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Abstract

Manufacturers of membrane filters have an interest in optimizing the internal pore structure of the

membrane to achieve the most efficient filtration. As filtration occurs, the membrane becomes fouled

by impurities in the feed solution, and any effective model of filter performance must account for

this. In this paper, we present a simplified mathematical model, which (i) characterizes membrane

internal pore structure via permeability or resistance gradients in the depth of the membrane; (ii)

accounts for multiple membrane fouling mechanisms (adsorption, blocking and cake formation);

(iii) defines a measure of filter performance; and (iv) for given operating conditions, is able to

predict the optimum permeability or resistance profile for the chosen performance measure.
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I. INTRODUCTION

Membrane filters – thin sheets of porous medium that act to separate contaminants from

a fluid – find widespread use for applications as diverse as water treatment [18]; purification

processes in the biotech industry [2, 3, 16, 17]; kidney dialysis [25]; and beer clarification

[9, 37]. Major multinational companies such as W.L. Gore & Associates, Pall Corporation,

EMD Millipore and GE Healthcare Life Sciences manufacture a wide range of membrane-

based filtration products, and maintain a strong interest in improving and optimizing the

filters they produce, in terms of both performance and cost. Filter membrane performance

(discussed in more detail later) is affected by a number of key design features, such as the

membrane thickness, internal pore structure and shape, pore connectivity, variation of pore

dimensions in the depth of the membrane, and membrane material. As a filtration pro-

gresses, the particles removed from the feed solution are deposited on or in the membrane,

and understanding and prediction of the flow and fouling in the filter membrane is a critical

part of the design process. Experimental approaches are costly and it is difficult to visualize

accurately where particles are trapped in the depth of the membrane. Mathematical mod-

eling can therefore help manufacturers gain insight into filtration processes and operating

conditions, and thus provide a cost-effective way to help optimize filter design [15, 35, 36].

Various modeling approaches, which attempt to determine how the internal structure of

filter membranes (pores’ size, geometry and distribution within the membrane) influences

filtration efficiency, have been proposed and examined by researchers to date. Among these,

computational fluid dynamics (CFD) is popular and effective, offering the capability to track

the fate of all particles within the feed, and to predict internal blocking well. Proprietary

CFD software is used (in conjunction with sophisticated 3D imaging that can provide detailed

pore structure) by several industries to help simulate and evaluate membrane performance

[11]. Such CFD simulations are very expensive computationally [32] and are limited to fairly

small membrane samples and moderate times; nevertheless they still represent a cheaper

means (in terms of both time and actual expense) to probe the effects of membrane struc-

tural changes than do experiments. The high computational cost stems mainly from the

complicated membrane internal morphology, which forms the computational domain of the
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governing fluid dynamics equations. An interesting review of the scope of CFD modeling in

membrane separation was compiled by Ghidossi et al. in 2006 [12]; see also [10, 21, 26] for

a discussion of more recent contributions in this area (among other topics).

To avoid the high computational costs associated with the CFD approach (allowing for

larger membrane domains to be simulated, for longer periods of time) and to gain greater

mechanistic insight into the fouling, others have used different modeling techniques. In much

of the filtration literature four distinct fouling modes are identified: (a) standard blocking,

also known as adsorptive fouling (in which particles smaller than the membrane pores are

deposited or adsorbed within pores, shrinking the pore diameter); (b) intermediate blocking

(the partial blocking of a pore by a large particle at its upstream opening); (c) complete

blocking (the total blocking of a pore by a large particle at its upstream opening); and (d)

cake formation (once pores are blocked by large particles, other particles can accumulate on

top of the membrane, forming a “cake” layer). All of these fouling modes add resistance to

the system. Various (non-CFD) mechanistic filtration models that account for one or more

of these fouling modes, and/or allow depth-dependent membrane structure (permeability

gradients) to be modeled, have been proposed to date. The literature is vast and we do

not attempt a comprehensive overview here, mentioning just a few of the approaches most

relevant to our work, and referring the interested reader to dedicated review articles, (e.g. [18,

19] and and references therein).

Homogenization methods have been considered by several authors [4–6, 14, 22, 28, 29, 33].

Homogenization alleviates the complexity of the problem by averaging micro-scale properties

of the feed solution (called “solvent” in the language of homogenization theory) or membrane

over meso-scale units that repeat periodically (or nearly so) across the macro-scale domain.

Recent notable work in this area was carried out by Dalwadi et al. [6] and Griffiths et al.

[14]. Dalwadi et al. [6] use their model to explore how filtration efficiency can be improved

when the (continuously varying) porosity gradient is appropriately tuned. The results show

qualitative agreement with experimental observations; however the model considers only a

single fouling mechanism: the “standard blocking” or adsorptive fouling, described above.

Griffiths et al. [14] demonstrate the efficiency of a multilayer filter based on a so-called

network model, developed earlier by the same group [15]. This work accounts for two fouling
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mechanisms: the adsorptive fouling, plus blocking by large particles. However, the model

fails to account for fouling by cake formation.

In models that account for cake formation, some studies, e.g. [2, 8, 24, 27] allow pore

blocking and cake formation to happen simultaneously during the fouling process, but more

commonly pore blocking is assumed to precede cake formation. Bolton et al. [2] derived

models that accounted for the combined simultaneous effects of any two individual fouling

mechanisms (standard, intermediate/complete blocking; and cake formation). These authors

used Darcy’s law to relate the instantaneous pressure drop to time for a filter operating under

conditions of constant flux; and to throughput (cumulative volume filtered) under conditions

of constant pressure. The combined models were assessed through testing with solutions of

bovine serum albumin and human IgG, filtered through virus retention and sterilizing grade

microporous membranes, respectively. All models were found to be useful within certain

parameter regimes (within which at least one fouling mechanism is negligble), providing

good fits of the presented data sets.

Contemporaneously, Duclos-Orsello et al. [7] also developed a multi-mode fouling model,

sequentially accounting for adsorptive fouling, complete blocking and cake formation. In this

study, initially, pore constriction occurs in all open pores; then undergo blocking, to form

an inhomogeneous surface on which the cake layer finally forms. Once a pore is blocked

by a deposited aggregate, no further pore constriction can occur. This work, as with that

of Bolton et al. [2], is based on the assumption of circularly-cylindrical pores that traverse

the membrane depth. The model was tested on a range of datasets, both with and without

prefiltration of the feed, and was found capable of simulating all, with suitable parameter

choices. This is the key advantage of such a universal fouling model: the same model can be

used to simulate almost any filtration for its entire duration, whether it is a prefiltration stage

in which complete blocking and cake formation dominate; ultrafiltration of a feed suspension

with only very fine particles in which adsorptive fouling dominates; or a low-tech simplistic

filtration in which all mechanisms may be fully operational. The model user just has to

make appropriate parameter choices to ensure that the relevant mechanisms dominate (or

can even turn off one or more mechanisms altogether if desired). In this respect, however, the

authors note while discussing one dataset that even “while the slope. . . indicates that fouling
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is dominated by pore constriction, we see from the values of the other [fitted] parameters

that fouling is actually caused by all three fouling mechanisms”. Similar remarks are noted

for another dataset. Thus, it is suggested that more accurate simulations will be obtained

using a multi-mode fouling model, and that indeed such models can provide greater insight

into when different fouling modes may be expected to be important, and at what stage of a

filtration transitions between different fouling modes are expected.

In earlier work [35], we developed a model that can describe the key effects of membrane

morphology on separation efficiency and fouling of a membrane filter. That model accounts

for Darcy flow through the membrane, and for two distinct mechanisms of fouling: adsorption

of small particles within pores, and pore-blocking (sieving) by large particles. In the present

paper, we propose a novel model for the formation and growth of a cake layer on the upstream

side of the filter, and couple this to our earlier model, to allow all three fouling modes

(rather than just two mechanisms as considered in [2]) to operate simultaneously. Such a

“unified” model, properly validated and calibrated, can be used to describe a very wide

range of filtration scenarios, including those where only one or two of the mechanisms may

be relevant at any given stage of the filtration. This represents an important extension to the

work of Duclos-Orsello et al. [7] in that our model allows for depth-dependent pore structure

(porosity gradients), known to be important in many applications.

We present several simulations of our model, with an emphasis on how the fouling by

cake formation affects results, and how changes in membrane structure (modeled by differ-

ent choices of pore profile within the membrane) may impact the outcome (most multi-mode

fouling models, such as [2, 7], consider only membranes with cylindrical pores). In particular,

we discuss how our model could be used to provide guidance as to the optimum porosity

gradient that a membrane filter should have. We conclude with a discussion of our model

and results in the context of real membrane filters. Note that the results of this paper as

presented are intended to be illustrative of the model’s capability to provide useful informa-

tion and predictions, given reliable parameter estimates. We do not suggest that the pore

structures calculated for our sample simulations will be optimal in all scenarios. However,

our model could be used to carry out optimization for a given application, once specific

model parameters relevant to that application have been determined via experiments.
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II. DARCY FLOW AND FOULING MODEL

We consider dead-end filtration through a planar membrane that lies parallel to the (Y, Z)-

plane, with unidirectional Darcy flow through the membrane in the positive X-direction.

The membrane properties and flow are assumed homogeneous in the (Y, Z)-plane, but the

membrane has depth-dependent permeability (even if permeability is initially uniform in

X, fouling will lead to nonuniformities over time), which we denote by Km(X,T ). We

use uppercase fonts to denote dimensional quantities, and in the following will introduce

subscripts “m” and “c” to distinguish (where necessary) between quantities in the membrane

and in the cake layer.

The superficial Darcy velocity U = (U(X,T ), 0, 0) within the membrane is given in terms

of the pressure Pm by

U = −Km(X,T )

µ

∂Pm

∂X
,

∂U

∂X
= 0, 0 ≤ X ≤ D, (1)

where µ is the viscosity of the feed solution (assumed Newtonian) and D is the membrane

thickness.1 The membrane permeability Km(X,T ) is a function of membrane characteristics,

which evolve in time due to fouling. We allow Km to decrease in time (i.e., membrane

resistance increases in time) via three fouling mechanisms: (i) pores become blocked from

above by particles too large to pass through pores; (ii) pore radius decreases in time due to

adsorption of smaller particles within the pores; and (iii) at a late stage, particles deposited

on the filter upstream form a cake layer. This cake layer is assumed to occupy the region

−I(T ) ≤ X ≤ 0, so that I(T ) is the cake thickness, with I(0) = 0.

We consider a simple model in which the membrane consists of a series of identical ax-

isymmetric slender pores of variable radius A(X,T ), which traverse the membrane thickness

(Figure 1). Pores are arranged in a square repeating lattice, with period 2W , and a feed

solution, carrying small particles (at concentration C(X,T )) and large particles (larger than

pores; with concentration G in the feed), which are deposited within the membrane and on

top of the membrane, respectively, is driven through the filter. In many applications there

1 Note that the Darcy velocity U does not require a subscript to distinguish between membrane and cake

layers since it is independent of X.
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FIG. 1: Schematic showing the pore, the small particles leading to adsorptive fouling, and the forming

cake layer consisting of large particles. Here, C(X,T ) denotes the concentration of the small particles,

while A(X,T ) denotes the radius of the pore, at depth X and time T .

will in fact be a continuum of particle sizes: our model is an idealization in which all particles

larger than pores are modeled as a single population leading to fouling by complete blocking

and later cake formation; while all particles smaller than pores are treated as a separate pop-

ulation giving rise to adsorptive fouling. Two driving mechanisms are commonly considered:

(i) constant pressure drop across the membrane specified; and (ii) constant flux through

the membrane specified. In the former case, the flux decreases in time as the membrane

becomes fouled; in the latter case, the pressure drop required to sustain the constant flux

rises as fouling occurs. In this paper we consider only case (i), which is the most common in

practice (our model could be easily adapted to case (ii)). With constant pressure drop P0,

the conditions applied above and below the membrane plus cake are

Pc(−I(T ), T ) = P0, Pm(D,T ) = 0, (2)

where Pc is the pressure within the cake, and X = −I(T ) is the top of the cake (see Figure
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1). The flow through the cake layer is described in §II C below.

Where an individual pore (at time T ) is unblocked the total flux through it Qu,pore(T ) is

given, approximately, by

Qu,pore = − 1

Ru

∂Pm

∂X
where Ru =

8µ

πA4
, (3)

and Ru is the local pore resistance per unit of the membrane depth.

A. Pore blocking by large particles

Blocking occurs when a particle from our population of large particles becomes trapped

at the entrance to a pore, obstructing the flow. We follow our earlier approach [34, 35]

and model this effect by adding an extra resistance, of magnitude 8µρb/(πA
4
0) (per unit of

the membrane depth), in series with the resistance Ru. Here ρb is a dimensionless number

representing the factor by which the pore’s resistance is increased on blocking (relative to

the unblocked state). The flux through a blocked pore, Qb,pore(X,T ), is then given by

Qb,pore = − 1

Rb

∂Pm

∂X
where Rb =

8µ

πA4
0

((
A0

A

)4

+ ρb

)
. (4)

The parameter ρb characterizes the tightness of the seal formed by a blocking event: for

large values of ρb the seal is tight and pore resistance increases dramatically after blocking,

while for small values the seal is very weak, and resistance is almost unchanged. A perfectly

sealed pore (total blocking) is retrieved as ρb →∞. We can now relate the superficial Darcy

velocity U to the number densities of unblocked and blocked pores per unit area, N(T ) and

N0 − N(T ), respectively (where N0 = N(0) and N0(2W )2 = 1), by noting that the flux of

fluid per unit area of membrane is

N0(2W )2U = N(T )Qu,pore + (N0 −N(T ))Qb,pore,

hence, substituting for Qu,pore from (3) and for Qb,pore from (4) in the above, we obtain

U = −πA
4
0

8µ

∂Pm

∂X

(
N

(A0/A)4
+

N0 −N
(A0/A)4 + ρb

)
. (5)
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The instantaneous number density of unblocked pores, N(T ), decreases as pores become

blocked. We assume blockage occurs whenever a particle with radius S > A(X,T ) is advected

to the pore entrance. For simplicity, we assume that our large-particle population consists

entirely of particles larger than A(0, T ), while our small-particle population (discussed below)

consists of particles that are smaller than A(X,T ) throughout. It would not be difficult to

modify our model to allow for blocking events in the pore interior; however, the resulting

model would be more cumbersome and would not, we believe, lead to substantially different

predictions. If G is the concentration of large particles in the feed then the probability, per

unit time, that a particular pore is blocked, is GQu,pore = −πGA4/(8µ)∂Pm/∂X|X=0. It

follows that N(T ) evolves according to

∂N

∂T
= NG

πA4

8µ

∂Pm

∂X

∣∣∣∣
X=0

. (6)

B. Pore blocking by adsorption

To model adsorptive fouling requires consideration of how the small particles in the feed

are transported and deposited within the pores of the membrane. Following [35], we propose

a simple advection model for the concentration of small particles, Cm, within the membrane

pores, which posits that particles are deposited on the pore wall at a rate proportional to

both the local particle concentration, and to the inverse of the local pore radius:

Upm
∂Cm

∂X
= −Λm

Cm

A
, 0 ≤ X ≤ D, (7)

where Upm is the pore velocity of the feed within the membrane (the cross-sectionally av-

eraged axial velocity within each membrane pore) and Λm is a constant that models the

attraction between particles and pore wall that is causing the deposition. A full derivation

of this model, which arises from a particular limit in which particle diffusion dominates in

the pore cross-section but advection dominates in the axial direction, is given in [35]. The

pore velocity Upm satisfies

∂ (πA2Upm)

∂X
= 0, 4W 2U = πA2Upm, (8)
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by simple mass conservation arguments. The pore radius shrinks in response to the particle

deposition; we propose
∂A

∂T
= −ΛmαCm, 0 ≤ X ≤ D, (9)

for some constant α (proportional to the particle size). The initial pore radius is specified

throughout the membrane,

A(X, 0) = A0(X), 0 ≤ X ≤ D. (10)

C. Cake formation

In the later stages of filtration, subsequent to the pore-blocking described in §II A above,

particles may accumulate on the upstream side of the membrane, forming a cake layer as

shown in Figure 1. This layer in turn increases the system resistance and becomes thicker

in time. To obtain realistic predictions throughout the entire filtration process, particularly

for cases where the feed contains a high concentration of large particles, we must consider

the effects of the cake layer.

To model caking, we assume that pore-blocking by large particles at the upstream mem-

brane surface creates new surface area available for formation of a cake layer. If we assume

that material (comprising large particles) is deposited on this available surface at a rate pro-

portional to the fluid flux and to the number of blocked pores (which constitute the available

surface), then we may propose a model for how the cake layer thickness I(T ) increases in

time:
dI

dT
= (N0 −N)(2W )2(G∆p)U, I(0) = 0, (11)

where G is the total large-particle concentration defined earlier, U is the superficial Darcy

velocity (defined in (5)), and ∆p is the effective volume that each large particle occupies

within the cake layer. This model says that the thickness of cake layer increases at a rate

proportional to the membrane area available for caking, and the volume flux of the large

particles that form the cake. At the cake’s upper surface we specify the pressure, Eq. (2),

and the small-particle concentration,

Cc(−I(T ), T ) = C0. (12)
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The cake layer itself behaves like a secondary filter membrane, with permeability Kc(X,T )

dependent on the characteristics of the particles suspended in the feed solution. We therefore

again use the Darcy model to describe flow across the cake:

U = −Kc

µ

∂Pc

∂X
, −I(T ) ≤ X ≤ 0, Pc(−I(T ), T ) = P0. (13)

Though the cake is assumed to be composed primarily of the large particles, like the mem-

brane it will be subject to adsorptive fouling by smaller particles, which will deposit in the

gaps between the large particles. Its permeability, Kc, will thus decrease in time. We use

the Kozeny-Carman equation (see, e.g. [30]) to relate Kc to the void fraction (or porosity),

φc ∈ (0, 1), of the cake:

Kc =
φ3
c

KozS2
cp(1− φc)2

. (14)

Here, Scp is the specific area (the ratio of the surface area to the volume of the solid fraction

of the porous medium); and Koz is the Kozeny constant (Carman proposed a value of 5 for

this constant; see e.g. [30]). Note that due to the adsorption of the smaller particles within

the cake, φc will decrease monotonically in T and also develop depth dependence, φc(X,T ).

If at early times the cake layer is considered to consist of identical randomly-packed spher-

ical particles, we might expect φc ≈ 0.37, with this value decreasing as adsorption occurs.

The cake model is completed by assumptions about how adsorption leads to increased cake

resistance. In the spirit of our membrane fouling model (7) we propose a simple advection

model for the small particles:

Upc
∂Cc

∂X
= −Λc

Cc

(φc∆p)1/3
, −I(T ) ≤ X ≤ 0, (15)

where the pore velocity Upc within the cake is related to the superficial Darcy velocity U by

Upc = U/φc. As with the membrane, we assume that small particles are deposited within the

cake at a rate proportional to their local concentration. The constant Λc models the attrac-

tion between the large particles (which constitute the cake) and the small particles. The cake

structure is complicated, but in essence the pores of the cake consist of the spaces between

particles of effective volume ∆p, therefore we assume that (φc∆p)1/3 will be proportional

to the cake pore size (whence the term in the denominator on the right-hand side of (15);

compare with (7)). The cake porosity φc decreases in response to the particle deposition: by
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direct analogy with our earlier membrane adsorptive fouling model (see (9) with pore size

A ∝ (φc∆p)1/3) we propose

∂φc

∂T
= −Λc(φc∆p)2/3Cc, −I(T ) ≤ X ≤ 0. (16)

These last two equations (15) and (16) are analogous to equations (7) and (9) in the mem-

brane model, respectively. We also require continuity of particle concentration and pressure

at the interface between the cake layer and the membrane,

Cc(0, T ) = Cm(0, T ), Pc(0, T ) = Pm(0, T ). (17)

For future reference, we note the simple pressure drop equation

4P |D−I(T ) = 4Pm|D0 +4Pc|0−I(T ), (18)

or, in integral form, ∫ D

−I(T )

∂P

∂X
dX =

∫ D

0

∂Pm

∂X
dX +

∫ 0

−I(T )

∂Pc

∂X
dX. (19)

III. SCALING & NONDIMENSIONALIZATION

We nondimensionalize the model presented above using the scalings

(X, I) = D(x, i), A = Wa, T =
8µD

πP0W 4G
t, (U,Upm, Upc) =

πP0W
2

32µD
(u, upm, upc),

(Pm, Pc) = P0(pm, pc), (Cm, Cc) = C0(cm, cc), N = N0n, Kc =
πW 2

32
kc, (20)

giving a dimensionless model for u(x, t), upm(x, t), upc(x, t), pm(x, t), pc(x, t), a(x, t), cm(x, t),

cc(x, t), i(t), kc(t), φc(t) and n(t). The dimensionless governing equations in the membrane

layer 0 ≤ x ≤ 1 become

4u = πa2upm, (21)

u = −a4∂pm
∂x

(
1− n

1 + ρba4
+ n

)
,

∂u

∂x
= 0, (22)

upm
∂cm
∂x

= −λm
cm
a
, λm =

32ΛmµD
2

πP0W 3
, (23)
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∂a

∂t
= −βmcm, βm =

8µDΛmαC0

πP0W 5G
, (24)

dn

dt
= na4

∂pm
∂x

∣∣∣∣
x=0

, (25)

with boundary and initial conditions

pm(1, t) = 0, a(x, 0) = a0(x), (26)

where a0(x) < 1 is a specified function.

The governing equations in the cake layer −i(t) ≤ x ≤ 0 are2:

upc =
u

φc

, (27)

u = −kc
∂pc
∂x

,
∂u

∂x
= 0, (28)

kc = κc
φ3
c

(1− φc)2
, κc =

32

πW 2KozS2
cp

, (29)

∂φc

∂t
= −βcccφc

2/3, βc =
8µDΛc∆p

2/3C0

πP0W 4G
, (30)

upc
∂cc
∂x

= −λc
cc

φ
1/3
c

, λc =
32ΛcµD

2

πP0W 2∆p
1/3
, (31)

di

dt
= η(1− n)u, η =

∆p

4W 2D
, (32)

with boundary and initial conditions

pc(−i(t), t) = 1, cc(−i(t), t) = 1. (33)

The model is closed by continuity conditions at the membrane–cake interface,

cc(0, t) = cm(0, t), pc(0, t) = pm(0, t), (34)

and by the flux balance equations

4φcupc = 4u = πa2upm. (35)

2 The cake model presented implicitly assumes that the specific area, Scp, is constant throughout. This will

not quite be true, but we believe it is reasonable to neglect its evolution due to fouling.
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Significant analytical progress may be made with this model. Equations (22) with the

boundary condition at the pore outlet, pm(1, t) = 0, give the pressure within the membrane,

pm(x, t), as

pm(x, t) = u

∫ 1

x

dx′

a4( 1−n
1+ρba4

+ n)
, (36)

while equations (28) and (33) give the pressure in the cake layer as

pc(x, t) = 1− u
∫ x

−i(t)

dx′

kc
. (37)

By using the continuity condition (34) for the pressure, we find the dimensionless Darcy

velocity as

u =

(∫ 0

−i(t)

dx′

kc
+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1
. (38)

From equation (25) the number of unblocked pores satisfies

dn

dt
= − n

(∫ 0

−i(t)

dx′

kc
+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1(
1− n

1 + ρba4
+ n

)−1∣∣∣∣∣∣
x=0

, (39)

and the cake layer thickness can be easily found from equation (32),

di

dt
= η(1− n)

(∫ 0

−i(t)

dx′

kc
+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)−1
. (40)

Finally, we simplify equations (23) and (31) for particle concentration within the membrane

and the cake layer as

∂cm
∂x

= −λmcma
(∫ 0

−i(t)

dx′

kc
+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)
, cm(0, t) = cc(0, t), λm =

8ΛmµD
2

P0W 3
,

(41)

∂cc
∂x

= −λcφ2/3
c cc

(∫ 0

−i(t)

dx′

kc
+

∫ 1

0

dx′

a4( 1−n
1+ρba4

+ n)

)
, cc(−i(t), t) = 1, (42)

and we have the pore shrinkage equation

∂a

∂t
= −βmcm, (43)

where βm is given in (24).
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Parameter Description Typical Value

P0 Pressure drop Depends on application

(10− 100 K Pa used here)

Qpore Flux through a single pore Depends on application

C0 Total concentration of small particles in feed Depends on application

G Total concentration of large particles in feed Depends on application

2W Length of the square repeating lattice 4.5 µm (very variable)

D Membrane thickness 30 µm (very variable)

A0 Initial pore radius 2 µm (very variable)

N0 Number of pores per unit area 7×1010 m−2 (very variable)

Λm Particle-wall attraction coefficient Unknown (depends on

details of membrane and

feed solution)

Λc Small particle-large particle attraction Unknown (depends on

coefficient feed solution)

α Pore shrinkage parameter (see (9)) proportional Depends on application

to particle size

∆p Effective particle volume within the cake layer 4×10−16 m3 (very variable)

Koz Kozeny constant 5

Scp Specific area; the ratio of surface area to the 1.35 µm−1 (very variable)

volume of the solid fraction in the cake

TABLE I: Dimensional parameters and approximate values ([13] and [23]).

IV. RESULTS

In this section we present sample simulations of the model summarized in §III, highlight-

ing how results depend on the key parameters governing the cake formation. Our model

contains several dimensionless parameters and functional inputs, which must be specified:

λm, which measures the attraction between the small particles and the membrane pore wall
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(characterizing the strength of adsorptive fouling); λc, which measures the attraction between

small particles and the large particles that form the cake layer (governing adsorption of small

particles within the cake itself); βm, the dimensionless membrane pore shrinkage rate; βc,

the rate at which porosity of the cake layer decreases; ρb, the factor by which pore-blocking

by a large particle increases the original resistance of the unblocked pore; κc, the character-

istic dimensionless cake permeability; and η, the dimensionless characteristic rate at which

cake layer thickness increases. An exhaustive investigation of the effects of all parameters is

clearly impractical. Their values depend on physical dimensional parameters that must be

measured for the particular system under investigation, and in many cases reliable data are

lacking, hence we have to make our best guess as to the most appropriate values to use in

simulations. The parameters are summarized in Tables I (dimensional parameters) and II

(dimensionless parameters) along with typical values, where known. Although a high level of

variability or uncertainty in parameter values is noted, in practice users and filter membrane

manufacturers should together be able to provide values or estimates for most of the param-

eters listed in Table I for specific applications (such as P0, Qpore, C0, G, W , D, A0, N0, α,

∆p and Scp), which depend on physical characteristics of the filter membrane and the feed

fluid. Certain other parameters, for example the particle-wall and the small particle-large

particle attraction coefficients Λm and Λc respectively, are more difficult to estimate and will

require preliminary experiments. Methods such as fluorescence microscopy (see Jackson et

al. [20]), with particles in the feed suspension fluorescently tagged, can be used to estimate

Λm and Λc by comparing solutions of equations (9) and (16) to experimental images that

reveal the density and location of particles trapped within the filter and in the cake layer.

Given the number of parameters, many will be held fixed throughout our simulations.

The values of the dimensionless attraction coefficients between pore wall and particles, and

between large and small particles in the cake layer, λm and λc, respectively, are unknown,

and could vary considerably from one system to another. In the absence of definitive data, we

take λm = 2 and λc = 0.5 as the default values (since the filter is designed to remove particles,

we assume that the particles are more strongly attracted to the membrane than to the cake,

hence λm > λc). The dimensionless membrane and cake pore shrinkage rates, βm and βc,

respectively, are not known precisely, and indeed depend strongly on the characteristics of
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the feed solution (these represent the ratios of the timescales of adsorptive pore closure, in

membrane and cake, respectively, to pore blocking). Since in this paper we are primarily

interested in filtration regimes where cake formation plays a significant role we take rather

small values for these coefficients: we set the default values to βm = βc = 0.1 (in particular,

O(1) or larger values for βm would give adsorption-dominated fouling, which has been studied

elsewhere). Assuming that blocking of a pore by a particle increases its resistance by twice

the original resistance of the unblocked pore, we set ρb = 2 for most simulations. The

parameter η = ∆p/(4W
2D) (see Table (II)) is initially set to 0.15, based on an assumption

of approximately spherical large particles with radius of order W to calculate the effective

particle volume ∆p. Finally, the dimensionless cake permeability constant κc is set to 1. We

demonstrate the effect of changing parameters λc, βm, βc and η, to model specific changes

in caking conditions, as described below.

Before examining how depth-dependence in the initial membrane permeability (dictated

by the choice of initial pore radius, a(x, 0)) affects results, we first investigate uniformly-

permeable membranes with initially-cylindrical pores in order to focus on how caking affects

filter performance. In §V later we discuss how the initial pore shape may be chosen so as to

improve performance.

For each simulation presented we solve the model numerically until the membrane becomes

impermeable and the total flux through it falls to zero, at final time t = tf (in all simulations

this happens when the pore radius a → 0 somewhere in the membrane). Our numerical

scheme is straightforward, based on first-order accurate finite difference spatial discretization

of the governing equations with a simple implicit time step in the pore-blocking equation

(24), and trapezoidal quadrature to evaluate the necessary integrals.

Figure 2(a) shows the pore radius a(x, t), and concentrations of small particles within the

membrane and the cake layer, cm(x, t) and cc(x, t), respectively, for a membrane with initially-

cylindrical pores, at various times throughout the evolution, with parameter values as given

in the figure caption. We note that in these simulations pore closure occurs first at the

upstream membrane surface, consistent with the particle concentration graphs, which show

that most of the deposition occurs at the pore inlet.3 This effect becomes more pronounced

3 This is not necessarily always the case; with appropriate choices of pore shape we are able to simulate
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Parameter Formula & description Typical value

λm (8ΛmµD
2)/(P0W

3) Unknown; value 2 used

Dimensionless particle-pore wall attraction coefficient

λc (32ΛcµD
2)/(πP0W

2∆p
1/3) Unknown; values in

Dimensionless attraction coefficient between small range 0.1–5 used

particles and cake

φ̄m π/(4W 2)
∫ D
0 A2dX Varies in range 0.5− 0.7

Net (initial) membrane porosity or void fraction

βm (8µDΛmαC0)/(πP0W
5G) Unknown; values in

Membrane pore shrinkage rate due to adsorption range 0.1–0.2 used

βc (8µDΛc∆
2/3
p C0)/(πP0W

4G) Unknown; values in

Cake pore shrinkage rate due to adsorption range 0.1–1 used

ρb Additional constant resistance when pore becomes Unknown; value 2 used

blocked by a large particle

η ∆p/(4W
2D) Unknown; values in

Cake layer thickness growth rate range 0.1–2 used

κc 32/(πW 2KozS
2
cp) Unknown; value 1 used

Cake permeability coefficient

TABLE II: Dimensionless parameter definitions, and values used.

at later times as the pore radius shrinks near the inlet, further enhancing the deposition

there. The graphs of cm(x, t) and cc(x, t) demonstrate that for the chosen parameter set the

filter membrane initially captures more than 90% of small particles (by adsorption), with

this proportion increasing to nearly 100% at later times.

A common experimental characterization of membrane filtration performance is to plot a

graph of the flux through the membrane at any given time, q(t) =
∫ 1

0
u(x, t)dx, versus the

total volume of filtrate processed at that time (throughput v(t), defined by v(t) =
∫ t
0
q(t′)dt′);

filtration scenarios in which pore closure occurs at an internal point of the membrane. Such simulations,

however, represent cases that are far from optimal, hence we do not present them here.
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FIG. 2: Simulation for initially-cylindrical pore a(x, 0) = 0.904 with λm = 2, λc = 0.5, βm = 0.1, βc = 0.1,

ρb = 2, κc = 1 and η = 0.15. (a) Pore radius (black) and particle concentration (blue/red in

membrane/cake) at several different times up to the final blocking time (tf , indicated in the legend). (b)

Instantaneous flux through membrane (blue), and cake thickness (red) vs throughput. Green and black

dots correspond to t = 0.05tf and t = 0.1tf respectively.

the so-called flux–throughput graph for the membrane. We show this curve in Figure 2(b),

together with the dimensionless cake layer thickness versus throughput, with green and black

dots corresponding to two selected times (t = 0.05tf and t = 0.1tf respectively) from the

evolution shown in Figure 2(a). The first observation from Figure 2 is that, although in

principle the filter remains operational until dimensionless time tf = 93 (at which time the

flux falls to zero), in practice by time t = 0.05tf the flux it sustains has already fallen to

nearly 30% of its initial value, and by time t = 0.1tf , flux is only about 10% of the initial

value, making the filter extremely inefficient during the remaining 90-95% of its lifetime.

Thus, even though the cake layer thickness is less than 15% of the membrane thickness at

time t = 0.05tf , its presence already has a significant adverse effect on the filtration efficiency,

and the filter really should be discarded or cleaned by this time.

Furthermore, we see that the flux-throughput curve is initially concave in the early stages

of filtration t < 0.05tf , becoming convex for times 0.05tf < t < 0.1tf . This change in

curvature was observed in our previous work that accounted for adsorption and blocking

[35], and also by other authors (including experimentally) e.g. Giglia & Straeffer [13]. Here

19



0 0.5 1 1.5 2 2.5 3 3.5
Throughput, v(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fl
ux

, q
(t)

0

0.2

0.4

0.6

0.8

1

1.2

1.4

C
ak

e 
th

ic
kn

es
s

c=0.1, c=0.5, =0.15

c=0.1, c=0.5, =0.15

c=0.15, c=0.42, =0.27

c=0.15, c=0.42, =0.27

c=0.2, c=0.35, =0.42

c=0.2, c=0.35, =0.42

c=0.3, c=0.28, =0.78

c=0.3, c=0.28, =0.78

(a)
0 0.5 1 1.5 2

0.5

1

1.5

2

2.5

3

3.5

Th
ro

ug
hp

ut
, v

(t)

0

10

20

30

40

50

60

70

80

90

100

110

Fi
na

l t
im

e,
 t f

When q(t)=0 (t=t f)
When q(t)=0.1q(0)
When q(t)=0.2q(0)
tf

(b)

0 0.5 1 1.5 2 2.5 3 3.5
Throughput, v(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fl
ux

, q
(t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

C
ak

e 
th

ic
kn

es
s,

 i(
t)

02
Throughput, v(t)

0

0.5

Fl
ux

, q
(t)

0
0.2
0.4

C
ak

e 
th

ic
kn

es
s,

 i(
t)m=0.1, c=0.1

m=0.1, c=0.1

m=0.125, c=0.125

m=0.125, c=0.125

m=0.15, c=0.15

m=0.15, c=0.15

m=0.2, c=0.2

m=0.2, c=0.2

(c)
0 0.5 1 1.5 2 2.5 3 3.5

Throughput, v(t)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Fl
ux

, q
(t)

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

C
ak

e 
th

ic
kn

es
s,

 i(
t)

0 2
Throughput, v(t)

0

0.5

Fl
ux

, q
(t)

0

0.2

0.4

C
ak

e 
th

ic
kn

es
s,

 i(
t)

c=0.5, c=0.1

c=0.5, c=0.1

c=1, c=0.2

c=1, c=0.2

c=2, c=0.4

c=2, c=0.4

c=5, c=1

c=5, c=1

(d)

0 1 2 3 4 5

c

0

0.5

1

1.5

2

2.5

3

3.5

To
ta

l t
hr

ou
gh

pu
t, 

v(
t f), 

an
d

 to
ta

l d
ep

os
ite

d 
pa

rti
cl

e 
vo

lu
m

e

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

Fi
na

l c
ak

e 
th

ic
kn

es
s,

 i(
t f)Total throughput, v(t f)

Total deposited particle volume
Total deposited particle volume in the pore region
Total deposited particle volume in the cake region
Final cake thickness, i(tf)

(e)

FIG. 3: Simulations for initially uniform pore a(x, 0) = 0.904, with λm = 2, ρb = 2 and κc = 1: (a) Flux

(blue) and cake thickness (red) versus throughput with βm = 0.1, for several values of ∆p (effective

large-particle volume), simulated by varying βc, λc and η (see (30), (31) and (32)). (b) Throughput (blue)

and tf (red) versus η, corresponding to varying ∆p as in (a). (c,d) Flux (blue) and cake thickness (red)

versus throughput with η = 0.15 as key caking parameters are varied: (c) varying G (large particle

concentration) by varying βm and βc (see (24), (30)), with λc = 0.5; (d) varying Λc (attraction coefficient

between large and small particles within cake) by varying λc and βc (see (30), (31)), with βm = 0.1. Green

and black markers correspond to t = 0.05tf and t = 0.1tf respectively. (e) Total throughput v(tf), total

deposited particle volume and final cake thickness i(tf) versus λc (varying Λc) with parameters as in (d).
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however, we now see that in the later stages of filtration (t > 0.1tf), where the cake layer

plays a dominant role, there is a second change of curvature of the flux-throughput curve

to concave again, seen in Figure 2(b) as the flux falls to zero (as discussed also by Griffiths

et al. [15]). Again we emphasize that, although this regime of the filtration occupies 90%

of the simulation time, the flux remains very low throughout, and only a modest additional

throughput is achieved in this period.

It is of particular interest to study the model parameters that principally govern the cake

layer formation and its influence on membrane filter performance, since these have received

little theoretical attention to date. Again, we do this first for the membrane with initially

uniform permeability, in order to understand this case before considering depth-dependent

permeability in §V. Our model assumes that the cake is composed primarily of the large

particles in the feed solution, thus the dimensional parameters ∆p (the effective volume per

large particle in the cake layer) and G (concentration of large particles in the feed) will be

particularly important determinants of how fast the cake layer forms and grows. In order to

study the effects of changing these parameters, we note that ∆p appears in the definitions

of βc, λc and η; while changes in G affect both βm and βc. We also study the effect of the

cake fouling by varying the strength of attraction Λc between the small and large particles

(via changes in βc, λc), which governs adsorption within the cake layer.

Figure 3(a) illustrates the influence of changing the effective large-particle volume ∆p oc-

cupied by the particles in the cake layer, for the uniform initial pore profile a(x, 0) = 0.904.

As shown in Table II, variation of ∆p affects three dimensionless parameters simultaneously:

the dimensionless cake pore shrinkage rate, βc = 8µDΛc∆
2/3
p C0/(πP0W

4G); the dimension-

less attraction coefficient between small and large particles, λc = 32ΛcµD
2/(πP0W

2∆
1/3
p );

and the dimensionless cake growth coefficient η = ∆p/(4W
2D) all change with ∆p. Figure

3(a) shows results corresponding to four distinct values of ∆p. Flux (blue curves) and cake

thickness (red curves) are plotted against throughput for each of the four cases, which are

distinguished by line styles. The results show a marked decrease in total throughput as ∆p

increases (increasing βc, η; decreasing λc), in line with expectations: if the particles forming

the cake layer are larger then the cake layer grows faster, meaning that system resistance

increases sooner. The final cake layer thickness also increases with ∆p, as one would antic-
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ipate. As with the previous figure, green and black markers are included to indicate when

t = 0.05tf and t = 0.1tf , respectively, in each simulation. We placed these markers on the

cake thickness curves only, since these curves are well-separated; the corresponding marker

on the companion flux curve would be vertically aligned with that on the cake thickness

curve. Again these markers make clear that in many situations, the flux may drop to a low

value quite early in the simulation, indicating that the filter may be very inefficient for much

of the filtration. Perhaps surprisingly, this effect is less pronounced for the larger values

of ∆p, possibly because, although larger particles mean a thicker cake layer forms in the

same time period (when compared to a cake composed of smaller particles), the thicker layer

would also have a greater total void area. This could give rise to slower overall adsorptive

blocking within the cake, with the performance-limiting adsorptive fouling actually occurring

predominantly in the membrane.

To illustrate further the influence of the effective large-particle volume ∆p, Figure 3(b)

shows throughput versus the dimensionless cake growth coefficient η, assumed to change due

to variation of ∆p (as in Fig. 3(a), βc and λc are also assumed to change accordingly). Given

the above observation about flux dropping rapidly relative to the total simulation time tf ,

we plot three such throughput curves: total throughput v(tf) versus η; as well as v(t10) and

v(t20) versus η, where t10, t20 are defined by q(tj) = (j/100)q(0) (tj is the time at which flux

falls to j% of the initial value). The curves for v(t10) and v(t20) indicate that, particularly for

larger values of η, there are not highly significant throughput gains to be made by continuing

the filtration beyond time t20. Moreover, for those physically-relevant values of η < 1 where

gains may appear reasonable, we see that the corresponding total filtration times tf (plotted

on the right-hand axis, red curve) are large, meaning that one would have to wait a long

time to realize these potential additional gains in throughput.

As regards the trends with increasing η, note first that the total filtration time tf decreases

monotonically with η. This may be explained by the hypothesis advanced above: larger

η means a thicker cake forms quickly, but with a large total void area. The performance-

limiting adsorptive fouling then occurs within the membrane pores, meaning that pore closure

actually occurs on timescales closer to those of the cake-free model. A cake layer composed

of smaller particles gives rise to a thinner cake layer, but which fouls up more (spatially)
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uniformly. Flux then decreases to a trickle compared with the initial value, but due to the

spatial uniformity of fouling the final pore closure takes a long time to achieve, giving a large

tf . Throughput initially increases as the effective large-particle volume ∆p (or η) increases;

but beyond some critical value of η (η ≈ 0.3), total throughput decreases rapidly. The

validity of our model is likely restricted to the range 0.05 < η < 0.5, over which variations

in the outcome are not dramatic. It appears that a value around 0.3 could be desirable in

terms of efficiency.

Figure 3(c) shows how varying the concentration of large particles in the feed, G, af-

fects performance characteristics. Again, flux and cake layer thickness are plotted versus

throughput for four distinct values of G. According to Table II, both the dimensionless

cake pore shrinkage rate, βc = 8µDΛc∆
2/3
p C0/(πP0W

4G), and the membrane pore shrinkage

rate, βm = 8µDΛmαC0/(πP0W
5G), change inversely proportionally to G, as also does our

choice of timescale in (20), T = 8µD/(πP0W
4G)t. We therefore change the values of βc

and βm as well as rescaling time appropriately for each simulation. Our results demonstrate

that, as G increases (βc and βm decrease), both the total throughput and the final cake

thickness increase. With a higher concentration of large particles in the feed, the cake layer

forms faster and acts as a secondary filter, which can also undergo adsorptive fouling. This

continual creation of new “fresh” filter layer has the nonintuitive effect of prolonging the

lifetime of the underlying filter membrane, resulting in a longer time to total blocking. The

total throughput obtained over the entire duration of the filtration is increased, but takes

much longer to achieve. As in Fig. 3(a) we again add green and black dots corresponding to

t = 0.05tf , t = 0.1tf , respectively (though here we place them on the flux curves for greater

ease of distinction).

In figure 3(d), the influence of the dimensional attraction coefficient between small and

large particles in the cake, Λc, is illustrated for the uniform initial pore profile a(x, 0) = 0.904

(while other parameters are fixed as stated in the caption). According to Table II, the

dimensionless cake pore shrinkage rate βc = 8µDΛc∆
2/3
p C0/(πP0W

4G) and the dimension-

less particle-particle attraction coefficient λc = 32ΛcµD
2/(πP0W

2∆
1/3
p ) both depend on Λc,

therefore each must be changed proportional to Λc as it varies. Our results show that total

filtrate throughput initially increases slightly with Λc, but ultimately decreases rapidly for
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larger values of Λc. The initial slight increase in filtrate throughput with Λc is somewhat

puzzling, but the later decrease is as expected: larger values of Λc correspond to more rapid

fouling of the forming cake layer, with attendant faster increase in system resistance. Possi-

bly the initial increase in throughput with increasing Λc could be attributed to some tradeoff

between faster fouling within the cake layer, but slower fouling in the membrane filter itself,

with the net result that total system resistance in fact increases more slowly overall.

Figure 3(e) provides further context for this behavior. This figure shows the total through-

put v(tf), the total deposited particle volume, and the final cake thickness i(tf) versus λc

(corresponding to varying Λc) with the same parameters as in figure 3(d). The total de-

posited particle volume consists of two parts: the combined small and large particle volume

accumulated within the cake layer; and the small particles that have deposited in the pore’s

interior (see blue dotted and dashed-dotted curves in figure 3(e) respectively). These are

defined as
∫ 0

−I(Tf)
(2W )2(1−φc(X ′, Tf))dX ′ and

∫ D
0
π(A2(X ′, 0)−A2(X ′, Tf))dX

′ respectively

(with the obvious dimensionless analogs), where Tf is the dimensional final time. These def-

initions assume that the deposited particles in the pore are tightly packed with no void area

between them, while in the cake we simply use one minus its local porosity (see (15) and

(16)) to calculate the total particle volume. Again we see that the total throughput and the

final cake thickness both initially increase with Λc, but the trend reverses around λc = 1. In

addition, the total deposited particle volume in the cake follows the same behaviour, while

as λc increases, the total particle volume deposited in the pore decreases (as does the final

filtration time tf , not shown here). These results collectively illustrate the tradeoff between

slower fouling in the membrane filter and faster fouling within the cake layer.

V. OPTIMIZING FOR THE MEMBRANE PORE PROFILE

A question of interest to manufacturers is: what is the optimum permeability profile

as a function of depth through the membrane? For our model this question translates

to: what is the optimal shape of the filter pores? To answer this, we must first choose a

measure of filtration performance. The most appropriate measure will vary depending on the

user requirements, but for purposes of illustration, we consider the common experimental
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characterization of performance as the volume of filtrate collected over the filter lifetime (the

throughput). We consider two possible definitions of filter lifetime: tf , the time at which the

membrane is completely blocked and flux q(t) falls to zero; and t20, the time at which flux

falls to 20% of the initial value. Hence our perfomance measures are v(tf) =
∫ tf
0
q(t′)dt′, and

v(t20) =
∫ t20
0

q(t′)dt′, with larger values of either indicating superior performance.

The general optimization problem is very challenging, requiring consideration of pores of

all possible shapes, so we simplify by restricting attention to the class of membranes with

pores whose initial radius a(x, 0) is polynomial in the depth of the membrane x,

a(x, 0) = a0(x) =
n∑
i=0

bix
i. (44)

To make a meaningful comparison, we compare performance of membranes that are similar

in some quantifiable way. In our earlier work [35], we compared membranes with linear pore

profiles and with the same initial net resistance to flow, r(0), defined as

r(0) =

∫ 1

0

a−4(x, 0)dx. (45)

While tractable for the small class of linear pores, this approach becomes costly to implement

for the wider class of polynomial pore profiles. However, for quite a range of different pore

shapes and sizes, we have observed that membranes of the same initial net porosity, defined

as

φ̄m(0) =
π

4

∫ 1

0

a2(x, 0)dx, (46)

(the factor of 1/4 because, with our nondimensionalization, each pore is confined within

a box of area 4 units) have very nearly the same initial net resistance. (This appears to

be true to within about 10% for porosities φ̄m(0) ∈ (0.6, π/4), where π/4 represents the

maximum possible permeability for a circularly-cylindrical pore enclosed in a box of square

cross-section and touching the walls at four points.) We therefore compare filter membranes

with the same net initial void fraction or porosity φ̄m(0) = φ̄m0. As we shall see, this is an

easier problem.

We write the initial pore profile, which we suppose to be a polynomial of degree n, in

terms of an orthogonal basis. Let P̃n(x) be the nth Legendre polynomial, an nth degree
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polynomial defined on [−1, 1] that can be expressed via Rodrigues’ formula [1],

P̃n(x) =
1

2nn!

dn

dxn
[(x2 − 1)n]. (47)

The P̃n(x) also satisfy the recursive formula

(n+ 1)P̃n+1(x) = (2n+ 1)xP̃n(x)− nP̃n−1(x), where P̃0(x) = 1, P̃1(x) = x. (48)

An important property of the Legendre polynomials is that they are orthogonal with respect

to the L2 inner product on the interval [−1, 1],∫ 1

−1
P̃n(x)P̃m(x)dx =

2

2n+ 1
δmn. (49)

This property underlies the advantage of using porosity rather than resistance in order to

tackle the problem. The initial pore profile, a0(x) is defined on the interval [0, 1], so we use an

affine transformation to introduce the shifted Legendre polynomials as Pn(x) = P̃n(2x− 1),

which can be calculated either from (47) or (48). These shifted Legendre polynomials are

also orthogonal, with

〈Pi(x), Pj(x)〉L2 =

∫ 1

0

Pi(x)Pj(x)dx =
1

2i+ 1
δij, (50)

(this follows trivially from (49)). Next we write the initial pore profiles as

a0(x) =
n∑
i=0

biPi(x), where bi = (2i+ 1)

∫ 1

0

a0(x)Pi(x)dx, (51)

where Pi(x) is the ith degree shifted Legendre polynomial. Combining (46) and (50) gives

us the initial void fraction or porosity φ̄m0 = φ̄m(0) as

φ̄m0 =
π

4

n∑
i=0

b2i
2i+ 1

. (52)

These results can be used to optimize for pore profiles in the class of polynomials as follows:

for a chosen polynomial degree n and fixed value of the initial membrane porosity φ̄m0, we

sweep through the space of real coefficients bi for i ≥ 1 in small increments. For each set

{bi}ni=1 the lead coefficient b0 can be determined from the fixed initial porosity via (52).

Then, the filtration model is solved as discussed at the beginning of §IV and we compute the
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flow, fouling and the total throughput for each polynomial profile. The optimum is the one

that gives the maximum total throughput from the complete set considered (polynomials of

fixed degree and equal net porosity). This process ensures that an optimum profile is always

found.

A. Pore profile optimization study

In this subsection we briefly illustrate the implementation of the approach outlined above.

Figure 4 shows the results of the optimization, plotting maximum throughput (v(tf) or

v(t20)) obtained over all pores from the specified class, versus initial net membrane porosity

φ̄m0 = π/4
∫ 1

0
a(x, 0)2dx. We present results only for low-order polynomials (linear, quadratic

and cubic): our results indicate that in the intermediate porosity range, increasing the order

of the polynomial describing the pore shape from 1 (linear) to 2 (quadratic) can lead to a

reasonable increase (over 10%) in total throughput; but that further increases in order lead

to only negligible improvements, hinting (as expected) at convergence of performance to

some global optimum as the degree of the approximating polynomial is increased.4 As long

as the membrane contains material to which particles can adhere — always guaranteed with

our model assumptions of pores with circular cross-section, which ensures 0 < φ̄m0 ≤ π/4

— pore closure within finite time is guaranteed in all cases, and thus a global optimum has

to exist. We observe, furthermore, that when initial net porosity is small (close to zero) or

large (close to π/4) the performance is almost independent of the polynomial degree.

The shapes of the optimum initial pore profiles computed, and their corresponding flux-

throughput graphs, are shown in Figures 5(a) and (b) respectively, for selected initial net

porosities φ̄m0 = 0.2 and φ̄m0 = 0.4 (these values of φm0, which are small compared with

those for typical membrane filters, were chosen for illustration only, in order to distinguish

the graphs with relative ease: as the net porosity approaches the minumum and maximum

values, zero and π/4 respectively, the optimum results necessarily converge to those for

uniform cylindrical pores of zero and unit radius, respectively). We find that the optimal

4 Note that total throughput can only increase as the degree of the polynomial is increased, because a

polynomial of degree n is a special case of a polynomial of degree n+ 1.
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FIG. 4: Maximum throughput (at times tf and t20) versus initial net porosity φ̄m0 (defined in (46) or

(52)) for the optimum linear, quadratic and cubic initial pore profiles, with λm = 2, λc = 0.5, βm = 0.1,

βc = 0.1, ρb = 2, κc = 1 and η = 0.15.

pore shapes are the same (or at least, indistinguishable) regardless of whether we maximize

v(tf) or v(t20). Consistent with the observations of Figure 2(f), the optimal profiles in all six

cases are widest at the upstream membrane surface, and the overall optima found in both

cases φ̄m0 = 0.2 and φ̄m0 = 0.4 (the cubic profiles) are wider than both quadratic and linear

pore profiles at the upstream side. The flux-throughput graphs (Figure 5(b)) bear out the

observation made in Section V: that membranes with the same net porosity have similar net

resistance. This may be seen from the fact that the initial fluxes for pores with the same

net porosity are very similar (surprisingly so for the low porosity case φ̄m0 = 0.2).

As already observed, and implied by Figure 4, as the initial dimensionless net porosity

increases towards the hypothetical maximum value π/4 (pore of unit radius contained in a

square period-box of side length 2), the shape of the optimal initial pore profile converges

to the linear case. Since most membranes in widespread use are rather permeable, these

results suggest that (within the limitations of our modeling assumptions), optimizing only

within the restricted class of linear pore profiles should provide a reasonable guide to the

optimum permeability profile: consideration of a larger class of pore profiles yields only small
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FIG. 5: (a) Optimum pore profiles; and (b) flux versus throughput for optimum profiles, optimized over

the classes of linear, quadratic and cubic pore profiles. Results are shown for initial net membrane

porosities φ̄m0 = 0.2 and 0.4 (defined in (46)), with λm = 2, λc = 0.5, βm = 0.1, βc = 0.1, ρb = 2, κc = 1

and η = 0.15.

improvements.

Finally, figure 6 shows optimized results (based on maximizing the total throughput,

v(tf)) for linear and quadratic pores with initial net membrane porosity φ̄m0 = 0.4. Two

cases are distinguished here; (i) where the cake layer thickness and the membrane depth

are comparable, which we call caking dominated and (ii) where the cake layer thickness

is much less than the membrane thickness, termed caking negligible. These two scenarios

correspond to different values of the effective volume per large particle in the cake layer ∆p

(see figure 3(a), where the dotted curves represent the identified caking-dominated scenario,

while the solid curves represent negligible caking).

Our results (see figures 6(a) and 6(b)) show that there is a clear difference in the optimum

pore profile in these two cases, with a larger pore profile gradient (higher permeability

gradient in the depth of the membrane) proving advantageous when caking is negligible,

while more uniform membrane permeability is desirable in a caking-dominated scenario. If

one instead optimizes by maximizing v(t20) then the results for the pore profile do not change

appreciably in either regime.

Figure 6(c) shows the corresponding results for particle concentration in the filtrate,
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cm(1, t), for these optimum profiles, another key performance criterion. We observe that for

these simulations, separation efficiency is higher when caking is negligible (cm(1, t) is less

for this case than for the caking dominated scenario). This provides further evidence to

the conclusions drawn already, that significant caking is undesirable and should be avoided

where possible. We note that a more sophisticated optimization procedure would include

some acceptable particle removal threshold in addition to maximizing filtrate throughput.

This optimization would be more time-consuming, but not difficult, to carry out. In general,

a high particle removal requirement conflicts with a high-throughput requirement, and the

optimum membrane structure with a particle removal constraint added would represent the

best tradeoff between maximizing throughput while obtaining a sufficiently clean filtrate.

VI. CONCLUSIONS

We have proposed a novel model for the formation and growth of a cake layer on the

upstream side of a planar membrane filter in dead-end filtration. This fouling cake layer

may form simultaneously with other fouling modes: pore blocking (sieving) by large particles,

which acts to increase the resistance of the blocked pore; and adsorption of small particles

within pores, which increases pore resistance by shrinking the pore diameter (see [35]). It

is the large pore-blocking particles that are assumed to form the growing cake layer, with

the smaller particles that lead to adsorptive fouling settling in the cake interstices, as well

as in the membrane pores. A key motivation for our work is to derive a model capable

of describing a wide range of different filtration scenarios. As such, though our model can

simulate scenarios in which all fouling mechanisms are operating simultaneously, it can also

just as easily describe situations where there is only one fouling mechanism, or any 2 of the

3 included. In this context we note the results of Duclos-Orsello et al. [7], who find that

even for datasets where a single filtration mode is dominant, three fouling mechanisms are

in fact in operation, and a good model is capable of distinguishing, from flux-throughput

data, which modes are operational at which stages of filtration.

Since the model incorporates three distinct fouling modes it necessarily contains a number

of parameters. To keep the investigation manageable, the effects of just a few, most relevant
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FIG. 6: (a) Optimum pore profiles based on maximizing v(tf), (b) corresponding flux-throughput graphs,

and (c) particle concentration at the membrane outlet cm(1, t), versus throughput over the classes of linear

and quadratic initial pore profiles respectively, with initial net membrane porosities φ̄m0 = 0.4, for caking

dominated and negligible scenarios (corresponding to the dotted and solid curves in figure 3(a),

respectively).

to the caking, are investigated: ∆p, the effective large-particle volume; G, the concentration

of large particles in the feed; and Λc, the dimensional attraction coefficient between large

and small particles within the cake (which governs how fast the permeability of the caking

layer changes). The effects of varying these parameters are probed by varying the associ-

ated dimensionless parameters. Other model parameters are held fixed in our investigations,

with (we believe plausible) values, summarized in Tables I and II. Thus, our results as pre-
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sented are intended to be illustrative of our model’s capability to provide useful information,

given reliable parameter estimates; they are not necessarily representative of any particular

experiment.

Our model allows us to simulate a filtration until the time at which pores are completely

blocked and the flux through the membrane falls to zero. Though in principle this blockage

could occur anywhere within the membrane-cake structure, our results indicate that pore

closure typically occurs first at the upstream membrane surface, which means that the ad-

sorptive fouling is greatest at the membrane pore inlet. This effect becomes self-reinforcing

at later times as the pore radius shrinks near the inlet, further enhancing the deposition

there. We could, by suitable choice of parameters, present simulations in which pore closure

occurs at an internal point, but such simulations would in general be non-optimal, with poor

filter lifetime.

We also observe that cake formation actually prolongs the lifetime of a filter, in the sense

that the time to total blocking is longer relative to the model with no caking. However,

the price for this extended lifetime is extreme inefficiency: the flux through the filter drops

quickly and filtration is very slow, even for scenarios where the cake layer thickness is much

less than the membrane thickness. Our results also show that as we increase either of the

key parameters ∆p and G, the cake layer growth-rate increases, as does its final thickness.

In the former scenario, a critical value of ∆p is identified, which yields a maximal total

filtrate throughput over the filter lifetime (see Fig. 3(b)), while in the latter case the total

throughput always decreases as G increases.

Finally, we illustrate how membrane pore structure can be optimized with respect to

simple performance criteria, for a range of initial net membrane porosities and operating

conditions. Considering the initial pore profile to be a polynomial function in the depth of

the membrane x, it is found that low-order polynomials are sufficient to give a membrane

with near-optimal performance; and that for high-porosity membranes of the type often used

in applications, a linear pore profile should suffice. Our results also show that for scenarios

in which the cake layer thickness remains small compared to the membrane thickness (caking

negligible), the optimal membrane has a higher permeability gradient (with pores larger on

the membrane’s upstream side), relative to that for a scenario where caking dominates (with
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cake layer thickness comparable to the membrane thickness).
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