linear scalar forcing technique (LS) [11] aims to

capture the nature of decaying turbulence. The deriva-
tion of the forcing term begins by normalizing the scalar
field:

C′ = C

√

σ2
t

σ2
c

, (4)

where σ2
t is the targeted arbitrary scalar variance, and σ2

c

is the unforced scalar variance. When Eq. (4) is applied
to Eq. (1) with an approximation that σ2

t = σ2 in the

long-time limit, the forcing term f =
1

2

χ

σ2
C′ is derived,

where χ ≡ 2D|∇C′|2 is the scalar dissipation rate and σ2

is the variance of C′. The overline · denotes ensemble-
averaging.
The reaction analogy forcing technique (RA) [12]

models a hypothetical chemical reaction that reverts
the mixing process. The forcing term is f =
sign(C)fc|C|n (1− |C|)m, where m and n are the stoi-
chiometric coefficients of the hypothetical reaction. fc =
2mK/2m, where K is the reaction rate constant.
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Although these three forcing methods successfully
maintain scalar variance at a certain value, their deriva-
tions do not involve any information about velocity fields,
nor is there any relation between the scalar forcing and
the velocity forcing. The main objective of the current
work is to introduce a scalar forcing scheme that gener-
ates the mixing of a specific practical flow. The target
mixing is that of a fully-developed turbulent round jet in
the centerline region with unity Schmidt number.
In Sec. II, we will review the velocity forcing scheme of

Rah et al. [13], which the current scalar forcing is based
on. In Sec. III, the forcing term is derived, and a di-
mensional analysis is provided. In Sec. IV, simulation
results are presented and compared against experiments.
Finally, in Sec. V, the effects of velocity forcing on the
scalar field are discussed.

II. REVIEW OF JET CENTERLINE (JC)
VELOCITY FORCING

A velocity forcing scheme has been developed re-
cently [13] to generate the turbulence of a round jet in
a 3D periodic box. Since a similar derivation approach
will be taken in the present work for the development of
the scalar forcing terms, the derivation of the jet velocity
forcing scheme is reviewed first.
The derivation begins with Lundgren’s idea [14] to ob-

tain the momentum equation for the fluctuating velocity
u′ from the Navier-Stokes equation by subtracting the
mean of the equation:

N (u+ u′)−N (u+ u′), (5)

where N is the set of Navier-Stokes equations, and u is
the mean velocity. Equation (5) gives

∂u′

∂t
+ u · ∇u′ + u′ · ∇u+ u′ · ∇u′ −∇ · u′u′

= −1

ρ
∇p′ + ν∇2u′, (6)

where ν is the kinematic viscosity of the fluid. Lundgren
argued that it might be appropriate to use a source term
of the form fu = Au′ with an arbitrary constant A, since
the energy production term u′ · ∇u is linear to u′.
Rah et al. [13], on the other hand, examined all the

terms in Eq. (6) by using the known mean velocity infor-
mation of a round jet from [15, 16]:

ux = Uc
F ′ (η)

η
, (7)

ur = Uc

[

F ′ (η)− 1

η
F (η)

]

, (8)

where Uc is the centerline mean velocity, η = r/x is the
ratio of a radial coordinate to an axial coordinate, and
F (η) is a function to be determined by the experiment.
It should be highlighted that the forcing term was de-

veloped to be used in a cubic box with triply periodic

boundary conditions, in which the flow is statistically
homogeneous, while in a practical round jet, the mag-
nitudes of velocities decrease with the axial direction as
1/x. Thus, the following normalized Reynolds decompo-
sition was suggested to make the fluctuating velocities
suitable for periodic boundary conditions:

u∗
x =

x

xo
(ux − ux) exp

(

1− x

xo

)

u∗
i =

x

xo
(ui − ui) , (9)

where xo is the axial location, ux is the original longitudi-
nal velocity, and ui is either of the transverse velocities of
a jet. The asterisk · ∗ denotes the normalized quantity.
The exponential term in the longitudinal normalization
is added to enforce ∇ · u∗ = 0.
Equation (9) is now applied to Eq. (6), and the known

mean velocity profiles of turbulent round jets [15] are
also applied to u. Each term is then evaluated at r = 0
and x = xo. After some simplification for high Reynolds
numbers, the forcing term takes the following form:

fu =
1

2

Uc

xo

(

2u∗
x̂ı+ u∗

y ̂+ u∗
zk̂
)

, (10)

ı̂, ̂, and k̂ are the unit vectors in Cartesian coordinates.
As apparent in the form of the source term, the sim-
ulation has a target experiment. Its Uc and xo values
determine the coefficients of the forcing term. This jet
centerline (JC) velocity forcing term was found to suc-
cessfully create turbulence in a 3D periodic box, whose
turbulent characteristics resemble those of a round jet on
the centerline.
Since the forcing coefficient Uc/xo and the computa-

tional domain length Lx are the only inputs into these
simulations, they determine the output turbulent param-
eters. An a priori analysis [13] provided algebraic expres-
sions for key turbulent quantities:

ko =
27

8

(

Uc

xo

)2(

1 +
〈〈u∗2

x 〉〉
〈〈u∗2〉〉

)2

l2o, (11)

εo =
27

8

(

Uc

xo

)3(

1 +
〈〈u∗2

x 〉〉
〈〈u∗2〉〉

)3

l2o, (12)

lo =

(

2

3
ko

)
3

2

/εo (13)

where ko, εo, lo are the expected values for the kinetic
energy, dissipation rate, and integral length scale, respec-
tively. 〈〈 · 〉〉 denotes time-averaging of volume-averaged
values. The ratio 〈〈u∗2

x 〉〉/〈〈u∗2〉〉 and lo are outputs of
the numerical simulations, which are found to be con-
stant independently of Reynolds numbers:

lo ≈ 0.24Lx, (14)

〈〈u∗2
x 〉〉

〈〈u∗2〉〉 ≈ 0.49. (15)
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Thus, Eq. (11) and (12) show that:

ko ∝
(

Uc

xo

)2

L2
x, (16)

εo ∝
(

Uc

xo

)3

L2
x. (17)

The Reynolds number of the simulations can also be
predicted a priori. The root mean square velocity fluc-
tuation, urms, the Taylor-microscale, λ, and the Taylor-
microscale Reynolds number, Reλ, are defined as:

urms =

√

2k

3
, (18)

λ =

√

15
ν

ε
urms, (19)

Reλ =
λurms

ν
. (20)

From Eq. (11), the expected value for Reλ can be found
to be:

Reoλ =

√

45

2ν

Uc

xo

(

1 +
〈〈u∗2

x 〉〉
〈〈u∗2〉〉

)

l2o. (21)

More details on the derivations can be found in [13].

III. PROPOSED FORCING TERM

A. Derivation of the forcing term

In a similar fashion to the velocity case introduced in
Sec. II, the goal is to derive a scalar source term that
generates turbulent mixing similar to that of a round jet
on the centerline. This methodology is developed to be
used in a cubic box with periodic boundary conditions.
The passive scalar inside the box will be homogeneous
with zero mean. In a practical round jet, however, the
fluctuating scalar C′ is known to decrease with the axial
direction as 1/x [15]. Thus, to make the scalar appropri-
ate for homogeneity and periodic boundary conditions,
the following normalization is suggested:

C∗ =
x

xo
(C − C), (22)

where C is the original scalar, and C is the mean scalar.
With Eq. (9) and (22), we can obtain the governing

equation for the scalar fluctuation from the incompress-
ible advection-diffusion equation, Eq. (1). Then, each
term can be evaluated on the centerline (i.e. r = 0) and
at x = xo by using the mean profiles for u from [15, 16]
and C from [17–21]:

C = Cc exp
(

−γ1(r/x)
2
)

, (23)

where Cc is the centerline mean scalar, and γ1 is a con-
stant to be determined by the experiment. The result

is:

∂C∗

∂t
+ u∗ · ∇C∗ −∇ · (D∇C∗) =

Uc

xo
C∗ +

Cc

xo
u∗
x + u∗ · ∇C∗

+
u∗
xC

∗

xo
− u∗

xC
∗

xo
+ 2D

(

C∗

x2
o

− 1

xo

∂C∗

∂x

)

. (24)

Each term of Eq. (24) impacts the distribution of C∗ to
a different extent. For the current study, it is our intent
to retain only those terms significantly contributing to
the first and second moment of C∗. Other terms will be
considered negligible.
First, u∗ · ∇C∗ and u∗

xC
∗/xo appear as C∗ u∗ · ∇C∗

and C∗ u∗
xC

∗/xo, respectively, in the scalar variance
equation. They do not contribute to the mean scalar
variance, because C∗ ≡ 0. Similarly, u∗

xC
∗/xo appears

as u∗
xC

∗2/xo in the variance equation. The magnitude

of u∗
xC

∗2/xo can be compared to that of UcC∗2/xo. Ac-

cording to experiments [22–24], the value of u′
xC

′2/UcC
2
c

is about 0.0002 − 0.0008, and that of C′2/C2
c is about

0.036− 0.044. Then, the ratio of u′
xC

′2/UcC
2
c to C′2/C2

c

ranges from 0.0005 to 0.002. Although Eq. (24) is for the
normalized quantities, u∗ and C∗, we will assume here
that turbulent parameters of normalized quantities are
comparable to those of u′ and C′. Thus, we conclude
that u∗

xC
∗/xo is also negligible.

Next, DC∗/x2
o ≪ UcC

∗/xo for high Reynolds number
and/or high Schmidt number flows, where the Schmidt
number is defined as Sc ≡ ν/D. The ratio Ucxo/D is
proportional to the jet Péclet number, PeD = ReD ·Sc =
Uod/D, based on the exit nozzle velocity, Uo, and the

nozzle diameter, d [15]. Similarly, D
xo

∂C∗

∂x ≪ u∗ · ∇C∗.
The ratio of the two terms is also of the same magnitude
as the Péclet number.
With these simplifications, the only terms significantly

contributing to the scalar variance are Uc

xo

C∗ and Cc

xo

u∗
x.

Thus, only these two terms are retained on the right-hand
side of the governing equation for the passive scalar:

∂C∗

∂t
+ u∗ · ∇C∗ −∇ · (D∇C∗) =

Uc

xo
C∗ +

Cc

xo
u∗
x.

(25)

Under the assumption of statistical homogeneity, we
obtain the scalar variance equation from Eq. (25):

dC∗2

dt
= −χ+ 2

Uc

xo
C∗2 + 2

Cc

xo
u∗
xC

∗, (26)

where χ ≡ 2D∇C∗ · ∇C∗ is the scalar dissipation rate.
By construction, ensemble-averaged quantities should be
statistically stationary in the considered region. Then,
Eq. (26) becomes:

χ = 2
Uc

xo
C∗2 + 2

Cc

xo
u∗
xC

∗. (27)
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B. Properties of the forcing term

This current forcing term, Uc

xo

C∗ + Cc

xo

u∗
x, is the result

of applying the physical laws of a practical turbulent
flow. The mean velocity and scalar profiles of a round
jet, Eq. (7-23), have been used during the derivation.
The target experiment determines the coefficients of the
source terms with its Uc, Cc, and xo values. They con-
trol the magnitudes and characteristics of scalar turbu-
lent quantities in a 3D box, which should be similar to
those of a round jet on the centerline.
This forcing term is also a combination of two previ-

ously existing methods: the linear scalar forcing (LS) and
mean gradient forcing (MG). Uc

xo

C∗ is linear to a scalar

like LS, and Cc

xo

u∗
x is linear to a velocity like MG. Al-

though the coefficients are arbitrary for the original MG
and LS terms, they have the same forms as the current
forcing term. It should be noted that this similarity is
only a result of applying the physics of a practical flow.

C. Dimensional analysis

There are four input parameters for the simulations:
the coefficients for the forcing terms, Uc/xo and Cc/xo,
the domain width Lx, and viscosity ν. These four pa-
rameters control the outcomes of the simulations, such as

C∗2, u∗
xC

∗, or χ. It is important to note that these three
quantities are not independent and are related through
the scalar variance equation, Eq. (27). Table I summa-
rizes the inputs and outputs, and their units. T repre-
sents a time unit; L, a length unit; and θ, a scalar unit.
We can apply Buckingham Pi theorem to a set of four

inputs and one outcome. For example, there exists a

function g of relating C∗2 to the four input parameters:

g

(

C∗2,
Uc

xo
,
Cc

xo
, Lx, ν

)

= 0. (28)

We suggest two non-dimensional groups:

π1 ≡ C∗2

(Cc/xo)
2 L2

x

, (29)

π2 ≡ (Uc/xo)L
2
x

ν
. (30)

TABLE I. Inputs and outputs of DNS

Input
Uc

xo

Cc

xo

Lx ν

[

T−1
] [

θL−1
]

[L]
[

L2T−1
]

Output C∗2 u∗
xC∗ χ

[

θ2
] [

θLT−1
] [

θ2T−1
]

π2 is proportional to ReD, because Lx = 0.399xo [13],
and Ucxo/ν is proportional to ReD [15], as discussed in
Sec. III A. Then, by Buckingham Pi theorem,

C∗2 = α1 (Reλ)

(

Cc

xo

)2

L2
x. (31)

α1 is a scaling coefficient, which may be a function of the
Reynolds number. ReD is replaced by Reλ, because it is

found that Reλ ∝ Re
1/2
D for turbulent round jets [25, 26].

A similar procedure is used to suggest the following
relation for u∗

xC
∗:

u∗
xC

∗ = α2 (Reλ)

(

Uc

xo

)(

Cc

xo

)

L2
x. (32)

This suggestion comes from Eq. (31) and the fact that
√

u∗
x
2 ∝ (Uc/xo)Lx from Eq. (11).

The final relation is for χ:

χ = α3 (Reλ)

(

Uc

xo

)(

Cc

xo

)2

L2
x. (33)

This relation comes from Eq. (27), (31), and (32). Sec. IV
will examine the three coefficients, α1, α2, and α3.

Finally, since Lx = 0.399xo, the ratios C∗2/C2
c ,

u∗
xC

∗/ (UcCc), and χ/
(

UcC
2
c

)

should only depend on the
Reynolds number. In other words, after appropriate nor-
malizations, the turbulent characteristics should only be
determined by the Reynolds number.

IV. RESULTS

A. Simulation procedure

The governing equations, Eq. (6) and (25), are solved
using the NGA code [27]. NGA is a three-dimensional,
finite difference solver suitable for variable density, low
Mach number, laminar, and turbulent flows. It solves the
continuity, Navier-Stokes, and scalar transport equations
in physical space, not in spectral space, while discretely
conserving kinetic energy.
The initial velocity and scalar fields are randomly

generated, following the method used by Eswaran and
Pope [28]. The velocity fields are subject to the con-
tinuity constraint and conformed to a specified Passot-
Pouquet energy spectrum [29]. The scalar fields are pro-
duced in a similar manner. A detailed explanation can be
found in [30]. As mentioned in Sec. I, only unity Schmidt
number simulations are considered in the present work.
The Courant-Friedrichs-Lewy condition, CFL ≤ 0.9, has
been imposed for all the simulations in the current paper.
The procedure of conducting the direct numerical sim-

ulation (DNS) in the current investigation can be sum-
marized as follows:

• Find the centerline velocity Uc, centerline scalar Cc,
and the axial location xo of the target experiment
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TABLE II. Relevant parameters of the target experiments and the corresponding simulations

Target experiments Simulation parameters

Uc/xo Cc/xo ν = D ReD L κmaxη N Reλ

DNS1 0.0212 2.41 1.64 × 10−5 600 0.649 2.0 64 32
DNS2 0.0531 2.41 1.64 × 10−5 1500 0.649 2.0 128 51
DNS3 0.134 2.41 1.64 × 10−5 3900 0.649 2.0 256 81
DNS4 0.230 2.41 1.64 × 10−5 6700 0.649 2.0 384 107
DNS5 0.339 2.41 1.64 × 10−5 9800 0.649 2.0 512 129
DNS6 0.852 2.41 1.64 × 10−5 25000 0.649 2.0 1024 205
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FIG. 1. Scaling coefficients for the variance (a, Eq. (31)), the scalar flux (b, Eq. (32)), and the dissipation rate (c, Eq. (33))
from DNS1-5. The dashed lines are weighted least-squares fits of a functional form h(Reλ) = a1 − a2 exp(−a3Reλ).

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

FIG. 2. Numerical dissipation defined as αnum ≡ 2(α1+α2)−
α3 for DNS1-5.

• Use Uc/xo and Cc/xo to determine the source term
for the DNS

• Use xo to determine the length of the DNS cubic
box, Lx

• Perform the DNS in a triply periodic configuration
with the target ν = D

As in our previous work, Lx = 0.399xo is used to match
the integral length scale with a given target experiment;
a detailed analysis can be found in [13].

Six DNS have been performed with Sc = 1, as shown
in Table II, with the bounded cubic Hermite polynomial
(BCH) scalar transport scheme [31]. The target experi-
ment is a slightly heated turbulent air jet in [24]. How-
ever, since its Reynolds number is too high, we have ap-
plied lower Uc values for our simulations to decrease the
Reynolds numbers.
For each time-averaged quantity shown in this work,

averaging uncertainty is presented as an error bar. This
uncertainty quantification method is explained in details
in Appendix (Sec. VIII). For the accurate examination
of time-averaged values, the simulations have to run for a
sufficiently long time. However, we could not run DNS6
long enough, due to its high computational cost. As a
result, DNS6 has been omitted from analysis in Sec. IVB
and IVD.

B. Scaling coefficient

In this section, we report the values of α1, α2, and α3

by using DNS1-5, for the three relations, Eq.(31-33), in
which time-averaged values of volume-averaged quanti-
ties are used in the place of ensemble-averaged ones. This
is justified because of the statistically homogeneous and
statistically stationary nature of the flow. The results are
plotted as a function of Reλ in Fig. 1. The uncertainty
tends to be larger for higher Reynolds number data, as it
is more difficult to have a large number of samples due to
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FIG. 3. Contours of scalar fields from DNS2 in xy (top) and yz (bottom) planes with three different forcing methods: the
linear scalar (LS) forcing (left), the jet centerline (JC) forcing (middle), and the mean gradient (MG) forcing (right).

the high computational cost. Nevertheless, we will focus
on the average quantities for all data.
Each coefficient appears to approach a plateau rapidly,

as the Reynolds number increases. The lack of an iner-
tial range for low Reynolds number flows might be the
cause for the low coefficient values. An exponential fit-
ting is provided to estimate the high Reynolds number
limit. The dashed lines are weighted least-squares fits of
a functional form h(Reλ) = a1 − a2 exp(−a3Reλ). It is
found that

α1→ 1.60, (34)

α2→ 0.453, (35)

α3→ 3.72. (36)

As stated in Sec. III C, the three coefficients are related
by the scalar variance equation under statistical station-
arity (Eq. (27)). More precisely, it can be deduced that

α3 ≈ 2(α1 + α2). (37)

Figure 1 (c) shows 2(α1 + α2). There is a small differ-
ence between α3 and 2(α1 + α2), which is the inevitable
consequence of numerical dissipation of the scalar trans-
port scheme. Figure 2 displays such dissipation defined
as αnum ≡ 2(α1 + α2)− α3 for DNS1-5, which increases
with the Reynolds number. The ratio of numerical to
physical dissipation increases from about 7% to about
10%.

C. Instantaneous mixing structures

To study the impact of the source terms, three scalars
were transported simultaneously for all simulations: the
first scalar with the original jet centerline (JC) source

terms,
Uc

xo
C∗+

Cc

xo
u∗
x; the second scalar with only the lin-

ear scalar (LS) term with the target variance σ2
t = 0.001,

Uc

xo
C∗; and the third scalar with only the mean gradient

(MG) term,
Cc

xo
u∗
x. The contours of these three scalar

fields on a cross section in the middle of the simulation
cubic box from DNS2 are shown in Fig. 3. Each plot
uses 10 contour levels from its own minimum value (dark
blue) to maximum value (bright yellow).

The mixing structures are homogeneous for all plots, as
expected. Although the three forcing methods produce
different scalar statistics, as will be shown in Sec. IVD,
it is difficult to identify visually the difference from the
contour plots.

The JC plots are highly similar to the MG plots, which
is to be expected because one of the terms in the JC

forcing method is a mean gradient term,
Cc

xo
u∗
x. Since

this term is shared by both JC and MG, there must be
similarities in any instantaneous JC and MG scalar fields.
However, they are not exactly the same, because there
is another term in JC forcing, the linear scalar term.
This additional LS term leads to a larger scalar variance
compared to that of MG forcing.

For the scalars in LS plots, it is difficult to compare the
magnitude against others, as the variance is imposed to
be σ2

t = 0.001 in LS forcing. As compared to MG plots,
the LS ones are much less similar to JC plots; there is
much less correlation between the LS fields and the JC
fields.
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FIG. 4. Normalized scalar flux
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∗〉〉
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and its corresponding experimental quantity. Round jet experiments with

Sc ≈ 1 are Anderson & Bremhorst [23], Darisse et al. [24], and Chevray & Tutu [32], from low to high Reynolds numbers.
Round jet experiments with Sc ≫ 1 are Webster et al. [21] and Antoine et al. [33], from low to high Reynolds numbers. The
figure displays DNS1-5 results with the original forcing terms, Uc

xo
C∗ + Cc

xo
u∗
x (red triangles); with only the linear scalar (LS)

term, Uc

xo
C∗ (black triangles); and with only the mean gradient (MG) term, Cc

xo
u∗
x (blue triangles). The mean of DNS1-5 values

with the original forcing terms is 0.52, shown as the dashed red line.
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FIG. 5. Scalar energy spectrum: φ(κ1) computed from DNS5
at Reλ = 129, and its least-squares fit result with model spec-
trum, Eq. (40).

D. Validation against experimental data
- scalar flux

Normalized scalar flux quantities,

〈〈u∗
xC

∗〉〉/
√

〈〈u∗
x
2〉〉〈〈C∗2〉〉, have been calculated

from simulations and compared against experiments.
The equivalent experimental value is:

〈u′
xC

′〉t
√

〈u′
x
2〉t〈C′2〉t

∣

∣

∣

∣

∣

x=xo

, (38)

where 〈 · 〉t denotes time-averaging. The comparison is
shown in Fig. 4.
Unity Schmidt number experiments are from Ander-

son & Bremhorst [23], Darisse et al. [24], and Chevray &

Tutu [32]. High Schmidt number experiments from Web-
ster et al. [21] and Antoine et al. [33] are also listed for
completeness, because the range of scalar flux values ap-
pears independent of Schmidt numbers. Reλ = 1.3

√
ReD

has been applied to the experiments to convert ReD to
Reλ [26]. There is some scatter in the published values
ranging from 0.4 to 0.6 for both unity and high Schmidt
number experiments. However, there are no apparent
trends.
To study the impact of the source terms, three cases

have been performed with the same velocity field. In
other words, three scalars were transported simultane-
ously for all simulations: the first scalar with the origi-
nal source terms, Uc

xo
C∗ + Cc

xo
u∗
x; the second scalar with

only the linear scalar (LS) term with the target variance
σt = 0.001, Uc

xo
C∗; and the third scalar with only the

mean gradient (MG) term, Cc

xo
u∗
x. The error bars are

only shown for the flux with the original source terms
(red triangles), and were estimated using the numerator
〈〈u∗

xC
∗〉〉 only. Once again, the simulations in the current

study have been performed with Sc = 1.
The scalar flux values from the current study seem

fairly constant, independently of the Reynolds number.
In the discussion of scaling coefficients in Sec. IVB,
the effect of Reynolds number is already diminished at
Reλ ≥ 50. It is very likely that the temporal mean of
volume-averaged turbulent quantities is quite constant
for Reλ ≥ 50. Therefore, the effect of Reynolds number
on normalized scalar flux must also be minimal for higher
Reynolds numbers.
The mean of four scalar flux values with the original

source terms, Uc

xo

C∗ + Cc

xo

u∗
x, is about 0.52, which is ex-

pressed with the red dashed line in Fig. 4. This value lies
within the range of the reported experimental values. In
contrast, the scalar flux 〈〈u∗

xC
∗〉〉 is zero for LS forcing,

because there is no term in the advection-diffusion equa-



8

0 500 1000 1500 2000 2500
0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

0 100 200 300 400

1

1.2

1.4

FIG. 6. Scaling exponent n for the scalar energy spectra, φ ∼ κ−n, calculated from DNS1-6. Experimental values are taken
from two round jets [34, 35] and other shear flows [36]. The dashed line is a fit provided by [37]. The dash-dot line shows
n = 5/3.

tion that produces a correlation between the velocity and
the scalar. When the DNS is performed only with the
MG term, the scalar flux is systematically larger than
the largest experimental values.

E. Validation against experimental data
- scaling exponent of energy spectra

A scalar energy spectrum can be easily computed from
the triply periodic DNS. The one-dimensional energy
spectrum, φ(κ1), is defined as:

∫ ∞

0

φ(κ1)dκ1 =
1

2
〈C∗2〉, (39)

where κ1 is the wavenumber in the longitudinal direction.
φ(κ1) is the Fourier transform of the spatial correlation
function 〈C∗(x) · C∗(x + r1)〉, where r1 is a vector in
the longitudinal direction. An example of scalar energy
spectra is shown in Fig. 5. It is computed from DNS5 at
Reλ = 129.
Our interest is to determine the scaling exponent n for

the relation φ ∼ κ−n in the inertial-convective subrange,
and compare it against experiments. We use the follow-
ing model spectrum:

φ̂(κ1) = B1κ
−n
1 exp

[

−B2

(

(

(ηκ1)
4
+B4

3

)
1

4 −B3

)]

,

(40)

where B1, B2, and B3 are constants, and η =
(

ν3/ε
)1/4

is
the Kolmogorov length scale. This form of a function was
used by Lee et al. to model a scalar spectrum [38]. The
exponential part for the dissipation range is adopted from
the kinetic energy model spectrum of Pope [16]. A least-
squares fit is used over the entire spectrum with Eq. (40)
to determine B1, B2, B3, and n. For the example shown
in Fig. 5, n is found to be 1.24 with this method. All of
the fitting results are shown in Table III.
The n values computed from DNS1-6 are displayed in

Fig. 6. They show a clear trend of increasing scaling

TABLE III. Least-squares fit results.

B1 B2 B3 n

SCL1 0.744 4.86 1.21×10−4 0.964
SCL2 0.843 3.85 0.0788 1.03
SCL3 0.492 5.37 0.106 1.15
SCL4 0.184 5.13 0.120 1.20
SCL5 0.650 5.40 0.110 1.24
SCL6 0.345 5.30 0.090 1.33

exponents with increasing Reλ. Experimental values of
round jets are taken from [34, 35]. For the spectrum
in [35], we applied the same least-squares fit to find the
scaling exponent. Although our simulations do not match
the Reλ of experiments presented in this work exactly,
the result from DNS6 is comparable to the two experi-
mental values.
Scaling exponents from various other shear flows [36]

are also shown in Fig. 6 for an additional comparison.
The dashed line is a fit provided by [37] for these shear
flows. Although it is difficult to conclude from this com-
parison that round jets display the same scalar energy
spectra as other shear flows, it should be noted that the
n values from our simulations, jet experiments, and other
shear flows are along the similar increase curve.

V. DISCUSSION

In this section, we examine the effects of the velocity
forcing scheme on the statistics of the scalar field. The
numerical computations presented in the current study
apply the jet centerline (JC) velocity forcing on velocity
fields and the JC scalar forcing on the scalar fields.

A. Simulations with different velocity forcing terms

The forcing term for the JC velocity method is
anisotropic and linear with the velocity components, as
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shown in Eq. (10). We will denote the forcing coefficient
Uc/2xo as A. Then, the forcing terms in the original JC
velocity method can be expressed as:

fu = fxu
∗
x̂ı+ fyu

∗
y ̂+ fzu

∗
zk̂ (41)

= 2Au∗
x̂ı+Au∗

y ̂+Au∗
zk̂. (42)

Additional DNS have been performed with different
coefficients for the linear velocity forcing terms, as shown
in Table IV. Each simulation still uses the same JC scalar
forcing.

TABLE IV. Forcing coefficients for the linear velocity forcing
terms for simulations with A = Uc/2xo.

fx fy fz Reλ rχ 2
Uc

xo

〈〈ε〉〉

〈〈k〉〉

DNS1 2A A A 32 1.5 1.2
Iso1 A A A 22 1.8 2.1
Iso2 4A A A 49 1.3 0.76
Mag1 A A/2 A/2 22 2.0 2.6
Mag2 4A 2A 2A 43 1.2 0.63

The baseline case is DNS1 from Table II. Iso1 is
isotropic, while Iso2 imposes a stronger anisotropy than
DNS1. Mag1-2 use the same 2 : 1 : 1 ratio for the forc-
ing coefficients, but Mag1 is smaller and Mag2 is larger
in forcing magnitudes than DNS1. Iso1 and Mag1 are
found to be unstable; their statistical values, such as
volume-averaged variance and dissipation, increase expo-
nentially over time. The stability issue will be discussed
in Sec. VD.

B. Time scale ratio

Let us define the time scale ratio as

rχ ≡ χ/C∗2

ε/k
. (43)

For simulations with the proposed JC scalar forcing, we
can deduce from Eq. (31) and (33) in Sec. III C that

χ

C∗2
=

α3

α1

Uc

xo
. (44)

Also, for the JC velocity forcing, we can find from
Eq. (11) and (12) that

ε

k
=

(

1 +
〈〈u∗2

x 〉〉
〈〈u∗2〉〉

)

Uc

xo
, (45)

with the assumption that the ensemble-averaged quanti-
ties are equal to their expected values.
The time scale ratio, rχ, for the simulations with the

original JC velocity and the proposed JC scalar forcing
will be

rχ =
α3/α1

1 +
〈〈u∗2

x 〉〉
〈〈u∗2〉〉

. (46)

From the exponential fits in Sec. IVB, rχ should be
around 1.5 for any Reλ larger than 25.
The ratios rχ from DNS1-5, Iso1-2, and Mag1-2 are dis-

played in Fig. 7. For the computation of rχ, the temporal

mean of (〈χ〉/〈C∗2〉)/(〈ε〉/〈k〉) has been used, where 〈 · 〉
denotes a volume-averaged quantity at one sample time.
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FIG. 7. Time scale ratio rχ (Eq. (43)) from DNS1-5, Iso1-2,
and Mag1-2. The mean of DNS1-5 values is shown as the
dashed red line.

As expected from Eq. (46), rχ of DNS1-5 is around
1.5. The ratios rχ of Iso2 and Mag2 are smaller than
those of DNS1-5 by about 18% and 25%, respectively.
Nevertheless, the ratio of scalar to velocity time scales is
fairly independent of the velocity forcing scheme (both
magnitude and anisotropy).
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FIG. 8. Normalized scalar flux from DNS1-5, Iso1-2, and
Mag1-2. The mean of DNS1-5 values is shown as the dashed
red line.

C. Effect of velocity forcing on scalar flux

Normalized scalar flux quantities,

〈〈u∗
xC

∗〉〉/
√

〈〈u∗
x
2〉〉〈〈C∗2〉〉, have been computed

from DNS1-5, Iso1-2, and Mag1-2, as shown in Fig. 8.
The flux values of Iso2 and Mag2 are larger than those
of DNS1-5, with a maximum deviation of about 18%

for Mag2. In clear contrast, 〈〈u∗
xC

∗〉〉/
√

〈〈u∗
x
2〉〉〈〈C∗2〉〉

of Iso1 and Mag1 are essentially zero, which indicates
that velocity and scalar fields remain uncorrelated,
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FIG. 9. Volume-averaged ratio, 2Uc

xo

〈k〉
〈ε〉

, from DNS1, Iso1-2, and Mag1-2, plotted as a function of the time normalized by the

eddy time scale, τ = ko/εo. The horizontal dashed line indicates the time-averaged value of each simulation.

despite the MG term in the transport equation. This
phenomenon is actually caused by the instability of Iso1
and Mag1 simulations and is discussed next.

D. Stability of scalar equation

The stability of our simulation system can be exam-
ined by analyzing the scalar variance equation. Using
Eq. (43), the equation for the volume-averaged scalar
variance 〈C∗2〉 can be expressed as:

d〈C∗2〉
dt

= −〈ε〉
〈k〉

(

rχ − 2
Uc

xo

〈k〉
〈ε〉

)

〈C∗2〉+ 2
Cc

xo
〈u∗

xC
∗〉.

(47)

If rχ > 2Uc

xo

〈k〉
〈ε〉 , the solution is stable; the two terms

on the right-hand side (RHS) become balanced, and the
system finds a statistically stationary state. However, if

rχ < 2Uc

xo

〈k〉
〈ε〉 , the solution is unstable; the scalar vari-

ance keeps increasing and does not reach a statistically
stationary state.
Figure 9 displays the ratios of volume-averages,

2Uc

xo

〈k〉
〈ε〉 , from DNS1, Iso1-2, and Mag1-2, plotted as a

function of normalized time. As a reminder, for passive
scalars, this ratio is only a result of the velocity forcing
scheme and is not influenced by the scalar field. Table IV

reports the time-averages of rχ and 2Uc

xo

〈k〉
〈ε〉 for each sim-

ulation.
As expected from Eq. (47), for stable simulations,

DNS1, Iso2, andMag2, the time-averaged value of 2Uc

xo

〈k〉
〈ε〉

is smaller than its respective rχ. On the other hand, for
unstable simulations, Iso1 and Mag1, the time-averaged

value of 2Uc

xo

〈k〉
〈ε〉 is larger than its respective rχ. For unsta-

ble Iso1 and Mag1, the velocity-scalar correlation cannot
be developed, as shown in Sec. VC, because the scalar
field cannot reach a statistically stationary state.
We have found that the velocity forcing affects the

scalar statistics and the stability of the simulations. It
also shows the need for an appropriate relation between
the velocity and scalar forcings. Simulations with the

proposed JC scalar forcing must use the JC velocity forc-
ing, in order to produce the proper turbulence of a round
jet on the centerline. This inherent relation ensures that
the simulations are stable and produce the correct scalar
turbulence.

VI. CONCLUSION

The forcing method derived in this work is based on
the physical properties of a turbulent round jet, which
are applied to the scalar transport equation. A normal-
ization on the scalar has also been applied to derive the
source term to be used in a triply periodic box. The
derivation result is a combination of two previously ex-
isting methods, namely mean gradient (MG) and linear
scalar (LS).
A dimensional analysis was introduced to seek relations

between the inputs and outputs of our simulations with
jet centerline (JC) velocity and JC scalar forcing. It was
found that normalized scalar statistics, such as variance,
flux, and dissipation rate, should only be a function of
Reynolds number. Our simulation results indicate that
such quantities approach constant values as the Reynolds
number increases.
Normalized scalar flux quantities and scaling expo-

nents of scalar energy spectra were compared against ex-
periments. Unfortunately, only a small number of data
is available in the literature, and some scatter among
the experimental values exists. There is a difficulty in
the comparison, because of the small number of available
data in the literature and the scatter among the experi-
mental values. Nevertheless, the simulations results are
comparable to the round jet measurements.
The effects of velocity forcing schemes on the scalar

fields were also investigated by altering the velocity forc-
ing coefficients while maintaining the same JC scalar forc-
ing. It was observed that velocity forcing had a slight
influence on the resulting time scale ratio rχ and scalar
flux. More importantly, however, changing velocity forc-
ing terms may result in unstable scalar fields even under
the same scalar forcing. This finding shows that a scalar
forcing needs to be properly derived in relation to this
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FIG. 10. Volume-averaged scalar flux, 〈u∗
xC

∗〉, from DNS2 plotted as a function of the time normalized by the eddy time scale,
τ . The horizontal dashed line indicates its time-averaged value.

particular velocity forcing, at least.
The current study devised the scalar forcing technique

that replicates the mixing nature in a practical flow. It
proves the possibility of creating a realistic mixing envi-
ronment in a simple 3D periodic domain instead of com-
puting an entire flow. The mathematical methodology is
not limited to turbulent round jet centerlines and should
be applied to different flow configurations in future stud-
ies.
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VIII. APPENDIX -
UNCERTAINTY QUANTIFICATION

1. Definitions

Suppose there areN time-sequential samples available,
modeled as a stationary ergodic random process xi sam-
pled at every ∆t. The autocorrelation function for this
random process is defined as:

ρ(k) ≡ E [(xi − µ) (xi+k − µ)]

σ2
, (48)

where k is the lag, µ is the expected mean of xi, and σ2

is the variance, E[(xi − µ)
2
].

These samples are then divided into p number of non-
overlapping segments with length n = N/p. A mean
value, ŝj, is calculated for each jth segment:

ŝj =
1

n

nj
∑

i=1+n(j−1)

xi. (49)

The set of mean values from the segments, {ŝj}, can also
be considered as the elements of a random process. The
expected mean of ŝj is µ. Let us define the expected
averaging error as:

δ2n ≡ E[(ŝj − µ)
2
]. (50)

The goal of this uncertainty quantification is to estimate
δ2n when n → N .

2. Modeling

According to [39],

δ2n =
σ2

n

[

1 + 2

n−1
∑

k=1

(

1− k

n

)

ρ(k)

]

. (51)

Rearranging the terms, we obtain

δ2n =
1

n

(

σ2 + 2σ2
n−1
∑

k=1

ρ(k)

)

− 1

n2

(

2σ2
n−1
∑

k=1

kρ(k)

)

.

(52)

Inspired by the form of Eq. (52), we suggest modeling
the averaging error as

δ2n ≈ f(n;B) =
B1

n
+

B2

n2
, (53)

where B = [B1, B2] is a vector of parameters. This ex-
pression is exact in the limit of n∆t sufficiently larger
than the integral time scale.

3. Calculation

In practice, we compute the averaging error for seg-
ments of length n as:

δ̂2(n) =
1

p

p
∑

j=1

(ŝj(n)− µ̂)
2
, (54)
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FIG. 11. Averaging error δ̂2 as a function of n, for 〈u∗
xC

∗〉
data presented in Fig. 10. The solid line represents the least-
squares fit result with δ̂2 for n ≥ 920: δ̂2 = 0.00309/n −
0.911/n2 .

where

µ̂ =
1

N

N
∑

i=1

xi. (55)

Then, a least-squares fit is used over δ̂2(n) with
Eq. (53) to determine B by solving:

B = argmin
B

N/2
∑

n=nk

(

δ̂2(n)− f(n;B)
)2

. (56)

Theoretically, the minimum number of segments is
p = 2; thus, the maximum segment length is N/2. As
mentioned previously, the minimum segment length must
be sufficiently large for Eq. (53) to be valid. We suggest
varying nk, determining B for each nk value, and finally
finding the maximum f(N):

δ̂2N = max
nk

f (N ;B|nk
) . (57)

Because it is the most conservative choice, we will use
this maximum f (N ;B) as the final estimation for δ2n as
n → N .

4. Example

The volume-averaged scalar flux, 〈u∗
xC

∗〉, has been
computed from DNS2, and is shown in Fig. 10, as a func-
tion of normalized time. In this example, the transient
period is about 15τ . The dashed line indicates the time-
averaged value of the entire data. The algorithm intro-
duced in Sec. VIII 3 is applied to this data.

δ̂2(n) from Eq. (54) is shown in Fig. 11. Then,
f (N ;B|nk

) from Eq. (57) is computed as a function of
nk, and displayed in Fig. 12. In this example,

argmax
nk

f (N ;B|nk
) = 920. (58)
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FIG. 12. f (N ;B|nk
) from Eq. (57) is computed as a function

of nk.

The corresponding fit result, f(n;B|nk=920) for n ≥ 920,
is shown in Fig. 11. Finally, the estimated averaging error
is:

δ̂2N= 3.56× 10−8, (59)
√

δ̂2N= 1.87× 10−4. (60)

√

δ̂2N is about 4.32% of the mean value µ = 0.00437.

The same procedure has been repeated for each data
point presented throughout the paper. The error bar

indicates ±
√

δ̂2N .

0 50 100 150
0

0.5

1

1.5

2

2.5
DNS1-5

Iso1

Iso2

Mag1

Mag2

FIG. 13. The plot for time scale ratio (Fig. 43) reproduced
using summations of uncertainties for four parameters, 〈χ〉,
〈C∗2〉, 〈ε〉, and 〈k〉.

5. Uncertainty quantification for ratios of parameters

The time scale ratio rχ, defined in Eq. (43), is a
ratio of four parameters. In Sec. VB, we computed
(〈χ〉/〈C∗2〉)/(〈ε〉/〈k〉) at each time step, and calculated
the associated uncertainty.
Another method is to compute the uncertainties asso-

ciated with four parameters separately, and add them.
For example, we can compute 〈χ〉, 〈C∗2〉, 〈ε〉, and 〈k〉 at
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each time step, and calculate the uncertainty for each pa-
rameter. The final uncertainty for rχ is then the summa-
tion of four uncertainties. The result using this method
is shown in Fig. 13.

The error bar for each rχ is much greater than that in
Fig. 7. It is shown that different methods of computing
uncertainties may produce very different results.
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lent transport of a passive scalar in a round jet dis-
charging into a co-flowing stream,” European Journal of
Mechanics-B/Fluids 20, 275 (2001).



14

[34] D. R. Dowling and P. E. Dimotakis, “Similarity of the
concentration field of gas-phase turbulent jets,” J. Fluid
Mech. 218, 109 (1990).
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