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It is known that the dynamics of particles dispersed in turbulent flows can be significantly altered
by electric charges and external electric fields. The next step therefore involves the investigation of
whether these electric interactions can be exploited in engineering applications to control processes
involving the transport of particles in turbulence. In this study, direct numerical simulations of
incompressible turbulent channel flows laden with a positively iso-charged suspension of monodis-
perse small inertial particles are employed to investigate the effect of electric charges carried by
the particles on their dispersion, and to illustrate the intentional abatement of turbophoretic effects
using incident electric fields. An Eulerian/Lagrangian formulation is employed along with a fast
multipole method for the electric potential conveniently corrected with wall boundary conditions.
Operating conditions are identified in terms of characteristic dimensionless parameters where an AC
electric field applied across the channel walls decreases the time-averaged concentration of particles
near the walls by up to two orders of magnitude.
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FIG. 1. Schematics of the model problem: A positively iso-charged suspension of monodisperse small inertial particles laden
in a biperiodic turbulent channel flow whose walls are connected to an AC voltage source.

I. INTRODUCTION

Wall-bounded turbulent flows laden with inertial particles are central to a number of technologically relevant physical
processes. The specific form of the spatial dependence of the root-mean square (rms) of the wall-normal velocity
makes wall-bounded particle-laden turbulent flows prone to develop a ponderomotive effect known as turbophoresis,
whereby the particles tend to drift toward the wall and accumulate there [1, 2]. The increase of near wall particle
concentration due to turbophoresis can be a desirable or deleterious effect depending on the practical application
under consideration. Well-studied effects such as wall roughness [3] have been shown to reduce the accumulation of
particles near the wall by altering the underlying turbulent flow. The modulation of turbophoresis by using incident
electric fields is a relatively unexplored aspect that represents the focus of the present study.

In practical scenarios, the particles tend to acquire a net electric charge during their motion as they collide with
each other and with the walls. Upon collision, electric-charge exchanges occur with intensities that depend on the size
and material properties of the colliding objects and on the local electric field [4–8]. As a consequence, a self-induced
electric field is generated by the net charge acquired by the particles, which can lead to significant modifications of
their spatial distribution in the flow field [9–13]. The collective effect resulting from these electric interactions is by no
means trivial to characterize as it is engendered by the integration of an N−body problem corresponding to each of
the N charged particles interacting with one another and with the background turbulent flow. In isotropic turbulence,
for instance, these interactions occur in such a way that the ensuing electric field is a relatively strong one that can
have a strikingly large energy content at low wavenumbers [14].

In the present study, the aforementioned interactions are studied using direct numerical simulations (DNS) of a
turbulent channel flow laden with positively charged, monodispersed small inertial particles. The top and bottom
walls of the channel are connected to the terminals of an AC voltage source, as sketched in Fig. 1. The objective of this
investigation is to quantify the effects of self-induced and incident electric fields on the spatial distribution of particles
near the wall. The results suggest that a significant abatement of turbophoresis occurs under incident electric fields
in particular operating conditions that are identified below in terms of characteristic dimensionless parameters.

The remainder of this paper is structured as follows. A description of the conservation equations and computational
setup is provided in Sec. II. Results pertaining to two sets of cases are considered in Sec. III. In the first set of cases,
which are studied in Sec. III.1, the voltage across the channel walls is set to zero, in such a way that only the electric
field induced by the particle charges is at play in the solution. In the second set of cases, which are studied in
Sec. III.2, the AC voltage source is switched on, and the particles are therefore subjected to an oscillating electric
field across the channel walls. Lastly, a short example that translates the dimensionless results into dimensional ones
are provided in Sec. IV along with concluding remarks.

II. FORMULATION AND COMPUTATIONAL SETUP

The approach employed here is based on an Eulerian/Lagrangian formulation augmented with appropriate equations
for the electric field and electric forces on the particles, as described below.
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II.1. Conservation equations

In this study, the mass and momentum conservation equations

∇ · v = 0, ρ
∂v

∂t
+ ρv · ∇v = −∇Π+ µ∇2

v +Aex, (1)

are integrated numerically for the carrier phase, where v is the velocity vector, ρ is the density, µ is the dynamic
viscosity, Π is the hydrodynamic pressure, and A is a constant and uniform favorable pressure gradient externally
imposed to drive the flow. The friction Reynolds number is Reτ = uτh/ν = 150, where ν = µ/ρ is the kinematic

viscosity, h is equal to half of the channel height, uτ =
√

τw/ρ is the friction velocity, and τw = Ah is the wall
shear stress, thereby leading to a bulk Reynolds number Reb = Ubh/ν ≃ 2100 based on the bulk velocity Ub. The
conservation equations in (1) are subject to periodic boundary conditions in the spanwise and streamwise directions,
and to non-slip boundary conditions on the walls. Note that the computational setup of the unelectrified version of
this configuration follows the benchmark simulations of Marchioli et al. [15]. The basic observations made in this
paper, scaled in inner units, are expected to hold for higher Reynolds numbers.
The formulation of the dispersed phase is based on a Lagrangian description given by

dxp

dt
= vp, and

4

3
πρpa

3
p

dvp

dt
= 6πµap(v − vp) + Fp, p = 1, . . . N, (2)

which represent, respectively, the trajectory equation and the second Newton’s law for every particle. In this for-
mulation, xp and vp are, respectively, the position and velocity of the p-th particle. Similarly, ρp and ap denote,
respectively, the density and radius of the particles, these two quantities being the same for all particles in this
study. Implicit assumptions involved in writing the drag force in the second equation in (2) are: (a) that the density
ratio ρp/ρ ≫ 1 is large; (b) that the characteristic Reynolds number of the particles based on the relative velocity
Rep = |v− vp|ap/ν ≪ 1 is small; (c) that the gravitational acceleration g is negligible compared to the characteristic
particle acceleration uτ/ta, where ta = (2/9)(ρp/ρ)a

2
p/ν is the characteristic acceleration time of the particles; and

(d) that the particles are much smaller than all hydrodynamic scales, ap/δν ≪ 1, where δν = ν/uτ is the thickness of
the viscous sublayer. In this small particle limit, the lift force on particles becomes small, so is neglected at present.
However, the role of the lift force [16–18] is a topic of interest for future investigations of scenarios similar to those
considered here.
A total number of N = 105 particles are employed in the simulations, thereby leading to a sufficiently small value

of the mean mass-loading ratio α = (4/3)πρpn0a
3/ρ ≪ 1 that enables one-way coupling with the carrier phase, with

n0 = N/(16π2h3) being the mean number density of particles. The particles are assumed to collide elastically against
the channel walls and among each other. In particular, collisions between particles, which have an important effect on
turbophoresis even at relatively small volume fractions [19–22], are computed using the hard-sphere collision model.
While the collision model is simplified for the present purposes, the impact of more detailed collision models may be
of interest for further study on this topic.
In Eq. (2), the Fp = qpEp denotes the net electric force on the p-th particle, where qp is the particle charge,

which is assumed to be positive and equal for all particles, and Ep = E
∞
p +E

w
p is an electric field obtained from the

superposition of two components. The first component E∞
p is the Coulombic field generated by the cloud of N − 1

particles surrounding the p−th particle located at position xp in an unbounded domain, namely E
∞
p = −∇φ∞

∣
∣
x=xp

=

(4πǫ0)
−1

∑N
j=1,j 6=p qj(xj−xp)/(|xj−xp|

3) where φ∞ is the corresponding electrostatic potential and ǫ0 is the vacuum
permittivity. The second component E

w
p is a correction that serves to impose appropriate boundary at the walls,

and is obtained by integrating the Gauss law ∇2φw = 0 in the computational domain, where φw is the corresponding
correction for the electrostatic potential defined by the relation E

w
p = −∇φw

p |x=xp
. The Gauss law for φw is integrated

subject to periodic boundary conditions in the streamwise and spanwise directions, and to a set of specific boundary
conditions that lead to iso-potential walls proper to electrically conducting materials. In particular, the boundary
condition φw = −φ∞ is applied on the bottom wall to keep it grounded at all times. The boundary condition
φw = ∆Φ − φ∞ is applied on the top wall, which enforces an oscillating voltage difference ∆Φ = |∆Φ0| cos(ωelt)
between the two walls with amplitude |∆Φ0| and angular frequency ωel.
It is worth mentioning that the integration of (2) incurs an unfeasible computational cost of order N2 per time

step if all particles were simultaneously considered. An alternative approach that decreases the computational cost
to order N logN , while keeping a relatively high level of fidelity in the calculations, is the fast multipole method
(FMM) originally proposed in [23] and recently employed in [14] to describe the dynamics of electrified particles in
homogeneous-isotropic turbulence. Specifically, the FMM computes exactly the contribution to the electric field of
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the particles that are near the p−th particle. However, the effects of particles classified as being far away according
to an octree algorithm are approximated using a tenth-order accurate Laplace expansion of the electrostatic potential
[i.e., see [14] for details].
In this study, charge transfer upon collisions is neglected because of the small volume fractions of order 10−6 involved

in the simulations. Similarly, all particles are assumed to have positive and equal charge. This case is illustrative of
the long-time charge state in a turbulent channel flow laden with monodisperse particles, when particles have had
sufficient time to collide against the walls, acquire their charge signs, and redistribute the charge among other particles
through collisions.

II.2. Characteristic dimensionless parameters

Besides Reτ , additional important dimensionless parameters participate in the solutions that are worth discussing.
Relative inertial effects are measured by the following three Stokes numbers: (a) the aerodynamic Stokes number
St+ae = ta/tν, where tν = δ2ν/ν is the viscous time scale; (b) the internal electric Stokes number Stintel = uint

el /uτ ,
which corresponds to the ratio of the characteristic wall-normal electromigration velocity uint

el = n0δνq
2
p/(6πµǫ0ap),

generated by the self-induced bulk electric-field scale E0 = qpn0δν/ǫ0, to the friction velocity uτ ; and (c) the external
electric Stokes number Stextel = uext

el /uτ , which measures the effects of the incident electric field on the particles,
and is based on the characteristic wall-normal electromigration velocity uext

el = |∆Φ0|qp/(12πµaph) produced by the
incident electric-field scale |∆Φ0|/(2h). The period of oscillation of the AC electric field relative to the flow time
scales is quantified by the dimensionless frequency ω+

el = ωeltν . Lastly, the dimensionless particle radius a+p = ap/δν
determines the effective collision cross section of every point particle in the flow upon elastic collision with other
particles and the wall. While a+p = 0.17 and St+ae = 5.0 are representative values that are kept fixed in all the cases

described below, the parameters Stintel , Stextel , and ω+
el are varied over wide ranges to study their influences on the

solution.

II.3. Computational setup

The conservation Eqs. (1) are solved in a cuboidal computational domain, whose dimensions are 4πh× 2h× 2πh in
the streamwise (x), wall-normal (y), and spanwise (z) directions, and which is discretized using a staggered Cartesian
grid with 192× 129× 160 nodes. The nodes in the wall-normal direction are spatially distributed using a hyperbolic-
tangent stretching corresponding to a size ∆y+ = 0.50 of the first grid cell and a maximum wall-normal grid spacing
of ∆y+ = 4.3 at the centerline of the channel. The Kolmogorov scale at the centerline for this flow was estimated
to b η+ = 3.6 by [15]. A grid overlaid on the mesh used to solve the flow field, consisting of 193 nodes along the
wall-normal direction, and subject to hyperbolic-tangent stretching factor in the same direction corresponding to a
size ∆y+ = 0.36 of the first grid cell, is employed to construct the Eulerian number-density field n, as recommended
in [15] for the same range of flow parameters studied here.
The carrier-phase conservation Eqs. (1) are integrated on a staggered Cartesian mesh with second-order central

differencing. The time advancement employs a fractional step procedure for pressure projection within a second-order
Runge-Kutta method [24]. The time step chosen was ∆t+ = 0.06 to ensure accurate results. The dispersed-phase
equations (2) are advanced in time with the same scheme as the flow and are supplied with trilinearly-interpolated
values of the electric field E

w and the carrier-phase velocity at the particle location. The Gauss equation for φw is solved
as part of the same computational algorithm employed for integrating the Poisson equation for the hydrodynamic
pressure.
The calculations were initialized using a statistically steady-state distribution of the concentration field of uncharged

particles, and the flow was integrated thereafter for 9000tν time units before collecting data for time averaging. Time-
averaged statistics were computed by averaging 11 solution snapshots evenly distributed over a period of 18000tν time
units. Phase-averaged statistics were calculated by collecting 800 solution snapshots evenly distributed over 20 cycles
of the applied oscillating voltage.
The statistical convergence of the results was checked in the following way. The time-averaged profile of the

concentration of particles in the unelectrified case was observed to remain unaltered when the number of snapshots
was increased to 22 over a longer sampling time equal to 36000tν. Similarly, the phase-averaged spatial distribution of
the concentration of particles in the electrified case corresponding to Stintel = 10−6, Stextel = 10−2, and ωel

+ = 0.002π,
which represents the most unfavorable case for convergence because of the associated small value of voltage frequency,
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FIG. 2. Dispersed-phase statistics without an applied electric field: (a) Time-averaged number-density profiles in the wall-
normal direction for increasing values of ReτSt

int

el , and (b) wall-normal profiles of the absolute value of each term on the
right-hand side of the momentum balance Eq. (5) multiplied by 〈n⋆〉−1.

was observed to remain unaltered when the number of snapshots was increased to 1600 over a longer sampling time
equivalent to 40 cycles of the applied voltage.

III. RESULTS

This section focuses on the description of the results obtained by numerically integrating the formulation outlined
above. Cases in which there is no incident electric field are described first in Sec. III.1, since the character of the
internal electric field induced by the charged particles proves to be important for the discussion. The effects of external
oscillating electric fields on the distribution of particles are analyzed in Sec. III.2.

III.1. Collective effects of self-induced electric fields

Time-averaged wall-normal profiles of number densities of particles are shown in Fig. 2(a) for cases without an
incident electric field, |∆Φ0| = 0 (i.e., Stextel = 0). In interpreting the results, it is important to note that, while
the typical turbophoretic increase in number density is observed in the case corresponding to uncharged particles
(Stintel = 0) as the wall is approached, the cases where particles are charged (Stintel > 0) are characterized by a
significant transfer of particles from the bulk of the channel to a thin region close to the wall whose thickness in
viscous units is of order unity. It is therefore concluded that the self-induced electric field exacerbates the tendency
of the particles to accumulate near the wall, with increasingly sharper slopes of n being observed in the concentration
profiles as Stintel increases. The phenomenon described above is clearly reminiscent of the charge-relaxation mechanism
that occurs in electrical conductors whereby the charges tend to drift toward the shell of the conductor, thereby leaving
the core of the conductor in electroneutral conditions. In the present problem, however, the charges are not completely
free to migrate since the particles are also subjected to aerodynamic forces.
In order to further investigate the effects of the self-induced electric field on the concentration profiles, it is ex-

pedient to derive a representative conservation equation for the momentum of the dispersed phase that is amenable
to discussion by following the statistical approach first formulated by Williams [25] for spray droplets, and hereafter
applied to charged solid particles. The analysis is facilitated by the statistically steady state and double periodicity of
the flow, in that the statistics vary predominantly only in the wall-normal direction, with additional time variations
being required if the effects of applied oscillating fields were included. With these approximations in mind, consider
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the probable number of particles f(y, vp)dydvp located between y and y+ dy and moving with wall-normal velocities

between vp and vp + dvp. In this formulation f is a distribution function that is normalized as
∫ +∞

−∞

∫ 2h

0 fdydvp = N
and satisfies the transport equation

∂

∂y+
(v+p f) +

∂

∂v+p

[(
〈v+|y+p 〉 − v+p

St+ae
+

Stintel

St+ae
〈E+

y |y+p 〉

)

f

]

= Da

(
∂f

∂t

)⋆

coll

, (3)

where the angular bracket operator 〈 · |y+p 〉 indicates ensemble averaging conditioned on the particle position. Addi-

tionally E+
y = Ey/E0 is the dimensionless wall-normal component of the electric field obtained from integration of

the ensemble-averaged Gauss equation, namely

〈E+
y |y+p 〉 = −

∫ Reτ

y+
p

〈n⋆〉dy+, (4)

with 〈n⋆〉 = 〈n〉/n0 = (2h/N)
∫+∞

−∞
fdvp being the dimensionless ensemble-averaged number density. In Eq. (3), the

term on the right-hand side represents a collision rate whose particular form is not essential for this discussion, and
which is normalized with a characteristic collision time tcoll = (4/3)(ρp/ρ)(tνa

+
p )/α, with Da = tν/tcoll being the

corresponding collision Damköhler number.
A conservation equation for the wall-normal momentum of the dispersed phase can be obtained by taking the first

moment of Eq. (3), or equivalently, by multiplying Eq. (3) by vp and integrating in vp, which gives

St+ae〈(v
+
p )

2|y+p 〉
d〈n⋆〉

dy+
= 〈n⋆〉〈v+|y+p 〉

︸ ︷︷ ︸

Stokes drag

−St+ae〈n
⋆〉

d

dy+
〈(v+p )

2|y+p 〉

︸ ︷︷ ︸

Turbophoretic force

+Stintel 〈n⋆〉〈E+
y |y+p 〉

︸ ︷︷ ︸

Electric force

, (5)

where use of the symmetry condition f(y, vp) = f(y,−vp) has been made along with the relations 〈v+p |y
+
p 〉 = 0 and

〈(v+p )
2|y+p 〉 =

∫∞

−∞ v2pfdvp/
∫∞

−∞ fdvp. Note that the relation 〈v+p |y
+
p 〉 = 0 is required for steady state in terms of

mass conservation of the dispersed phase. In contrast, 〈v+|y+p 〉 6= 0 because this quantity is averaged over particle
locations at a given distance from the wall and the particles may sample the flow in a biased way. By definition,
the collision term in Eq. (3) preserves momentum and therefore does not participate in the momentum balance (5).
Note also that a formal solution for the spatial distribution of 〈n⋆〉 can be straightforwardly obtained by integrating
Eq. (5), although the resulting exponential expression is not exploited here since it requires numerical closure of the
conditional averages or appropriate approximations studied elsewhere [26, 27].
Equation (5) is convenient for interpreting the concentration profiles in Fig. 2(a) in the following manner. The

first two terms on the right-hand side of Eq. (5) correspond, respectively, to the net Stokes drag in the wall-normal
direction due to biased sampling of ejection events by inertial particles, and to the turbophoretic force that drives
particles toward the wall. In the absence of significant electric effects, the biased sampling of ejection events produces
a net drag force away from the wall which counteracts the turbophoresis drift toward the wall. Their balance is
responsible for the accumulation of particles in the near-wall region in unelectrified turbulent particle-laden flows [26].
In contrast, the last term on the right-hand side of (5) represents the force generated by the self-induced electric field
and is strictly negative as observed by the negative sign of the electric field emerging from Eq. (4). This suggests
that the collective self-induced electric force drives the particles toward the walls everywhere along the wall-normal
direction on average. The magnitude of this force increases from zero at the center of the channel to a value of order
ReτSt

int
el near the wall, where the cumulative effect of all charges above in the channel core becomes important, as

prescribed by the Gauss law (i.e., see movie provided in the Supplementary Material [28]). For this reason, the curves
in Fig. 2 are labeled according to ReτSt

int
el instead of just Stintel . For the range of values of Stintel analyzed in this work,

the dynamical relevance of the electric force is confined to a near-wall thin layer whose thickness is of the same order
as the viscous length δν , whereas the Stokes and turbophoretic forces dominate the motion of the particles throughout
the rest of the channel cross section, as shown in Fig. 2(b).
The particles that are aerodynamically entrained in the near-wall thin region mentioned above tend to be held

there by the electric field, whose effect is much stronger than the typical flow velocity fluctuations and the ejection
events associated with them. In that near-wall region, the electric field participating in Eq. (5) is of order Reτ ≫ 1, as
indicated by taking the limit y+ → 0 in Eq. (4), and correspondingly, in the first approximation, Eq. (5) simplifies to
a balance between the transport of particles by wall-normal velocity fluctuations on the left-hand side and the electric
force on the right-hand side. As a result, the relevant parameter that quantifies the internal electric force relative
to the aerodynamic force is ReτSt

int
el , with modest values ReτSt

int
el = O(10−3) already producing significant effects
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FIG. 3. Dispersed-phase statistics with an applied electric field, including (a) time-averaged number-density profiles in the
wall-normal direction for St

ext

el = 1 while varying ω
+

el
; (b) time-averaged number-density profiles in the wall-normal direction

for St
ext

el = 0.01 while varying ω
+

el
; (c) time-averaged variance of the wall-normal particle velocity St

ext

el = 1 while varying ω
+

el
;

and (d) time-averaged number-density profiles in the wall-normal direction for ω+

el
= 0.02π while varying St

ext

el .

on the concentration profile, as observed in Fig. 2(b). In these conditions, the particles are organized into low-speed
streaks of the flow near the wall (not shown here for brevity) despite the prevailing electric force, since the latter acts
primarily in the wall-normal direction whereas the streamwise and spanwise velocity fluctuations still determine the
horizontal layout of the particles.

III.2. Collective effects of incident AC electric fields

In this section, the focus is on modifying the near-wall concentration of particles by imposing an oscillating electric
field across the channel walls, i.e., |∆Φ0| > 0 (Stextel > 0) and ωel > 0 (ω+

el > 0). All cases described below employ the
weakly charged case ReτSt

int
el = 1.5 × 10−4 and Stextel = 0 as baseline configuration, which displays a turbophoretic

behavior not too different from the uncharged case, as observed in Fig. 2(a). Cases with larger values of ReτSt
int
el

require correspondingly larger values of the applied electric field in order to cancel the self-induced electromigration
of particles toward the wall described in Sec. III.1.

The suppression of turbophoresis by using AC incident electric fields is first illustrated by the time-averaged con-
centration profiles shown in Fig. 3(a), which characterizes the effects of varying the oscillation frequency in the range
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0.02π ≤ ω+
el ≤ 20π for Stextel = 1, with the maximum effect being attained at intermediate values ωel

+ ≃ 0.08π, for
which the resulting number density near the wall is two orders of magnitude smaller than its baseline counterpart
value. A similar outcome is achieved even at much weaker electric fields, as observed in Fig. 3(b) for Stextel = 0.01, al-
though the corresponding near-wall concentration is reduced by just one order of magnitude in this case. The decrease
in the number density near the wall is accompanied by a large increase in the variance of the wall-normal particle
velocity 〈(v+p )

2|y+p 〉, whose profile near the wall becomes increasingly flat as ω+
el decreases down to ω+

el ≃ 0.08π, below

which 〈(v+p )
2|y+p 〉 decreases following an overall non-monotonic behavior similar to that observed in n, as shown in

Fig. 3(c). Note that 〈(v+p )
2|y+p 〉 is typically zero or small at the wall in unelectrified flows, whereas here 〈(v+p )

2|y+p 〉
attains values comparable to uτ because of the prevalence of the electric force near the wall.
Besides the time-averaged results in Fig. 3, additional important information regarding the temporal dynamics of

the phenomenon is provided in Fig. 4 in the form of phase averages (indicated by the overbar symbol) over a single
voltage-oscillation cycle 0 ≤ ω+

elt
+ ≤ 2π. For a given value of St+ae, the two relevant parameters that determine the

behavior of the solution are Stextel and ω+
el, the latter being the main controlling factor of the temporal dynamics of

both the wall-normal particle motion and the near-wall concentration. In principle, increasingly larger values of Stextel
are expected to be increasingly more effective in suppressing turbophoresis, as suggested by the time-averaged results
in Fig. 3(d). However, the temporal dynamics emerging from that increase in Stextel , which is illustrated in Fig. 4 by
the change from Stextel = 0.1 in panel (c) to Stextel = 1 in panel (b), indicates that the particles accumulate alternatively
on each wall in short-lived intense pockets that lead to long interperiods of very low or zero concentration (i.e., see
movie provided in the Supplementary Material [28]). A subsequent increase in ω+

el, which is illustrated in Fig. 4 by the

change from ω+
el = 0.02π in panel (b) to ω+

el = 0.2π in panel (d), leads to a less effective suppression of turbophoresis
as a result of a delay in the wall-normal particle motion with respect to the oscillating electric field. This delay is a
direct consequence of the low-pass filtering nature of the dynamical equilibrium equation for the particles in Eq. (2),
in that their motion becomes increasingly insensitive to the electric force as the frequency of the latter increases above
the critical value 1/ta (i.e., for ω+

el > 1/St+ae).
The mechanism described above are quantitatively supported by the following argument based on the wall-normal

component of the equation of motion of the particles. Consider the Laplace transform of the non-dimensional version
of the wall-normal component of second equation in (2), namely

L
{
v+p

}
(s+) =

1

1 + St+aes+

[

L
{
v+p

}
(0+) + L

{
v+

}
(s+)

+ Stintel L
{
E∞

py
+} (s+) + Stextel

s+

s+2 + ωel
+2

]

,

(6)

where s+ is the dimensionless complex frequency, L{vp(s
+)} and L{v(s+)} are Laplace transforms of the wall-normal

components of the particle velocity and local flow velocity, respectively, and L
{
E∞

py(s
+)

}
is the Laplace transform

of the wall-normal component of the electric field generated by the surrounding charged particles. Note that the
last term on the right-hand side of (6) takes into account the effect of the external electric field. Additionally, the
prefactor (1 + St+aes

+)−1 in Eq. (6) represents the low-pass filtering character of the response of the particle to an
external force. In particular, the cutoff frequency of this filtering process is determined by the particular value of St+ae
[29].
Equation (6) can be simplified in the following manner. All configurations analyzed in this work consider conditions

where Stextel ≫ Stintel . For this reason, the contribution of the wall-normal component E∞
py of the electric field generated

collectively by the particles in (6) can be neglected in the first approximation. Similarly, the second term on the right-
hand side of (6) can be neglected if the analysis is restricted to the near-wall region, where the wall-normal fluid
velocity is small. With these approximations in mind, and after times of order t+/St+ae ≫ 1 have passed such that
the transient solution can be neglected, the wall-normal particle velocity obtained from the inverse Laplace transform
of Eq. (6) becomes

vp(t
+)

uτ
=

Stextel
√

1 +
(
St+aeωel

+
)2

cos(ωel
+t+ − β). (7)

Equation (7) indicates that the wall-normal component of the particle velocity is an oscillatory quantity that has the
same frequency ωel as the external voltage and a phase delay β = arctan(St+aeωel

+), thereby leading to the formation
of time-periodic pockets of particles near the wall, as shown in Fig. 4(b-e). It is noteworthy that the phase delay
predicted by this simple description is in good agreement with the phase-averaged velocity fields shown in Fig. 4 (e.g.,
β ∼ 17◦ for ωel

+ = 0.02π and β ∼ 72◦ for ωel
+ = 0.2π).
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FIG. 4. Dispersed-phase statistics with an applied electric field: (a) Phase-averaged number-density for St
ext

el = 0; The
remaining four panels include phase averages of the incident electric field (top subpanel; white, upwards field; light blue,
downwards field), wall-normal particle velocity (central subpanel; white, upwards velocity; light blue, downwards velocity), and
number density (bottom subpanel, white, high concentration; light blue, low concentration) for (b) Stextel = 1 and ωel

+ = 0.02π;
(c) Stextel = 0.1 and ωel

+ = 0.02π; (d) Stextel = 1 and ωel
+ = 0.2π; and (e) Stextel = 0.01 and ωel

+ = 0.002π.
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Based on the above considerations, the non-monotonic variation of the time-averaged near-wall concentration statis-
tics observed in Fig. 3(a) can be therefore explained in the following manner. For order-unity values of Stextel and St+ae,
small values of the voltage frequency ω+

el ≪ 1 necessarily lead to long-lived layers of high concentration of particles
on whichever wall is instantaneously charged with a polarity opposite to the charge of the particles, whereas large
values ω+

el ≫ 1 make the wall-normal motion of the particles to lag significantly behind the applied electric field,
thereby leading to mostly undisturbed near-wall concentration profiles. The time-averaged maximum suppression of
turbophoresis at Stextel = 1 is therefore achieved at an intermediate frequency ω+

el ≃ 0.08π = 1.25/St+ae, as shown in
Fig. 3(a).

As commented above, an abatement of turbophoresis can also be achieved with relatively weak incident electric
fields, as shown in Fig. 3(b) for Stextel = 0.01. In this case, both the wall-normal particle velocity and near-wall
concentration are almost in phase with the incident electric field, as predicted by Eq. (7) and observed in Fig. 4(d).
The resulting wall-normal electromigration flux of particles is confined to the near-wall region, where the incident
electric force prevails in a manner that is reminiscent of that shown in Fig. 2(b) for the self-induced electric force. In
this way, the electric field is able to just slightly lift the layer of particles from the wall without completely washing
them away into the core of the channel as in higher Stextel cases, which nonetheless proves to be sufficient to decrease
the time-averaged near-wall concentration by a factor of 10.

IV. CONCLUSIONS

The effects of self-induced and external electric forces on the dynamics of inertial particles in turbulent channel
flows have been characterized in this study using DNS in an Eulerian/Lagrangian framework supplemented with
appropriate equations for the self-induced and incident electric fields. Two fundamentally different set of cases are
treated. In the first set, there is no incident electric field and the particles are transported by turbulence and by
the collective self-induced electric forces generated by their own charges. In these conditions, it is found that the
suspension of particles behaves similar to an electrical conductor whereby all charges tend to migrate from the core
of the channel toward the walls, thereby resulting in an increased near-wall concentration of particles that enhances
the turbophoresis effect. In the second set of cases, an incident AC electric field is applied across the channel walls,
which leads to suppression of turbophoresis manifested by a decrease in the near-wall concentration of particles by
up to two orders of magnitude.

The results presented in this study have been mainly provided in non-dimensional form. It is however illustrative
to briefly demonstrate the translation of these results into dimensional figures to address the technical feasibility of
the incident electric fields involved. For instance, consider the set of parameters St+ae = 5, a+p = 0.17, Reτ = 150,

ReτSt
int
el = 1.5 · 10−4, Stextel = 0.1, and ω+

el = 0.02π, with gta/uτ ≪ 1 and α ≪ 1. The numerical simulations above
indicate that these parameters lead to a decrease in the time-averaged near-wall concentration by a factor of 100, as
suggested by the simulation results in Fig. 3(d). This set of parameters can be approximately obtained in a channel
of half height h ≃ 0.01 m, with air flowing through at friction velocity uτ ≃ 0.24 m/s, density ρ ≃ 1.2 kg/m3, and
kinematic viscosity ν ≃ 1.6 · 10−5 m2/s, and in which solid particles are laden that have a radius ap ≃ 11 µm, number
density n0 ≃ 2.5 · 108 m−3, material density ρp ≃ 103 kg/m3, and electric charge qp ≃ 14, 000|e−|, where |e−| is the
elementary charge. In this virtual scenario, gta/uτ = O(10−2) and α = O(10−3). The amplitude of the required
incident electric field would be |∆Φ0|/(2h) ≃ 42 kV/m with a linear frequency ωel/(2π) ≃ 36 Hz.

In the biperiodic channel flow considered here, the infinite channel width enables the deployment of incident electric
fields whose direction is always perpendicular to the two channel walls. However, in practical applications utilizing
ducts or pipes, more complex configurations may be required, possibly involving the consideration of rotating electric
fields in order to suppress turbophoresis along the entire wall perimeter. Assessments of the electric mechanism of
mitigation of turbophoresis proposed here in the presence of other effects of practical interest, including wall roughness,
two-way coupling, heat transfer, charge transfer upon collisions, dielectric walls, and gravitational forces, are topics
that may be relevant for future research.
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