
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Deionization shock driven by electroconvection in a circular
channel

Zhibo Gu, Bingrui Xu, Peng Huo, Shmuel M. Rubinstein, Martin Z. Bazant, and Daosheng
Deng

Phys. Rev. Fluids 4, 113701 — Published  5 November 2019
DOI: 10.1103/PhysRevFluids.4.113701

http://dx.doi.org/10.1103/PhysRevFluids.4.113701


Deionization Shock Driven by Electroconvection in a Circular Channel

Zhibo Gu,1, ∗ Bingrui Xu,1, ∗ Peng Huo,1 Shmuel M. Rubinstein,2 Martin Z. Bazant,3 and Daosheng Deng1, †

1Department of Aeronautics and Astronautics, Fudan University, Shanghai,200433,China
2John A. Paulson School of Engineering and Applied Sciences,
Harvard University, Cambridge, Massachusetts 02138, USA

3Department of Chemical Engineering and Department of Mathematics,
Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA

(Dated: October 23, 2019)

In a circular channel passing over-limiting current (faster than diffusion), transient vortices of
bulk electroconvection are observed in salt-depleted region within the horizontal plane. The spa-
tiotemporal evolution of the salt concentration is directly visualized, revealing the propagation of a
deionization shock wave driven by bulk electroconvection up to millimeter scales. This novel mech-
anism leads to quantitatively similar dynamics as for deionization shocks in charged porous media,
which are driven instead by surface conduction and electro-osmotic flow at micron to nanometer
scales. The remarkable generality of deionization shocks under over-limiting current could be used
to manipulate ion transport in complex geometries for desalination and water treatment.
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I. INTRODUCTION

Ion transport in electrochemical cells is essential for electrochemical energy storage, desalination for water treatment,
and biomedical applications [1–3]. Designing complex geometries is one of the typical approaches to control ion trans-
port, as illustrated by the stack of alternating cation- and anion-exchange membranes in classical electrodialysis (ED)
[4]. More recently, ion enrichment/depletion resulting from overlapping electric double layers in micro/nanochannels
[5] has been applied to biomolecule separation [6]. Polarizable porous electrodes or particles under applied voltages
can also induce capacitive deionization, in a variety of geometries [7, 8].

In these and other applications, many intriguing phenomena are associated with the passage of over-limiting current
(OLC), faster than diffusion, to an ion-selective membrane [9] or electrode [10, 11]. Physical (as opposed to chemi-
cal [12]) mechanisms for OLC fall into two general categories: bulk electroconvection (EC) associated with extended
space charge on the membrane [13–18] and surface charge (SC) effects, namely surface conduction and electro-osmotic
flow (EOF), through charged microchannels or porous media leading to the membrane or electrode [10, 11, 19–23].
The transient response to OLC can involve the shock-like propagation of a sharp drop in salt concentration [24–26].
The propagation of SC-driven “deionization shocks” (DS) in charged porous media [27] has been exploited for water
desalination and purification in the emerging process of “shock electrodialysis” [20, 21, 28, 29] and for control of metal
growth in “shock electrodeposition” [10, 11]. Since EC-driven vortices can also sustain OLC by creating an extended
salt depletion zone, it is interesting to explore whether EC alone can give rise to DS.

In this paper, we report the observation of EC-driven DS in a circular microchannel. Vortices reminiscent of bulk
EC are identified within the horizontal plane, and the spatiotemporal evolution of concentration is directly visualized.
Propagation of EC has a remarkable agreement with the proposed model.

II. SIMPLE MODEL OF EC-DRIVEN OLC

Consider the following model problem, studied experimentally below. A dilute, binary z : z electrolyte with
concentration (c0) fills a circular channel with an inner radius (R1) and outer radius (R2 ) (χ = R1/R2 < 1) under
an applied voltage (Figure 1a). In the steady state, under the assumption of the azimuthal symmetry and charge
neutrality, the Nernst-Planck equations are simplified into a 1D dimensionless form, equating cation flux to current
density and anion flux to zero for an ideal cation-selective surface [19]:
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FIG. 1. (a) Sketch of a circular channel. The positive voltage bias for φ̃(1) > φ̃(χ), Ĩ < 0. (b) OLC dependent on c̃d, (c)

concentration distribution, and (d) profile of the electric field (φ̃ = 35, c̃d = 0.1, Rd = r̃dR2).
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FIG. 2. Vortex observation from a top-down view. (a) Sketch of the PDMS device (2R2 = 6 mm, H ≈ 35µm, χ = 1/30,
Φ > 0 for the positive voltage bias). (b) The I − V curve showing Ipos ≈ 0.14 µA. (c-e) Under an applied current at 2 µA in
the overlimiting current regime, the time-lapse snapshot at t = 60 s with an exposure time of 5 seconds for (c), and with an
exposure time of 100 ms for (d); (e) PIV images with a short exposure time of 40 ms at t = 20 s when the first vortex pair
occurs. (f) Voltage and vortex size increase with time. (g) The number of vortex decreases with the applied current, while the
size of vortex increases with the applied current when the vortex occurs. Scale bar in (c-e) for 200 µm.

where c̃ = c̃+ = c̃− is the (equal) dimensionless mean concentration of cations and anions scaled by c0, r̃ the

dimensionless radius scaled by R2, φ̃ the dimensionless potential scaled by the thermal voltage, kBT/ze, and Ĩ is the
dimensionless current scaled by zeDc0, assuming equal diffusivity D for cations and anions.

In contrast to the Leaky Membrane Model [19, 20, 23, 30], where the residual surface conductivity sustaining OLC
is provided by excess counter-ions in a charged porous medium, we have introduced a residual bulk conductivity due
to electroconvection σ̃EC(σEC/c0), which depends on the local electric field E and becomes dominant above a critical
threshold Ec that is only reached in the depleted zone during OLC, e.g. via σEC(E, c) = cd(c) tanh2 (E/Ec). Similar
to EOF [19, 21, 22], EC with the intense vortices near the dead end causes the formation of an extended depletion zone
(r̃ ≤ r̃d) with a nearly constant area-averaged concentration (c̃d) [13–15], resulting in residual conductivity (σ̃EC ∼ c̃d
for both types of ions), while convection is negligible in the bulk region far away from the vortices.

This two-region approximation can be used to solve the model, matching the concentration and potential at r̃d, to
obtain I − V relationship [as shown in the Appendix A and B],

Ṽ = ln

(
1 +

Ĩ

4πc̃d
ln r̃d

)
− Ĩ

4πc̃d
ln

(
Rd
R1

)
, (2)

where r̃d can be found for the given Ĩ and c̃d by the concentration conservation. The calculated I-V curves (Figure 1b)
demonstrates OLC is sustained by σ̃EC . Additionally, concentration profile and electric field are presented in Figure
1c and d, indicating a constant c̃d and the sharp increase of electric field in the depletion region (r̃ ≤ r̃d)(Appendix
B).

III. CURRENT-VOLTAGE MEASUREMENTS AND VORTEX OBSERVATION

A PDMS device with a circular channel is illustrated in Figure 2a, 2R1 = 200 µm for the inner copper wire, 2R2

= 6 mm (χ = 1/30) for the outer copper ring, and H ≈ 35µm for the channel height. This combination of copper
electrodes and CuSO4 solution can avoid complicated chemical reactions to simplify the system [21]. The measured
I − V curve (Figure 2b) for 1 mM aqueous CuSO4 solution under the positive voltage bias (a Keithley 2450 Source
Meter) is characterized with a linear Ohmic regime, a plateau of limiting current, and OLC. Unlike the straight
channel with parallel planar electrodes, I−V curves and limiting currents here depend on the voltage bias (Appendix
A and C). By modifying PDMS surfaces to be positively charged through being immersed into poly(allylamine
hydrochloride) (PAH) solution (1 mg/ml PAH with 0.1 M NaCl) for 2 hours followed after the air plasma treatment
[21], the measured I − V curves were uninfluenced.
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FIG. 3. Spatiotemporal evolution of concentration (R1 = 100 µm). (a) Snapshots of fluorescent signals at 20 µA, red circular
contours for the propagation front. Saturated white color in the center due to the extra liquids around the copper wire. (b)
Radial profiles of fluorescent intensity at t = 0, 20, 40, 60 sec; Rd is marked by the red dash line at the steep jump of fluorescent
intensity due to the concentration depletion. Rd has a 1/2 power law under various currents (c) and voltages (e), while Deff

proportional to the currents (d) and voltages (f) from Equation (3) and (4). Error bars in (d) and (f) for the standard deviations
from six measurements.

As shown in Fig. 2b, limiting current is subsequently followed by OLC, and the possible mechanism is the formation
of vortex to enhance ion transport [15]. In order to visualize vortex, 0.001% 1-µm-diameter fluorescent particles
(Invitrogen) was added into 1 mM aqueous CuSO4 solution together with 0.1% Tween80 (Sigma Aldrich) to avoid
particle aggregation [31]. Under an applied current at 2 µA the vortices are gradually generated, which are visualized
by the fluorescent microscope (Zeiss, Axio Zoom V16). At t = 60 sec, the vortex is indicated by the time-lapse
snapshot (Figure 2c and d) (See Supplemental Material at [URL will be inserted by publisher] for Video 1). By
employing particle image velocimetry (PIV), the vortex fields at t = 20 sec are obtained (Figure 2e), revealing a pair
of vortices exists near the cathode with velocity up to around 20 µm/sec.

We simultaneously recorded the increased voltage and built the correlation between vortex size (the vortex length)
and electric response (Figure 2f) [31]. By checking the vortices during their occurrence (Figure 2g), vortex size
increases with the current while the vortex number decreases with current, since the circumferential length is fixed
for a given inner cathode.

Different from the typical bottom-up setup with the vertical concentration gradient or gravitational convection
[21, 32], here the PDMS device containing the circular channel is placed horizontally and the voltage is applied
between the inner wire and outer ring (Figure 2a), and concentration gradient is absent vertically and gravitational
convection is irrelevant. In addition, unlike the typical straight microchannels with four side walls to cause EOF
[19, 22], here the gap of this circular channel is only 35 µm and EOF due to the bottom and top surface charges
might be relevant only along the vertical direction. Again vortices were nearly unaffected by positive-charged PDMS
surface, implicating the negligible role of SC mechanism and the essential role of EC.

Hence, the observed vortex confined within the horizontal plane with circumferential length up to millimeters
is attributed to EC. Similar EC-driven vortices have also observed parallel-plate geometries, in terms of both size
(∼ 100µm) and velocity (∼ 10µm/s) [15, 31], and the fastest flow is tangential to the circular cathode surface (Figure
2c). The vortices are thus consistent with EC instability, although it is beyond our scope to classify the space charge
as non-equilibrium [14] or equilibrium [18] or quantify the effect of geometrical curvature.

IV. CONCENTRATION PROFILE EVOLUTION

The spatiotemporal evolution of the EC-driven DS as visualizing through the cation concentration. The concen-
tration of copper ions (Cu2+) was detected by the fluorescent indicator, 20 µM Phen Green SK dipotassium salt
(Invitrogen), the fluorescence intensity of which is quenched by Cu2+ ions, i.e., the increased fluorescence intensity
indicates the reduced concentration, and vice versa. CuSO4 electrolyte at 10 mM was prepared in a compound solu-
tion (a mixture of the distilled water, thiodiethanol, and dimethyl sulfoxide) to enhance the fluorescent signals. For a
constant current at 20 µA, the typical snapshots of fluorescent signals recorded by the fluorescent microscope (Zeiss,
Axio Zoom V16) are shown in Figure 3a (See Supplemental Material at [URL will be inserted by publisher] for Video
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2).
The initial homogeneous distribution of fluorescent intensity was separated into two distinct regions marked by

the red circular contours (Figure 3a), and the radial intensity is quantified in Figure 3b, clearly demonstrating the
propagation front with a sharp intensity jump. This enhanced intensity was observed only far above the limiting
current, but was disappeared below the limiting current. In addition, either concentration polarization of the fluores-
cent indicator or electromigration of the negative-charged Phen Green SK can only cause the decreased fluorescent
intensity near the inner cathode. Hence, the stronger fluorescent intensity of the inner brighter region demonstrates
the significant reduction of copper concentration, reminiscent of previous observations of SC-driven DS in the same
electrolyte [10, 11, 22]. In this case, however, SC can be ruled out in favor of EC, since the concentration evolution
was found to be nearly identical with a positively charged surface.

V. SCALING ANALYSIS

Propagation front (Rd) is located at the middle point of the abrupt jump, as indicated by the dash red lines (Figure
3b). For various constant currents, Rd is fitted by a 1/2 power-law scaling (Figure 3c). The extracted effective
diffusion coefficient (Deff ) (Figure 3d), unlike the normal diffusion growth of depletion layer prior to the onset of EC
[16], is about one order of magnitude higher than the typical diffusion coefficient of copper ions (0.8 ×103µ m2/sec).

Physically, under the constant current (I), current in the depleted region is mainly determined by the electromigra-
tion and convection due to vortices, then ion conservation at the shock front implies I/(2πRd) ∼ dRd/dt,

Rd ∼ (It)1/2, Deff ∼ I. (3)

Equation (3) shows that the square-root growth is determined by currents (far above the limiting current), and Deff

is linearly proportional to current, consistent with the experiments (Figure 3d).
Additionally, for various constant voltage (V), Rd can be fitted by a 1/2 power-law scaling (Figure 3e), and the

extracted Deff increases with voltage (Figure 3f). Ion conservation at the thin shock interface implies dRd/dt ∼ V/Rd
(electric field for the radial geometry). Then square-root growth is obtained,

Rd ∼ (V t)1/2, Deff ∼ V. (4)

Indeed, the experimental Deff is linear with the voltages (far above the onset voltage) (Figure 3f).
Remarkably, the EC vortices do not form chaotic random patterns and remain confined to a smooth envelope

during DS propagation, as shown by the red smooth circular contours in Figure 3a. In hindsight, a DS radially
moving away from the depletion region resembles time-reversed Laplacian growth [33], which leads to smooth shock
profiles [27]. The stability of SC-driven DS is critical for continuous shock electrodialysis [21, 29] and stable shock
electrodeposition [11], so the observation of stable EC-driven DS may lead to related applications.

VI. MODEL FOR DS PROPAGATION

Although 1/2 power-law scaling of shock propagation is predicted for SC-driven DS in a circular or wedge geometry
[27], we employ our simple physical model to understand the similar dynamics of EC-driven DS. The shock velocity
is proportional to the current density [27],

dRd
dt
∼ j(Rd) ∼

I

2πRd
. (5)

For constant voltage (V ), assuming the voltage approximately dropped entirely in the depletion region with a constant
cd independent on time, we find (Appendix D):

I(t) ∼ cdV

ln (Rd/R1)
. (6)

Then Rd(t) is obtained with a fitting parameter α,

(
Rd
R1

)2[ln(
Rd
R1

)2 − 1] + 1 =
αcdV

R2
1

t. (7)

The above Equation (7) is in excellent agreement with the experimental data (Figure 4). For a smaller radius R1 =
100 µm, as shock propagates far away from the cathode (Rd/R1 > 1), the square-root growth holds [Rd ∼ (V t)1/2],
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FIG. 4. Model for DS propagation. The experiment data under a constant voltage at 20V are fitted well by Equation (7). The
power law of 1/2 is recovered for a smaller radius R1 = 100 µm (χ = 1/30), while deviation from 1/2 power law occurs for a
larger radius R1 = 1 mm (χ = 1/3). The lower bound of Rd is limited by the extra liquids around the wire, and the upper
bound of Rd is R2 (3 mm). The experimental data were reproduced by three times.

validating the aforementioned power-law analysis. But for a larger radius R1 = 1 mm, a length scale is set by R1, and
Equation (7) including the logarithms term is more accurate than the power law. Despite the simplicity, the proposed
model might have captured the main features of EC-driven DS.

VII. DISCUSSION

Theoretically, three mechanisms – surface conduction, EOF and EC — are responsible for the OLC. Experimen-
tally, here the observed OLC, EC and DS are unaffected by modified surface charges, thus ruling out the first two
SC mechanisms, in which residual conductivity arises from excess counter-ions screening charged side walls. The
simultaneous observation of vortices and concentration shock waves is quite challenging experimentally, and they had
to be visualized in somewhat different systems to achieve accurate measurements (vortices in 1 mM aqueous CuSO4

solution at 2 µA, and concentration shocks in 10 mM compound solution at 20 µA).
For EOF and SC, scalings of the over-limiting conductance with reservoir salt concentration and channel thickness

have been predicted [19] and confirmed experimentally [21, 22]. It is beyond the scope of this Letter to do the
same for EC-driven OLC, but we note that our key model assumption, that cd is nearly constant during shock
propagation, is consistent with previous studies of EC without geometrical confinement [13–15, 19], and the model
has a good agreement with DS propagation in experiments. Nevertheless, the simple model proposed here is only
a first attempt to understand the interesting observations, and a more accurate and rigorous theory is required to
quantitatively analyze the transition from the bulk to the depletions, likely resulting in the concentration discontinuity.
Additionally, direct numerical simulations might be helpful to further thoroughly elucidate the underlying mechanism
of EC-driven DS.

Our results also hold for negative voltage bias (Φ < 0), where vortices appear at the outer ring, while DS propagates
inward at a higher current (Appendix C). It would also be interesting to test predictions of conformal invariance
of ion transport in the absence of EC [34] by studying off-center positions and diverse cross-sectional (elliptical or
cloverlike) shapes [33] of the wire. The breakdown of conformal invariance in the transient problem also introduces
flexibility to control DS stability [11].

Our observations of EC-driven DS are likely to also hold in other configurations, such as the imposed cross flow in
shock electrodialysis [21, 29] and microscale electrodialysis with vortices organized in the depleted region behind a
fairly smooth DS [17]. This insight may provide guidance to achieve shock electrodialysis in bulk electrolytes without
confinement by a charged porous medium, for example in a simple electrodialysis-type stack with only one type of
cation membrane, which may enable greater flow rates for continuous and scalable desalination due to the lower
hydraulic resistance, albeit with the likely trade-off of lower desalination factor. Similar phenomena could also be
exploited to control electrodeposition.
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VIII. CONCLUSION

In conclusion, in a circular channel, a layer of bulk EC vortices appears in the horizontal plane to sustain OLC.
The EC-driven depletion layer propagates radially as DS, and the propagation has a remarkable agreement with
the proposed model. The EC-driven DS phenomenon may be exploited in new designs of shock electrodialysis for
desalination and water purification.

Appendix A: Ohmic and limiting current regimes without EC

When the EC instability (consequently the vortices) is absent, the residual conductivity vanished σEC = 0 in the
whole region (r̃ = r/R2, χ < r̃ < 1). Thus, the 1D steady model equation (1) in the main text can be solved to the
1D quiscent solution of concentration polarization

c̃ = 1− Ĩ

4π

(
ln r̃ +

1

2
+
χ2 lnχ

1− χ2

)
, (A1a)

φ̃ = ln c̃+ const. (A1b)

To obtain the solution (A1a), concentration conservation is imposed∫ 1

χ

∫ 2π

0

c̃r̃dr̃dθ =

∫ 1

χ

∫ 2π

0

r̃dr̃dθ = π(1− χ2). (A2)

Then from the equation (A1b), there is a relation between the voltage Ṽ = φ̃(1) − φ̃(χ) across the circular channel

and the current Ĩ

1− exp(Ṽ ) =
Ĩ
4π lnχ

1− Ĩ
4π ( 1

2 + χ2 lnχ
1−χ2 )

. (A3)

From the equations (A1), the concentration and potential profiles are different for the positive voltage bias (the

cathode at the inner radius, r̃ = χ, Ĩ < 0) and the negative voltage bias (cathode at the outer radius, r̃ = 1, Ĩ > 0).
For the positive voltage bias case, the I-V relation (A3) is plotted out (solid line) in Fig. 1b in the main text.

With a given geometry ratio χ, the analytic solution of the limiting current under positive or negative voltage bias
is obtained from Equation (A1a) as the concentration approaches to zero at cathode as below:

Ĩpos = −8π
(1− χ2)

1 + 2 lnχ− χ2
, [c̃(χ) = 0], (A4a)

Ĩneg = 8π
(1− χ2)

1 + 2χ2 lnχ− χ2
, [c̃(1) = 0], (A4b)

Ĩbias =
Ĩneg

Ĩpos
= − 1 + 2 lnχ− χ2

1 + 2χ2 lnχ− χ2
. (A4c)

Appendix B: Overlimiting current regime with EC

The constant concentration cd in the depletion region can be matched with the concentration in the bulk region far
away from the vortices by neglecting the transition layer between these two regions. The concentration distribution
for the positive voltage bias case is obtained from the equation (1) in the main text,

c̃ =

{
c̃d r̃ ≤ r̃d,
Ĩ
4π ln

(
r̃d
r̃

)
+ c̃d r̃ > r̃d.

(B1)

The profile of electric field is also obtained from the equation (1) in the main text,

Ẽ = −dφ̃

dr̃
=

Ĩ

4πc̃r̃
. (B2)
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FIG. 5. The measured I − V curves for 10 mM aqueous CuSO4 solution showing (a) Ipos ≈ 0.4 µA for the positive voltage

bias, and (b) Ineg ≈ 2.25 µA for the negative voltage bias (χ = 1/30). (c) Ĩ agreeing well with Equation (A4), and error bars
for the standard deviations from four measurements.
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FIG. 6. The observed DS and vortices under the negative voltage bias (χ = 1/30). (a) Snapshot of fluorescent signals at 60 sec
under an applied current at 10 µA, red line for the front position of DS; (b) An array of observed vortices near cathode side at
60 seconds under an applied current at 5 µA.

For the given Ĩ and c̃d, r̃d of the depletion region is found by the concentration conservation (A2),

Ĩ(1− r̃2d + 2 ln r̃d) = 8π(1− c̃d)(1− χ2). (B3)

And the total voltage is the sum of that in the bulk region ln[c̃(1)/c̃(r̃d)] and the depletion region [∼ ln(r̃d/χ) =
ln(Rd/R1)],

Ṽ = ln

(
1 +

Ĩ

4πc̃d
ln r̃d

)
− Ĩ

4πc̃d
ln

(
Rd
R1

)
, (B4)

which presents the I-V relationship as well.
For the given c̃d, by solving the coupled equations of (B3) and (B4), I − V curves for c̃d = 0.1 and c̃d = 0.01 are also

plotted in Fig. 1b in the main text. For the given c̃d and Ṽ , the concentration distribution of Equation (B1) and the
profile of electric field of Equation (B2) are shown in Fig. 1c and d in the main text.

Appendix C: The experiments related with the negative voltage bias

Based on Equation (A4), the limiting current is dependent on the voltage bias. Indeed, the measured I − V curves
for 10 mM aqueous CuSO4 solution show Ipos ≈ 0.4 µA for the positive voltage bias, and Ineg ≈ 2.25 µA for the
negative voltage bias (Fig. 5 a, b). Additionally, the limiting current is related with χ, by varying 2R1 = 2, 4 and 5
mm (χ = 1/3, 2/3, 5/6), the obtained limiting currents at each given χ are normalized by their corresponding values

at χ = 1/30. The normalized currents (Ĩ) are fitted well by Equation (A4) (Fig. 5c), showing that ion transport in
a circular channel can be controlled by the type of voltage bias and the diameter of the inner electrode. Under the
negative voltage bias, the observed DS and vortices are presented in Fig. 6.
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Appendix D: Time-dependent current for constant voltage in unsteady state

During the propagation of the DS, the Nernst-Planck equations in unsteady state are

∂c

∂t
=

∂

∂r

(
r
∂c

∂r
+ rc

∂φ̃

∂r
+ rσEC

∂φ̃

∂r

)
, (D1a)

∂c

∂t
=

∂

∂r

(
r
∂c

∂r
− rc∂φ̃

∂r
+ rσEC

∂φ̃

∂r

)
. (D1b)

In the depletion zone { χ < r < rd(t) } with nearly constant concentration cd, assuming this concentration cd
independent on time t, the Equations (D1) above become

2cd
dφ̃

dr
= −c0

˜I(t)

2πr
. (D2)

The assumption of the voltage approximately dropped entirely in this depletion region φ̃(rd)− φ̃(χ) = Ṽ yields

Ĩ(t) = −4πcdṼ

c0

1

ln(rd/χ)
= −4πcdṼ

c0

1

ln(Rd/R1)
. (D3)
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and Gérald Pourcelly, “Desalination at overlimiting currents: State-of-the-art and perspectives,” Desalination 342, 85–106
(2014).

[10] Ji-Hyung Han, Edwin Khoo, Peng Bai, and Martin Z Bazant, “Over-limiting current and control of dendritic growth by
surface conduction in nanopores,” Scientific reports 4, 7056 (2014).

[11] Ji-Hyung Han, Miao Wang, Peng Bai, Fikile R Brushett, and Martin Z Bazant, “Dendrite suppression by shock electrode-
position in charged porous media,” Scientific reports 6, 28054 (2016).

[12] Mathias Bækbo Andersen, M Van Soestbergen, A Mani, Henrik Bruus, PM Biesheuvel, and MZ Bazant, “Current-induced
membrane discharge,” Physical review letters 109, 108301 (2012).

[13] Isaak Rubinstein and Boris Zaltzman, “Electro-osmotically induced convection at a permselective membrane,” Physical
Review E 62, 2238–2251 (2000).

[14] B Zaltzman and I Rubinstein, “Electro-osmotic slip and electroconvective instability,” Journal of Fluid Mechanics 579,
173–226 (2007).

[15] Shmuel M Rubinstein, G Manukyan, A D Staicu, Isaak Rubinstein, Boris Zaltzman, Rob G H Lammertink, Friedrich Gun-
ther Mugele, and Matthias Wessling, “Direct observation of a nonequilibrium electro-osmotic instability,” Physical Review
Letters 101, 236101 (2008).

[16] Gilad Yossifon and Hsueh-Chia Chang, “Selection of nonequilibrium overlimiting currents: universal depletion layer for-
mation dynamics and vortex instability,” Physical review letters 101, 254501 (2008).

[17] Rhokyun Kwak, Guofeng Guan, Weng Kung Peng, and Jongyoon Han, “Microscale electrodialysis: Concentration profiling
and vortex visualization,” Desalination 308, 138–146 (2013).

[18] I Rubinstein and B Zaltzman, “Equilibrium electroconvective instability,” Physical review letters 114, 114502 (2015).
[19] E Victoria Dydek, Boris Zaltzman, Isaak Rubinstein, Daosheng Deng, Ali Mani, and Martin Z Bazant, “Overlimiting

current in a microchannel,” Physical Review Letters 107, 118301 (2011).



10

[20] E Victoria Dydek and Martin Z Bazant, “Nonlinear dynamics of ion concentration polarization in porous media: The leaky
membrane model,” AIChE Journal 59, 3539–3555 (2013).

[21] Daosheng Deng, E Victoria Dydek, Jihyung Han, Sven Schlumpberger, Ali Mani, Boris Zaltzman, and Martin Z Bazant,
“Overlimiting current and shock electrodialysis in porous media,” Langmuir 29, 16167–16177 (2013).

[22] Sungmin Nam, Inhee Cho, Joonseong Heo, Geunbae Lim, Martin Z. Bazant, Dustin Jaesuk Moon, Gun Yong Sung, and
Sung Jae Kim, “Experimental Verification of Overlimiting Current by Surface Conduction and Electro-Osmotic Flow in
Microchannels,” Physical Review Letters 114 (2015).

[23] Edwin Khoo and Martin Z Bazant, “Theory of voltammetry in charged porous media,” Journal of Electroanalytical
Chemistry 811, 105–120 (2018).

[24] Ali Mani, Thomas A Zangle, and Juan G Santiago, “On the propagation of concentration polarization from microchannel-
nanochannel interfaces part i: analytical model and characteristic analysis,” Langmuir 25, 3898–3908 (2009).

[25] Thomas A Zangle, Ali Mani, and Juan G Santiago, “On the propagation of concentration polarization from microchannel-
nanochannel interfaces part ii: numerical and experimental study,” Langmuir 25, 3909–3916 (2009).

[26] Thomas A Zangle, Ali Mani, and Juan G Santiago, “Theory and experiments of concentration polarization and ion
focusing at microchannel and nanochannel interfaces,” Chemical Society Reviews 39, 1014–1035 (2010).

[27] Ali Mani and Martin Z Bazant, “Deionization shocks in microstructures,” Physical Review E 84, 061504 (2011).
[28] Daosheng Deng, Wassim Aouad, William A Braff, Sven Schlumpberger, Matthew Suss, and Martin Z Bazant, “Water

purification by shock electrodialysis: Deionization, filtration, separation, and disinfection,” Desalination 357, 77–83 (2015).
[29] Nancy B Lu, Sven Schlumpberger, Matthew E Suss, and Martin Z Bazant, “Scalable and continuous water deionization

by shock electrodialysis,” Environmental Science and Technology Letters 2, 367–372 (2015).
[30] Andriy Yaroshchuk, “Over-limiting currents and deionization shocks in current-induced polarization: Local-equilibrium

analysis,” Advances in colloid and interface science 183, 68–81 (2012).
[31] Joeri De Valenca, R Martijn Wagterveld, Rob G H Lammertink, and Peichun Amy Tsai, “Dynamics of microvortices

induced by ion concentration polarization,” Physical Review E 92, 031003(R) (2015).
[32] Elif Karatay, Mathias Bækbo Andersen, Matthias Wessling, and Ali Mani, “Coupling between buoyancy forces and

electroconvective instability near ion-selective surfaces,” Physical review letters 116, 194501 (2016).
[33] M. Z. Bazant, “Interfacial dynamics in transport-limited dissolution,” Physical Review E 73, 060601 (2006).
[34] M. Z. Bazant, “Conformal mapping of some non-harmonic functions in transport theory,” Proceedings of the Royal Society

of London. Series A: Mathematical, Physical and Engineering Sciences 460, 1433–1452 (2004).


