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We use the multiphase magnetohydrodynamic code SFEMaNS to study the generation of electro-
vortex flows in liquid metal batteries. We first reproduce some well known results in a single-
phase liquid metal column and then we characterize the electro-vortex flow in layered multiphase
fluid systems. A simple energy density balance argument accurately estimates the typical interface
deformation caused by the electro-vortex flow. When applied to Mg-Sb liquid metal batteries, we
find that the electro-vortex flows may have the capacity to cause short-circuits even in moderate
size batteries with radii in the range [10, 20] cm.
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I. INTRODUCTION

Intermittent electrical energy sources, such as wind and solar energy cannot have a significant impact on the global
energy budget unless inexpensive and large scale storage devices are put in place. Amongst the various options that
are currently studied, liquid metal batteries (LMBs) have been identified to be viable candidates [1–3]. In this article,
we study how the magnetohydrodynamic phenomenon known as electro-vortex flow can impact the stably stratified
structure of LMBs.
A sketch of a typical LMB configuration is shown in Figure 1-(a). A light liquid metal (represented with the letter

A) is positioned on top of a medium density electrolyte composed of a molten salt, itself on top of a heavy liquid
metal alloy that has a high affinity for A (represented by the symbols B(A)). During discharge, electrons flow through
the external circuit, while elements A dissolve as ions A+ at the top of the electrolyte layer. At the bottom of the
electrolyte, ions A+ leave the electrolyte and alloy with B. As a result, the top layer of the LMB gets thinner and the
bottom layer gets thicker during discharge. During charge the opposite mechanisms take place and the cell is restored
to its original configuration. LMBs have attractive properties (low cost materials, high energy-efficiency, high capacity
retention, and high cyclability), but their main drawback is that they need to be heated (∼ 400 ◦C) to remain liquid.
This certainly has an energetic cost, but not one that is prohibitive. Over the recent years, small LMB prototypes
using inexpensive and Earth abundant materials have been built and tested [1–3]. The technology is presently being
upscaled to allow a first phase of commercialization, but further studies are needed to reveal the full possibilities and
limitations of the LMB technology.
The design of new LMB prototypes is necessary, but it is also interesting to use numerical simulations as a com-

plementary tool to get insights in the chemical and physical processes occurring inside these cells. Fluid motions, of
hydrodynamical, thermal or magnetohydrodynamical origin are unavoidable in LMBs and have received a particular
attention (natural convection [4–8], the Tayler instability [9–11], the metal pad roll instability [12–19], and the electro-
vortex flow [4, 7, 10, 20]). Too intense flows need to be avoided as they can compromise the stable stratification of
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the battery. On the other hand, flows can also be desirable. In the alloy layer, flows will improve the mixing limiting
mass transfer overpotentials [2, 4] or will prevent the formation of undesirable (solid) inter-metallic phases. We refer
the reader to [9] where safety issues connected to magnetohydrodynamic instabilities are discussed and to [21] for a
recent review of flows in LMBs.
In this article, we continue this research of fluid flows in LMBs, focussing on the so-called electro-vortex flow (EVF).

EVF commonly arises in liquid metal regions that are in contact with thinner solid electrodes; see [22] for a detailed
overview. Due to a difference in shape between the solid electrode and the liquid metal bath, the field lines of the
electrical current j spread out as sketched in Figure 1-(b). Along with this current comes a magnetic induction b and a
Lorentz-force j×b that effectively pushes the liquid metal away from the solid electrodes towards less intense j regions,
see [23]. Inside a LMB, strong enough EVF can deform the interfaces separating the fluid layers and potentially even
cause short-circuits, see Figure 1-(c). The objective of this paper is to characterize the intensity of the EVF inside
multiphase systems, such as a LMBs and to asses whether EVF may cause short-circuits. The investigation is done
numerically by using the massively parallel, multiphase, magnetohydrodynamic code SFEMaNS (the acronym stands
for Spectral/Finite Element code for Maxwell and Navier-Stokes equations). This code uses cylindrical coordinates
and is well suited to study the EVF in axisymmetric domains. Full details on the numerical method that is used are
given in [24]. The multiphase algorithm in SFEMaNS has been benchmarked with OpenFOAM on the metal pad roll
problem in [25].

+

-

(a) (b) (c)

FIG. 1: A liquid metal battery (LMB) is composed of 3 layers of superposed conducting fluids with different densities. During
discharge (a), electrons pass from the − to the + pole in the external circuit. Inside the battery, the top metal A dissolves as
ions A+ migrate downwards in the electrolyte, and ultimately alloy with the bottom metal B(A). (b) The shape of the current
collectors causes the field lines of the electrical current j to spread out as they enter the top and the bottom layers. This causes
an azimuthal magnetic field b and an inward Lorentz-force j × b. As a result an electro-vortex flow u is created in both the
top and the bottom layers, and this flow can deform the interfaces (c).

The article is structured as follows. In §II, we first present our solver SFEMaNS used for the computations. In
§III, we study the EVF in a single fluid layer to recover some well-known results and scaling laws in axisymmetric
context and in three-dimensional simulations. We also investigate how a realistic solid electrode affects EVF and this
allows to discuss the accuracy of commonly used idealized boundary conditions (see [22, 26]). In §IV, we study the
EVF in setups composed of two and three layers of conducting fluids and in particular, the Mg-Sb LMB [1]. We
calculate typical flow intensities and estimate the amplitude of the deformation of the interfaces caused by EVF.
Using similitude principles, we then estimate typical battery sizes for which the EVF mechanism may become very
intense and thereby compromise the stratified structure of the battery.

II. SFEMANS SOLVER

The numerical study presented here is done using the code SFEMaNS, for Spectral/Finite Element code for Maxwell
and Navier-Stokes equations. This magnetohydodynamic (MHD) solver has been developed since 2001 and was
initially designed to study dynamo problems in axisymmetric fluid domains. The numerical method for mono-phase
fluid domains was previously described in [27–29] and has been thoroughly validated on numerous manufactured
solutions and against other magnetohydrodynamic codes (see e.g. [30, 31]). The code has now been extended to allow
for multiple liquid metal phases, allowing the simulations of [32] on the Tayler instability in liquid metal batteries.
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The numerical method is fully detailed in [24]. In recent work on the metal pad roll instability in reduction cells [25],
we have shown that multiphase MHD simulations done with SFEMaNS and an entirely different code (OpenFOAM,
also used in [33]) almost yield identical results that are further in quantitive agreement with a linear stability theory.
Here we use SFEMaNS for the first time to study electro-vortex flows in multiphase set-ups.
Let us present the numerical method used by SFEMaNS in a nutshell (all numerical details are available in the

mentioned references). Denoting by ρ, m = ρu, p and b the density, the momentum, the pressure and the magnetic
field, respectively, the conservation of mass, the conservation of momentum, the solenoidality of the magnetic field,
and the induction equation are expressed as follows in dimensional form:

∂tρ+∇ ·m = 0, (1a)

∇ · u = 0, (1b)

∂tm+∇ · (m⊗ u)−∇ · (η(∇u+∇uT ) +∇p = −ρgez +
(∇× b)× b

µ0
, (1c)

∇ · b = 0, (1d)

∂tb+∇×
(

∇× b

µ0σ

)

= ∇× (u× b), (1e)

Here g is gravity and ez conventionally gives the unit vector in the upward direction. µ0 is the vacuum permeability,
ρ, η, σ material parameters of the liquid metal, respectively density, dynamic viscosity and electrical conductivity.
SFEMaNS solves these equations in arbitrary axisymmetric fluid domains, potentially surrounded by current-free
regions or other solid conductors. When only one phase is present, material parameters remain constant. Liquid
metal batteries include more than one fluid. The presence of multiple phases is accounted by using a level set
technique. The material parameters ρ, η and 1/σ are space and time-dependent fields that are reconstructed using
level set functions [24]. For example, in a two-phase case (indices 1 and 2), the density is given by ρ = ρ2+(ρ1−ρ2)φ =
ρ2(1− φ) + ρ1φ with φ ∈ [0, 1] the sharply varying level set function that is materially advected by the flow u:

∂tφ+ (u ·∇)φ = 0, (2)

In the three layer case, two level set functions are used such that, e.g. ρ21(φ1) = ρ2(1 − φ1) + ρ1φ1 and ρ =
ρ3(1 − φ2) + ρ21(φ1)φ2, where φ1 ∈ [0, 1] varies steeply across the interface between the top layer (1) and the
electrolyte (2), and φ2 ∈ [0, 1] varies sharply across the interface between the electrolyte (2) and the bottom layer
(3). Both φ1, φ2 are then materially advected. A compression technique is used to keep the interfaces sharp (typically
smeared out over some 3 gridpoints, but not more). The present version of the code handles capillary pressure jumps
on the interfaces but does not model contact lines properly (regions where 3-phases encounter (solid-liquid-liquid)
or (liquid-liquid-liquid)). Therefore, we ignore capillary effects in the simulations that follow. Equations presented
above are dimensional, but SFEMaNS can also be used in non-dimensional form.
Having supposed an axisymmetric fluid domain, we may discretize the system of equations (1) using a Fourier

decomposition in the azimuthal θ-direction. In the meridian (r, z)-section, we use continuous finite elements (P1

Lagrange elements for the pressure and P2 Lagrange elements for the velocity and the magnetic field). As an example,
the approximate velocity field then has the following representation:

u =
M−1
∑

m=0

uc
m(r, z, t) cos(mθ) +

M−1
∑

m=1

us
m(r, z, t) sin(mθ), (3)

where uc
m(r, z, t) and us

m(r, z, t) are vector-valued finite elements functions. All the fields, either vector-valued or
scalar-valued, are represented as above. M is the number of Fourier modes used in the discretization. In the axisym-
metric simulations, we use M = 1. Three-dimensional simulations require more modes but we found that M = 16
is suitable. All simulations are initialized with fluid at rest and are of course subject to numerical discretization
errors. Initial magnetic field conditions are not very important as the magnetic field almost immediately adjusts
in one or two time-steps. Modulo the computation of nonlinear terms using FFTW3, the handling of the Fourier
modes in the meridian plane, (r, z), can be done in parallel and we also use parallel domain decomposition strategies.
The divergence of b is controlled by a technique using a negative Sobolev norm that guarantees convergence under
minimal regularity (see details in [34], [35, §3.2], [36]).

In Table I, we provide details on the numerical simulations presented in this article. Referring to each of the figures,
we provide the number of Fourier modes M , the mesh-size (uniform) or interval of mesh-sizes (non-uniform) of the
finite element grid in the meridional plane. The time-step ∆t is also provided and remains fixed in our simulations.
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Figures M mesh size ∆t Figures M mesh size ∆t
3, 4a, 5 1 [0.01, 0.025] 10−3 11,12 1 [0.25, 1]mm 5× 10−4 → 10−4s
4b ” 0.005 10−3 13 ” ” 10−4s
” ” 0.01 10−3 14 ” ” 2.5× 10−5s
” ” 0.05 10−3 15 (real) ” ” 2.5× 10−5s
6,7,8 ” [0.01, 0.025] 10−2 → 4× 10−7 15 (fake) ” ” 7.5× 10−5s
9,10 16 [0.005, 0.01] 10−5 → 2.5× 10−7 16 ” ” 5× 10−4 → 2.5× 10−5s

TABLE I: Details on the numerical simulations discussed in this article. Referring to each figure, we provide the number of
Fourier modes M , mesh-size (uniform) or interval (non-uniform) of mesh-sizes of the finite element grid in the meridional plane.
In all simulations, the time-step ∆t is fixed. Intervals . . . → . . . indicate how ∆t was changed with increasing S (or current I).

Examples of meridional meshes are shown in Figures 3(e) and 13(b). A convergence study is done on a particular
set-up and this is further discussed below (see Figure 4(b)).

III. ELECTRO-VORTEX FLOW IN A SINGLE FLUID LAYER

A. Geometry and equations

We consider an incompressible liquid metal with kinematic viscosity ν and density ρ. The fluid domain is a cylinder
of radius R and height H . The total electrical current I runs vertically through the system. This current enters at
the bottom and is connected to the fluid through a section of radius Rw. The current exits at the top across the
entire section of radius R. The chosen geometry is one of the classical examples of electro-vortex flow investigated in
the literature, theoretically [26, 37–39], numerically [33, 40, 41], and experimentally [42, 43].

(a) wire (b) uniform (c) Millere

FIG. 2: Computational domains used to study the EVF in a liquid metal column. On top of the fluid domain, we suppose a
homogeneous current density Jtop. Three different setups are compared. In the setup (a), the fluid is connected electrically
to a solid wire which is fed from below with a homogeneous current density Jbot. In (b), there is no wire and a homogeneous
current density Jbot directly enters the fluid domain. In (c), the wire is modeled by using a particular Millere current density
profile (see Eq. (4)) over the section where the wire should be connected to the liquid bath.

We study three different setups sketched in Figure 2. In all the setups we suppose that the current density on
the top section is homogeneous, J top = (I/πR2)ez. In the setup (a), the fluid is electrically connected to a solid
wire of height Hw and conductivity σw which is fed from below with a uniform current density Jbot = (I/πR2

w)ez.
In the setup (b), referred to as the uniform case, there is no wire and a homogeneous current density Jbot directly
enters the fluid domain. In the setup (c), referred to as the Millere case, there is no wire either, but, using cylindrical
coordinates, we suppose that the current distribution has the following form:

JMillere =
I

2πR2
w

1
√

1− (r/Rw)2
ez (4)

and enters through the cylindrical section {0 ≤ r ≤ Rw}. This particular current density profile has been used in
[22, 26]; it corresponds to the current density that would be observed at the surface of a flat, perfectly conducting
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electrode of radius Rw, feeding a current I to a semi-infinite conductor. We expect that this distribution is a reasonable
approximation for a thin well-conducting wire connected to a large fluid domain, i.e. when σw ≫ σ,Rw ≪ R,Rw ≪ H .
We non-dimensionalize the problem using the following scales for space, time, velocity, pressure, and magnetic field:

[r] = R, [t] =
R2

ν
, [u] =

ν

R
, [p] =

ρν2

R2
, [b] =

µ0I

2πR
, (5)

with µ0 the magnetic permeability of vacuum. For brevity, we abuse the notation by not changing the notation for the
non-dimensional variables, e.g. (r, θ, z) designate the non-dimensionalized, cylindrical coordinates. Three geometric
non-dimensional parameters are fixed:

h =
H

R
= 1, hw =

Hw

R
= 1, rw =

Rw

R
= 0.2. (6)

The following three remaining non-dimensional parameters are allowed to vary:

S =
µ0I

2

4π2ρν2
, Pm = σµ0ν, σ̂ =

σw

σ
. (7)

The number S measures the ratio between the magnetic and the viscous forces and is referred to as the EVF parameter
in [7]. Pm is the magnetic Prandtl number of the fluid. σ̂ is the ratio of electrical conductivities of the wire and the
fluid. The non-dimensional magnetohydrodynamic equations to be satisfied in the fluid are:

∂tu+ (u ·∇)u = −∇p+∆u+ S(∇× b)× b, (8a)

∂tb = ∇× (u × b) + P−1
m ∆b, (8b)

∇ · u = 0, (8c)

∇ · b = 0. (8d)

Moreover, in the setup (a) described in Figure 2 we solve the induction equation in the wire

∂tbw = (σ̂Pm)−1∆bw, (9a)

∇ · bw = 0. (9b)

At occasions we will use the notation j := ∇ × b, jw := ∇ × bw for the electrical current densities in the fluid and
in the wire, respectively. On the boundaries of the fluid domain we enforce the no-slip condition:

u|r=1 = u|z=1 = u|z=0 = 0. (10)

In the wire set-up (a), there is internal boundary at the electrical contact and there we use the physical boundary
conditions

ez × (b− bw)|z=0 = 0, ez × (j − (jw/σ̂))|z=0 = 0, ∀r ∈ [0, rw], (11)

expressing continuity of tangential magnetic and electrical fields. On any point of the outer boundary, we need to
have

bθ|r=rb =
1

rb

∫ rb

0

jzr dr. (12)

according to Ampère’s law and this yields

bθ|r=1 = 1, ∀z ∈ [0, 1]; bθ|z=h = r, ∀r ∈ [0, 1]; bθ|z=0 = 1/r, ∀r ∈ [rw , 1], (13a)

and depending on the setup

(a) wire : bw,θ|r=rw = 1/rw, ∀z ∈ [−hw, 0]; bw,θ|z=−hw
= r/r2w , ∀r ∈ [0, rw], (13b)

(b) uniform : bθ|z=0 = r/r2w, ∀r ∈ [0, rw], (13c)

(c) Millere : bθ|z=0 =
(

1−
√

1− (r/rw)2
)

/r, ∀r ∈ [0, rw]. (13d)
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The boundary condition in the setup (c) is obtained by using equation (4) in (12). These boundary conditions for bθ
are all we need in axisymmetric simulations, since br = bz = 0 everywhere for an isolated device placed in a current-
free exterior. The Millere condition is often given in the literature in the form (13d); it is rarely formulated in the
form (4). This condition is obtained by solving ∇×∇ × (bθeθ) = −∆(bθeθ) = 0 in oblate spheroidal coordinates in
an infinite fluid domain above a perfectly conducting disk (see [22] for details). One then derives (13d) by expressing
the solution thus obtained on the surface of the disk using cylindrical coordinates. Notice that, unlike the Millere
current density, the Millere azimuthal magnetic field profile is not singular at r = rw.
We also investigate how EVF becomes three-dimensional and in these three-dimensional simulations, br, bz 6= 0.

Extra magnetic boundary conditions on the outer surface are then required by the calculation. For the sake of
simplicity, we suppose that tangential field components other than bθ vanish, meaning br = 0 on all horizontal outer
boundaries and bz = 0 on all vertical outer boundaries. Similar boundary conditions were also used in [32] and had
little impact there, but strictly speaking, they are not correct for a device surrounded by a current-free exterior. Let
us estimate the impact of this idealized boundary condition. All our three-dimensional simulations are done in the
low Rm-regime: Rm = σµ0UmaxR < 10−3 maximally in what follows. In this low Rm-limit, the magnetic field is
b ≈ bms

θ (r, z) eθ+O(Rm), where the dominant magneto-static part satisfies ∆(bms
θ (r, z) eθ) = 0. Boundary conditions

on br, bz, realistic or approximated, have no influence on bms
θ (r, z) and can only modify the much smaller, O(Rm)-

part of the magnetic field (the quasi-static field correction). As a consequence, we can estimate that the Lorentz
force (∇× b)× b and the electro-vortex flow it drives, can only be affected by O(Rm) relative differences in the low
Rm-limit. Implementing realistic boundary conditions would require the calculation of external magnetic field, an
expensive extra computational effort, but one with very low impact on EVF. This explains our preference for idealized
boundary conditions on br, bz, in three-dimensional simulations.

B. Axisymmetric study

In this section, we impose axisymmetry: all fields are θ-independent and br = bz = jθ = jw,θ = uθ = 0.

1. Spatial structure of current density, Lorentz force and electro-vortex flow

As a first example, we focus on the setup with a wire that has the same conductivity as the liquid metal, σ̂ = 1
and further fix Pm = 0.2, S = 250. This choice of parameters is not inspired by a realistic set-up but allows to
compare with previous simulations [22, p. 187]. Starting with the fluid at rest, a stationary flow is reached after a
short transient. In Figure 3-(a) we show a collection of streamlines of the stationary electro-vortex flow in a meridional
plane. A vertical jet directed away from the bottom electrode recirculates along the lateral wall. The flow is the most
intense on the axis. Figure 3-(b) shows how the electrical current density spreads out from the bottom section to the
top section. Panel (c) shows the field lines of the associated Lorentz-force. Notice that this force is very large close to
the point (r, z) = (0.2, 0). When looking at this picture, it is not immediately clear how the Lorentz force can create
the electro-vortex flow. Actually only part of the Lorentz force contributes to the generation of the flow. Recalling
that br = bz = 0, we rewrite the Lorentz force as

j × b = −b2θ
r
er −

1

2
∇b2θ. (14)

We thus separate a potential part −∇b2θ/2, which only modifies the pressure, from the quantity −(b2θ/r) er, which
effectively drives the electro-vortex flow. The spatial distribution of −(b2θ/r) er is shown in the panel (d) of Figure 3.
Arrows (not at scale) suggest the radially inward direction and relative magnitude. This figure suggests better than
panel (c) that the fluid is being pushed towards the axis in the immediate vicinity of the bottom contact. It is the
action of the force −(b2θ/r) er combined with the incompressibility of the fluid that yields the fluid flow sketched in
Figure 3-(a). Panel (e) shows the non-uniform grid used in our computations, with mesh-sizes varying in the interval
[0.01, 0.025].

2. With or without wire

We consider the setup (a) of Fig. 2 with wires of different conductivities, a badly conducting wire σ̂ = 0.01, a wire
with the same conductivity as the liquid metal σ̂ = 1 and a case σ̂ = 56 in which the conductivity ratio is that of
copper to mercury. We compare these simulations to the simplified models (b) and (c) without wire (uniform and
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(a) (b) (c) (d) (e)

FIG. 3: Steady state fields in the wire setup for S = 250, Pm = 0.2, σ̂ = 1. (a) Electro-vortex flow and intensity in colorcode.
(b) Field lines and magnitude of the electrical current density j. (c) Lorentz-force j×b and intensity. Notice the concentration
near (r, z) = (0.2, 0). (d) Part of the Lorentz-force −(b2θ/r)er that effectively drives the flow. Vectors suggest magnitude and
direction but are not at scale. (e) Numerical grid used in the computations.

Millere cases). We fix S = 25, Pm = 0.2 in this section, also studied in [22, p. 187]. In Figure 4-(a), we show the
vertical flow uz(0, z) along the axis. All the curves have similar profiles. The uniform model yields the most intense
flow, and we observe that it is well adapted to model the effect of a wire with low relative conductivity (σ̂ ≪ 1).
The Millere setup yields a less intense flow, and we observe that it is well adapted to model wires with high relative
conductivity (σ̂ ≫ 1). For wires with conductivities in the same range as the fluid (σ̂ ≈ 1), the intensity of the flow is
between that produced by the models (b) and (c). The Millere curve in Figure 4-(a) can be compared to the results
provided in [22, p. 187]. Our results are not exactly identical but are qualitatively similar. To ascertain the accuracy
of our computations, we show in Figure 4-(b) results with the Millere setup obtained on three different meshes. It
seems clear that the results presented here are very close to convergence.

 0

 2

 4

 6

 8

 10

 12

 0  0.2  0.4  0.6  0.8  1
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(b)

FIG. 4: Vertical velocity on the axis r = 0 for the setups (a), (b), and (c) of Fig. 2, all obtained with S = 25, Pm = 0.2. (a) At
low wire conductivity (σ̂ ≪ 1), the uniform current inlet model is well-adapted and the EVF the most intense. At high wire
conductivity (σ̂ ≫ 1), Millere’s boundary condition is adequate and the EVF is the least intense. For σ̂ ≃ 1 the flow intensity
ranges between those given by models without wire (uniform and Millere cases). (b) Convergence study for the Millere setup
on uniform meshes with varying mesh size.

The relative conductivity of the wire has a strong impact on the vertical current density near the electrical contact.
This is shown in Figure 5-(a): jz evolves from an almost uniform profile in the case σ̂ ≪ 1, towards the concentrated,
Millere-like profile in the limit σ̂ ≫ 1. Figure 5-(b) shows that, unlike jz, bθ is only weakly affected by σ̂. Varying σ̂,
the field bθ varies in the immediate neighborhood of the small wedge delimited by the Millere and uniform cases. Since
bθ is slightly more intense in the uniform setup (i.e. σ̂ ≪ 1), and since the EVF is effectively forced by −(b2θ/r) er, we
now understand why low values of σ̂ yield slightly more intense EVF as observed in Figure 4-(a). Since the Lorentz
force j × b is as sensitive to σ̂ as jz, its magnitude ‖j × b‖ can therefore reach very high values near the electrodes
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in the limit σ̂ ≫ 1; this phenomenon is already visible in Figure 3-(c) for σ̂ = 1. Notice, however, that this singular
behavior mainly affects the pressure in the fluid and not so much the intensity of the electro-vortex flow.
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FIG. 5: Current density jz and azimuthal magnetic field bθ at the bottom electrical contact z = 0 with or without wire (S = 25,
Pm = 0.2). (a) The current density jz strongly depends on the conductivity of the wire. The (singular) Millere current density
profile is adequate for high σ̂ ≫ 1, the uniform current density is adequate for low σ̂ ≪ 1. (b) The magnetic field bθ is only
weakly affected by σ̂. The differences between the results obtained with the Millere and the uniform boundary conditions are
small.

3. Varying S

We calculate the electro-vortex flow for various values of S in the range [6.25, 5×106] and with Pm ∈ {0, 10−6, 0.2}.
The case Pm = 0 corresponds to the magneto-static limit in which ∆(bθeθ) = 0 and is an idealization of Pm = 10−6,
a realistic value for liquid metals. The case Pm = 0.2 allows us to observe how inductive effects can influence EVF.
We restrict ourselves to the Millere boundary condition in this section. We introduce a Reynolds number of the
electro-vortex flow based on the maximal flow speed in the fluid. Given our choice of length and time scale, this
number measures the flow intensity,

Re =
UmaxR

ν
= max

x,t
(‖u‖). (15)

FIG. 6: Reynolds number of the electro-vortex flow based on the maximal speed, as a function of S and for various Pm. When
S is small, we observe the scaling law Re ∼ S for all Pm. When S is large, we observe Re ∼ S1/2 for low values of Pm. Millere’s
boundary conditions are used at the current inlet.

We show in Figure 6 the Reynolds number as a function of S in logarithmic scale (for the three values Pm ∈
{0, 10−6, 0.2}). We observe that Re (i.e. the flow intensity) monotonically increases with S. We observe that the flow
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at high values of S is weaker for Pm = 0.2 than for Pm = 0. For low values of Pm, we observe the following scaling
laws:

low S range : Re ∼ S , high S range : Re ∼ S1/2. (16)

These scaling laws when Pm is small are well known [22]. They can be inferred from the momentum eq. (8a). The force
density −(S b2θ/r) er which drives the EVF is proportional to S. Recalling that we are working with nondimensional
equations, for low intensity flows, i.e. in the Stokes limit, this force is balanced by the viscous diffusion, ‖∆u‖ ∼ S,
which yields ‖u‖ ∼ S or Re ∼ S. For high intensity flows, inertia takes over and we instead have ‖(u · ∇)u‖ ∼ S

yielding ‖u‖ ∼
√
S or Re ∼

√
S. Bojarevics [22] proposed the following refinements of these scaling laws when Pm is

small in order to take into account the size rw of the wire:

Re =

{

S (101+5rw)−1/2 for S < 103
√
S (103−5rw)1/3 for S > 105.

(17)

Using rw = 0.2, this gives Re = 0.1 × S for S < 103, and Re = 4.64 × S1/2 for S > 105. Let us compare these
theoretical predictions to our numerical results, which we recall are all done with rw = 0.2.

(a) (b)

FIG. 7: Rescaled vertical velocity profiles along the axis r = 0 for various values of S and Pm ∈ {10−6, 0.2} and using Millere
boundary conditions. (a) In the low S range: velocity profiles rescale well as uz/S for both values of Pm. (b) In the high S

range: velocity profiles rescale well as uz/
√
S.

In Figure 7 we display the vertical velocity along the axis (r = 0), rescaled by S in the low S regime (panel (a))

and rescaled by S
1

2 in the high S regime (panel (b)). In the low S regime, the law Re ≈ 0.1S is well adapted up to
4% for both low and high values of Pm. In the high S regime, we find that Re ≈ 4.64 S1/2 is well adapted up to 3%
for low values of Pm. Notice that spatial profiles of the velocity are different in the low S regime and in the high S
regime. The maximum of the velocity profile is close to the wire when S is small, but the location of the maximum
moves away from the wire as S increases.
The results shown in Figure 6 and in Figure 7 suggest that for high values of Pm and high values of S, the scaling

law Re ∼
√
S is no longer appropriate. This is due to inductive effects, i.e. the term ∇× (u × b) reaches the same

order of magnitude as the diffusive term P−1
m ∆b when Re ∼ P−1

m or, alternatively, when the magnetic Reynolds
number Rm = σµ0UmaxR is of order 1. In real liquid metals, where Pm ∼ 10−6 − 10−7 is typical, inductive effects
have very little impact unless S is extremely large.
Some further information on how the flow changes as S increases is given in Figure 8. We show streamlines and color

maps of the magnitude of the velocity for S ∈ {500, 104, 5 × 104, 5 × 105}. The streamlines are rather symmetrical
at low values of S, but symmetry breaks as S increases and we clearly see two phenomena happening when S is
large. First, the fluid is ejected upwards so energetically that it hits the upper wall at right angle and gets violently
ejected outwards in a thin layer that is almost as fast as the vertical jet. Second, the center of the main vortex moves
towards the upper right corner, and the fluid in the bottom right corner becomes stagnant. The structure of the weak
recirculation zone that appears in the bottom right corner around S ∼ 5 × 104 becomes gradually more complex as
S increases.
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FIG. 8: Transition from viscous to inertial regime as S increases in axisymmetric computations. We show streamlines of the
flow in meridional planes and the colors code the intensity. Millere boundary conditions, Pm = 10−6 and rw = 0.2.

C. Three-dimensional study

In this section we get rid of the axisymmetry assumption. The force that drives EVF only acts on the axisymmetric
flow-component but three-dimensional features may arise by instabilities. In our simulations, the three-dimensional
structure grow spontaneously out of the background numerical noise. A noticeable feature is that uθ,0 = 0 always,
i.e. there is never a significant azimuthal axisymmetric flow even in three-dimensional simulations.
In order to make diagnostics we calculate the total kinetic energy Ktot, the part of the kinetic energy carried by the

azimuthal flow component Ktor, and the kinetic energy contained in the axisymmetric flow Kaxi. Using the notations
introduced in (3), we define

Ktot =

M−1
∑

m=0

(1 + δm0)
π

2

∫ 1

0

∫ 1

0

(

‖uc
m‖2 + ‖us

m‖2
)

r dr dz, (18a)

Ktor =
M−1
∑

m=0

(1 + δm0)
π

2

∫ 1

0

∫ 1

0

(

‖uc
θ,m‖2 + ‖us

θ,m‖2
)

r dr dz, (18b)

Kaxi = π

∫ 1

0

∫ 1

0

‖uc
0‖2 r dr dz. (18c)

The quantities Ktor and Ktot −Kaxi both provide simple measures of the three-dimensionality of the flow.
We have done a series of calculations in which we vary S in a configuration where a copper wire is connected

to mercury (σ̂ = 56, Pm = 1.57 × 10−7). All the calculations are started from the axisymmetric state and three-
dimensional numerical noises. Flow intensities that are reached here are never high enough to leave the low Rm-regime.
At low values of S, we observe that the electro-vortex flow remains axisymmetric and stationary. Beyond a critical
value S = Sc, we observe a bifurcation towards a time-dependent three-dimensional motion. This is illustrated in
Figure 9(a), where we show Ktor as a function of time. At S = 7 × 104, Ktor decays exponentially, while for higher
values of S, Ktor increases exponentially. We approximately locate the threshold of the three-dimensional instability
at Sc ≈ 7.2× 104.

S/105 Ktot/10
5 Kaxi/10

5 (Ktot −Kaxi)/Ktot [%]
3 8.186 7.783 4.90
4 11.10 10.42 6.19
5 14.45 13.07 9.56
10 28.48 24.90 12.6

TABLE II: Time-averaged values of the kinetic energy Ktot, axisymmetric kinetic energy Kaxi and ratio (Ktot −Kaxi)/Ktot.

Three-dimensionality is progressively more important as S increases, but it never becomes very strong in the range
of values of S we have explored. The weakness of the three-dimensional effects is visible in Figure 9(b), where we
show the time evolution of Ktor,Kaxi,Ktot at S = 106. Table II further illustrates this observation; this table gathers
some numerical measures for time-averaged values of Ktot and (Ktot −Kaxi)/Ktot in the three-dimensional regime.
At the highest value of S we have explored, only 12.6% of the kinetic energy is being carried by non-axisymmetric
modes.
In Figure 10-(a), we show a snapshot of the typical three-dimensional flow structure at S = 3 × 105. The flow

is predominantly axisymmetric, but we observe some weak azimuthal deviations in the streamlines. Figure 10-(b)
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FIG. 9: Time evolution of the kinetic energy measures Ktot,Kaxi,Ktor (see (18a)-b-c) in three-dimensional electro-vortex flow
simulations with wire, σ̂ = 56, Pm = 1.57× 10−7. Initial state is axisymmetric. (a) Below S < Sc = 7.2× 104 the flow remains
axisymmetric, above S > Sc the flow becomes three-dimensional. This bifurcation is illustrated using the kinetic energy carried
by the azimuthal component Ktor as proxy for three-dimensionality. Notice the decay or amplification for large times. (b)
Simulation done with S = 106. The energy measures show that three-dimensionality comes along with nonstationarity. Notice
that the total kinetic energy Ktot is higher in the three-dimensional regime than in the axisymmetric regime (i.e. for t < 0.04
when non-axisymmetric perturbations are negligible).

displays the maximal flow intensity and compares the 3D simulations with axisymmetric simulations. In the low S
regime, the flow remains axisymmetric and nothing changes. At high S, the scaling law umax ∼

√
S observed in

the axisymmetric simulations remains valid even with three-dimensional flow features present. Three-dimensionality
slightly increases the flow’s intensity as can be seen in Figure 9(b) but this small increase is not visible in the
logarithmic plot of Figure 10-(b)

(a) (b)

FIG. 10: (a) Snapshot showing streamlines of the three-dimensional electro-vortex flow (σ̂ = 56, Pm = 1.57 ·10−7 , S = 3 ×105).
(b) Maximal flow velocity as a function of S: comparison of 3D and axisymmetric simulations.

D. Conclusion

The code SFEMaNS reproduces well all the quantitative and qualitative aspects of the electro-vortex flow that were
previously known in the literature. The effect of a solid wire that brings the current to the liquid can be modeled
correctly by using the uniform boundary condition provided the conductivity of the wire is small compared to that
of the fluid. The Millere boundary condition is well suited if the conductivity of the wire is large compared to that of
the fluid. The magnitude of the Lorentz force is very sensitive to the conductivity of the wire, but the component of
the Lorentz force that effectively drives the electro-vortex flow is not. The electro-vortex flow predominantly remains
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axisymmetric up to very high values of S, and the usual low and high S scaling laws for the flow’s intensity, or Reynolds
number, remain valid in three-dimensional simulations and as long as the magnetic Reynolds number remains small
compared to unity.

IV. ELECTRO-VORTEX FLOW IN MULTIPHASE SETUPS

After having characterized the electro-vortex flow inside a single fluid layer, we now continue with the more complex
case where the fluid is composed of multiple layers. First we investigate a two layer configuration, then we investigate
a three layer configuration similar to that of a Mg-Sb liquid metal battery. The calculations are done using the
multiphase version of SFEMaNS and in dimensional units. Since the electro-vortex flow seems to be predominantly
axisymmetric, all the multiphase results reported below are obtained assuming axisymmetry.

A. two-layer setup

We first study a purely academic two-layer setup, using material parameters and dimensions that are easily accessible
to our numerical simulations. This allows us to identify simple physical behavior that will also be relevant to the
three-layer Mg-Sb LMB simulated in the following section.
We sketch the numerical set-up in Figure 11-(a). A homogeneous current density Jbot = (I/πR2

w)ez is fed to a
copper wire of length Hw = 5 cm, radius Rw = 1 cm, and conductivity σw = 58.1× 106 Sm−1. The radius of the fluid
domain is R = 5 cm and there are two layers of superposed fluids. The height of the top layer is H1 = 1 cm and that
of the bottom layer is H2 = 5 cm. We consider two cases for the density of the top layer ρ1 ∈ {3400, 3000}kgm−3,
the density of the bottom layer is ρ2 = 3500kgm−3. We suppose that the kinematic viscosities of the two-layers are
equal ν1 = ν2 = 6.7 × 10−7m2s−1. The electrical conductivity of the top layer is σ1 = 104 Sm−1 and that of the
bottom layer is σ2 = 106 Sm−1. The top layer has a significantly weaker conductivity than the bottom layer to mimic
the situation that one encounters when in presence of a well-conducting heavy liquid metal and a badly-conducting
lighter electrolyte. The current leaves the top layer uniformly Jtop = (I/πR2)ez. Gravity acts downwards, and we
use g = 9.81ms−2.
Considering the geometry of this setup, it is mainly in the bottom layer that the electrical current spreads out. As

a result, we expect the EVF phenomenon to occur in the bottom layer, and we expect the fluid in the top layer to be
put in motion by viscous effects.

(a) two-layer setup (b) flow intensity (c) density

FIG. 11: Electro-vortex flow in a two-layer setup in a small cell with radius R = 5 cm, wire radius Rw = 1 cm, heights
H1 = 1 cm,H2 = 5 cm,Hw = 5 cm, current I = 100A and densities ρ1 = 3400 kgm−3, ρ2 = 3500 kgm−3. (a) Sketch of the
setup. (b) Snapshot of the electro-vortex flow. (c) Density field.

We start by considering the two-layer setup with ρ1 = 3400kgm−3 and a current of I = 100A is driven through
the cell. This gives S = µ0I

2/(4π2ρ2ν
2
2) = 2 × 105 in the bottom layer. The numerical simulations show that after

an initial transient, the flow settles in a quasi-stationary state very similar to what we have observed in §III with one
fluid layer for large values of S. Figures 11-(b) and (c) show snapshots of the intensity of the electro-vortex flow and
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of the density field. The EVF slightly pushes the top fluid layer upwards and deforms the interface. A weak flow is
generated in the top layer as a reaction to the viscous constraints occurring at the interface. No horizontal gravity
waves are observed.
We now perform a more systematic series of calculations and measure Umax and ηmax the maximal flow speed and

interface deformation reached over time and in the cell. We consider the two cases ρ1 ∈ {3400, 3000}kgm−3 and we
vary the current I in the range [100A, 200A]. The nondimensional quantity S spans the interval [2 × 105, 8 × 105].

Since S is very large we posit that the scaling law Re ∼
√
S is likely to apply in the bottom layer; hence in dimensional

form we should have

Umax ∼
√
µ0I√
ρ2R

. (19)
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FIG. 12: Variation of the maximal flow speed Umax (a) and the maximal interface elevation ηmax (b) with current I in the two
layer setup with (R,Rw,H1,H2,Hw) = (5, 1, 1, 5, 5) cm and using two different density jumps ρ2 − ρ1 ∈ {100, 500}kg/m3.

We show in Figure 12-(a) the quantity Umax (estimated numerically with SFEMaNS) as a function of I for the two
densities ρ1 ∈ {3400, 3000}kgm−3. The proportionality of Umax ∼ I is clearly visible on the graphs. Since the two
curves almost coincide, this test shows that the density of the top layer, ρ1, has very little impact on Umax. We show
in Figure 12-(b) the maximal elevation of the interface, ηmax, caused by the electro-vortex flow, as a function of I. The
curves are well approximated by parabolas. This can be explained by balancing the available kinetic energy density
in the bottom layer ρ2U

2
max/2 with the potential energy density (ρ2 − ρ1)gηmax required to deform the interface:

ηmax ≈ ρ2U
2
max

2(ρ2 − ρ1)g

eq. (19)−−−−−→ ηmax ≈ µ0I
2

2(ρ2 − ρ1)gR2
. (20)

This suggests that the maximal surface elevation varies like I2 and only depends on the density difference. A similar
scaling for the interface deformation was also observed in the study of [44] who considered EVF in a free surface
set-up. In non-dimensional form, this suggests a Richardson number

Ri =
2(ρ2 − ρ1)gηmax

ρ2U2
max

≈ 1. (21)

For all the simulations reported in Figure 12, we have measured Ri = 1.05 ± 0.05 ≈ 1 (data not shown). This
observation implies that the above criterium (or equation (20)) makes sense as a simple formula to estimate ηmax.

B. Three layer setup: liquid metal battery

We now consider a three layer setup typical for a Mg-Sb liquid metal battery [1]. A sketch of the simulated system is
shown in Figure 13. We fix the radius to be R = 5 cm and the heights of three layers to be (H1, H2, H3) = (5, 1, 5) cm.
Both solid electrodes have radii Rw = 1 cm and have height Hw = 5 cm. A homogeneous current density enters the
fluid bath through the bottom electrode and exits through the top electrode. The top and bottom fluid layers are
composed of liquid metals, one light (fluid 1: Mg) and one heavy (fluid 3: Sb, which alloys with Mg). The layer in
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between is an electrolyte (fluid 2: molten salt (KCl-MgCl2-NaCl)). The densities of the three fluids are chosen to
make the system stable under gravity. The material parameters for the three different fluids used in our simulations
are given in Table III and are realistic.

Fluid ρi [kg m−3] ρiνi [Pa s] σi [S m−1] Pm,i

1 (Mg) 1.577 × 103 1.23 × 10−3 3.57× 106 3.499 × 10−6

2 (KCl-MgCl2-NaCl) 1.715 × 103 1.40 × 10−3 2.13× 102 2.626 × 10−8

3 (Sb) 6.270 × 103 1.30 × 10−3 2.56× 106 6.670 × 10−7

TABLE III: Density ρi, dynamic viscosity ρiνi, conductivity σi and magnetic Prandtl number Pm,i of the three fluids i = 1, 2, 3
composing a Mg-Sb liquid metal battery [11].

Considering the geometry of the electrodes, we expect the EVF to occur in the top and the bottom layers. As
in the two-layer setup, the fluid composing the electrolyte layer is only entrained by viscosity; therefore, we expect
the motion of the fluid to be weak in this layer. We seek to drive an intense EVF and therefore vary the current
intensity I in the range [100, 300]A. In our small set-up, the initial current density J ≈ Jez reaches magnitudes
J = I/πR2 ∈ [12.7, 38.1] kAm−2 well above what can be handled by existing Mg-Sb LMBs. Below, we explain how
the principle of similitude can be used to extrapolate our results to more realistic set-ups with realistic J .
In Figure (13)-(b), we show the fine numerical mesh used in our calculations. Panels (c) and (d) show a snapshot

of the flow and density fields for the current I = 200A, taken at the time t = 2 s with the fluid being at rest at
t = 0 s. The flow in the top layer is (somewhat surprisingly) more intense than in the bottom layer. But, following
(19), we expect Umax ∼ √

µ0I/
√
ρiR, i = 1, 3, in the top and the bottom layers; hence, recalling that ρ1

ρ3

∼ 1
4 , the

above formula suggests that the fluid motion in the top layer should be approximately 2 times faster than the fluid
motion in the bottom layer. We also observe the interface between the top layer and the electrolyte, henceforth
denoted 1|2, undergoes deformations while the interface between the electrolyte and the bottom layer, henceforth
denoted 2|3, remains almost flat. This is mainly due to the fact that the density jump across the 1|2 interface is weak
(ρ2 − ρ1 = 138kgm−3 and ρ2−ρ1

ρ1

∼ 0.08), whereas the density jump across the 2|3 is large (ρ3 − ρ2 = 4555kgm−3 and
ρ3−ρ2

ρ3

= 0.75). According to (20) the maximum deformation ηmax of the 1|2 interface can approximately be 4555
138 ∼ 33

times larger than that of the 2|3 interface.

(a) setup (b) meridional grid (c) flow (d) density

FIG. 13: Electro-vortex flow in a three layer setup similar to a Mg-Sb liquid metal battery. Small cell with radius R = 5 cm,
wire radius Rw = 1 cm, heights (H1,H2,H3,Hw) = (5, 1, 5, 5) cm and densities (ρ1, ρ2, ρ3) = (1577, 1715, 6270) kgm−3. (a)
Sketch of the setup. (b) Meridional grid with mesh size ∈ [0.25, 1]mm. (c) and (d) Snapshot of the electro-vortex flow and
density field at t = 2 s with current I = 200A.

At I = 200A the interface deformation is very large, but with an even more intense current, I = 300A, we find that
the electro-vortex flow is so vigorous that it can cause the electrolyte layer to pinch, thereby creating a short-circuit
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FIG. 14: When the electro-vortex flow in a Mg-Sb battery becomes too intense, it can make the electrolyte layer to pinch. In
the cell considered here, this occurs at I = 300A. Starting from rest at t = 0 s, we show six successive snapshots of the flow
intensity and the interfaces at indicated times.

between the two metallic phases. This situation must be avoided in real LMBs because the cell potential is lost and
violent chemical reactions may make the cell unsafe. Figure 14 shows six snapshots of this simulated electrolyte pinch.
The time between each picture is 0.5 s and the simulation started from rest. The downward jet in the upper layer hits
the 2|3 interface violently, causing electrolyte to splash into the top layer. We recall here that that three-dimensional
and the capillarity effects are not simulated. These effects would very likely modify the flow, but we are confident
that the initial stage of the splashing is well captured by our axisymmetric numerical simulation. Further quantitive
information on the evolution of maximal speed U(t) and upper interface deformation η(t) in the cell as a function
of time is given in Figure 15-(a) (green lines, real σ2, black lines, fake σ2). These plots show that through time, the
highest flow speed Umax = maxt(U(t)) and largest interface deformation ηmax = maxt(η(t)) are reached during the
initial transient. At later times, the flow never reaches the same intensity as in the beginning and the same for the
interface deformation. Notice also the oscillations in the interface deformation that reflect the presence of gravity
waves driven by the initial push.

(a) (b)

FIG. 15: Simulations with realistic values of electrolyte conductivity σ2 = 2.13 102 Sm−1 versus simulations with relaxed (fake)
electrolyte conductivity σ2 = 2.56 104Sm−1 = σ3/100 and with intense currents I = 300A. (a) The maximal speed and
interface deformation are significantly affected at longer times, but the initial maxima are always the highest ones and these
values depend little on σ2 (arrows).(b) At short times t = 1.5s, the flow is similar and slightly more intense with higher σ2.
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In the simulation for I = 300A that has just been discussed, fine fluid structures combine with large jumps in
electrical conductivity, σ1/σ2 = O(104), σ3/σ2 = O(104). As a result, this is a very stiff problem to solve numerically
that requires very fine grids and tiny time-steps in order to keep the simulation stable. In previous work [25] on the
metal pad roll instability, we have shown that the relaxation of the conductivity of the electrolyte to σ2 = σ3/100
did not affect the main fluid mechanical features. This decreased jump in conductivity is easier to simulate and is a
time-saving trick to do more extensive parameter studies in LMBs. In Figure 15, we study the impact of using such
a fake, artificially high value of σ2 in the high current simulation with I = 300A. In panel (a), we can see how the
initial phase of the dynamics is nearly unaffected. The quantities Umax and ηmax can be measured correctly up to a
few percent in error, using the fake value of σ2 = σ3/100. At later times, we do see that the use of a fake value for σ2

can cause significant differences at high currents. This is less the case for low currents. Panel (b) compares snapshots
of the flow at short time t = 1.5 s, to confirm that the initial flow evolution is rather similar with the fake value of σ2.
At later times, we found that it is mainly the splashing dynamics creating the fine fluid structures that is sensitive to
σ2, but this process is anyway not correctly solved without capillarity.
We now present results from a more extensive simulation campaign that focused on Umax and ηmax for varying

currents in the range I ∈ [100, 300]A. Considering the previous test, we can use σ2 = σ3/100 to measure Umax and
ηmax and this reduces the computational effort. Figure 16-(a) shows that the data-points follow the same linear and
quadratic laws as in the two-layer setup. The last data point for ηmax at I = 300A clearly deviates from the quadratic
fit because the electrolyte pinches.
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FIG. 16: (a) Maximal flow intensity Umax and upper interface deformation ηmax as a function of I in a Mg-Sb battery with
dimensions (R,Rw,H1,H2,H3, Hw) = (5, 1, 5, 1, 5, 5) cm. We observe Umax ∼ I and ηmax ∼ I2. At the highest current
I = 300A we observe a pinch: ηmax ≈ H2. (b) Non-dimensional parameters Π and Ri as a function of S using the data in (a)
(see Eq. 22).

We now remap the data in non-dimensional form using the definitions

Π =

√
ρ1RUmax√

µ0I
, Ri =

2(ρ2 − ρ1)gηmax

ρ1U2
max

, (22)

and show in Figure 16-(b) Π and Ri as functions of S := µ0I
2

4π2ρ1ν2

1

. The two non-dimensional parameters Π and Ri vary

weakly with respect to S and they are both of order 1. The number Π seems to tend towards the asymptotic value
0.86 ± 0.01 when S becomes very large. As in the two-layer setup, we observe that Ri ' 1 in all the non-pinching
configurations.
Using the principle of similitude, we use the data obtained above to make some predictions for upscaled Mg-Sb

cells composed of the same materials and with the same geometrical aspect ratios as above. Dimensional vari-
ables without bars, R,Umax, ηmax, . . . , correspond to the previously mentioned reference setup. Variables with bars,
R,Umax, ηmax, . . . , correspond to similar setups. As in [11], we want to take into account that the electrical cur-
rent density is bounded from above by physical limits on the mass transfer between the electrolyte and the alloy in
the bottom layer [2, 4]. In the reference setup, the current density J ≈ Jez is approximately homogeneous with
J = I/πR2 ∈ [12.7, 38.1] kAm−2 for I ∈ [100, 300]A. These values for J are above what can be reached in existing
Mg-Sb LMBs. Therefore, we consider three scenarios J ∈ {1, 3, 10} kAm−2 in the similar setups. The first two values
are realistic for Mg-Sb batteries [1, 4], on the other hand 10 kAm−2 is closer to what can be reached in Li-Sb(Pb)
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cells [3]. Requiring similitude on S (or electrical current I) implies I = I, which gives I as a function of R:

I(R) = πJ R
2
. (23)

Requiring similitude on the number Π (or Reynolds number Re) implies that Umax = Umax
R
R
. Since Umax is a function

of I, we infer the dependency of Umax with respect of R as follows:

Umax(R) = Umax(I(R))
R

R
. (24)

Requiring similitude on Ri implies that ηmax = ηmax
U

2

max

U2
max

= ηmax
R2

R
2 . Since ηmax is a function of I, we can express

ηmax as a function of R as follows:

ηmax(R) = ηmax(I(R))
R2

R
2 . (25)

The two functions Umax(R) and ηmax(R) are displayed in Figure 17 for the three scenarios J ∈ {1, 3, 10} kAm−2.
Since we observed that Umax is approximately linear with respect to I, say Umax ≈ αI, we infer that Umax(R) ≈
απJRR, i.e. Umax is also approximately linear with respect to R. Similarly, using that ηmax ≈ βI2, we infer that

ηmax(R) ≈ βπ2J
2
R2R

2
, i.e. ηmax is also approximately quadratic in R. Notice that the slope for Umax behaves like

J and the upward curvature of ηmax behaves like J
2
.
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FIG. 17: Using the principle of similitude we calculate the maximal flow-speed Umax (panel a) and the maximal interface
elevation ηmax (panel b) in similar Mg-Sb liquid metal batteries as a function of their radius R for the current density J ∈
{1, 3, 10} kAm−2. Assuming that the dependence with respect to the height of the electrolyte layer, H2, is small and taking
H2 ∈ [1, 5]mm, we divide the diagram for ηmax into three regions. No risk of pinch by EVF when ηmax < 1mm (green zone).
Risk of pinch by EVF when ηmax ∈ [1, 5]mm (yellow zone). EVF-induced pinch very likely when ηmax > 5mm (red zone).

The plots of Figure 17 were made supposing perfect similitude between the reference and the similar setups, but the
exact similitude constraint can be relaxed. The geometrical similitudes Rw/R = Rw/R = 0.2 and H1/R = H1/R = 1
directly affects the intensity of the flow in the top layer and cannot be relaxed. However, we conjecture that we should

get almost the same curves as in Figure 17 if the aspect ratios of the electrolyte layer are not similar, i.e. H2

R
6= H2

R .

This conjecture is based on the fact that a change in H2 is likely not to affect the current density distribution in the
upper layer, which we recall is the source of the EVF flow. Let us reinterpret the ηmax diagram in Figure 17-(b) in
this context, and let us suppose that the electrolyte has a realistic height H2 ∈ [1, 5]mm. Then, the EVF is probably
not strong enough to pinch the electrolyte in the cell when ηmax is below 1mm (in the green band). There is a risk of
short-circuits induced by the EVF when ηmax ∈ [1, 5]mm (in the yellow band). Finally, it is very likely that the EVF
is strong enough to make the electrolyte layer to pinch when ηmax > 5mm (in the red band). Overall, it seems from
this diagram that the EVF phenomenon needs to be accounted for in the design of LMBs. Intense flows may occur
in small size batteries and the risk of flow-induced short-circuits is real.
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V. CONCLUSION

The electro-vortex flow is a well known magnetohydrodynamical phenomenon that occurs near every thin electrode
that is connected to a liquid metal [22]. With the numerical code SFEMaNS, we have done axisymmetric and non-
axisymmetric simulations of the EVF in cylindrical fluid domains. We have explored configurations composed of one
liquid metal and configurations composed of two and three layers with multiphase setups similar to those in liquid
metal batteries.
In the single fluid layer study, we have reproduced several well known features of the electro-vortex flow, namely

the flow structure and the scaling laws for the flow’s intensity. The impact of the solid electrode carrying the electrical
current to the cell can be modeled by using simplified boundary conditions when the wire’s conductivity is either
significantly larger (Millere boundary condition) or significantly smaller (uniform boundary condition) than that of
the liquid metal. Three-dimensional simulations of the EVF for high values of S show that the flow is time-dependent
but is also strongly dominated by its axisymmetric component.
In the multiphase study we have considered the EVF phenomenon in cells with either two or three layers of

conducting fluids that are stably stratified by gravity. The EVF is generated in the vicinity of the contact between
the solid electrodes and the liquid metals. The flow has roughly the same structure and intensity as in single fluid
layers. The interfaces between the different phases are deformed by the flow. A simple energy density balance yields a
reasonable estimate of the maximal deformation of the interface. When using the material properties of Mg-Sb liquid
metal batteries, we have shown that the electro-vortex phenomenon cannot be ignored. Already in moderate size
batteries it seems possible to have flows that are sufficiently intense to pinch the thin electrolyte layer. Compared to
thermal convection [4–6, 8], the Tayler instability [9–11] and the metal pad roll instability [12–19], this study suggests
that the electro-vortex can produce a fluid flow capable of disrupting the integrity of the upper interface.
In the future, we plan to explore whether the electro-vortex flow in liquid metal batteries could be a useful ally in

order to overcome the limitations on the current density. As in all galvanic batteries, transport of charge (current)
comes along with a transport of mass between the top and the bottom metal across the electrolyte. But when intense
currents are extracted from (or delivered to) the cell, the alloy may become quite inhomogeneous near the alloy-
electrolyte interface. This causes the battery to lose its potential or may even trigger the appearance of undesirable
solid inter-metallic phases. Just as natural convection [4], the electro-vortex flow has the capacity to mix the bottom
alloy [7, 20] and we need to asses if this is indeed possible or not.
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[30] J.-L. Guermond, R. Laguerre, J. Léorat, and C. Nore. Nonlinear magnetohydrodynamics in axisymmetric heterogeneous
domains using a Fourier/finite element technique and an interior penalty method. J. Comput. Phys., 228:2739–2757, 2009.
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