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Abstract

Based on recent developments in physics-informed deep learning and deep hidden physics models,

we put forth a framework for discovering turbulence models from scattered and potentially noisy

spatio-temporal measurements of the probability density function (PDF). The models are for the

conditional expected diffusion and the conditional expected dissipation of a Fickian scalar described

by its transported single-point PDF equation. The discovered model are appraised against exact

solution derived by the amplitude mapping closure (AMC)/ Johnsohn-Edgeworth translation (JET)

model of binary scalar mixing in homogeneous turbulence.
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I. INTRODUCTION

The problem of turbulent scalar mixing has been the subject of widespread investiga-

tion for several decades now [1–4]. The problem is explicitly exhibited in the transported

probability density function (PDF) description of turbulence in Reynolds-averaged Navier-

Stokes (RANS) simulations. With the single-point PDF descriptor, the effects of mixing of

a Fickian scalar appear in unclosed forms of the conditional expected dissipation and/or the

conditional expected diffusion terms [3]. A similar closure problem is encountered in large

eddy simulation (LES) via the probabilistic filtered density function (FDF) [5]. Development

of closures for these terms has been, and continues to be, an area of active research; see e.g.

Refs. [4, 6–9] for reviews. The overarching goal of turbulence modeling is to find accurate

closures for the unclosed terms that appear in PDF/FDF transport equations. As a common

practice in turbulence modeling, the unclosed terms are formulated versus closed terms. The

form of this closure is based on physical inspection of the problem at hand and it is in-

herently error prone. This is the major source of modeling uncertainty in turbulence closure.

In this paper, we introduce a new paradigm for turbulent scalar mixing closure, in which

the unclosed terms are learned from high-fidelity observations. Such observations may come

from direct numerical simulation (DNS) e.g. [10–12] or space-time resolved experimental

measurements, e.g. [13–15]. Obviously, in DNS, the unclosed term can be extracted directly

from the simulated results. However, for most realistic applications, performing DNS is

cost prohibitive. On the other hand, finding closure from experimental data involves taking

derivatives in space-time and decomposition space from the experimental data (in some

cases high-order derivatives), which is nontrivial and, even if possible, introduces new un-

certainty on the closure depending on the space-time resolution of the measurements. Our

ultimate goal is to develop a closure discovery framework that learns the closure from sparse

high-fidelity data, such as experimental measurements. The proposed framework replaces

the guessing work often involved in such model development with a data-driven approach

that uncovers the closure from data in a systematic fashion. Our approach draws inspira-

tion from the early and contemporary contributions in deep learning for partial differential

equations [16–22] and data-driven modeling strategies [23–25], and in particular relies on

recent developments in physics-informed deep learning [26] and deep hidden physics models
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[27].

The means for exploiting structured information for construction of data-efficient and

physics-informed learning machines are demonstrated in Refs. [28–30]. In these studies, the

Gaussian process regression [31] is employed to devise functional representations that are

tailored to a given linear operator to provide uncertainty estimates for several prototype

problems. Extensions to nonlinear problems are proposed in Refs. [32, 33] in the context of

both inference and system identification. However, the Bayesian nature of Gaussian process

regression requires certain prior assumptions that may limit the representation capacity of

the model and gives rise to robustness/brittleness issues, especially for nonlinear problems

[34, 35]. Physics informed deep learning [36–39] takes a different approach by employing

deep neural networks and leveraging their well known capability as universal function ap-

proximators. In this setting, one can directly tackle nonlinear problems without the need

for committing to any prior assumptions, linearization, or local time-stepping.

Several examples of machine learning approaches for predictive modeling of physi-

cal systems are given in Refs. [40–52]. All these approaches employ machine learning

algorithms like support vector machines, random forests, Gaussian processes, and feed-

forward/convolutional/recurrent neural networks merely as black-box tools. Our goal here

is to open the black-box, understand the mechanisms inside it, and utilize them to develop

new methods and tools that could potentially lead to new models, novel regularization pro-

cedures, and efficient and robust inference techniques. In particular, opening the black-box

involves understanding and appreciating the key role played by automatic differentiation

within the deep learning field. To this end, the proposed work draws inspiration from the

early contributions in Refs. [16, 17, 53], as well as the contemporary works in Refs. [54–57].

The focus of this paper is turbulent scalar mixing closure, in which the unclosed terms

are learned from high-fidelity observations. As a demonstration example, we consider the

binary scalar mixing which has been very useful for PDF closure developments [58–68]. The

problem is typically considered in the setting of a spatially homogeneous flow in which the

temporal transport of the scalar-PDF is considered. In this setting, development of a closure

which can accurately predict the evolution of the PDF is of primary objective. The relative
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simplicity of the problem makes it well suited for both DNS and laboratory experiments.

The literature is rich with a wealth of data obtained by these means; see e.g. Refs. [10–

12, 69–76]. We will demonstrate that our proposed framework rediscovers the conditional

expected dissipation and diffusion.

II. BINARY SCALAR MIXING

We consider the mixing of a Fickian passive scalar ψ = ψ(t,x) (t denotes time and x

is the position vector), with diffusion coefficient Γ from an initially symmetric binary state

within the bounds −1 ≤ ψ ≤ +1. Therefore, the single-point PDF of ψ at the initial time is

P (0, ψ) = 1
2
[δ(ψ− 1) + δ(ψ+ 1)], where ψ denotes the composition sample space for ψ(t,x).

Thus < ψ > (t = 0) = 0, σ2(0) = 1, where < > indicates the probability mean (average),

and σ2 denotes the variance. In homogeneous turbulence, the PDF transport is governed by

∂P

∂t
+
∂2(EP )

∂ψ2
= 0, −1 ≤ ψ ≤ +1, (1)

where E represents the expected value of the scalar dissipation ξ = Γ∇ψ · ∇ψ, conditioned

on the value of the scalar

E = E(t, ψ) =< ξ|ψ(t,x) = ψ >, (2)

where the vertical bar denotes the conditional value. Equation (1) is also expressed by

∂P

∂t
+
∂(DP )

∂ψ
= 0, (3)

where D denotes the conditional expected diffusion

D = D(t, ψ) =< Γ∇2ψ|ψ(t,x) = ψ > . (4)

The closure problem in the PDF transport is associated with the unknown conditional

expected dissipation, E , and/or the conditional expected diffusion, D. At the single-point

level none of these conditional averages are known; neither are their unconditional (total)
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mean values

ε(t) =

∫ +1

−1
P (t, ψ)E(t, ψ)dψ = −

∫ +1

−1
ψP (t, ψ)D(t, ψ)dψ. (5)

III. DEEP LEARNING SOLUTION

Given data {tn, ψn, P n}Nn=1 on the PDF P (t, ψ), we are interested in inferring the un-

known dissipation E(t, ψ) and diffusion D(t, ψ) by leveraging Eqs. (1) and (3), respectively,

and consequently solving the closure problem. The data may be obtained from DNS or

experimental measurements.

A. Conditional Expected Diffusion

Inspired by recent developments in physics informed deep learning [26] and deep hidden

physics models [27], we propose to approximate the function

(t, ψ) 7−→ (P,D),

by a deep neural network taking as inputs t and ψ while outputting P and D. This choice is

motivated by modern techniques for solving forward and inverse problems involving partial

differential equations, where the unknown solution is approximated either by a Gaussian

process [28, 29, 32, 33, 77–80] or a neural network [26, 27, 81–84]. Moreover, placing a prior

on the solution itself is fully justified by the similar approach pursued in the past century

by classical methods of solving partial differential equations such as finite element, finite

difference, or spectral methods, where one would expand the unknown solution in terms of

an appropriate set of basis functions. However, the classical methods suffer from the curse

of dimensionality mainly due to their reliance on spatio-temporal grids. In contrast, modern

techniques avoid the tyranny of mesh generation, and consequently the curse of dimension-

ality [19, 82], by approximating the unknown solution with a neural network [36–38] or a

Gaussian process. This transforms the problem of solving a partial differential equation

into an optimization problem. This is enabling as it allows us to solve forward, backward

(inverse), data-assimilation, data-driven discovery, and control problems (in addition to

many other classes of problems of practical interest) using a unified framework. On the flip
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FIG. 1. Conditional Expected Diffusion Network: A plain vanilla densely connected (physics unin-

formed) neural network, with 10 hidden layers and 50 neurons per hidden layer per output variable

(i.e., 2 × 50 = 100 neurons per hidden layer), takes the input variables t and ψ while outputting

P and D. As for the activation functions, we use σ(x) = x sigmoid(x) known in the literature

as Swish. For illustration purposes only, the network depicted in this figure comprises of 2 hid-

den layers and 5 neurons per hidden layers. We employ automatic differentiation to obtain the

required derivatives to compute the residual (physics informed) network R. The total loss function

is composed of the regression loss of the probability density function P and the loss imposed by

the partial differential equation R. Here, I denotes the identity operator and the differential oper-

ators ∂t and ∂ψ are computed using automatic differentiation and can be thought of as “activation

operators”. Moreover, the gradients of the loss function are back-propagated through the entire

network to train the neural network parameters using the Adam optimizer.

side of the coin, this can help us design physics-informed learning machines.

The aforementioned prior assumption along with Eq. (3) will allow us to obtain the

following physics informed neural network (see Fig. 1)

R :=
∂P

∂t
+
∂(DP )

∂ψ
.

We obtain the required derivatives to compute the residual network R(t, ψ) by applying

the chain rule for differentiating compositions of functions using automatic differentiation

[85]. It is worth emphasizing that automatic differentiation is different from, and in several

respects superior to, numerical or symbolic differentiation; two commonly encountered tech-

niques of computing derivatives. In its most basic description [85], automatic differentiation

relies on the fact that all numerical computations are ultimately compositions of a finite set

of elementary operations for which derivatives are known. Combining the derivatives of the

constituent operations through the chain rule gives the derivative of the overall composition.
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This allows accurate evaluation of derivatives at machine precision with ideal asymptotic ef-

ficiency and only a small constant factor of overhead. In particular, to compute the required

derivatives we rely on Tensorflow [86], which is a popular and relatively well documented

open source software library for automatic differentiation and deep learning computations.

Parameters of the neural networks P (t, ψ) and D(t, ψ) can be learned by minimizing the

following loss function

N∑
n=1

|P (tn, ψn)− P n|2 +
N∑
n=1

|R(tn, ψn)|2,

where {tn, ψn, P n}Nn=1 represents the data on the probability density function P (t, ψ). Here,

the first summation corresponds to the training data on the probability density function

P (t, ψ) while the second summation enforces the structure imposed by Eq. (3) at a finite set

of measurement points whose number and locations are taken to be the same as the training

data. However, it should be pointed out that the number and locations of the points on

which we enforce the set of partial differential equations could be different from the actual

training data. Although not pursued in the current work, this could significantly reduce the

required number of training data on the probability density function.

B. Conditional Expected Dissipation

Alternatively, one could proceed by approximating the function

(t, ψ) 7−→ (P, E),

by a deep neural network taking as inputs t and ψ while outputting P and E . This prior

assumption along with Eq. (1) will allow us to obtain the following physics informed neural

network (see Fig. 2)

S :=
∂P

∂t
+
∂2(EP )

∂ψ2
.

We use automatic differentiation [85] to acquire the required derivatives to compute the

residual network S(t, ψ). Parameters of the neural networks P (t, ψ) and E(t, ψ) can be
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FIG. 2. Conditional Expected Dissipation Network: A plain vanilla densely connected (physics

uninformed) neural network, with 10 hidden layers and 50 neurons per hidden layer per output

variable (i.e., 2 × 50 = 100 neurons per hidden layer), takes the input variables t and ψ while

outputting P and E . As for the activation functions, we use σ(x) = x sigmoid(x) known in the

literature as Swish. For illustration purposes only, the network depicted in this figure comprises of

2 hidden layers and 5 neurons per hidden layers. We employ automatic differentiation to obtain

the required derivatives to compute the residual (physics informed) network S. If a term does

not appear in the blue boxes (e.g., ∂2P
∂t2

or ∂2P
∂t∂ψ ), its coefficient is assumed to be zero. It is worth

emphasizing that unless the coefficient in front of a term is non-zero, that term is not going

to appear in the actual “compiled” computational graph and is not going to contribute to the

computational cost of a feed forward evaluation of the resulting network. The total loss function is

composed of the regression loss of the probability density function P and the loss imposed by the

differential equation S. Here, I denotes the identity operator and the differential operators ∂t and

∂ψ are computed using automatic differentiation and can be thought of as “activation operators”.

Moreover, the gradients of the loss function are back-propagated through the entire network to

train the neural network parameters using the Adam optimizer.

learned by minimizing the following loss function

N∑
n=1

|P (tn, ψn)− P n|2 +
N∑
n=1

|S(tn, ψn)|2,

where {tn, ψn, P n}Nn=1 represents the data on the probability density function P (t, ψ). Here,

the first summation corresponds to the training data on the probability density function

P (t, ψ) while the second summation enforces the structure imposed by Eq. (1) at a finite set

of measurement points whose number and locations are taken to be the same as the training

data.
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IV. ASSESSMENT

To assess the performance of our deep learning algorithms, we consider the amplitude

mapping closure (AMC) [87–89]. This provides the external closure for the PDF transport

in an implicit manner. As explained in detail by Pope [89], the process the AMC involves

a mapping of the random field of interest ψ to a stationary Gaussian reference field ψ0, via

a transformation ψ = χ(ψ0, t). Once this relation is established, the PDF of the random

variable ψ, P (t, ψ), is related to that of a Gaussian distribution. In a domain with fixed

upper and lower bounds, the corresponding form of the mapping function is obtained by

Pope [89]. The solution for a symmetric field here with zero mean, is represented in terms

of an unknown time τ :

χ(ψ0, τ) = erf

(
ψ0√
2G

)
, G(τ) =

√
exp(2τ)− 1. (6)

With this transformation, the PDF is determined from the physical requirement

P
(
χ(ψ0, τ), τ

)
dχ = PG(ψ0)dψ0, (7)

where PG denotes the PDF of a standardized Gaussian distribution, i.e. PG(ψ0) =

1√
2π

exp(−ψ2
0/2). A combination of Eq. (6) and Eq. (7) yields

P (τ, ψ) =
G

2
exp

{
−(G2 − 1)

[
erf−1(ψ)

]2}
. (8)

The AMC captures many of the basic features of the binary mixing problem. Namely, the

inverse diffusion of the PDF in the composition domain from a double delta distribution to

an asymptotic approximate Gaussian distribution centered around < ψ >, as the variance

goes to zero (or G→∞). There are other means of “driving” the PDF toward Gaussianity

(or any other distribution) in a physically acceptable manner. The Johnson-Edgeworth

tranlation (JET) [90] involves the transformation of the random physical field ψ, to a fixed

standard Gaussian (or any other) reference field by means of a translation of the form

ψ = Z
[
ψ0

γ(t)

]
,

γ(t = 0) = 0 ≤ γ(t) ≤ γ(t→∞)→∞.
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The function γ(t) here plays a role similar to that of G in the AMC. With appropriate form

for the function Z, the scalar PDF is determined. In this manner, many frequencies can be

generated. The AMC, for example, is recovered by the translation Z = erf (ψ0/γ); so can

be also labeled as the erf−1-Normal distribution. Recognizing this translation, the relation

between τ and the physical time t can be determined through knowledge of the higher order

statistics. For example, the normalized variance:

< σ2 > (τ)

< σ2 > (0)
=

2

π
arctan

(
1

G
√
G2 + 2

)
, (9)

determines t through specification of the total mean dissipation ε(t) = −σ dσ
dt

. With the

knowledge of this dissipation, all of the conditional statistics are determined [90, 91]

E(t, ψ)

ε(t)
=


√√√√√1 + sin

[
πσ2(t)
2σ2(0)

]
1− sin

[
πσ2(t)
2σ2(0)

]
 exp

{
−2
[
erf−1(ψ)

]2}
. (10)

D(t, ψ)

ε(t)
=

 −
√
π

sin
[
πσ2(t)
2σ2(0)

]
√√√√√1 + sin

[
πσ2(t)
2σ2(0)

]
1− sin

[
πσ2(t)
2σ2(0)

]
 exp

{
−
[
erf−1(ψ)

]2}
erf−1(ψ). (11)

V. RESULTS

In the following, the AMC (or the erf−1-Normal distribution) is utilized to assess the

performance of our deep learning framework. In particular, Fig. 3 depicts the exact and the

learned conditional expected diffusion D(t, ψ). It is worth highlighting that the algorithm

has seen no data whatsoever on the conditional expected diffusion. To obtain the results

reported in this figure we are approximating P (t, ψ) and D(t, ψ) by a deep neural network

consisting of 10 hidden layers with 100 neurons per each hidden layer (see Fig. 1). As for the

activation functions, we use x sigmoid(x) known in the literature [92] as the Swish activation

function. The smoothness of Swish and its similarity to ReLU make it a suitable candidate

for an activation function while working with physics informed neural networks [27]. In gen-

eral, the choice of a neural network’s architecture (e.g., number of layers/neurons and form

of activation functions) is crucial and in many cases still remains an art that relies on one’s

ability to balance the trade off between expressivity and trainability of the neural network
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FIG. 3. Conditional Expected Diffusion: The exact probability density function P (t, ψ) alongside

the learned one is depicted in the top panels, while the exact and learned conditional expected

diffusion D(t, ψ) are plotted in the bottom panels. It is worth highlighting that the algorithm has

seen no data whatsoever on the diffusion coefficient.

FIG. 4. Conditional Expected Diffusion: The exact probability density function P (t, ψ) alongside

the learned one is depicted in the top panels, while the exact and learned conditional expected

diffusion D(t, ψ) are plotted in the bottom panels. It is worth highlighting that the algorithm has

seen no data whatsoever on the diffusion coefficient.

[93]. Our empirical findings so far indicate that deeper and wider networks are usually more
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expressive (i.e., they can capture a larger class of functions) but are often more costly to

train (i.e., a feed-forward evaluation of the neural network takes more time and the opti-

mizer requires more iterations to converge). In this work, we have tried to choose the neural

networks’ architectures in a consistent fashion throughout the manuscript by setting the

number of hidden layers to 10 and the number of neurons to 50 per output variable. Conse-

quently, there might exist other architectures that improve some of the results reported here.

As for the training procedure, our experience so far indicates that while training deep

neural networks, it is often useful to reduce the learning rate as the training progresses.

Specifically, the results reported here are obtained after 105, 2 × 105, 3 × 105, and 4 × 105

consecutive epochs of the Adam optimizer [94] with learning rates of 10−3, 10−4, 10−5, and

10−6, respectively. Each epoch corresponds to one pass through the entire dataset. The total

number of iterations of the Adam optimizer is therefore given by 106 times the number of

data divided by the mini-batch size. The mini-batch size we used is 20000 and the number

of data points is 20000. Every 10 iterations of the optimizer takes around 0.04 on a single

NVIDIA Titan X GPU card. The algorithm is capable of reconstructing the probability

density function P (t, ψ) as well as the unknown conditional expected diffusion D(t, ψ) with

average relative L2 errors of 1.27×10−4 and 1.73×10−2, respectively. The relative L2 errors

in space as a function of time are depicted in Fig. 4. The largest errors are observed near

t = 0 where the exact PDF represented by two delta functions, i.e. a singular behaviour,

and this results in relatively large errors near the initial condition. However, as later times

the error decreases significantly. The difficulty of deep neural network in approximating

singular initial conditions is akin to other approximation methods as well such as finite

element methods.

The effects of the number of training points (N) on the accuracy of the learned P and D

are shown in Table I, and indicate robustness with respect to the number of points. Also,

it is to be noted that the method is a regression scheme that regresses the data on PDF,

while it also regresses the PDF transport equation. As such, a convergence with respect to

the number of training points cannot be established. This is further exacerbated by the fact

that the neural network parameters are initialized randomly in conjunction with a stochastic

gradient descent optimization. Thus, it is virtually impossible to reproduce the results even

if the random seed is kept fixed.

12



Number of Training Points 20000 10000 5000 2500
Relative L2 Error for P 1.63× 10−4 1.70× 10−4 1.54× 10−4 2.08× 10−4

Relative L2 Error for D 9.84× 10−2 3.27× 10−2 5.60× 10−2 3.97× 10−2

TABLE I. Conditional Expected Diffusion: Relative L2 error for P and D versus number of training

points.

Noise Level (σ) 0.1 0.05 0.01
Relative L2 Error for P 5.02× 10−3 1.98× 10−3 3.12× 10−4

Relative L2 Error for D 8.73× 10−2 3.63× 10−2 9.23× 10−2

TABLE II. Conditional Expected Diffusion: Relative L2 error for P and D versus levels of noise.

We also investigated the effect of noisy training data on the accuracy of learned quantities.

To this end, we added an independent centered Gaussian noise to the PDF training data:

P (tn, ψn) = PAMC(tn, ψn) + ε,

where ε ∼ N (0, σ) is a zero-mean Gaussian noise with the standard deviation of σ and

PAMC is the PDF according to AMC. The relative L2 errors for P and E versus different

noise levels are shown in Table II. The computations are carried out for N = 20000 training

points. These results indicate the robustness of the method with respect to noise, in which

the conditional expected diffusion can be learned from noisy PDF data.

Figure 5 depicts the exact and the learned conditional expected dissipation E(t, ψ). It

is worth highlighting that the algorithm has seen no data whatsoever on the dissipation

coefficient. To obtain the results reported in this figure we are approximating P (t, ψ) and

E(t, ψ) by a deep neural network outputting two variables consisting of 10 hidden layers

with 100 neurons per each hidden layer (see Fig. 2). As for the activation functions, we use

x sigmoid(x). The training procedure is the same as the one explained above, while every 10

iterations of the optimizer takes around 0.07. The algorithm is capable of reconstructing the

probability density function P (t, ψ) as well as the unknown conditional expected dissipation

E(t, ψ) with average relative L2 errors of 3.84×10−4 and 1.75×10−2, respectively. The relative

L2 errors in space as a function of time are depicted in Fig. 6. Similar to the previous case,

the robustness of the learned quantities with respect to the number of training points and

to different noise levels are demonstrated in Tables III and IV.
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FIG. 5. Conditional Expected Dissipation: The exact probability density function P (t, ψ) alongside

the learned one is depicted in the top panels, while the exact and learned conditional expected

dissipation E(t, ψ) are plotted in the bottom panels. It is worth highlighting that the algorithm

has seen no data whatsoever on the dissipation coefficient.

FIG. 6. Conditional Expected Dissipation: The exact probability density function P (t, ψ) alongside

the learned one is depicted in the top panels, while the exact and learned conditional expected

dissipation E(t, ψ) are plotted in the bottom panels. It is worth highlighting that the algorithm

has seen no data whatsoever on the dissipation coefficient.
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Number of Training Points 20000 10000 5000 2500
Relative L2 Error for P 3.89× 10−4 3.82× 10−4 3.78× 10−4 4.55× 10−4

Relative L2 Error for E 3.09× 10−2 3.23× 10−2 2.09× 10−2 5.56× 10−2

TABLE III. Conditional Expected Dissipation: Relative L2 error for P and E versus number of

training points.

Noise level (σ) 0.1 0.05 0.01
Relative L2 Error for P 2.95× 10−3 1.22× 10−3 4.43× 10−4

Relative L2 Error for E 3.93× 10−2 4.41× 10−2 1.10× 10−2

TABLE IV. Conditional Expected Dissipation: Relative L2 error for P and E versus levels of noise.

VI. CONCLUDING REMARKS

A data-driven framework is developed for learning unclosed terms for turbulent scalar

mixing. In the presented framework the unclosed terms are learned by (i) incorporating the

physics, i.e. the PDF transport equation, and (ii) observe some high-fidelity observations

on the PDF. We envision that the presented framework can be readily extended to high-

dimensional cases involving the mixing of multiple species. Early evidence of this claim can

be found in Refs. [19, 82], in which the authors circumvents the tyranny of numerical dis-

cretization and devise algorithms that are scalable to high-dimensions. A similar technique

can be applied here while taking advantage of the fact that the data points {tn, ψn, P n}Nn=1

lie on a low dimensional manifold simply because ψ(t, x) is a function from a low dimen-

sional space (i.e., (t, x)) to the possibly high-dimensional space of species ψ. Moreover, the

approach as advocated here is also highly scalable to the big data regimes routinely encoun-

tered while studying turbulence simply because the data will be processed in mini-batches.

It would be very interesting to implement the methodology as developed here in the context

of laboratory experiments on passive scalar mixing, such as those in Refs. [15, 95].
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[61] G. Kosály, P. Givi, Modeling of turbulent molecular mixing, Combust. Flame 70 (1987)

101–118.

[62] P. Givi, P. A. McMurtry, Non-premixed reaction in homogeneous turbulence: Direct numerical

simulations, AIChE J. 34 (1988) 1039–1042.

[63] A. T. Norris, S. B. Pope, Turbulent mixing model based on ordered pairing, Combust. Flame

83 (1991) 27–42.

[64] S. S. Girimaji, On the modeling of scalar diffusion in isotropic turbulence, Phys. Fluids A. 4

(1992) 2529–2537.

[65] S. S. Girimaji, A mapping closure for turbulent scalar mixing using a time-evolving reference

field, Phys. Fluids A. 4 (1992) 2875–2886.

[66] F. A. Jaberi, P. Givi, Inter-layer diffusion model of scalar mixing in homogeneous turbulence,

Combust. Sci. Technol. 104 (1995) 249–272.

[67] S. Subramaniam, S. B. Pope, A mixing model for turbulent reactive flows based on Euclidean

minimum spanning trees, Combust. Flame 115 (1998) 487–514.

[68] S. B. Pope, A Model for Turbulent Mixing Based on Shadow-Position Conditioning, Phys.

Fluids 25 (2013) 110803.

[69] S. Tavoularis, S. Corrsin, Experiments in nearly homogenous turbulent shear flow with a

uniform mean temperature gradient. Part 1, J. Fluid Mech. 104 (1981) 311–347.

[70] V. Eswaran, S. B. Pope, Direct numerical simulations of the turbulent mixing of a passive

scalar, Phys. Fluids 31 (1988) 506–520.

20



[71] P. A. McMurtry, P. Givi, Direct numerical simulations of mixing and reaction in a nonpremixed

homogeneous turbulent flow, Combust. Flame 77 (1989) 171–185.

[72] S. L. Christie, J. A. Domaradzki, Numerical evidence for the nonuniversality of the soft/hard

turbulence classification for thermal convection, Phys. Fluids A 5 (1993) 412–421.

[73] T. H. Solomon, J. P. Gollub, Thermal boundary layers and heat flux in turbulent convection:

The role of recirculating flows, Phys. Rev. A 43 (1991) 6683–6693.

[74] S. T. Thoroddsen, C. W. Van Atta, Exponential tails and skewness of density-gradient prob-

ability density functions in stably stratified turbulence, J. Fluid Mech. 244 (1992) 547–566.

[75] Jayesh, Z. Warhaft, Probability distribution of a passive scalar in grid-generated turbulence,

Phys. Rev. Lett. 67 (1991) 3503–3506.

[76] Jayesh, Z. Warhaft, Probability distribution, conditional dissipation, and transport of passive

temperature fluctuations in grid-generated turbulence, Phys. Fluids A 4 (1992) 2292–2307.

[77] M. Raissi, H. Babaee, G. E. Karniadakis, Parametric Gaussian process regression for big data,

Computational Mechanics (2019).

[78] P. Perdikaris, M. Raissi, A. Damianou, N. D. Lawrence, G. E. Karniadakis, Nonlinear in-

formation fusion algorithms for data-efficient multi-fidelity modelling, Proc. R. Soc. A 473

(2017) 20160751.

[79] M. Raissi, G. Karniadakis, Deep multi-fidelity Gaussian processes, arXiv preprint

arXiv:1604.07484 (2016).

[80] M. Gulian, M. Raissi, P. Perdikaris, G. Karniadakis, Machine learning of space-fractional

differential equations, arXiv preprint arXiv:1808.00931 (2018).

[81] M. Raissi, A. Yazdani, G. E. Karniadakis, Hidden fluid mechanics: A Navier-Stokes in-

formed deep learning framework for assimilating flow visualization data, arXiv preprint

arXiv:1808.04327 (2018).

[82] M. Raissi, Forward-backward stochastic neural networks: Deep learning of high-dimensional

partial differential equations, arXiv preprint arXiv:1804.07010 (2018).

[83] M. Raissi, P. Perdikaris, G. E. Karniadakis, Multistep neural networks for data-driven dis-

covery of nonlinear dynamical systems, arXiv preprint arXiv:1801.01236 (2018).

[84] M. Raissi, Z. Wang, M. S. Triantafyllou, G. E. Karniadakis, Deep learning of vortex induced

vibrations, arXiv preprint arXiv:1808.08952 (2018).

21



[85] A. G. Baydin, B. A. Pearlmutter, A. A. Radul, J. M. Siskind, Automatic differentiation in

machine learning: a survey, arXiv preprint arXiv:1502.05767 (2015).

[86] M. Abadi, A. Agarwal, P. Barham, E. Brevdo, Z. Chen, C. Citro, G. S. Corrado, A. Davis,

J. Dean, M. Devin, et al., Tensorflow: Large-scale machine learning on heterogeneous dis-

tributed systems, arXiv preprint arXiv:1603.04467 (2016).

[87] R. H. Kraichnan, Closures for probability distributions, Bull. Amer. Phys. Soc. 34 (1989)

2298.

[88] H. Chen, S. Chen, R. H. Kraichnan, Probability distribution of a stochastically advected

scalar field, Phys. Rev. Lett. 63 (1989) 2657–2660.

[89] S. B. Pope, Mapping closures for turbulent mixing and reaction, Theor. Comp. Fluid Dyn. 2

(1991) 255–270.

[90] R. S. Miller, S. H. Frankel, C. K. Madnia, P. Givi, Johnson-Edgeworth translation for prob-

ability modeling of binary scalar mixing in turbulent flows, Combust. Sci. Technol. 91 (1993)

21–52.

[91] T.-L. Jiang, F. Gao, P. Givi, Binary and trinary scalar mixing by Fickian diffusion-Some

mapping closure results, Phys. Fluids A 4 (1992) 1028–1035.

[92] P. Ramachandran, B. Zoph, Q. V. Le, Searching for activation functions, CoRR

abs/1710.05941 (2017).

[93] M. Raghu, B. Poole, J. Kleinberg, S. Ganguli, J. Sohl-Dickstein, On the expressive power of

deep neural networks, arXiv preprint arXiv:1606.05336 (2016).

[94] D. P. Kingma, J. Ba, Adam: A method for stochastic optimization, arXiv preprint

arXiv:1412.6980 (2014).

[95] A. G. Rajagopalan, C. Tong, Experimental investigation of scalar-scalar-dissipation filtered

joint density function and its transport equation, Phys. Fluids 15 (2003) 227–244.

22


	Deep Learning of Turbulent Scalar Mixing
	Abstract
	Introduction
	Binary Scalar Mixing
	Deep Learning Solution
	Conditional Expected Diffusion
	Conditional Expected Dissipation

	Assessment
	Results
	Concluding Remarks
	Acknowledgements
	References


