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Abstract

Direct numerical simulations (DNS) of two superposed fluids in a turbulent channel flow with

a textured surface made of pinnacles of random height have been performed at Reτ ≈ 180 and

Reτ ≈ 395. The texture reproduces an etched sand blasted aluminum. The viscosity ratio between

the two fluids is either m = 0.02, mimicking the viscosity ratio of a super-hydrophobic surface (water

over air), or m = 0.40 (water over heptane) resembling a liquid infused surface. A parametric study

has been carried out varying the position of the interface between the two fluids to assess the

contribution to the drag of the portion of the texture emerging above the interface and provide

guidelines for design. Simulations with a deformable interface, at Weber numbers We+ ≈ 10−2

and 10−3 have been performed. Results have been compared to those obtained assuming the ideal

case of a flat interface which is slippery in the streamwise and spanwise direction, (corresponding

to a Weber number We = 0). The time averaged position of the interface has been correlated

to the pressure pressure field induced by the random height pinnacles while, the instantaneous

deformation is due to the passage of the near wall coherent structures. We attempted to reconcile

the effect of SHS and LIS on the coherent structures by calculating how the shear rate parameter

depends on the amount of drag reduction.

∗ stefano.leonardi@utdallas.edu
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I. INTRODUCTION

While a number of different mechanisms have been proposed over the years for turbulent

drag reduction, super-hydrophobic (SHSs) and liquid infused surfaces (LISs) have recently

shown potential to reduce the drag significantly [1–3]. SHS consists of a textured surface

(commonly micro-ridges or micro-posts) with a thin film hydrophobic coating that incre-

ments the motion of water drops by reducing their contact-angle hysteresis. The physical

principle is to reduce skin-friction drag by sustaining a shear-free air-water interface over

which water can slip. A valid alternative to the use of SHSs is represented by liquid infused

or impregnated surfaces that are conceptually similar, except for the infusion of a second

liquid that replaces the air pockets in the surface features. These surfaces take advantage

of the greater robustness of the liquid-liquid interface and they are known to be self-healing

with exceptional liquid- and ice-repellency and pressure stability [4].

An economical viable technique to produce SHSs and LISs is through spray coating or

sandblasting with etching. The resulting textured surfaces have a random distribution of

concave valleys and asperities [5–7]. It has been shown that such textures can sustain

drag reduction under turbulent flows [8]. However, experiments have also underlined the

importance of the surface roughness with respect to the viscous sublayer. The substrate

can be thought as a rough wall and the roughness scale plays a crucial role in determining

the amount of drag reduction. As the Reynolds number increases there is a loss of drag

reduction performance if the surface roughness is not sufficiently small [6].

It has been demonstrated extensively that when the lubricant is lost and the substrate

transitions from Cassie state to Wenzel state, the texture behaves as a rough surface, actually

increasing the drag on the flow [5]. The drag reduction performance and stability of random-

texture in SHSs has been studied numerically by Seo and Mani [9]. The texture was modeled

as a boundary condition with alternating regions of no-slip and free-slip, similar to previous

numerical studies [1, 10, 11]. Micro-posts (no-slip regions) randomly placed have been

compared with aligned patterns. The deformation of the interface was estimated from the

solution of the Young-Laplace equation using the average pressure field obtained with flat

interface. This approach was already used in Seo et al. [11] and a linearized version coupled

2



to the overlying turbulent flow in Seo et al. [12]. Their results showed that for random

posts, pressure fluctuations are higher thus the interface is considered less stable than that

relative to aligned pattern texture. The effect of the texture and surface tension on SHS

and LIS was also studied by Garćıa-Cartagena et al. [13] for an array of staggered cubes.

The dynamics of the interface was found to have a detrimental effect on the drag reduction

performance depending on geometrical parameters of the textured surface and on the Weber

number. In both Seo and Mani [9] and Garćıa-Cartagena et al. [13] the cubes and pillars have

a uniform height. However, there is interest in non–uniform textures with randomly placed

pinnacles because they are more effective maintaining the lubricant layer in the substrate

than microridges or microposts as shown by Kim and Rothstein [14].

In the present paper we consider the case of an etched sand blasted aluminum substrate

with a non uniform height distribution of the pillars. Alamé and Mahesh [15] have recently

performed DNS of a laminar Couette flow and a turbulent flow with a flat interface for

the same texture using a volume of fluids approach. Here we expand on their work by

considering a deformable interface fully coupled to the Navier-Stokes equations. We carried

out DNS at different Weber and Reynolds numbers for two viscosity ratios between the two

fluids to mimic both SHS and LIS. We assess the influence of Reynolds and Weber numbers

and viscosity ratio on the slip velocity and on the velocity profiles in Sect. III. In Sect.

IV we discuss how the random distribution of the pinnacles affects the pressure field and

the deformation of the interface and we attempt to correlate it with the distance from the

asperities. In addition, we attempt to quantify the detrimental effect the portion of the

texture emerging above the interface has on the drag (Sect. V) to provide guidelines in

the design of the texture. How SHS and LIS affect the coherent structures and turbulent

intensities is presented in Sect. VI and VII.

II. NUMERICAL METHOD AND GEOMETRICAL CONFIGURATION

The non-dimensional Navier-Stokes equations for two fluid flows can be written as

∂Ui
∂t

+ ∂UiUj
∂xj

= −∂P
∂xi

+ 1

Re

∂

∂xj
[µ̃(Φ)2Sij] +Πδi1 +

1

We
κniδ(Φ) (1)

∂Ui
∂xi

= 0 (2)
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where Ui are the velocity components (U1 = U , U2 = V , U3 = W are the streamwise, wall–

normal and spanwise velocity respectively), P the pressure, Re = ρUbH/µ2 the Reynolds

number, Ub is the bulk velocity, H is the half height of the channel, Sij is the strain rate

tensor, Π the pressure gradient required to maintain a constant flow rate, We = ρHU2
b /σ the

Weber number, σ interface tension, κ the curvature of the interface and ni the unit normal

along the interface. A signed distance function from the interface Φ is used to mark the two

fluids. The interface is implicitly defined by the zero level Φ = 0 iso-surface of this function.

The level set method [16] is used to track the motion of the interface between the two fluids.

This is done by solving the transport equation:

∂Φ

∂t
+ ∂(UiΦ)

∂xi
= 0, (3)

written in conservative form. The discontinuity in the viscosity of the two fluids is defined

with the parameter µ̃(Φ) = m + (1 −m)Hε(Φ) where m = µ1/µ2 is the viscosity ratio (1

and 2 being the fluid in the substrate and in the main stream respectively) and Hε the

Heaviside function. The effect of surface tension is added in the equation (1) as body force

using the continuous surface force (CSF) method with the use of a mollified delta function

δε(Φ) = dHε/dΦ. The interface is considered with finite thickness ε for numerical stability.

The Navier-Stokes equations are solved with a second-order finite difference scheme,

third order Runge-Kutta algorithm for the time stepping combined with the fractional–

step method [17]. The level set equation is solved using conservative weighted essentially

non-oscillatory (WENO) reconstruction [18] along with a re-initialization method [19] to

guarantee mass conservation. The PROST method [20] is used to determine accurately the

interface curvature (last term in Eq.1). The interface is assumed to be pinned at the sub-

strate. Because at the substrate the velocity is zero, the level set function does not change

in time and the interface remains pinned. The flow inside the valleys is driven mostly by the

shear transferred from the overlying flow but also by the external forcing Π (Eq.1) which

maintains the flow rate constant. See [21] for the momentum balance in the valley. Direct

numerical simulations of two superposed fluids in a turbulent channel with a textured surface

made of pillars of random height (Fig. 1) have been carried out. The substrate reproduces

the etched sand blasted aluminum (SB-AL) of Pillutla et al. [22], and it is modelled by means

of the immersed boundary method [23]. The mean height of the surface is hmean = 0.027H

and its root mean square (rms) is hrms = 0.0055H. The viscosity ratio between the two
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FIG. 1. (a) Sketch of the surface and definitions of k, kmax, and h. (b) A portion of the compu-

tational domain showing the substrate, the interface between the two fluids and the definition of

H.

fluids is either m = µ1/µ2 = 0.02 or 0.4 modeling to some approximation the viscosity ratio

of water over air (as in SHS) and heptane (as in LIS), respectively. In the present paper,

the density of the two fluids is assumed to be the same (ρ1/ρ2 = 1) to focus on the effect of

the viscosity ratio on the flow.

The computational domain is 7.72H × 2.05H × 2.89H in the streamwise, wall-normal and

spanwise direction respectively. The origin in the vertical direction is set on the bottom

valley as shown in Fig.1a. The extra 0.05H in the wall-normal direction accounts for the

bottom layer with the rough substrate. Periodic conditions are applied in the streamwise and

spanwise directions. To conform with this condition, the substrate was tiled with mirroring

and appropriate scaling in order to achieve periodicity in these directions, similar to the

approach of Thakkar et al. [24]. The grid is 1024× 384× 384 in the streamwise, wall-normal

and spanwise directions, with uniform grid spacing in horizontal directions and stretching

in the wall-normal direction.

Two sets of simulations have been performed at Re = 2,800 and 6,900. Three Weber

numbers have been considered: We = 0 which mimics the ideal case of a flat and slippery

interface, and the more realistic cases of We = 40 and 400 (corresponding approximately to

TABLE I. Area fraction and volume fraction as a function of interface position

k/kmax 0 0.2 0.4 0.6 0.8 1

AF 0 0.0029 0.0913 0.6805 0.9934 1

V F 0 0.0008 0.0170 0.1366 0.3328 0.4660
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We+ ≃ 10−3 and 10−2 respectively) allowing the interface between the two fluids to deform.

For the case ofWe = 0, six cases were considered varying the distance in the vertical direction

of the interface from the bottom of the substrate: k/kmax = 0,0.2,0.4,0.6,0.8,1, where the

limiting cases of k/kmax = 0 and 1 represent a rough wall with only one fluid and the ideal

TABLE II. Summary of simulation parameters and representative results

⟨k⟩/kmax m Re We Reτ We+ Ca DR

0.00 - 2800 - 179.24 - - -0.023

0.20 0.02 2800 0 178.43 0 0 -0.013

0.40 0.02 2800 0 179.43 0 0 -0.025

0.60 0.02 2800 0 174.74 0 0 0.028

0.80 0.02 2800 0 112.68 0 0 0.596

1.00 0.02 2800 0 97.25 0 0 0.699

0.20 0.4 2800 0 179.11 0 0 -0.021

0.40 0.4 2800 0 177.27 0 0 0.000

0.60 0.4 2800 0 176.45 0 0 0.009

0.80 0.4 2800 0 162.74 0 0 0.157

1.00 0.4 2800 0 141.61 0 0 0.362

0.00 - 6900 - 402.53 - - -0.067

0.20 0.02 6900 0 401.12 0 0 -0.059

0.40 0.02 6900 0 402.46 0 0 -0.067

0.60 0.02 6900 0 383.86 0 0 0.030

0.80 0.02 6900 0 238.37 0 0 0.626

1.00 0.02 6900 0 201.69 0 0 0.732

0.20 0.4 6900 0 401.02 0 0 -0.059

0.40 0.4 6900 0 401.58 0 0 -0.062

0.60 0.4 6900 0 392.36 0 0 -0.014

0.80 0.4 6900 0 329.69 0 0 0.284

1.00 0.4 6900 0 271.23 0 0 0.516

0.75 0.02 2800 40 146.25 7.46 × 10−4 4.71 × 10−3 0.319

0.77 0.4 2800 40 168.81 8.61 × 10−4 1.88 × 10−3 0.093

0.59 0.02 6900 40 396.60 3.33 × 10−4 2.25 × 10−4 -0.039

0.60 0.4 6900 40 398.79 3.35 × 10−4 1.38 × 10−4 -0.047

0.64 0.02 2800 400 175.16 8.94 × 10−3 9.49 × 10−3 0.023

0.65 0.4 2800 400 177.39 9.05 × 10−3 7.11 × 10−3 -0.002

0.59 0.02 6900 400 401.15 3.37 × 10−4 2.87 × 10−3 -0.049

0.60 0.4 6900 400 400.75 3.36 × 10−4 1.43 × 10−3 -0.057
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case of a substrate entirely in the Cassie state with area fraction AF = 1 respectively (table

I). The area fraction (AF) is defined as the ratio between the liquid lubricant interface area

and the total horizontal area of the substrate (AF = Alubricant/Atotal), and listed in table

I for all the interface positions. The definition of area fraction is reported as reference in

addition to the more meaningful volume fraction because in most numerical studies, the

volume below the interface is not considered. Details of the numerical simulations, such as

the turbulent Reynolds number Reτ = uτH/ν, capillary numbers defined as We+ = µ2uτ/σ
and Ca = µ2U slip/σ and the amount of drag reduction DR = (τ0 − τw)/τ0 (U slip is the slip

velocity, uτ =
√
τw/ρ2 is the friction velocity, τw is the total shear stress on the substrate, τ0

the shear stress of a smooth wall with the same Reynolds number) are summarised in Table

II.

III. VELOCITY STATISTICS

Mean velocity profiles in wall units are shown in Fig. 2. The angular brackets indicate

averages in time while an overbar denotes averages in time and in the horizontal directions

excluding points inside the roughness. A plus indicates normalization by either uτ or ν/uτ
for velocities and distances respectively. Experimental results obtained over etched sand

blasted aluminum [26] SHS and smooth wall data from Moser et al. [25] are also included

as reference. The origin in the vertical direction for rough wall is usually set between the

bottom of the texture and the crests such that the slope of the log-region is κ = 0.41 [27].

Different choices of the vertical origin provide a slightly different slope of the log-region. For

example, Leonardi et al. [28] showed that setting the origin at the centroid of the moments

(as suggested by Jackson [29]) provides a slope which varies between κ ≃ 0.33−0.47. Similarly,

it is somewhat arbitrary the choice of a vertical origin in SHS-LIS. However, since in the

present paper the focus is on the detrimental effect of the asperities on the reduction of drag,

and on the comparison between different textures, we set for all cases the origin at the mean

height of the substrate, hmean = 0.54kmax. Because the size of the substrate here is about 10

and 20 wall units for Reτ ≃ 180 and 395 respectively, the uncertainty in the position of the

origin is between 5 and 10 wall units and does not affect the trends and general conclusions

discussed in the following sections.

For the ideal case of slippery interface (We = 0), the log-region is shifted upward with
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FIG. 2. Mean velocity profiles in wall units for m = 0.02 (a,c) and m = 0.4 (b,d) at Reτ = 180 (a,b),

and at Reτ ≈ 395 (c,d) (the Reτ of each case is provided in Table II) for We = 0: k/kmax = 0 ( ),

k/kmax = 0.2 ( ), k/kmax = 0.4 ( ), k/kmax = 0.6 ( ), k/kmax = 0.8 ( ), k/kmax = 1 ( ); for

We+ ≈ 10−3: k/kmax = 0.755 ( ) and for We+ ≈ 10−2: k/kmax = 0.637 ( ). Velocity profiles of a

smooth channel flow with the corresponding Reτ from Moser et al. [25] (◯) and over SHS etched

sand blasted aluminum (SB-AL) at Reτ ≈ 700 from Ling et al. [26] (◻) are included as reference.

The interface position is indicated with (●). For the cases k/kmax < 0.6 the interface is not shown

in the figure because is below (y − hmean)
+
= 0.1.

respect to the smooth wall data when the position of the interface is k/kmax ≃ 0.8 − 1. This

is due to a reduced wall shear stress and to a slip velocity (circle symbols in the figure) at

the interface between the two fluids. As expected, idealised SHS present a slip velocity

larger than that over a LIS at the same Reynolds number and with the same position of the

interface. For the SHS, the slip velocity is in the range U
+

slip = 15− 20 while for LIS is about

U
+

slip = 4 − 12. When the interface is placed at k/kmax ≃ 0.6 and We = 0, the mean velocity
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profile agrees well with that of a smooth channel for both viscosity ratios and Reynolds

numbers. If the interface is placed further downward, k/kmax < 0.6, the log-region is slightly

shifted downward with respect to the smooth wall, similarly to the flow over rough surfaces

in the hydro-dynamically smooth regime. This downward shift is more noticeable for the

case of LIS with Reτ ≈ 395. Two cases with deformable interface were also simulated

and included in Fig. 2, We+ ≈ 10−3 and 10−2. The simulations were initialized with the

last velocity field obtained at We = 0 and k/kmax = 0.8. After a transient, the interface

oscillates around a new position of equilibrium (shown in Sect. IV) ranging between

0.6 ≤ k/kmax ≤ 0.76 depending on the Reynolds number and viscosity ratio of the two fluids

(the overbar indicates the time and space averaged distance between the interface and the

bottom wall). The velocity profiles relative to We+ ≈ 10−2 overlap closely to that relative

to the smooth wall, while the velocity profiles for We+ ≈ 10−3 are shifted upward, although

much less than those for We = 0. Although the asperities are relatively similar to the

case with flat interface (We = 0) with k/kmax = 0.8, the upward shift is significantly reduced

because the friction velocity is larger when the interface can deform. As discussed in [21],

this is due to the larger momentum transfer inside the texture induced by wall normal

velocity fluctuations at the interface which instead for We = 0 are zero. Among the cases

with a deformable interface, the configuration with Reτ ≈ 180, m = 0.02 and We+ = 10−3,

corresponding to k/kmax = 0.76, shows the highest upward displacement with respect to the

smooth wall.

For We = 0 the upward shift of the log-region increases with the Reynolds number. This

is also true for LIS with deformable interface and We = 10−3 while the opposite occurs for

SHS. For SHS with We = 10−3, at Re = 2,800 the log–region is shifted upward with respect

to that of the smooth wall, whereas at Re = 6,900 (Reτ ≃ 395), the velocity profile overlaps

to that relative to the smooth wall.

The substrate in the present simulations mimics that in the experiments performed by

Ling et al. [26] and Ling et al. [7], however, the position of the interface was not measured

experimentally and a direct comparison is not possible. In addition, the Reynolds number

of the experiment was larger than that in the present simulations. Since results in literature

indicate that the amount of drag reduction increases with the Reynolds number and with the

gas fraction, we can speculate that the time average position of the interface was somewhere

between k/kmax = 0.64 and k/kmax = 0.76.
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FIG. 3. Slip velocity in wall units as a function of the mean interface position: m = 0.02 (SHS)

(◯); m = 0.4 (LIS) (◻); empty symbols Reτ ≈ 180, filled symbols Reτ ≈ 395; red represents We = 0,

green We+ ≈ 10−2 and blue We+ ≈ 10−3.

Figure 3 shows the slip velocity in wall units for both m = 0.02 and 0.4, mimicking the

viscosity ratio of SHS and LIS respectively, for different Reynolds and Weber numbers. In

case of We ≠ 0 it is computed at the location of the time and space averaged interface

position k (note that for We = 0, k = k because the interface does not deform). The slip

velocity increases by increasing k/kmax, corresponding to a higher interface position and

then to a higher gas fraction and less asperities above the interface itself. The slip velocity

is larger for m = 0.02 (SHS) than for m = 0.4 (LIS) as a result of the lower shear at the

wall. For a given viscosity ratio, it also increases with the Reynolds number as already noted

in literature. When the interface deforms as a consequence of We ≠ 0, the slip velocity is

much lower than the corresponding case at same k/kmax and Re number. Remarkable is the

reduction of slip velocity for k/kmax ≃ 0.8 between the ideal case of We = 0 and the more

realistic case with We+ ≈ 10−3.

IV. MEAN PRESSURE FIELD AND INTERFACE DEFORMATION

The pressure field on the interface between the two fluids is shown in Fig.4 for We = 0

and We = 40 (We+ ≃ 10−3). The windward face of the asperities presents high pressure
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FIG. 4. Color contours of time averaged pressure: (a-d) Re = 2800, m = 0.02 (SHS) and We = 0,

(e-g) Re = 2800, We = 40, k/kmax = 0.75. For We = 0, two interface positions are shown: (a,b)

k/kmax = 0.6 and (c,d) k/kmax = 0.8. Vertical sections are shown at z/H = 0.56 (b,d) for We = 0,

and z/H = .56 and 1.25 (f,g) for We = 40.

while low pressure is observed on the leeward side. The closer is the interface to the higher

peaks (k/kmax ≃ 0.8 as in Fig. 4c-d), the larger is the slip velocity and as a consequence

the difference between the pressure around the asperities and the surrounding flow. For

k/kmax ≃ 0.8, strong localized pressure gradient occurs near the peaks of the substrate. On

the other hand, for k/kmax ≃ 0.6 a larger portion of the texture emerges out of the interface

with an overall larger pressure disturbance to the overlying flow.

A slight deformation of the interface, as that relative to We+ = 10−3 (Fig. 4e,f,g), is

such that a small portion of the substrate becomes wet and as a consequence, the pressure

inhomogeneity increases and penetrates more into the mean stream.

These localized pressure gradients deform the interface (Fig. 5). The viscosity ratio
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FIG. 5. Color contours of time averaged interface position ⟨k⟩/kmax for Re = 2800: a,b) m = 0.02

(SHS), c,d) m = 0.40 (LIS), a,c) We = 400, b,d) We = 40.

does not affect much the time-averaged position of the interface, which for SHS and LIS is

qualitatively the same. In our previous studies, [13] with constant height cubes, uniformly

distributed in x and z, the deformation of the interface for idealised SHS was significantly

larger than that over LIS. However, for the present texture the pressure at the asperities

seems to dominate and as a consequence the differences between SHS and LIS are much

smaller. It must also be noticed that because the simulations were performed at constant

flow rate, the Reτ for m = 0.02 (SHS) is much smaller than that for m = 0.4 (LIS) as reported

in Table 2.

To an increase of the Reynolds number corresponds a downward displacement of the

interface between the two fluids. Hence, more asperities emerge above the interface thus

reducing the pitch between them and the width of the valleys. As shown in Fig. 4, when

the interface is pinned at the higher peaks, (i.e. Fig. 4f x/H ≃ 1.1), the pressure is larger

below the interface which is therefore lifted upward with a negative concavity. The opposite

occurs when asperities emerge out of the interface. The stagnation pressure on the pinnacle
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FIG. 6. Maximum and minimum time–averaged displacement with respect to the closest asperity

as a function of the equivalent width of the valleys: a,b) Re = 2800, c,d) Re = 6900; a,c) We = 400,

b,d) We = 40;◯ m = 0.02 (SHS) and ◻ m = 0.4 (LIS).

induces a downward deformation of the interface (i.e. Fig. 4g x/H ≃ 0.8 ). Therefore,

to a good approximation, the interface is displaced downward, (blue contours in Fig. 5)

where there are large concave valleys (distance from asperities is large in every direction)

and it is lifted upward where the peaks of the substrate are closer. To quantify this, we

identified the local maximum and minimum of the displacement dmax = max[∣⟨Φ(x, k, z)⟩∣]−
d0, dmin = min[∣⟨Φ(x, k, z)⟩∣] − d0, with d0 being the position of the interface at the closest

asperity. The values of dmax and dmin provide a measure of the waviness of the time-averaged

interface. Since the pinnacles have a random distribution, an equivalent width of the valleys

was calculated as the distance r between the point where dmax or dmin are taken and the

closest asperity. It must be acknowledged that to the same r may correspond valleys of
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different aspect ratios, partially or completely bounded by asperities. However, despite

this uncertainty in measuring an equivalent size of the valleys, there is a good correlation

between the deformation and r as shown in Fig. 6. The deformation of the interface

increases almost linearly with the ”equivalent” width of the valley r. The slope increases

by increasing either the Weber or Reynolds numbers. In fact, an increase of the Weber

number implies a reduced surface tension which opposes the interface deformation. On the

other hand, pressure fluctuations increase with the Reynolds number inducing an increased

displacement. At Reτ ≃ 180 and We = 40 (We+ ≃ 10−3) the maximum displacement in

correspondence of the largest valleys is about 0.1kmax. The equivalent radius of the largest

valleys is of the order of 0.25H, about 5 times the thickness of the texture. The size of the

valleys and the maximum displacement in wall units, at this Reynolds number are about

r+ ≃ 40 and d+max ≃ 1.5. However, at larger Reynolds numbers or Weber numbers, the

waviness is quite large, especially compared to uniform textures studied in the past. The

displacement of the interface with respect to the mean is of the order of 20 − 30% of the

maximum height of the substrate. For example for Re = 6,900 and We = 400, the maximum

displacement is about 10 wall units in correspondence of valleys of r+ ≃ 25 − 30. As shown

in Fig. 6 and already inferred qualitatively from Fig.5, the equivalent width of the valleys

reduces by increasing the Reynolds number and Weber numbers. In addition, negative

displacements (meaning an upward deformation of the interface) are limited to small values

of r, hence to small valleys. From the color contours of pressure, in fact, it was observed

that near the asperities the interface is tilted upward because of a larger pressure in the

valleys.

V. DRAG REDUCTION

The slip length b, the distance where the velocity would be zero by linearly extrapolating

the velocity gradient at the interface, b = U slip/(∂U/∂y)∣y=k, has been used to characterize

the drag reduction [30, 31]. Rastegari and Akhavan [10] developed a correlation between

DR and slip length

DR = b+0///[[[b+0 + (((Re///Reτ0)))]]]+O(ε) . (4)

A subscript or superscript with a ”0” denotes normalization using the friction velocity of the

smooth wall at the same Reynolds number. Numerical results agree well with the analytical
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Reτ = 180 and ( ) with Reτ = 395 from Rastegari and Akhavan [10]; red color represent We = 0,

green We+ ≈ 10−2 and blue We+ ≈ 10−3.

expression DR = b+0/[b+0+(Re/Reτ0)] (equation 4 with ε = 0) as shown in Fig.7 for different

Reynolds numbers, viscosity ratios (mimicking that over SHS and LIS) and Weber number.

The agreement is even better than that in our previous study with a uniform array of cubes

[13], implying that ε, which accounts for the secondary motion, for the present case is much

smaller. For We ≃ 10−2 and small values of slip length, the amount of drag reduction is

over-predicted by the model; in fact, in these cases the drag is slightly larger than that over

a flat wall (DR < 0). On the other hand, for We = 10−3 and k/kmax = 0.75 the slip length is

b+0 ≃ 10 and numerical results agree very well with the model. This is mainly because the

total drag is dominated by the viscous part and, in addition, asperities increase the drag,

but also reduce the slip length by the induced pressure gradient near it, consistently with

the model of Rastegari and Akhavan [10].

Drag reduction as a function of the position of the interface is shown in Fig. 8(a) for both

viscosity ratios m = 0.02 (SHS) and m = 0.4 (LIS), Reτ ≈ 180 and 395 at different Weber

numbers. The amount of drag reduction increases by increasing the Reynolds number and

by reducing the viscosity ratio of the two fluids only when We = 0 (Fig. 8a). The drag
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FIG. 8. Drag reduction as a function of the mean interface position, k, (a) and as a function of the

area fraction (b): m = 0.02 (SHS) (◯); m = 0.4 (LIS) (◻); empty symbols Reτ ≈ 180, filled symbols

Reτ ≈ 395; red We = 0, green We+ ≈ 10−2 and blue We+ ≈ 10−3.

reduction is largest when the interface is on the highest point of the surface k/kmax = 1 for

both surfaces and Reynolds numbers. This corresponds to the ideal case of area fraction

AF = 1, as shown in Fig.8(b) (where the area fraction is the ratio between the fluid and

total surface of the interface). The area fraction for k/kmax = 0.8 is AF = 0.99 (see table

I). To such a minor change in area fraction corresponds a drop in the amount of drag

reduction of about 10% and 20% for SHS and LIS respectively. This is unexpected from

classical studies of SHS-LIS and cannot depend on the small shrinkage of the region where

the shear is reduced but rather on resistance caused by the asperities emerging above the

interface. In fact, when the position of the interface is below the crests, the amount of drag

reduction decreases because part of the substrate becomes wet (as in the sketch in Fig. 1).

This could not be assessed in most of previous numerical studies where the texture is not

resolved or the crests are at the same height [10, 11, 21, 32]. For k/kmax > 0.8 the amount

of drag reduction is substantial, about 70% for SHS and 45% for LIS for the ideal case of

slippery and flat interface (We = 0).

The cases with deformable interface (We+ ≈ 10−3) present an amount of drag reduction

smaller than that obtained with a flat interface (We = 0) despite approximately the same

area fraction and position of the interface (k/kmax ≃ 0.75). For k/kmax ≤ 0.6, the drag is very

close to the value of the smooth wall both in the ideal case of slippery flat interface (We = 0)

and the more realistic case of deformable interface (We ≠ 0). The corresponding area
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FIG. 9. Form drag (a) and its contribution with respect to the total shear at the wall (b) as

function of the position of the interface: m = 0.02 (SHS) (◯); m = 0.4 (LIS) (◻); empty symbols

Reτ ≈ 180, filled symbols Reτ ≈ 395; red We = 0, green We+ ≈ 10−2 and blue We+ ≈ 10−3.

fraction is about AF ≃ 0.7 and, from previous studies in literature [1, 33], one would expect

a substantial amount of drag reduction. This is not the case here because the form drag due

to the asperities above the interface overcomes the reduction of the viscous shear. The form

drag is the sum of two contributions, the pressure drag of the asperities above the interface

and that of the valleys below the interface. By integrating the momentum equations, it can

be shown that the form drag in the valleys below the interface is proportional to the total

shear stress at the interface (the frictional drag on the bottom wall being negligible) [21].

When the interface is pinned at the highest peaks of the substrate (k = kmax), the form drag

is entirely due to the valleys below it. Because for this configuration (AF = 1) the DR is

maximum, the shear at the interface is small. Therefore the momentum transferred inside

the texture and the form drag is also very low as shown in Fig. 9a for both SHS and LIS. If

the interface is below the highest peak, such as for k/kmax = 0.6 and 0.8, asperities emerge

above the interface and contribute to the form drag. To some approximation, the form

drag scales with the slip velocity and with the height of the asperities above the interface.

When the interface is below the highest peaks, there are two opposite effects, a decrease of

slip length which tends to reduce the form drag, and an increased wet area of the texture

which tends to increase it. When the interface is very close to the bottom wall, the slip

velocity is very small and its effect on the pressure drag prevails over the increase in wet

area. Therefore, the form drag is maximum when the interface is in an intermediate position
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FIG. 10. Drag reduction as a function of the mean surface above the interface normalized in wall

units (a) and of its rms (b) for We = 0: m = 0.02 (SHS) (◯); m = 0.4 (LIS) (◻); empty symbols

Reτ ≈ 180, filled symbols Reτ ≈ 395.

between the top of the asperities and the bottom wall. For the cases here considered, for

both viscosity ratios a peak of form drag occurs at about k/kmax = 0.6. The maximum

pressure drag of LIS is larger than that relative to SHS because the shear at the interface

and then the momentum transferred inside the valleys is larger than that for SHS. On the

other hand, for k/kmax ≥ 0.8, the relative contribution of the form drag to the total drag is

much larger for SHS than for LIS. For example, for k = kmax, the form drag is approximately

the same for m = 0.02 and m = 0.4, but for SHS it is the dominant contribution to the total

drag (Fig. 9b), about 60% of the total drag being due to the form drag and 40% to the

frictional drag. The drag of LIS is, instead, dominated by the viscous drag. The general

effect of increasing the Reynolds number is that the form drag decreases, but its contribution

to the total drag increases.

Results in Fig.8 and 9 have shown the significance of the asperities and in general of the

geometrical features of the substrate. A length scale accounting for this roughness cannot

be only function of the geometry of the substrate but also of the position of the interface.

While for a single phase flow over rough walls only the shape of the texture matters, in SHS-

LIS it is the combination between the texture and the position of the interface to determine

the drag. The root mean square of the textured surfaces is h+rms = 0.99 for Reτ = 180

and h+rms = 2.18 for Reτ = 395. However, the flow behaviour changes considerably with the

position of the interface, The amount of drag reduction ranges from 70% to −5% for the
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same texture varying the position of the interface despite the same value of hrms. Therefore,

hrms is not a proper length scale to characterize the surface. It is the portion of the texture

emerging out of the interface the dominant geometrical feature affecting the flow. This can

be quantified for example by kmean, the amount of asperities above the interface:

kmean =
1

N
∑(h(x, z) − k) ∣ h(x, z) ≥ k (5)

and its root mean square:

krms =
√

1

N
∑(h(x,z) − k − kmean)2 ∣ h(x,z) ≥ k . (6)

The value of kmean accounts for the portion of the substrate emerging above the interface

while krms gives a measurement of its variability and therefore of the asperities. Both values

are function of the interface position k. Figure 10a shows the amount of drag reduction as a

function of k+mean. The smaller k+mean, the less asperities emerge out of the interface, the more

the drag is reduced. It is found that k+mean ≤ 1 is necessary in order to have drag reduction,

regardless of the viscosity ratio or Reynolds number. The value of krms in wall-units for

the present simulations ranges from k+rms = 0.05 − 2.2 as the position of the interface or the

Reynolds number are varied. The amount of drag reduction decreases by increasing k+rms

(Fig. 10b). For k+rms ≃ 0.5− 1, the penalty due to the asperities out of the interface balances

the reduced shear on the valleys and the overall drag is about the same of the smooth

wall. The SHS is more sensitive to the value of k+rms. In fact, the amount of DR relative

to SHS drops quickly at around k+rms ≃ 0.5 (Fig. 10b). This is because the slip velocity is

larger than that relative to LIS and therefore the form drag has a larger contribution to the

total drag (see Fig.9b). The dependence of the drag on k+rms and on k+mean implies that

the commonly accepted concept according to which the amount of drag reduction increases

with the Reynolds number is true only if the asperities above the interface are negligible.

Either way, for a given geometry an increase of Reynolds number may lead to an increase

of k+rms and k+mean and a corresponding increase of pressure drag which could overcome

the reduced shear at the interface. The values of k+rms and k+mean provide a quantitative

measure which could be used for the design of SHS and LIS for practical applications, once

the position of the interface can be estimated to some approximation. The limits k+rms < 0.5

and k+mean < 1 are necessary conditions. In fact even in the ideal case of a slippery flat

interface, if these criteria are not met, the drag reduction performances are lost. However,
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they are not sufficient conditions to achieve drag reduction. For example, the deformation

of the interface may increase the drag even further, and even at k+rms < 0.5 the drag may be

larger than that of a smooth wall. The values of k+rms ≃ 0.5 and k+mean ≃ 1 are thresholds

above which the drag is unlikely to be reduced. Although further validation is required to

generalize these values to any texture, they provide a measure of the accuracy needed in

designing a texture and of the sensitivity of the drag to a vertical misalignment of the crests

of the texture.

VI. TURBULENT INTENSITIES
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FIG. 11. Color contours of the variance of streamwise velocity fluctuations ⟨uu⟩ (a,d), wall-normal

velocity fluctuations ⟨vv⟩ (b,e) and covariance of streamwise and wall-normal velocity fluctuations

⟨uv⟩ (c,f) in a vertical section at z/H = 0.56: (a,b,c) correspond to the interface position k/kmax =

0.6 and (d,e,f) to k/kmax = 0.8, in both cases Reτ ≈ 180 and m = 0.02.

Turbulent intensities and Reynolds shear stress are shown in Fig. 11 near the texture for

two positions of the interface (k/kmax = 0.6 and 0.8), a viscosity ratio m = 0.02 (SHS) and

a flat interface (We = 0). Both ⟨uu⟩, ⟨vv⟩ and ⟨uv⟩ are large in correspondence of the as-

perities emerging above the interface (u(x, y, z, t) = U(x, y, z, t) − ⟨U(x, y, z)⟩, V (x, y, z, t) =
v(x, y, z, t) − ⟨V (x, y, z)⟩, w(x, y, z, t) = W (x, y, z, t) − ⟨W (x, y, z)⟩ and ⟨uiuj(x, y, z)⟩ =
1
Nt
∑Nt
n=1(Ui(x, y, z, tn) − ⟨Ui(x, y, z)⟩)(Uj(x, y, z, tn) − ⟨Uj(x, y, z)⟩, i = 1,2,3 corresponds to

U,V,W respectively). When the interface is closer to the highest pinnacles (k/kmax = 0.8

Fig. 11 d,e,f), the turbulent intensities and Reynolds shear stress are rather uniform except

20



near the pinnacles where a significant increase of the fluctuations is observed (x/H ≃ 0.75).

In fact, when the interface is closer to the highest asperities, the drag is reduced and the

slip velocity is larger. Therefore in most of the texture the fluctuations of velocity decrease.

However, due to the high slip velocity, in proximity of the pinnacles above the interface,

velocity and pressure gradients are large inducing locally a high turbulence level. The

variability of turbulent intensities within the texture is confined to a thin layer above the

interface. At about y/H = 0.05, one texture height above the interface, turbulent intensities

and Reynolds stress do not depend on x/H and the modulation due to the substrate is lost.

Therefore, above this height, turbulent intensities and Reynolds stresses are only function

of the distance from the wall:

uiuj(ym) = 1

NxNzNt

Nx

∑
l=1

Nz

∑
k=1

Nt

∑
n=1

(Ui(xl, ym, zk, tn) −Ui(ym))(Uj(xl, ym, zk, tn) −Uj(ym)) . (7)

The overall effect of LIS-SHS on the turbulent intensities and Reynolds stress is shown in

Fig. 12. Regardless of the Weber number, when the interface lies below 60% of the highest

peaks (k/kmax < 0.6), uu+, vv+ and uv+ overlap closely with those relative to the flat wall

(figure 12), similarly to what has been observed for the velocity profiles in wall units (figure

2). When the interface is closer to the crests, k/kmax = 0.8 and 1, uu+ presents two peaks, one

at the interface and one above it. The fluctuations near the wall are significantly larger than

those relative to a flat wall, perhaps surprisingly since these cases present a reduction of the

drag. However, the increased velocity fluctuations and the peak at the interface are due to

the dispersive stresses induced by the spatial variability of the time averaged flow within the

textured surface. The second peak, in the inner part of the channel is due to the near wall

coherent structures and it is very similar to that relative to a smooth wall. For We+ ≈ 10−3

the slip velocity is much smaller (Fig. 3) and the position of the interface oscillates. As a

consequence the spatial inhomogeneities of the flow are weaker, the dispersive stresses are

reduced and smoothed out compared to those relative to We = 0 with the same gas fraction

k/kmax ≃ 0.8. Near the wall, an increased magnitude of streamwise velocity fluctuations was

also measured experimentally by Ling et al. [26]. The position of the peak of uu measured

experimentally is closer to the wall by approximately five wall units than that obtained

numerically. This may be due to the difference in Reynolds number.

All the profiles with k/kmax < 0.6, regardless of the Weber number or interface position,

overlap for (y − hmean)+ > 10. On the other hand, for larger gas fraction, (k/kmax > 0.8),
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FIG. 12. Variance of streamwise velocity fluctuations (a), Variance of wall-normal velocity

fluctuations (b) and Reynolds shear stress (c) for SHS with Reτ ≈ 180, (symbols and lines as in

figure 2).

above the wall (for (y − hmean)+ > 10), for both We+ = 0 and 10−3, the turbulent intensities

are significantly reduced. Interestingly, for k/kmax = 0.8 and 1, the wall normal velocity fluc-

tuations decrease more than streamwise velocity fluctuation thus increasing the anisotropy.

The experimental measurements by Ling et al. [26] present larger wall-normal velocity fluc-

tuations than that over smooth wall. In a similar experimental setup (Ling et al. [7]),

this increased wall-normal velocity fluctuations near the wall was attributed to the transi-

tion from smooth to rough wall. The Reynolds shear stress −uv obtained numerically with

We+ = 10−3 is consistent with experimental data for 10 < (y − hmean)+ ≤ 30. Above the wall,

the velocity statistics for LIS are qualitatively similar to SHS, therefore not shown in Fig.

12. However, the dispersive stresses at the walls of LIS are negligible compared to SHS, due

to the reduced slip velocity as seen in Fig. 3(b).

22



VII. TURBULENT COHERENT STRUCTURES

To assess the effect of SHS and LIS on turbulence structures, instantaneous streamwise

velocity fluctuations are plotted on a horizontal plane about 10 wall units above the interface

at Re = 2,800 corresponding to Reτ = 180 (Fig. 13). Flow structures are highly elongated

in the streamwise direction in all cases. However, for k/kmax = 0.6, the streaks appear

shorter and the fluctuations of velocity more intense with respect to those for k/kmax = 0.8

consistently with the higher shear. For larger Weber numbers, the interface deforms and

the amount of drag reduction decreases. For a given Reynolds number, the length and width

of the streaks reduce compared to the equivalent case at We = 0 and approximately the same

k. In general, reducing the shear results in streaks more elongated and wider in spanwise

direction. Because the shear is gradually closer to that of a smooth wall for We ≃ 10−3 and

10−2, the streaks resemble more closely those over a smooth wall. Figure 13 also shows the

deformation of the interface. There is a good correlation between the deformation of the

interface and the streamwise velocity fluctuations. To some approximation, to an upward

deformation of the interface (negative level set fluctuation) corresponds a low speed streak.

This can be explained with the sketch in Fig. 13i. Counter rotating vortices generating

the streaks pull up the interface in proximity of the low speed streaks and push it down in

correspondence of the high speed streaks.

TABLE III. Correlation coefficient between level set function fluctuations and streamwise velocity

fluctuations at the mean interface position (k).

Re We m ruφ

2800 40 0.02 0.6024

2800 40 0.4 0.5056

2800 400 0.02 0.6354

2800 400 0.4 0.5763

6900 40 0.02 0.6483

6900 40 0.4 0.6075

6900 400 0.02 0.6804

6900 400 0.4 0.6717

To quantify this correspondence between the streamwise velocity fluctuations, u(x, y, z, t) =
U(x, y, z, t) − ⟨U(x, y, z)⟩ (streaks), and the displacement of the interface fluctuations,
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FIG. 13. Iso-contours of streamwise velocity fluctuations at Re = 2800 and We = 0: (a,c) k = 0.6,

(b,d) k = 0.8. For We = 10−2 (e,g) and We+ ≃ 10−3 (f,h), the iso-contours of streamwise velocity

fluctuations are superposed to the displacement of the interface with respect to its time-averaged

position (e,g) k = 0.6154, (f,h) k = 0.76. Two viscosity ratios are shown (a,b,e,f) m = 0.02, (c,d,g,h)

m = 0.4 which mimic idealised SHS and LIS respectively. A sketch of streamwise vortices, low and

high speed streaks and deformed interface (dotted line) with respect to the mean interface position

k is included as reference.

φ(x, y, z, t) = Φ(x, y, z, t) − ⟨Φ(x, y, z)⟩, the correlation rφu has been computed at the mean
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position of the interface y = k:

ruφ =
∑Nx

l=1∑
Nz

k=1∑
Nt
n=1 u(xl, k, zk, tn)φ(xl, k, zk, tn))

ũφ̃
(8)

where ũ and φ̃ indicate the velocity and interface displacement rms. The values of ruφ are

quite large as reported in Table 3 and confirm the qualitative observation of Fig. 13. The

smaller is the Weber number the smaller is the correlation coefficient ruφ. In fact, a smaller

Weber number corresponds to a larger surface tension and therefore an interface that tends

to resist more to deformations and remain flat. At small Weber numbers, the interfacial

forces balance the pressure gradient induced by the streamwise vortices even with a small

deformation of the interface. In addition, for a given Reynolds number and Weber number,

SHS present a larger ruφ than LIS. This may be due to the larger viscosity and lower cavity

Reynolds number of the lubricant in the valleys of LIS which tend to suppress fluctuations

caused by the overlying streaks.
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FIG. 14. Two-point streamwise velocity correlation in the x-y plane (ruu(x0,x)) at (x0 =

0.7236H,z0 = 0.9652H). The value of y0 is taken 10 wall units above the interface. Contours

from 0.4 to 1 with increments of 0.1: a,e) smooth wall, b,f) k/kmax = 0.6, c,g) k/kmax = 0.8, d,h)

k/kmax=1 with We = 0, Reτ = 395 and m = 0.02 (SHS).

A quantitative analysis of the structures is performed through the two-point correlations

of the streamwise velocity: ruu(x0,x) = ⟨u(x0,x)u(x)⟩/(ũ(x0)ũ(x)), where the overbar indi-

cates averaging with respect to time, a tilde denotes the root mean square, x0 = (x0, y0, z0),
are the coordinates of the fixed point, x = (x0 + ∆x, y0 + ∆y, z0 + ∆z) is the position of

the other point. Figure 14 shows contours of ruu in x, y and x, z planes respectively for
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FIG. 15. Shear rate parameter (Sq/ε) for (a) m = 0.02 (SHS) and (b) m = 0.4 (LIS) with Reτ ≈ 395

and We = 0 for different interface positions, (symbols and lines as in Fig. 2).

m = 0.02 (mimicking the viscosity ratio over SHS) and We = 0. Three different cases varying

the position of the interface (k/kmax = 0.6,0.8,1) are shown and the correlation contours

for the smooth wall at the same Reynolds number are shown as reference. By increasing

the height of the interface, (increasing k/kmax), which corresponds to an increase of area

fraction, volume fraction and amount of drag reduction, the structures are more elongated

and less inclined with respect to the horizontal direction. The width of the structures in

spanwise direction does not change much. In fact, a flat wall generates a mean velocity gra-

dient because of the no-slip condition, which together with ⟨uv⟩ produces turbulent kinetic

energy. In addition, it suppresses the velocity fluctuations (the velocity is zero at the wall).

On the other hand, SHS and LIS tend to decrease the shear (compared to a flat wall), damp

the wall normal velocity fluctuations (in the ideal case of flat slippery interface for We = 0,

the vertical component of the velocity is zero) but not the spanwise and streamwise velocity

fluctuations. Therefore, the transfer of energy from the wall-normal component of turbu-

lence to the horizontal components typical of flat walls [34, 35] is even larger for SHS and

LIS, explaining why the structures are more elongated and the increased anisotropy. This

is the opposite than what has been observed for rough surfaces where the drag increases and

the coherent structures are more inclined and isotropic (Leonardi et al. [36]).

The shear rate parameter, S∗ = Sq/ε, has been calculated to explain the increased

anisotropy (where S = dU/dy is the mean shear, q = uiui is twice the turbulent kinetic

energy and ε = ν(∂ui/∂xj)(∂ui/∂xj) the dissipation rate of turbulent kinetic energy (Lee
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et al. [37])). The shear rate parameter overlaps closely with that relative to the smooth wall

in most of the channel. However, near the wall, at about y+ ≈ 10, for k/kmax ≥ 0.8 the shear

rate parameter is larger than that over the smooth wall (Fig. 15). These are in fact the

cases where the streaks were more elongated and anisotropic. For example, S∗ is almost

twice than that over a flat surface, for m = 0.02 and k/kmax = 1, the case with largest drag

reduction. The peak of Sq/ε shifts slightly towards the wall with respect to the smooth

wall results. In general, consistently with the finding of Lee et al. [37] in homogeneous

shear flows, even above SHS and LIS the streaks are strongly correlated with the shear rate

parameter.
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FIG. 16. Maximum of shear rate parameter Sq/ε as a function of drag reduction for We = 0:

m = 0.02 (SHS) (◯); m = 0.4 (LIS) (◻); empty symbols Reτ ≈ 180, filled symbols Reτ ≈ 395, the

black dot is the smooth wall.

A strong correlation between the maximum value of S∗ and the amount of drag reduction

is observed in Fig.16 and it is weakly dependent on the viscosity ratio and Reynolds number.

To a decrease of drag (DR > 0) corresponds an increase of the shear rate parameter with

respect to that relative to the smooth channel. The opposite occurs for drag increasing cases

(DR < 0) when the interface is below k/kmax = 0.6.

The shear rate parameter is the ratio of the eddy turnover timescale q/ε and the mean

shear flow timescale 1/S. In order to explain why the shear rate parameter increases despite

the drag, and the mean shear, are reduced, the value of q/ε and 1/S are compared with
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FIG. 17. ( Eddy turnover timescale, (q/ε), (a-c) and mean shear flow time scale, (1/S), (b-d) for

Reτ ≈ 395: (a,b) m = 0.02, (c,d) m = 0.4, (symbols and lines as in Fig. 2).

those over the smooth wall (Fig. 17). Both quantities are normalized with H/uτ0 in order

to have a constant factor through all the cases. When the drag reduction is approximately

zero (for k/kmax < 0.6), q/ε and 1/S overlap with those relative to the smooth wall in most

of the channel, with the exception of very near the interface. In correspondence of high drag

reduction, on the other hand, both time scales increase significantly. However, q/ε increases

more than 1/S explaining the increased shear rate parameter. The large increase of q/ε is

due to a decrease of the dissipation of turbulent kinetic energy which overcomes that of the

turbulent kinetic energy. Therefore, over drag reducing SHS and LIS, the eddy turnover time

scale increases more than the mean shear flow timescale leading to an increased shear rate

parameter and consequently to more elongated and anisotropic near wall structures. The

peak of the eddy turnover time scale observed in Fig.17, due to the dispersive component

of the turbulent kinetic energy near the wall, clarifies why the peak of Sq/ε shifts slightly

towards the wall with respect to the smooth wall results. In fact, the dispersive component
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of the turbulent kinetic energy is maximum when the slip velocity is largest as over SHS

with k/kmax = 1.

VIII. CONCLUSION

Direct numerical simulations of two superposed fluids in a turbulent channel have been

performed. The lower wall is made of pinnacles of random height and reproduces the etched

sand blasted aluminum in Pillutla et al. [22]. The dynamics of the interface is fully cou-

pled with the Navier-Stokes equations and the flow in the substrate is explicitly solved.

A parametric study has been carried out varying the position of the interface, the Weber

number and the Reynolds number. The detrimental contribution to the drag of the por-

tion of the substrate emerging above the interface has been quantified. It has been found

that the mean height of the texture above the interface needs to be smaller than one wall

unit (k+mean < 1), and its root mean square, which indicates the length of the largest peaks

and valleys, smaller than half wall unit (k+rms < 0.5). These thresholds are valid for both

Reynolds numbers, viscosity ratios (SHS or LIS) and for all Weber numbers here considered.

It appears that when the asperities are large, the pressure drag dominates over the Reynolds

and Weber numbers. The limits k+mean < 1 and k+rms < 0.5 can be used to design SHS and LIS

for practical applications. In fact, if the approximate Reτ of the flow and the position of the

interface can be estimated, k+mean and k+rms become two simple geometrical criteria for the

texture. These limits can also be interpreted as a failure mechanism. When the deformation

of the interface is such that the portion emerging above it is more than one wall unit, or the

asperities exceed half wall unit, the drag reduction properties are lost.

Previous papers have indicated that the amount of drag reduction increases by increasing

the Reynolds number. From present results, this is true only in the ideal condition of slippery

and non deformable interface, i.e. in the limit of We = 0. In fact, when the contribution of

the asperities is negligible, and the interface is slippery (We = 0) results are consistent with

previous work, i.e. amount of drag reduction increases with Reynolds number and reduces

with the viscosity ratio [1, 21, 32]. On the other hand, when the asperities emerge above

the interface an increase of the Reynolds number leads to an increase of k+mean and k+rms

and then to a smaller drag reduction as shown by present results. In addition, an increase

of the Reynolds number leads to an increase of pressure fluctuations and therefore to a
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larger deformation of the interface. This increases the drag because of a larger momentum

transport inside the texture.

Present results agree well with the analytical model developed by Rastegari and Akhavan

[10] between the the amount of drag reduction and slip length for all the flow conditions here

considered. This is because the present texture, made of random pinnacles, induces a much

weaker secondary motion than regular arrays of cubes or longitudinal bars. In addition,

while for regular textures the time-averaged position of the interface is approximately flat,

in this case, asperities induce local pressure gradients and a waviness of the interface. The

interface is displaced downward in the regions of the substrate where the distance between

the pinnacles is larger, and upward where the pinnacles are closely clustered. Oscillations

with respect to this time averaged configuration are due to the passage of the streamwise

vortices. In fact, a strong correlation between the instantaneous deformation of the interface

and the streaks has been observed. The interface is pulled upward in proximity of low speed

streaks and downward in correspondence of high speed streaks. LIS and SHS influence the

near wall coherent structures similarly. The more the drag is reduced, the more the streaks

become elongated and anisotropic, the larger is the shear rate parameter. When the drag is

reduced both the eddy turnover timescale and the mean shear flow time scale increase. The

shear rate parameter increases because the former prevails.
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