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Suspensions of anisotropic Brownian particles are commonly encountered in a wide array of ap-
plications such as drug delivery and manufacturing of fiber-reinforced composites. Technological
applications and fundamental studies of small anisotropic particles critically require precise control
of particle orientation over defined trajectories and paths. In this work, we demonstrate robust con-
trol over the two-dimensional (2D) center-of-mass position and orientation of anisotropic Brownian
particles using only fluid flow. We implement a path-following model predictive control scheme to
manipulate colloidal particles over defined trajectories in position space, where the speed of move-
ment along the path is a degree of freedom in the controller design. We further explore how the
external flow field affects the orientation dynamics of anisotropic particles in steady and transient
extensional flow using a combination of experiments and analytical modeling. Overall, this tech-
nique offers new avenues for fundamental studies of anisotropic colloidal particles using only fluid
flow, without the need for external electric or optical fields.

Anisotropic particles play an integral role in the scalable fabrication of mesostructured composite materials [1]. Such
composites are routinely processed in complex flows described by a combination of shear and elongation. Achieving
a quantitative understanding of how fluid flow orients particles and impacts the rheological behavior of anisotropic
particle and fiber suspensions demands precise tracking and control of particle position and orientation. To this end,
significant efforts have been devoted to develop methods for precisely controlling the motion of single and multiple
anisotropic colloidal particles [2–7]. In particular, methods based on optical tweezers [3–5, 8] and electrokinetic traps
[9] have been used for the simultaneous manipulation of position and orientation of anisotropic particles. Such methods
hold the potential to directly benefit the field of directed assembly, which aims to precisely assemble chemically and
structurally distinct anisotropic particles into functional hierarchical structures. Towards this goal, holographic optical
tweezers have been used for multiplexed trapping of large ensembles of particles [10] and for the directed assembly
of dielectric rod-like particles into desired structures by effectively controlling their translation and orientation [11].
Electrophoretic and dielectrophoretic forces have also been used to manipulate the trajectory and orientation of small
particles such as cytokine-conjugated nanowires, which was used to deliver molecular doses of biologically active
chemicals to a specific site in a cell [12, 13]. In all cases, methods based on optical traps [2], magnetic tweezers [14],
and electrokinetic traps [15, 16] require application of an external field and generally rely on exploiting the intrinsic
properties of the target particle or surrounding medium (e.g. magnetic susceptibility, polarizability, charge, or medium
conductivity) for controlling the motion of individual particles. Moreover, optical traps may not be suitable for long-
time trapping of biological specimens such as live cells due to local heating or photo-induced damage [17]. However,
it is desirable to control the motion of small particles using methods that are independent of material composition.

Hydrodynamic trapping offers an alternative method for controlling small particles that relies only on fluid flow
[18]. Hydrodynamic traps confine particles via frictional forces imposed by a flowing fluid, which generally poses no
constraints on the chemical properties or material composition of trapped particles. Hydrodynamic forces were first
used to trap large millimeter-sized droplets by G. I. Taylor, who developed a four-roll mill apparatus to generate mixed
flows that can be varied from purely rotational to extensional flow [19]. In 1985, Bentley and Leal [20] developed
a computer-controlled four-roll mill that allowed for controlling the position of millimeter or micron-sized particles
near a stagnation point for extended periods of time. The advent of microfluidics has enabled several researchers to
build microfluidic analogs of the four-roll mill [21, 22], though these methods do not explicitly incorporate automated
feedback to control particle position or residence time in flow. Recently, a feedback-controlled hydrodynamic trap was
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FIG. 1. Characterization of particles used for trapping and manipulation experiments. (a) Scanning electron microscopy (SEM)
images of spherical polystyrene particles. (b) SEM images of anisotropic rod-like polystyrene particles.

developed for automated trapping of micro- and nanoscale particles in a PDMS-based microfluidic device equipped
with an on-chip metering valve [23–25]. These initial studies used a combination of proportional, integral and derivative
control schemes for manipulating the two-dimensional (2D) center-of-mass position of spherical particles. Schroeder
and coworkers further developed a multiplexed technique for controlling the 2D center-of-mass position of multiple
particles known as the Stokes trap [18]. The Stokes trap relies on a model predictive control scheme to independently
manipulate single or multiple particles in solution along arbitrary trajectories by the sole action of fluid flow. Despite
recent progress in flow-based trapping, however, the ability to achieve simultaneous orientation and position control in
a planar extensional flow has remained elusive to researchers. As one example, a prior generation hydrodynamic trap
[24] required a complicated device design to control >1 degrees of freedom, such that it was not possible to scale the
system to control orientational degrees of freedom. Broadly speaking, the ability to precisely control the motion and
alignment of single or multiple non-spherical particles in flow would greatly benefit several fields of research ranging
from fundamental fluid mechanics [26, 27], particulate flows, colloidal suspensions [28, 29], and directed assembly of
materials.

In this work, we present two major developments in flow based particle trapping. First, we demonstrate simultaneous
flow-based control of the orientation and center-of-mass (COM) position of an anisotropic Brownian particle. We
quantify the trapping performance using this new method and determine the translational and angular trap stiffness
which depend on the flow strength and the directions of the principal axes of compression and extension. We use
this method to directly observe the transient and steady state dynamics of a single anisotropic Brownian particle
in extensional flow over long times and compare the experimental results with analytical models. Second, moving
beyond simple set-point stabilization, we implement a non-linear path following algorithm that substantially improves
the accuracy and the speed with which arbitrary smooth paths can be tracked by particles. Together, these advances
will facilitate fundamental studies of colloidal particles requiring precise control over COM position and orientation,
as well as control of geometrical path trajectories over long times.

I. METHODS

A. Synthesis and characterization of anisotropic particles

Spherical polystyrene (PS) particles with approximate diameter 1.3 µm (Fig. 1a) were used as a starting material
for preparing rod-shaped particles (Fig. 1b). Spherical polystyrene particles were suspended in an aqueous medium
of polyvinyl alcohol (PVA) and cast into films followed by liquefaction. Films were then stretched to form rod-like
particles, as previously reported [30]. The materials used for synthesis included styrene (Sigma Aldrich), polyvinyl
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FIG. 2. Overview of trapping method and anisotropic particle orientation. (a) Schematic of the experimental setup. Inlet/outlet
ports of the microfluidic device are connected to fluidic reservoirs that are pressurized by regulators controlled by a custom
LabVIEW code. (b) Schematic showing the top view of M = 4 channel microfluidic device for manipulating a single anisotropic
particle at the center of slot. (c) Schematic of the orientation angle φ of an anisotropic particle, which is measured with respect
to x-axis as shown in Fig. 2b in anti-clockwise direction. The tangent vector t along a line connecting the points C and T and
the normal vector n define the particle orientation. The rod half-length is L.

alcohol (PVA, MW 89,000-98,000, 99% hydrolyzed, Sigma Aldrich), polyvinylpyrrolidone (PVP, K=28-32, Sigma
Aldrich), glycerol, ethanol and 2,2-azoisobutyronitrile (AIBN). Styrene was purified by a neutral alumina column
before use, and AIBN was recrystallized from 95% ethanol, whereas the remaining materials were used without any
further purification. For preparing non-crosslinking spherical PS particles, styrene (5 g), AIBN (0.1 g), PVP (1 g),
and ethanol (25 g) were added into a three-neck round bottom flask. The mixture was bubbled with nitrogen for 30
min to remove oxygen, and then the flask was heated in an oil bath at 70 oC and stirred at 200 rpm. Polymerization
proceeded for 1.5 hours, followed by addition of a deoxygenated mixture of styrene (5 g) and ethanol (25 g) using
a peristaltic pump. The reaction proceeded for 24 hours at 70 oC, followed by centrifugation at 7000 g and copious
washing by ethanol and water (3x) to remove excess monomer and stabilizer. For rod-like particle preparation, PVA (4
g) was dissolved in 40 mL water at 85 oC. Next, 0.63 mL glycerol (2% wt/vol) was added to reduce the glass-transition
temperature (Tg) of the films, and 0.3 g spherical PS particles were added to this mixture. Films were dried in a petri
dish for 24 hours, followed by cutting of films into sections of 5 cm x 2 cm and stretching in a hot oil bath at 140 oC.
To recover rod-like particles, the films were dissolved in 30% isopropanol/water at 65 oC. For the complete removal of
PVA and glycerol from stretched films, the mixture was centrifuged at 7000 g for 10 min and copiously washed (10x)
in 30% isopropanol/water solution. Scanning electron microscopy (SEM) was used to characterize the spherical and
rod-like particle morphology (Fig. 1a,b) using a Hitachi S4800 high-resolution scanning electron microscope.

B. Microfluidic device fabrication

A four-channel microfluidic device with a channel width of 400 µm and a channel height of 100 µm was used for
trapping experiments (Fig. 2a,b and Supplemental Material Fig. S1). The cross-slot junction forms a square with a
side length of W = 400 µm. Microfluidic devices are aligned such that the center of the cross-slot junction is at the
origin of the laboratory reference frame. In this way, the point sources (corresponding to fluid flow generated by the
four inlet/outlet channels) are located at positions Ri on an inscribed circle within the square as follows:

Ri = R
[
cos
(

(i− 1)
π

2

)
, sin

(
(i− 1)

π

2

)]T
(1)

where R = W/2 and shown schematically in Fig. S1. Microfluidic devices are fabricated using standard techniques
in soft lithography (Supplemental Material) [31].
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II. CONCEPT AND DESIGN OF CONTROLLER

A. Flow model and governing equations

The governing principles of the trapping method can be understood by considering a general problem of trapping P
particles independently in a microfluidic device with M channels intersecting at an angle of 2π/M to form an M -sided
polygonal device [32]. Fig. 2a,b shows the schematic of a microfluidic device with M = 4 channels. The objective is
to manipulate the 2D center-of-mass position and orientation of P anisotropic particles, which involves controlling 3P
degrees of freedom (states) concurrently. The control inputs for this problem are the transient incoming/outgoing fluid
streams through the M channels. However, the flow incompressibility condition reduces the number of independent
control inputs to M − 1. To effectively control the system, the number of independent control variables should at
least be equal to the number of states being controlled such that M ≥ 3P + 1. Therefore, a microfluidic device with
M = 4 channels provides a sufficient platform for manipulating the center-of-mass position and orientation of a single
anisotropic particle.

We first consider the fluid dynamics inside the microfluidic device. In Stokes flow, the inertial terms in the Navier-
Stokes equation can be neglected and we can write [33]:

−∇p+ µ∇2u = 0 (2)

where p is the dynamic pressure field, u is the velocity field, and µ is the viscosity. In a microfluidic cross-slot geometry
generated by the intersection of M channels, we can approximate each channel as a point source of flow [18]. The
height-averaged velocity field at a point x inside the cross-slot can then be approximated as a linear superposition of
the velocity fields generated by each point source such that:

u =
1

πH

M∑
i=1

(x−Ri)qi
‖x−Ri‖2

, F (x, q,R) (3)

Here, H is the height of the device, x ∈ R2 is a position vector of a point in flow, Ri ∈ R2 is the the position vector
of the ith point source, and q ∈ RM is a vector whose ith element qi represents the volumetric flow rate through the
ith point source. The flow rates qi are not unconstrained and must satisfy mass conservation, which yields:

M∑
i=1

qi = 0 (4)

where flow rates are defined to be positive (negative) when they flow into (out of) the cross-slot. The orientation of
anisotropic particles is modeled by considering two points along a rod-like object (Fig. 2c), with point C located at
the particle center-of-mass at xc and a second point T located at the rod terminus at xt. In this way, the unit tangent
vector t along the rod is given by t = (xt − xc)/ ‖(xt − xc)‖. Here, the length of the particle along the major axis
is 2L, where L ≡ ‖(xt − xc)‖. Rod-like particles are defined by an orientation angle φ in the 2D plane given by the

angle between the x-axis and the tangent vector t. The scalar rotational velocity of an anisotropic particle φ̇ is given
by the dot product of the relative fluid velocity vector vrel between points C and T with the normal vector n divided
by L, such that φ̇ = ‖t× vrel‖ /L = vrel · n/L. This equation can be recast in terms of the particle center-of-mass
position xc and simplified to yield the rotational velocity (Appendix A):

φ̇ =
1

πH

M∑
i=1

−2tT (xc −Ri)(xc −Ri)Tn

‖(xc −Ri)‖4
qi , G(xc, q,R) (5)

where n = [− sinφ, cosφ]T is the unit normal vector perpendicular to t = [cosφ, sinφ]T . Eqns. (3), (4), and (5)
completely determine the 2D velocity field and rotational velocity of an anisotropic particle in the cross-slot geometry.
In the absence of external forces, we can assume that the particle center-of-mass moves with the local fluid velocity
and that the particle rotates with the fluid. We further neglect hydrodynamic interactions and perturbations to the
base flow field due to the presence of the finite-sized particles. The center of mass coordinates and the orientation of
the particle are represented by the state vector X , [xc, φ]T . In this case, we can write the prediction model for a
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particle’s linear and angular motion using the following equation:

Ẋ = H(X, q,R) ,

[
F (xc, q,R)
G(xc, q,R)

]
(6)

B. Model predictive control scheme for set-point stabilization

The objective is to manipulate a single anisotropic particle in real time from an initial state to a final state defined by
a desired position and orientation. To achieve this goal, we use the superposed point source linear and angular velocity
field given by Eq. 6. However, this objective poses several practical challenges for experimental implementation. First,
we seek to manipulate micron- or sub-micron-sized particles that are subject to Brownian motion and thus follow
non-deterministic trajectories. In addition, the fluidic model described in Eq. 3 is merely an approximate model based
on point sources, and any control strategy must be sufficiently robust to handle model imperfections. Finally, the
particle state (position and orientation) is sampled at a rate of 30 Hz, hence the control strategy should be capable
of calculating the optimal control scheme within 33 ms. For these reasons, we use model predictive control (MPC) to
precisely manipulate particles [18, 34].

Consider the task of manipulating a single particle from an initial state X0 to a final state XF , where the state
is defined by both COM position and orientation. Although there are infinitely many trajectories in positional and
orientational space between these states, we would like to select a trajectory that simultaneously minimizes flow rates
as well as the translational and angular distance traveled. We can systematically obtain these trajectories and the
corresponding flow rates at each sampling instance by minimizing the objective function J :

min
X̃,q̃

J

=

tk+TN−1∑
τ=tk

{(
X̃(τ)−XF

)T
α
(
X̃(τ)−XF

)
+ βq̃T q̃

}
+ γ (X̃(tk + TN )−XF )T (X̃(tk + TN )−XF ) (7a)

s.t.
dX̃

dt
= H(X̃, q̃,R), X̃(tk) = X(tk) (7b)

M∑
i=1

q̃i(τ) = 0 ∀ τ = tk, . . . , tk + TN (7c)

where tk = t0 + k∆ represents the kth sampling instant and TN is the MPC horizon, consisting of N regular intervals
such that TN = N∆, where ∆ is the sampling interval. X̃(τ) is the predicted value of the position and orientation at
time τ , and q̃(τ) indicates the predicted piecewise constant control applied during the interval [τ, τ+∆). The trapping
parameters are α = diag(αx, αy, αφ), and β and γ are the controller weights that are tuned during the experiment to
obtain the desired performance. Selection of αx, αy, and αφ gives the user flexibility in choosing the level of control
authority over each individual state (2D COM position (x, y) and orientation φ). Following the MPC strategy, we
minimize the objective function in Eq. 7 at each sampling instant to obtain the flow rates over the entire horizon,
but we only apply the flow rates corresponding to the first MPC interval by setting q(tk) = q̃(tk) and resample the
positional and orientational state of the particle X at the next sampling instant. For experimentally implementing
MPC, we use the toolkit for Automatic Control and Dynamic Optimization (ACADO) [35, 36].

C. Trajectory tracking and control

In this work, we implement nonlinear model predictive path-following control to precisely manipulate the COM
position of colloidal particles along user-defined trajectories [37]. Nonlinear path-following control is implemented by
parameterizing the reference trajectory r using a parameter θ such that r(θ) : [−1, 0] 7→ R2 represents the desired
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FIG. 3. Simultaneous control over position and orientation of anisotropic colloidal particles. (a) Trajectory of angular displace-
ments of a trapped Brownian rod over a period of 170 s. (Inset, Upper) Probability distribution function of particle orientation;
Gaussian fit shown in red. The standard deviation of rotational displacement σ is equal to 2.1◦. (Inset, Lower) Sequential
images of a trapped Brownian rod while controlling the COM position and orientation. At t = 0, the rod is initially oriented
at φ = 10◦ with respect to the x-axis. At t = 0.033 s, the target orientation is changed to φ = 80◦. The final desired state is
achieved within 6.7 s, yielding a rod average angular velocity of ≈ 0.16 rad/s. (b) Power spectral density of orientation angle
fluctuations for the trajectory shown in Fig. 3a. The PSD is fit to a Lorentzian function, enabling determination of the corner
frequency fc along the φ direction. (Inset, Upper) Power spectrum of the x-position translational displacement acquired in the
Fourier domain with Lorentzian fitting. The corner frequency is 0.58 Hz in the x-axis. (Inset, Lower) SPower spectrum of the
y-position translational displacement acquired in the Fourier domain with Lorentzian fitting. The corner frequency is 0.58 Hz
in the y-axis.

trajectory. The MPC formulation in Eq. 7 is then modified as follows:

min
x̃,q̃,θ

J =

tk+TN−1∑
τ=tk

{
‖α
(
x̃(τ)− r(θ̃)

)
‖2 + δ1‖θ̃(τ)‖2

+ β‖q̃(τ)‖2 + δ2‖Φ̃(τ)‖2
}

+ γ‖x̃(tk + TN )− r(θ̃(tk + Tm))‖2 (8a)

s.t.
dx̃

dt
= F (x̃, q̃,R), x̃(tk) = x(tk) (8b)

˙̃
θ = −λθ̃ + Φmax − Φ̃, θ̃(tk) = θ(tk|θ(tk−1)) (8c)

0 ≤ Φ̃(τ) ≤ Φmax (8d)

M∑
i=1

q̃i(τ) = 0 ∀ τ = tk, . . . , tk + TN (8e)

Eq. 8c is known as the timing law because it controls the evolution of the path parameter θ. λ is a small value (≈0.001)
that is used to stabilize the timing law, Φ is the speed of the set point along the reference trajectory, and Φmax denotes
the maximum permissible value of θ̇. Φmax can be tuned based on the rate required to track the reference trajectory.
At each sampling instance, once the current positional state x of a particle is known, this information is projected onto
the reference trajectory to determine the nearest point on the trajectory, which ultimately enables determination of
the corresponding θ̃. However, estimating θ̃ in real time such that the distance between the actual state and reference
state is minimized at each sampling instant is non-trivial and corresponds to a non-convex problem. To address this
issue, at each sampling instance, the initial condition for θ̃ is set equal to the predicted value of θ from the previous



7

-2 -1 0 1 2
X (7m)

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7
P

(X
) 

< = 0.55 7m

-0.8 -0.4 0 0.4 0.8
Y (7m)

0

0.5

1

1.5

2

P
(Y

) 

< = 0.20 7m

a b

FIG. 4. Simultaneous position and orientation control of Brownian rods. (a) Translational displacement histogram for x-
position of the rod manipulation experiment. (b) Translational displacement histogram for y-position of the rod manipulation
experiment.

sampling instance. At the beginning of the path, θ is set to −1 in the timing law for the first sampling instance.

Using this approach, we effectively control the COM position of colloidal particles along precisely defined paths.
Prior work has only considered fluidic manipulation of the COM position of multiple isotropic particles [18], where
positional control was simply achieved by merely stepping the set-point positions along a pre-determined path at a
constant speed. Unfortunately, this simplistic approach does not consider the actual particle position during the event,
which often results in trapped particles migrating far away from the set point during the stepping process, resulting
in large deviations from the reference trajectory. The path-following trajectory control method implemented in the
present work overcomes these limitations by coordinating the set-point motion with the motion of the particle, such
that the set-point speed along the trajectory can be increased or decreased based on the lag distance of the particle.

D. Controller implementation

The experimental setup consists of 4 pressure regulators that are used to pressurize 4 distinct fluidic reservoirs to
control the flow rates q in each channel, as shown in Fig. 2a. Fluidic reservoirs are connected to the microfluidic device
using fluorinated ethylene propylene (FEP) tubing. The microfluidic device is mounted on the stage of an inverted
microscope (Olympus IX71) which is equipped with a 63x magnification oil-immersion objective and a charge-coupled
device (CCD) camera. For all experiments, we use rigid rod-like polystyrene particles synthesized in house suspended
in an aqueous glycerol solution with a viscosity of 0.0113 Pa-s at 22 oC. A custom LabVIEW code interfaced with
the ACADO package is used for particle manipulation. A schematic of the control loop is shown in Supplemental
Material (Fig. S2). Briefly, the control loop begins with the acquisition of an image by the CCD camera which relays
the image to LabVIEW for determining the 2D center-of-mass coordinates and orientation of the target anisotropic
particle, which defines the current particle state. LabVIEW relays the particle state information (Appendix B) to
the ACADO controller, which then solves Eq. 7 to determine the optimal flow rates q. Finally, LabVIEW converts
the flow rates to pressure values (Supplemental Material and Fig. S3) and actuates the pressure regulators, thereby
applying the required flow rates in the microfluidic channels and concluding one iteration of the control loop. This
process is repeated for the duration of the manipulation experiment.
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E. Scaling and dimensionless equations

To effectively minimize the objective function without encountering underflow, all parameters are appropriately
scaled to become O(1). The length scale is chosen as d = 2.2 µm, and the time scale is chosen as the inverse of the
characteristic strain rate ε̇−1 = 1, which leads to a flow rate scale qS = πε̇d2H. All quantities in Eq. 3 and Eq. 5
are appropriately scaled, and an overbar notation is used to indicate the corresponding dimensionless quantities. The
dimensionless equations for linear and angular velocity are:

˙̄x = F̄ (x̄, q̄, R̄) ,
M∑
i=1

(x̄− R̄i)q̄i

‖x̄− R̄i‖2
(9)

¯̇
φ =

M∑
i=1

−2tT (x̄c − R̄i)(x̄c − R̄i)Tn∥∥(x̄c − R̄i)
∥∥4 q̄i , Ḡ(x̄c, q̄, R̄) (10)

t̄ = ε̇t, x̄ =
x

d
, R̄i =

Ri

d
, q̄ =

q

qS
,

¯̇
φ = ε̇

III. RESULTS

A. Set-point control for precise manipulation of particle orientation

We began by manipulating the 2D COM position and orientation of single anisotropic Brownian particles with
simultaneous control. In particular, we trapped and controlled the orientation of rigid, rod-like polystyrene particles
(Fig. 3; Supplementary Movie 1). In this experiment, a target particle is initially oriented at an angle of 10◦ with
respect to the inflow axis. At t = 0, the desired set point for particle orientation is changed to 80◦. The controller
generates a set of flow rates to rotate the particle, and the desired positional and orientation state is reached in ≈ 6.7
s. We note that the ends of the rod-like particles are indistinguishable, so the orientations φ and (180◦ − φ) are
equivalent. To quantitatively analyze trap performance, we confined a single anisotropic rod at a desired orientation
of φ = 80◦ for ≈ 200 s while tracking the COM position and orientation (Fig. 3a and Fig. 3b). The probability
distributions of orientation and COM position are shown in Fig. 3a and Fig. 4, which are well described by Gaussian
distributions with standard deviations of translational displacement σx = 0.55 µm and σy = 0.20 µm, and a standard
deviation of angular displacement σφ = 2.1◦. Standard deviations of translational and orientational displacement
provide a measure of the trap tightness-of-confinement, which in the case of the translational displacement is much
smaller than the major axis of the particle.

We further characterized the translational and angular trapping stiffness by determining the power spectral density
(PSD) of positional and angular fluctuations of trapped Brownian rods (Fig. 3b) [8, 33]. Trap stiffness κ is determined
from the corner frequency fc of the PSD by fitting the experimentally determined power spectrum to a Lorentzian
function using the Levenberg-Marquardt algorithm, such that κi = 2πζifci where ζi is the hydrodynamic friction
coefficient and i = x, y, φ represents the value of the parameter along the directions x, y, and φ, respectively. In this
way, we determined trap stiffness values to be κx = 8.3× 10−4 pN/nm, κy = 2.7× 10−3 pN/nm, and κφ = 9.1× 103

pN·nm/rad, respectively. The values of translational trap stiffness κx,y are comparable to a weak optical trap [38] and
to a Stokes trap for confining 2.2 µm diameter spherical particles [18]. Prior work based on optical traps reported an
angular trap stiffness as κφ = 3.36× 103 pN·nm/rad for 1 µm diameter quartz particles [39], which is similar to the
angular trap stiffness determined using our flow-based approach.

We further demonstrated the ability for controlled orientational manipulation by rotating a rod-like particle from
an initial orientation angle φ = 120◦ to a final angle φ = 45◦ (Supplementary Movie 2) in a four-channel microfluidic
device. In this experiment, the initial and final values of orientations are located in different quadrants in the cross-
slot channel (see Fig. 2b). While initially approaching the target orientation, the flow tends to orient the rod along
extensional axis (90◦ and 270◦ in our convention from Fig. 2b). However, trapped particles aligned in these orientations
occasionally receive a Brownian kick which moves the orientation angle to φ < 90◦, after which the particle quickly
reaches the target orientation. The trajectory for the rod orientation reaching the target angle reveals an interesting
feature of using an M = 4 channel device for controlling anisotropic rods. Here, it is technically possible to control 3
independent degrees of freedom (x, y position and orientation angle φ), but there are no additional degrees of freedom
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fluid flow. (a) The position of a rod-like Brownian particle was controlled to trace the letter ‘I’ while maintaining a constant
orientation angle of φ = 130◦ throughout the path. The actual trajectory of particle is shown in colormap, while the reference
path is shown in black dotted markers. (b) Comparison between the active control and no control over rod orientation angle
during the 2D center-of-mass manipulation experiment.

to aid in controller flexibility. A rod oriented along the extensional axis at 90◦ represents a stable conformation in
flow, and a Brownian fluctuation to yield φ < 90◦ is then leveraged to reach the final desired angle of φ = 45◦.
We performed numerical simulations for non-Brownian particles, and indeed observed that the rod never leaves the
stable conformation position φ = 90◦ and hence, the desired orientation is not achieved. In experiments, however, the
rotational Brownian kick effectively pushes a trapped rod out of the stable orientation and into the desired quadrant
of the final orientation. To enhance orientation control, we also used microfluidic device with M = 5 channels for
controlling anisotropic particles with 3 degrees of freedom, which enabled facile trapping and control of orientation
angle over the entire 2π range without needing to rely on Brownian motion to overcome stable orientation alignments
in flow (Supplementary Movie 3). In this way, simply using microdevices with at least one additional channel relative
to the number of degrees of freedom loosens the constraints and improves orientational controllability.

B. Set-point control for simultaneous manipulation of particle position and orientation

Individual rod-like particles can be also manipulated in two dimensions along specific desired trajectories, both in
positional and orientational space (Fig. 5). In this way, anisotropic particles can be controlled to maintain a constant
orientation angle φ during 2D COM positional control, or alternatively to follow a specific orientation ‘program’ for
φ while tracking a defined trajectory during a manipulation event. To illustrate this level of control, the 2D COM
position of a particle is steered to trace the capital letter ‘I’ while maintaining a constant orientation angle φ = 130◦

throughout the path, as shown in Fig. 5a (Supplementary Movie 4). Here, the trajectory is discretized into many
segments for which the target COM position is slowly and repeatedly moved along the letter I. In this manner, the
particle covers a predetermined trajectory over a relatively large distance (120 µm) with high spatial and angular
accuracy over ≈200 s. In Fig. 5a, we show the 2D COM positions of a rod in color-coded trajectory overlaid with
the actual positions of the set path in black dashed markers. For comparison, we controlled a rod to move along the
same path without actively controlling the orientation of the particle, and the results show that the orientation angle
φ fluctuates significantly during the manipulation event (Fig. 5b). Fig. 6a,b shows the evolution of the individual x,y
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trajectories overlaid with the x,y positions of the set path. We observe that the rod follows the reference path closely
with small deviations but we anticipate that the deviations will increase if the speed of movement along the reference
path is faster.

Using the flow-based trapping method reported in this work, anisotropic particles can be maintained at a desired
state under no-flow conditions or under finite flow (net-flow) conditions. Under no-flow conditions, the controller
applies a small magnitude fluid flow to correct for minor fluctuations due to rotational or translational Brownian
motion of a particle. For trapping anisotropic particles in M = 4 channel devices using net-flow conditions, we
observed that anisotropic particles can be confined at a desired orientation, but only up to a critical value of fluid
strain rate ε̇ (Appendix C and Supplemental Material Fig. S4). For very high strain rates, anisotropic particles
tend to align along the extensional flow axis. These observations suggest that the fluid strain rate ε̇ plays a key role
in determining trap performance and stability. To investigate this further, we characterized the effect of rotational
Peclet number Per = ε̇/Dr on particle confinement (Fig. 7a,b), where Dr is the rotational diffusion coefficient of an
anisotropic particle (Appendix D and Supplemental Material Fig. S5). Here, we performed a series of experiments by
varying Per for a trapped particle while controlling the orientation angle at φ = 130◦. Per is varied by changing δP ,
which is the pressure difference between inlet channels 1,3 and outlet channels 2,4 in Fig. 2b. Initially, all four channels
were maintained at a base pressure P0 = 2.5 psi. For applying a net δP , the inlet channels 1,3 were maintained at a
higher pressure than the base value P0. The strain rate ε̇ is determined by particle tracking microscopy (Appendix
C).

Using this approach, we determined the root-mean-square (RMS) translational (RMSx, RMSy) and angular dis-
placements (RMSφ) of a trapped particle as a function of Per and the controller parameters αx and αy (Fig. 7a,b).
In all cases, the RMS translational displacements are <1.5 µm over a wide range of Per, suggesting that the trap
is robust up to at least Per = 20, 000. In addition, the translational displacements RMSx,y of anisotropic particles
increase as Per increases. Interestingly, this observation is in contrast to the behavior of a spherical particle trapped
in a Stokes trap [18], where the RMS particle displacement increases (decreases) as the Per increases along the exten-
sional (compressional) axis. These results reflect the performance of the trap given the added constraint of controlling
particle orientation in addition to 2D position for anisotropic particles.

Fig. 7b shows the RMS rotational displacements as a function of Per and the controller parameter αφ. For small
values of αφ, the angular trapping displacement RMSφ increases as the value of Per increases, such that the flow
tends to align the rod along the extensional axis at a critical value of Per, denoted by the last data point shown for
each value of αφ in Fig. 7b. Interestingly, by tuning the trapping parameter αφ, we are able to increase the tightness
of confinement and achieve the desired orientation over a wide range of Per. In this manner, we confirmed that
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FIG. 7. Characterization of trap response as a function of rotational Peclet number Per. (a) Tightness of confinement along
the translational directions as a function of Per for different values of trapping parameters: RMSx (red squares), RMSy (blue
squares) at αx = 1, αy = 1, αφ = 1000, RMSx (red diamonds), RMSy (green diamonds) at αx = 2, αx = 2, αφ = 2000, and
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diamond) at αx = 2, αy = 2, αφ = 2000, (magenta circles) at αx = 3, αy = 3, αφ = 3000.

the tightness of confinement along both the translational and angular directions can be tuned in real-time by proper
adjustment of trapping parameters. The effect of trapping anisotropy, which refers to different trapping stiffnesses
in the x, y-directions, can be further quantified(Supplemental Material and Fig. S6). The anisotropy parameter
(1 − RMSy/RMSx) at the lowest value of Per available in the microfluidic device is ≈ 0.5 for a wide range of
trapping parameters αx and αy. For an isotropic particle (2 µm diameter microsphere) trapped in a Stokes trap [18],
the controller applies same potential in the x and y directions, and the value of anisotropy parameter is zero for low
Per and becomes negative with increasing fluid strain-rate. Hence, we confirmed that the non-zero value observed
in our experiments at low Per results from the asymmetry of particle. The anisotropy parameter is also affected by
the orientation at which the rod is trapped. We determined RMSx and RMSy by varying the orientation at which
the anisotropic particle is trapped to investigate the effect more precisely. The anisotropy parameter (Supplemental
Material and Fig. S6) is approximately equal to zero at φ = 90◦, which corresponds to the orientation at which the
controller applies symmetric flow rates from both the inlets of microfluidic device. In this case, the trapping method
operates similar to a Stokes trap without orientational control [18], as if a symmetric isotropic particle is trapped
instead of an asymmetric anisotropic particle.

In addition to simultaneously controlling the position and orientation of a single anisotropic particle with high
precision, this trapping method described by Eq. 7 enables simultaneous translational and rotational control of multiple
anisotropic particles. This feature is demonstrated using numerical simulations (Supplementary Movie 5), where
the translational and rotational motion of two anisotropic particles was independently controlled in a microdevice
corresponding to M = 7 channels.

C. Trajectory control of isotropic Brownian particles

We first implemented trajectory path control by manipulating the 2D COM position of a spherical Brownian particle
(2.2 µm diameter fluorescent bead). Particle position was controlled to follow a figure-8 (Fig. 8 and Supplementary
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FIG. 8. Trajectory path control for manipulating a spherical Brownian particle (2.2 µm diameter bead) over a ‘figure-8’ curve.
The positional history of the particle is shown with a green line. MPC control parameters were set to αx = 1, αy = 1, αφ = 0,
λ = 0.001 and Φmax = 0.05 for the these experiments.

Movie 6), where the trajectory is described by a parametric equation such that r(θ) = [30 cos(−2πθ), 15 sin(−4πθ)]T ,
with θ ∈ [−1, 0]. Fig. 9 shows the reference trajectory overlaid with the actual trajectory of the particle. We observe
that the particle closely follows the reference trajectory with only small deviations from the reference trajectory.
The time-dependent particle position coordinates x and y during the experiment are shown in Fig. 10a,b, which
further illustrates that the particle closely tracks the reference trajectory with only minor deviations. Importantly,
the particle covers a large distance of approximately 100 µm over a short period of time (≈12 s). We emphasize
that the trajectory control approach provides a dramatic improvement over the prior approach of simply stepping
the set-point position at a fixed speed along a desired trajectory, which generally requires longer times and results in
larger deviations from reference trajectories during manipulation events (e.g. requiring 300 s to manipulate a bead
over a 200 µm distance) [18]. In addition, the set-point movement is coordinated with the motion of a particle such
that speed of the set-point is self-modulated based on the lag distance of the trapped particle. This adaptive nature
of trajectory control is further illustrated in Supplemental Material (Figs. S7-S8).

The offset error between the desired set point (corresponding to the current value of the parameter θ) and the
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FIG. 9. Actual and reference paths for a spherical Brownian particle tracing a ‘figure-8’ curve. The reference trajectory is
shown in blue, with the red circles marking the particle position over the course of the trajectory.
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FIG. 10. Reference path and the actual path of an isotropic particle during trajectory path control. (a), (b) x and y coordinates
of the particle and the reference trajectory as a function of time, respectively. (c) Offset error between the x coordinate of the
particle and the x coordinate of the reference trajectory as a function of time. (d) Offset error between the y coordinate of the
particle and the y coordinate of the reference trajectory as a function of time.

actual instantaneous particle position is shown in Fig.10c,d. Interestingly, it is observed that the offset error generally
increases during the straight sections of the reference trajectory and decreases when the set point occurs in regions of
high curvature. In brief, the set-point stepping motion slows down when approaching regions of high curvature, thereby
allowing the particle to catch up to the set-point motion. The offset errors shown in Fig. 10c,d correspond to the
difference between the set point position and the particle’s actual position, but not the distance between the particle’s
position and its projection onto the reference trajectory. Thus, even though offset errors show an approximate value
of ≈5-10 µm, the projected errors are significantly smaller because the particle often lags behind the set-point but
remains on the curve. Offset errors can be reduced further by appropriately tuning the weights corresponding to the
difference between the set-point and the particle’s position and the weights corresponding to the flow rates q.

The ability of trajectory path control to achieve robust manipulation at relatively fast speeds is further demonstrated
by moving a spherical bead along more complicated parametric curves, as shown in Fig. 11 and Supplementary Movie
7. Here, the particle effectively follows a complex path and rapidly traverses a linear distance of several hundred
microns in only ≈9 s. In addition to trajectory tracking control in position space, this method also enables trajectory
control of anisotropic particles in both position and orientation space. This feature is demonstrated using numerical
simulations (Supplementary Movie 8), where an anisotropic particle is moved along a parametric curve described by
a figure-8 while simultaneously changing its orientation from 89◦ at the beginning of the path to 1◦ midway, and back
to 89◦ at the end of reference path. In this way, we are able to achieve precise trajectory control over both the position
and orientation of anisotropic particles by simply adding additional state variables in the MPC objective function
Eq.8. These results demonstrate the robustness and scalability of our approach, where we can steer the particles along
a reference path in an output space (position and orientation) without needing to fix the speed of movement along
the path beforehand.

D. Transient and steady-state orientation dynamics of Brownian rods in extensional flow

We used the new hydrodynamic trap method to directly observe the transient and steady-state orientation dynamics
of anisotropic Brownian particles in extensional flow. For these experiments, the 2D particle COM is confined, but
the particle orientation is not controlled and hence governed by flow-dependent dynamics. Orientation trajectories
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FIG. 11. Trajectory path control for manipulating an isotropic Brownian particle (2.2 µm diameter spherical bead) over a
complex parametric curve. The positional history of the particle is shown with the green line. The particle closely follows a
complex parametric path and traverses a linear distance of several hundred microns in only ≈9 s.

are recorded as a function of Per. A trajectory showing the transient orientation dynamics for a single anisotropic
Brownian rod at Per = 602 is shown in Supplemental Material (Fig. S9).

To complement experiments, we determined the probability distribution of Brownian rod orientation in extensional
flow using analytical model. The full orientation distribution function (PDF) ψ(φ, t) of a Brownian particle is described
by the Fokker-Planck equation (FPE) [40]:

∂ψ (φ, t)

∂t
= Dr

∂2ψ (φ, t)

∂φ2
−
∂
[
φ̇ψ (φ, t)

]
∂φ

(11)

The steady-state distribution has a familiar Boltzmann form (Appendix E):

ψ (φ) =
e
− q1+q3−q2−q4

πHR2Dr
cos 2φ∫ π

0
e
− q1+q3−q2−q4

πHR2Dr
cos 2φ

(12)

where q1, q2, q3, q4 are the flow rates through the channels of microfluidic device, H is the depth of device, and R is
the width of cross-slot channel.

The experimentally determined orientation distribution function agrees well with the analytical model given by Eq.
12 (Fig. 12a). As Per increases, the orientation PDF becomes sharply peaked along the axis of extension, as shown
in Fig. 12b. To characterize the degree of alignment along the extensional axis, we also define a 2D order parameter
as the eigenvalue of tensor S = 2 〈pp〉 − δ, where p is the unit vector along the major axis of the particle such that
p = [cosφ, sinφ]T . In the limit of Per → 0, the order parameter S tends to zero, and the distribution becomes
isotropic. For large values of Per, the order parameter S approaches unity and the distribution is strongly aligned
along the extensional axis (Fig. 12c).

In addition to the orientation PDF and order parameter S, we further determined the characteristic time required
by a Brownian rod to reorient in flow following a step change from an initial orientation angle set point to different
set point. In order to quantitatively characterize the reorientation time as a function of flow strength, we record the
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transient trajectories of a single rod following the step change of orientation from φ = 180◦ to φ = 90◦ as a function of
Per (Fig. 13a). The average reorientation times are plotted in Fig. 13b. Our results show that the reorientation time
decreases upon increasing Per, which is in agreement with a simple analytical model (Appendix E). Such results can
be extremely useful for describing the non-equilibrium phase diagram of anisotropic rods in extensional flow, which
can be used to describe the transition from an isotropic (disordered) state to an aligned (ordered) state in suspensions
of dilute rigid rods or liquid crystals as a function of flow strength in time-dependent flows.
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16

IV. DISCUSSION

In this work, we develop and implement fundamentally new flow-based methods for particle manipulation that allow
for simultaneous control over the 2D position and orientation of anisotropic Brownian particles. These experiments are
performed using a four-channel cross-slot device for a single anisotropic particle, though we emphasize that our method
is easily scalable to enable facile control over the center-of-mass and orientation of multiple particles (Supplementary
Movie 4) by using the same model predictive control algorithm, albeit with the state function augmented to include
the degrees of freedom of additional particles. This is a major advantage compared to alternative methods based
on optical traps or prior flow-based traps, which often require sophisticated equipment and complicated design for
multiplexed operation. Moreover, we report a fundamentally new method of control wherein we demonstrate precise
and fast trajectory tracking of colloidal particles in position and orientation space along user-defined paths. To our
knowledge, our work is the first to experimentally demonstrate path following control, and this approach has not
been previously used for optical, electrokinetic, magnetic, or fluidic traps. In general, there have been only a few
implementations of model predictive control to real systems [37, 41]. From this view, moving particles along prescribed
paths with high precision in microfluidic systems has been an essential endeavor and challenge in the field. Thus,
our demonstration of path-following control to a microscopic system with millisecond response time is a major step
forward for particulate and colloidal science.

Trap performance is characterized by translational and angular trapping stiffness, and these results show that this
method can be used to stably control anisotropic particles over a wide range of flow strengths (rotational Peclet number
Per). These advances are used for a detailed study of the transient and steady orientation dynamics of anisotropic
Brownian particles in extensional flow over long times, and experimental results are compared to analytical models.
In particular, we find that orientation distribution of particles becomes sharply peaked along the axis of extension
with increase in flow-strength. Our results also show that the characteristic time required by anisotropic particles
to reorient in flow following a step change from an initial orientation set point decreases upon increasing the flow
strength. Despite years of studying and modeling the non-equilibrium dynamics of particles in extensional flow, to our
knowledge, our results are the first to reveal these effects in a precisely controlled extensional flow. Future application
of this method to trapping multiple particles holds the potential to enable the study of interparticle interactions as a
function of relative spacing, particle orientation, and imposed flow strength.

Unlike alternative techniques that exploit intrinsic material properties to manipulate particles (e.g. index of re-
fraction, magnetic properties, surface charge), flow-based methods impose no restrictions on the physical or chemical
properties of trapped particles. Hence, such flow-based methods can be used to trap small particles of any material
and size, given that they can be imaged or detected. In the current setup, we only control the 2D COM position and
orientation in the x − y plane, without control in the orthogonal z-direction. From this view, the current method is
not directly amenable for control over particle position in the z-direction or out-of-plane rotation. Nevertheless, we
generally find that out-of-plane particle orientation is rare and only occurs over extremely long timescales (minutes to
hours) at which passive Brownian motion may lead to orientation changes. Overall, this flow-based trapping method
provides stable and robust control of the orientation and position of anisotropic particles.

A large number of prior studies in colloidal science and biophysics have relied on trapping a small particle at a
fixed set-point by suppressing disturbances using optical [42], magnetic [43], electric [15], or fluidic forces [44]. In
this work, we experimentally demonstrate a path-following control method to manipulate particles along arbitrary
reference trajectories, where the speed of motion along the path is also a state variable in the controller design.
Our results show that particles can be manipulated across complex paths and trajectories by changing only a few
parameters in the MPC objective function, thereby providing a level of control that has not been previously possible
using conventional set-point stabilization trapping techniques. Our work effectively extends the implementation of
path-following control to millisecond time scale system dynamics.

The trajectory tracking approach developed in this work is fundamentally different than the set-point control
method in prior flow-based trapping methods [18, 24]. The original Stokes trap provided proof-of-concept that model
predictive control was capable of independently manipulating the center-of-mass coordinates of two particles. In
that work, the manipulation of particles along a trajectory occurs by stepping the set-points at a fixed rate along a
reference trajectory. This approach is slow and may be prone to large offset errors between a particles position and
the set-point, mainly because there is no control of the path taken by the particle between the current position and
the target position. For instance, if the set-point is moved too rapidly, and the particle deviates from the trajectory
by a large amount, then there will be significant deviations in the actual trajectory of the particle with respect to
the reference trajectory. This method thus has limited utility for experiments requiring high precision and accuracy,
such as controlled adhesion between two vesicles, wherein hydrodynamic interactions introduce large perturbations to
the particle motion as they approach each other. From this perspective, demonstration of trajectory control in this
work is new and significant in the sense that particle positional or orientational set-point movement is coordinated
with the motion of a particle, such that speed of the set-point is self-modulated based on the lag distance of particle.
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This makes our method adaptive, extremely fast, and self-tuning. Taken together, these manipulation methods can
be readily applied to various problems where the speed of movement of particles along a desired path is not fixed
a priori, for example in systematically building higher-order and complex assemblies of structurally and chemically
different anisotropic particles. Moving forward, flow-based trapping and manipulation techniques hold the potential
to transform fundamental studies in multiple fields ranging from soft materials, colloidal science, and biophysics.
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APPENDIX

A. Model for rotational velocity of anisotropic particles

In Fig. 2, the orientation vector t (vector connecting xc and xt) is given by:

t = [cos(φ), sin(φ)]T (13)

and the normal vector n is defined as:

n = [− sin(φ), cos(φ)]T (14)

The velocity at the locations xc and xt is given by:

ẋc =
1

πH

M∑
m=1

(xc −Rm)

‖xc −Rm‖2
qm

ẋt =
1

πH

M∑
m=1

(xt −Rm)

‖xt −Rm‖2
qm

(15)

The rotational velocity is then given by the projection of the relative velocity vector along n divided by the distance
L. The relative velocity vrel of the point T with respect to C is:

vrel =
1

πH

M∑
m=1

(
(xt −Rm)

‖xt −Rm‖2
− (xc −Rm)

‖xc −Rm‖2

)
qm (16)

and the rotational velocity is given by the time rate of change of the particle orientation angle φ̇

φ̇ =
vrel · n
L

(17)

Simplifying the expression for φ̇:
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φ̇ =
1

πHL

[
M∑
m=1

(
(xt −Rm)

‖xt −Rm‖2
− (xc −Rm)

‖xc −Rm‖2

)
qm]

]
· n (18)

=
1

πHL

[
M∑
m=1

(
−(xc −Rm){2L(xc −Rm)T t+ L2} · n+ Lt‖xc −Rm‖2 · n

‖xc + Lt−Rm‖2‖xc −Rm‖2

)
qm

]

=
1

πHL

[
M∑
m=1

(
−(xc −Rm){2L(xc −Rm)T t+ L2} · n

‖xc + Lt−Rm‖2‖xc −Rm‖2

)
qm

]

=
1

πHL

[
M∑
m=1

(
−{2L(xc −Rm)T t+ L2}(xc −Rm)Tn

‖xc −Rm‖4

)
qm

]
[∵ ‖xc + Lt−Rm‖ ∼ ‖xc −Rm‖]

=
1

πHL

[
M∑
m=1

(
−2LtT (xc −Rm)(xc −Rm)Tn

‖xc −Rm‖4

)
qm

]
[∵ neglect L2 compared to L(xc −Rm)]

=
1

πH

[
M∑
m=1

(
−2tT (xc −Rm)(xc −Rm)Tn

‖xc −Rm‖4

)
qm

]
(19)

B. Determination of center-of-mass and orientation of rod-like particles

The 2D center-of-mass position (xc, yc) of an anisotropic particle was estimated by thresholding pixel intensities. In
each cycle of the feedback loop, we considered a square region (region-of-interest, ROI) for image processing. The ROI
can be selected in real time and is generally chosen to be small enough to only focus on the target particle but large
enough to accommodate the largest possible drift of the target particle in one time-loop. A pixel is considered bright
(above the threshold) if the intensity value is larger than a user-defined threshold. The center-of-mass of all bright
pixels (xi, yi) is determined in order to identify the center-of-mass (COM) (xc, yc) of the rod. Particle orientation is
determined by the angle of the line that passes through the particle COM about which the particle has the lowest
moment of inertia. In this way, particle orientation angle φ was determined by:

φ =
1

2
tan−1

(
2Ixy

Iyy − Ixx

)
(20)

where Ixx, Ixy, Iyy are determined from the bright pixel coordinates (xi, yi) as follows:

Ixx =
∑

xi
2 − (

∑
xi)

2

A

Iyy =
∑

yi
2 − (

∑
yi)

2

A

Ixy =
∑

xiyi −
∑
xiyi
A

(21)

where A is the area of particle. The orientation angle φ of the particle lies in the range [0, π] because φ and (180◦−φ)
are indistinguishable.

C. Strain rate determination

We use particle tracking velocimetry (PTV) to determine the fluid strain rates ε̇ as a function of the applied pressure.
Experimental characterization of the strain rate is essential for determining rotational Peclet number Per = ε̇/Dr,
where Dr is the rotational diffusion constant of a rod. A trace amount of fluorescent microbeads (2.2 µm diameter,
Spherotech, 0.01% v/v) was added to a glycerol-water buffer solution (shear viscosity η=0.0113 Pa-s) to enable particle
tracking. Microfluidic devices are mounted on an inverted fluorescence microscope (Olympus IX71), which allows for
real-time imaging of fluorescent beads using a high numerical aperture (1.45 NA, 63X) oil-immersion objective lens
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and a 100-W mercury arc lamp (USH102D, UShio). The glycerol-water buffer is introduced into microfluidic devices
using a pressure regulator (Elveflow), and images of bead positions are acquired as functions of applied pressure
and z-position using a CCD camera (GS3-U3-120S6M-C). A custom particle tracking and analysis program is used
to determine strain rates for all bead trajectories, which allows for determination of a dimensionless flow strength
(Per), which is defined based on the strain rate at the channel mid-plane. We found that the strain rate increases
linearly as a function of applied pressure over the characteristic range of strain rates used in this study (Fig. S4a). In
addition, we determined the flow profile as a function of distance away from the horizontal mid-plane in the z-direction,
corresponding to the stagnant (no flow) direction, which revealed a parabolic flow profile (Fig. S4b).

D. Rotational diffusion constant

The rotational diffusion constant of anisotropic rigid rods are determined by a mean-squared angular displacement
(MSAD) analysis of single particle trajectories. Here, an anisotropic particle is positioned near the center of a four-
channel cross-slot, the flow is stopped, and the trajectory of particle is recorded over long times until it drifts away from
the field of view. The orientation of the rod is then fit using linear regression to the equation

〈
θ2
〉

= 2Drt, where
〈
θ2
〉

is the mean-squared angular displacement (MSAD) for diffusional motion. The ensemble average MSAD versus time is
plotted in Fig. S5. In this way, a linear fit is used to calculate the average diffusion constant (2.16±0.2×10−4 rad2/s).
The mean rod length and width were 9.8± 1.1 µm and 1.7± 0.14 µm, respectively. All trajectories were determined
in a glycerol-water buffer (shear viscosity η=0.0113 Pa-s at 22◦ C. For comparison, an anisotropic cylindrical rigid
rod with dimensions 9.8µm by 1.7µm suspended in a solution with viscosity 0.0113 Pa-s has a theoretical diffusion
coefficient of 3.48× 10−4 rad2/s given by [40]:

Dr =
3kT (ln(2L/d)− 0.8)

8πηL3
(22)

where k is the Boltzmann constant, T is absolute temperature, η is the viscosity of suspending medium, 2L is the
rod length, and d is the rod width. The predicted value is consistent with the measured value of Dr considering the
polydispersity of the in-house synthesized rod sample [45].

E. Analytical model for the orientation dynamics

Anisotropic particles are modeled as two beads connected by a massless rod as shown in Fig. 2c, where the lower
bead is at the rod COM xc = (xc, yc) and the upper bead is at the extreme end xt of the major axis of the particle,
being separated by a distance L. Following Eq. 5, the rotational velocity of the rod in a four-channel device is:

φ̇ =
1

πH

4∑
i=1

sin (2φ) ‖xc −Ri‖2

‖(xc −Ri)‖4
qi

−2cos (2φ) (xc −Rix) (yc −Riy)

‖(xc −Ri)‖4
qi

(23)

where φ is the angle between the particle’s major axis and the flow axis. We further assume that the COM position
of the particle is kept fixed at origin of the device, which is the target trapping position in experiments. This further
simplifies equation Eq. 23 to:

φ̇ =
q1 − q2 + q3 − q4

πHR2
sin (2φ) (24)

The corresponding probability distribution function (PDF) ψ(φ, t) of finding a rod of negligible cross-section at
orientation φ and at time t is given by the Fokker-Planck equation (FPE):

∂ψ (φ, t)

∂t
=
∂2ψ (φ, t)

∂φ2
− q1 + q3 − q2 − q4

πHR2Dφ

∂ [sin (2φ)ψ (φ, t)]

∂φ
(25)
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We note that ψ(φ, t) is periodic with a period of π because the rods are indistinguishable when oriented at φ or φ+π,
thus the boundary and initial conditions become:

ψ (0, t) = ψ (π, t) = 0

ψ′ (0, t) = ψ′ (π, t) = 0
(26)

∫ π

0

ψ (φ, t) dφ = 1; ψ (φ, 0) = δ (φ− φ0) (27)

where φ0 is the initial orientation angle of the particle.

At long times, the left hand side of Eq. 25, namely the term ∂ψ (φ, t), equals zero and a closed form solution of the
FPE is obtained as:

ψ (φ) =
e
− q1+q3−q2−q4

πHR2Dφ
cos 2φ

∫ π
0
e
− q1+q3−q2−q4

πHR2Dφ
cos 2φ

(28)

From Eq. 23, the time evolution of φ(t) can be determined, which is used to predict the time taken by a particle to
change orientation from an initial angle φ0 at time t = 0 to a final orientation φf at time t as a function of strain
rate ε̇. In the case where particle COM is trapped at the origin of the frame of reference, Eq. 23 reduces to Eq. 24,
which is solved by integration using separation of variables, which yields:

t =
πHR2

2 (q1 + q3 − q2 − q4)
log

cotφf
cotφ0

(29)

where the strain rate ε̇ is taken be uniform at the center of cross-slot device.
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[41] R. Ritschel, F. Schrödel, J. Hädrich, and J. Jäkel, Nonlinear model predictive path-following control for highly automated

driving, IFAC-PapersOnLine 52, 350 (2019).
[42] D. G. Grier, A revolution in optical manipulation, Nature 424, 810 (2003).
[43] A. Winkleman, K. L. Gudiksen, D. Ryan, G. M. Whitesides, D. Greenfield, and M. Prentiss, A magnetic trap for living

cells suspended in a paramagnetic buffer, Appl. Phys. Lett. 85, 2411 (2004).
[44] C. M. Schroeder, Single polymer dynamics for molecular rheology, J. Rheol. 62, 371 (2018).
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