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The surface-normal impingement of a liquid jet emanating from a nozzle is of use in numerous
technological applications (e.g., surface cleaning, waterjet cutting, and needle-free injection). Upon
impact, the (Rayleigh) jet is characterized as either a steady-state (time-invariant) jet, wavy jet
or droplet train. The present study experimentally investigates the force imparted by these three
distinctly different processes for identical nozzle flow conditions (i.e., velocity and jet diameter).
Force models are developed based on Rayleigh jet theory and are shown to compare well with
the measurements. The force induced by the wavy jet is sinusoidal, oscillating about the steady-
state force, while the droplet train force is discrete with periods of zero induced force. Owing to
conservation of momentum, the peak force experienced by the droplet train is significantly higher
than that of the steady stream. This identifies the droplet train as the dominant process to obtain
higher peak forces than the continuous stream counterparts during impact with a surface. This can
then be used as a means to increase the performance of applications such as waterjet cutting and
surface cleaning.

I. INTRODUCTION

The impact of a liquid jet is used in numerous applications, e.g., surface cleaning [1], cooling [2, 3], coating and
ink-jet printing [4], surgical applications [5, 6], and medicine delivery [7]. In most of these applications, a liquid is
accelerated through a circular orifice that initially forms either a continuous, axisymmetric, cylindrical (Rayleigh) jet
or is emitted as a disorganized mass of liquid droplets by a process known as atomization [8]. Many of the applications
listed above utilize the former process, where an initially continuous stream of liquid travels a certain distance from
the orifice until colliding with a surface. The purposes of surface impingement vary depending on the application. In
coating flows or ink-jet printing, for example, it is often desirable to effeciently deposit the liquid onto the surface
while minimizing splash [9, 10](i.e., in order to enhance print quality). In surface cleaning or waterjet cutting it is
advantageous to maximize the stress imparted onto the surface (i.e., to remove dirt or to penetrate the surface for
effective material removal). Upon impact with the surface, however, the liquid in the emanating jet can exhibit two
distinctly different states; 1) the liquid remains intact as a continuous, axisymmetric jet, depicted in Figs. 1(a-b),
or 2) the liquid jet fragments, downstream of the orifice, into a train of discrete droplets due to a surface tension
induced instability [11], shown in Fig. 1(c). Regardless of the intended application, the characteristics of the impact
(i.e., splash, induced force, etc.) will change depending on whether the liquid is in a droplet state upon impact or
remains as a continuous jet. Here, it is recognized that a Rayleigh jet constitutes any of the Fig. 1 depictions, as the
only difference between these jets are their perturbation amplitudes and whether these amplitudes are large enough
to permit droplet formation. The state of the liquid arriving normal to the impingement surface is then governed by
the perturbation amplitude and the nozzle to plate distance, as described in detail in sections II & III.

The droplet formation process from a continuous jet has received considerable attention since the pioneering work
of Lord Rayleigh in 1879 [11-13]. Similarly, the impact of a single droplet onto a flat solid surface has received a
wealth of scientific interest, with particular attention paid to the underlying splashing mechanisms [14, 15]. A less
prevalent research topic is the associated impact of continuous jets, and droplet trains onto flat solid surfaces, and
especially the induced normal force. This area remains largely unexplored; however, knowledge of the force induced
by Rayleigh jets is of practical use in industrial applications and is of broad scientific interest. In fact, as a unique
example, archer fish (Tozotes jaculatriz) attack their above-surface prey with precisely-aimed waterjets [16].

In this study, the similarities and differences of the normal impingement of a steady-state jet, a wavy jet and a
droplet train onto a solid surface are investigated through force measurements and high speed photography. Our
aim is to quantify the force imparted by these distinctly different scenarios for identical nozzle flow conditions (i.e.,
velocity and jet diameter). In this way the momentum exiting the nozzle is identical for each condition, allowing
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FIG. 1. Schematic of the normal impingement of Rayleigh jets: (a) steady-state jet, (b) wavy jet, and (c) droplet train.

for direct comparison. A quantitative understanding in the applied force of Rayleigh jets allows applications to be
designed with sufficient foresight, and aids in determining whether the use of droplets is appropriate and beneficial.

This paper begins with the regimes associated with the “break-up” of liquid jets in section II, followed by a
description of the droplet formation process in section III. This section also characterizes the jet free-surface which
is used to formulate model equations for the force induced by continuous jets in section IV. Section V elucidates
the force imparted by a single droplet which is used in series to formulate a model equation for the force induced by
a droplet train. These force models are then experimentally tested. In section VI the experimental setup and data
processing methods are introduced. This is followed by results and discussion in section VII, and finally ending with
conclusions in section VIII.

II. CLASSIFICATION OF JET REGIMES

Liquid issuing from a circular nozzle has several outcomes. If the flow rate exiting the nozzle is relatively small,
and there exists a quasi-static balance between the liquid inertial/gravitational force and the surface tension force,
then the liquid simply drips [17] (i.e., a leaking faucet). As the flow rate increases, the liquid takes the form of a
cylindrical “Rayleigh” jet, where the jet appears smooth and unperturbed close to the nozzle. The onset between the
dripping regime and the Rayleigh regime occurs when the Weber number (ratio of inertial to surface tension force)
exceeds a critical threshold, described by

2
We:pdgﬂ>8, (1)

where p is the liquid density, dy is the jet diameter, vy is jet velocity relative to the nozzle and o is the surface
tension [18-20]. A formal description of the transition from dripping to jetting can be found in Ref[21]. Once in
the Rayleigh regime, the liquid exiting the nozzle is initially columnar, however, at a certain distance downstream
wavy disturbances about the free-surface become discernible. These disturbances grow progressively in amplitude
downstream until the wave amplitude becomes approximately equal to the jet radius. This is where droplet formation
occurs [22]. The distance between the nozzle and the point of droplet formation is defined as the breakup length
Ly (see Fig. 1c), and is linearly proportional to the jet velocity. More specifically, the normalized breakup length
scales with the square root of the jet’s Weber number (i.e., Ly/do o v/We)[13, 23-27]. This relation, however, is valid
only for a certain range of Weber numbers. As the jet velocity increases, the surrounding fluid into which the jet is
immersed (typically air) begins to alter the Rayleigh regime dynamics. Aerodynamic drag causes droplet formation to
occur earlier, shortening the breakup length. The breakup length begins to decrease non-linearly with jet velocity and
the jet enters the first wind-induced regime [13]. This occurs when the aerodynamic force is about 10% of the surface
tension force [28]. Further increase in the jet velocity allows the surrounding fluid to induce significant shearing stress



onto the jet. This causes droplets to be stripped off the surface rather than being pinched off in segments at the fore
of the jet [22]. The jet then enters successive wind-induced and atomization regimes.

The topic of this paper focuses solely on Rayleigh jets. A comprehensive review of the subsequent regimes can be
found in Refs [13, 19, 23, 29]. The upper bound separating the Rayleigh regime from the first wind-induced regime is
described by

We < 0.4 , (2)
pgas

where pgqs, is the density of the ambient gas [19, 20, 29]. For the experiments reported in this paper, which are
conducted in standard atmosphere, the critical upper bound for velocity is 3.8m/s. Note that Eq. (2) predicts that
the Rayleigh regime can be extended to higher jet velocities if the surrounding atmospheric pressure is reduced. This
widening of the Rayleigh regime has been experimentally verified by Fenn & Middleman (1969) in a sub-atmospheric
pressure environment [30].

III. DROPLET FORMATION FROM RAYLEIGH JETS

As previously mentioned, a Rayleigh jet is characterized by an initially continuous, unbroken stream of liquid
emanating from a nozzle that with downstream evolution may break apart into discrete droplets due to surface
tension-induced instabilities. If a flat solid surface is positioned normal to the jet, before the region where wavy
disturbances become noticeable, then the liquid is diverted radially along the surface, as depicted in Fig. 1(a). If
the axial disturbances have sufficiently large amplitudes, droplet formation will occur closer to the nozzle, and a flat
solid surface positioned past the breakup length will experience a series of droplet impacts, like that shown in Fig.
1(c). Figure 1(a) is a highly idealized scenario as disturbances are likely to occur and grow in amplitude almost
immediately after the nozzle exit. There exists an intermediate scenario between the steady columnar jet impact and
the droplet train impact. In this scenario the solid surface will experience a series of continuous wave impacts, like
that depicted in Fig. 1(b). If viscous effects of the impinging jet can be neglected, and the Weber number satisfies
Egs. (1) and (2), then predicting the state in which the liquid arrives at the surface is accomplished through Rayleigh
jet theory.

A. Plateau’s reasoning

The first attempt to characterize the droplet formation process was done by Joseph Plateau in 1873. At this time
it was known that liquids possess a binding force at their free surface, i.e. surface tension (N/m in S.I. units) or
surface energy (Joule/m?). In terms of total surface energy, a given volume of liquid can exhibit different surface
areas (depending on its shape), which correspond to different surface energies. Based on the principal of minimum
potential energy, Plateau reasoned that an axisymmetric, wavy liquid column of radius

R(z) = Ry + ae'**, (3)

where Ry is the mean column radius (i.e., Ry = do/2), a << Ry is the wave amplitude, i = /=1, and k is the
wavenumber, exhibits a smaller surface area (and thus a lower potential energy) than that of a straight cylindrical
column of equal volume, if the wave length A\ = 27 /k, is larger than the column’s circumference [31]. This principal of
energy minimization essentially derives from the second law of thermodynamics, and permits the unstable wavy liquid
column to discretize into droplets whose combined surface area is less than that of the original column. Disturbances
or waves that are non-axisymmetric (i.e., azimuthal modulations) are stable [13, 32, 33]. For axisymmetric jets only
wavenumbers in the range 0 < kRy < 1 are unstable and lead to droplet formation. Although a critical finding, this
range does not identify which wave(s) are most dominant or how rapidly different waves grow in amplitude.

B. Rayleigh’s local analysis

Using the equations of motion, Rayleigh determined the wavenumber associated with the most rapid wave amplitude
growth. He considered the evolution of small axisymmetric perturbations about the free-surface of a quiescent, inviscid,
infinitely long liquid cylinder, with radius Ry, density p, and surface tension o, in the absence of gravity. These small
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perturbations (i.e., waves) allow linearization of the momentum equations, which, with the continuity equation and
appropriate boundary conditions, yield their temporal growth rates, w. In Rayleigh’s analysis, the free-surface takes
the form of a perturbed sinusoidal column about the axial direction z, as described by

R(z,t) = Ro + aet+ikz, (4)

where w and k are the previously defined growth rate and wavenumber, respectively. Negative values of w lead to wave
stabilization, while positive values lead to wave steepening and imminent droplet formation. The prominent result of
Rayleigh’s analysis is a dispersion relation. This describes the dependence of the wave growth rate on wavenumber,
and is given by

2 p3
pw- Ry I (kRy) 2152
— kR

. ROIO(k‘Ro)( R5), (5)

where [, is the modified Bessel function of first kind. This relation is plotted in Fig. 2. The wavenumber of the
fastest growing wave is KRy = 0.697. Other waves can, however, lead to the discretization of the column if their
initial amplitudes are sufficiently large. It should be noted that this linearized wave model accurately describes the
early stages of jet segmentation. The actual pinch-off of the droplet can only be described by non-linear theories [34].
The infinite column is allowed travel in space with some arbitrary velocity, but waves do not propagate upstream or
downstream with respect to the bulk flow. In this regard, Rayleigh’s analysis can be seen as a local theory, as every
wave along the column is identical to the wave upstream or downstream of it. Therefore one only needs a portion of
the column A = 27 /k, to completely describe its characteristics. This is obviously not the case for finite liquid jets
issuing from nozzles, as waves progressively grow in amplitude along the axial direction.

C. Spatial analysis

Rayleigh’s analysis can be extended to liquid jets issuing from nozzles in a commonly used spatial theory [35-38].
In this theory, waves grow in amplitude along the z direction, rather than in time. This fixes the breakup length
for steady-state jets, and is the case for our experiments. This spatial description of the free-surface is the intuitive
choice for the laboratory reference frame, however, there are certain assumptions that must be made. Namely,
the temporal characteristics propagate downstream in the axial direction with the same velocity of the jet . This
requires one to define a new parameter; the spatial wave frequency, K, which connects to the temporal wavenumber as
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FIG. 2. Rayleigh’s dispersion relation identifying the dependence of wave growth rate w on the normalized wavenumber kRy.
The fastest growing wave (Rayleigh mode) occurs for kRo = 0.697, labelled with a green star. The wavenumber at impact for
our experiments is kR = 0.634, and is represented with a purple diamond.



K =k =2n/(vT), where T is the period of temporal oscillation. The period is related to the frequency by T =1/f,
and the wavelength is then A = vT. The temporal wave growth rate is related to the spatial growth rate 3, through
B = w/v. With these considerations, the free-surface of the jet takes the form

R(z,t) = Ry + ae’?cos(Kz — 2nft + ), (6)

where ¢ is the phase of the wave, which is arbitrary and depends on the time in which the analysis starts. The
nozzle location is at z = 0, with positive z being the direction towards the impact surface (see Fig. 1). Equation (6)
indicates that the waves oscillate both in time and in space. If traveling with a wave at velocity v, an observer will
simply see wave amplitude growth and then droplet formation. If at a fixed z location, then the observer sees waves
of equal amplitude (or droplets) pass by at a rate given by f. If one droplet is produced per wavelength, then by
mass conservation the diameter of the droplet D is given by D = (1.5Ad?)/3. For the Rayleigh mode A = 7d/0.697,
the droplet diameter is nearly twice the jet diameter (i.e., D = 1.89d). Despite this, most studies [20, 39-41] show a
range of droplet diameters within two distinct subsets; primary droplets and satellite droplets, which are significantly
smaller than primary drops. Rayleigh theory does not predict satellite droplet formation, as this theory is strictly
linear and only considers small pertubations from equilibrium. The formation of satellite droplets can be anticipated
from non-linear theories where breakup profiles are self-similar [42]. Satellite drops form in between primary droplets
at the breakup length L;. Although the breakup length is typically considered constant, it may vary slightly from
each droplet pinch-off. It has been shown that the breakup length is well represented by a Gaussian distrubition, with
Gaussian width porportional to the jet velocity [23, 24, 29]. This natural breakup length may be artificially shortened
through wavenumber stimulation.

D. Stimulated droplet formation

A number of methods have been used to stimulate jets in order for droplets to form closer to the nozzle. This may
be done through elliptically shaped nozzles [25, 32, 33|, piezoelectric vibration [43], reservoir pressure oscillation [27],
or simply by exploiting any periodic disturbance in the vicinity of the jet, which may be an audio-speaker placed
next to the nozzle exit [44]. Depending on the stimulation frequency f, these methods generate a large initial wave
amplitude a, that is specific to the excited wavelength A. This allows certain wavenumbers to become the dominant
wave (instead of the Rayleigh wave) and thus the wave responsible for droplet formation. A range of wavenumbers may
be stimulated but only those in the range 0 < kRy < 1 permit droplet formation. Due to the increased amplitude,
artificial stimulation enables droplets to form sooner and thus closer to the nozzle. Other means may be used to
shorten the breakup length, such as the choice of nozzle geometry.

E. Effects of nozzle geometry

The velocity profile exiting the nozzle is important, especially if precise control of the breakup length is required.
Nozzles with short aspect ratios (L, /d,, < 1), where L,, is the nozzle length (see Fig. 1), and d,, is the nozzle diameter,
are more stable and produce more consistent droplets than nozzles with long aspect ratios [29]. Pipe flow turbulence
associated with long nozzle aspect ratios leads to moderate shortening of the breakup length [45]. Although the nozzle
aspect ratio affects the breakup length, it also influences the diameter of the jet itself, as the jet diameter dy may
not necessarily equal the nozzle diameter d,. The study by Gavis and Modan (1967) shows that the contraction
ratio x = do/d,, is dependent on the jet Reynolds number, defined as Re,, = pd,vo/u, where p is the fluid viscosity.
Contraction of the jet (i.e., x < 1) occurs for Re > 16, while expansion (i.e., x > 1) occurs for Re < 16 [46]. For
example, Re = 100 liquid flow through a nozzle of aspect ratio L, /d,, = 0.5 exhibits about 7% contraction. The
velocity profile relaxation is completed after liquid from the nozzle travels approximately one nozzle length O(Ly,),
after this the jet diameter remains unchanged [46]. This indicates, that for short nozzle aspect ratios, the jet diameter
do may be assessed close to the nozzle.

F. Other analyses

Rayleigh’s analysis shows that the droplet formation process is governed purely by the growth of capillary waves
whose wavelength is a function of the liquid properties and jet diameter only. It is worth noting that Rayleigh’s
theory has been extended to other analyses conducted by Weber (1931)[47], Yuen (1968)[48], Sterling and Schleicher



(1975)[28], and Leib and Golstein (1986)[35], which take into account the fluid viscosity, velocity, non-linearity and
effects of ambient air. The effects of viscosity tend to decrease the growth rate and increase the dominant wavelength
[22]. For the purposes of our analysis, the spatial form of Rayleigh’s theory is instructive as it elucidates the droplet
formation mechanisms and accurately represents the jet free-surface which can be used to yield accurate models for
the induced force of real jets.

IV. FORCE INDUCED BY CONTINUOUS JETS
A. Steady-state jets

The steady-state normal impingement force of a continuous unperturbed jet, like that depicted in Fig. 1(a), can
be determined through control volume analysis. The volume considered is the curved area at the base of the jet in
contact with the surface revolved about the z axis. It is assumed that the incoming flow is uniform with velocity v,
and the outward deflected radial flow travels purely in the r direction. The jet Reynolds number is assumed to be
sufficiently high such that viscous effects are negligible. With these considerations the integral momentum equation
may be applied to the control volume to yield the jet impact force

™
F= vagdg. (7)

The parameters p, vg, and do provide an inertial set of normalizing parameters, such that the non-dimensional form
of Eq. (7) is F' = F/pv}d% = w/4. Equation (7) is effectively a statement of momentum conservation, as the plate
simply diverts the jets momentum from the axial to radial direction.

If gravitational effects are considered, then the jet velocity increases with increasing z and the jet radius contracts
as a consequence of mass conservation. The velocity in the axial direction at the moment of impact is defined as v
while vy is the nozzle exit velocity. If the Weber number is sufficiently high such that surface tension can be neglected,
and air induced drag is considered negligible, then the jet velocity at impact takes the form

welerm) o

where the Froude number, Fr = v3/(dog) represents the ratio of the fluid inertial force to gravitational force. The
radius is similarly given by

R(z) 12\
(14 == . 9
Ro ( = R0> (9)
The derivation for velocity and radius evolution can be found in Appendix A. In order to consider the effects of gravity
on jet impingement force, Egs. (8) and (9) are substituted into the normalized form of Eq. (7) to yield

A T 12 \Y?
Fa(Z) = Z (1 + FI’R0> ) (10)

where the subscript a refers to the scenario depicted in Fig. 1(a), as this jet exists in a gravitational field. If
gravitational effects are weak (i.e., Fr — 00), then Eq. (10) reduces to the normalized form of Eq. (7). Equation (10)
is perhaps a more realistic model as many industrial jets are influenced by gravity, however, this equation does not
account for free-surface perturbations.

B. Wavy jets

In order to determine the effect of waves on the jet impingement force, Rayleigh’s description of the free-surface
given by Eq. (6) is employed. This implies that the radius of the impinging jet is time periodic at any given fixed plate
location, defined as z = Z. A control volume analysis is used, similar to the steady-state jet, but now with a spatially
varying control volume. The control volume is now the area of the jet bounded by the (time dependent) free-surface



and the base in contact with the plate revolved about the z axis. The flow is assumed uniform at the top boundary of
the control volume and at the exit. Rayleigh’s theory indicates that there exist axial and radial velocities associated
with the capillary pinching of the jet. These velocities are, however, negligible compared to the bulk velocity .
Therefore, at the top boundary, there exists uniform flow of velocity ¢, with a time varying cross-sectional area. It
is assumed that the top boundary is very close to the plate, permitting evaluation at the plate location, z = Z. By
applying the integral momentum equation to this control volume yields

Fpavy(z,t) = Z(l + 2eePZcos(¢ — 2 ft)). (11)

Where ( = Kz + ¢ is a parameter to shift the phase as required, and € = a/Ry << 1 is the normalized initial wave
amplitude. As anticipated, Eq. (11) is oscillatory in time and fluctuates about the steady-state force given by Eq.
(7). Note that the amplitude of oscillation exponentially increases in the z direction. If the impact surface exceeds
the breakup length (i.e., Z > L;), then this model would obviously not be applicable as droplets would impact the
surface instead of a wavy jet. Due to the linearized small perturbation theory incorporated into Eq. (11), this model
is anticipated to only work for small wave amplitudes. Although Eq. (11) exhibits z dependence, gravitational effects
are not included.

In a similar way to the steady-state jet, gravity will increase the jet velocity according to Eq. (8), and reduce the
time-invariant radius according to Eq. (9). With these considerations, the gravitational dependent form of Eq. (11)
becomes

~ e 1 z /2
Fyo(z,t) = 1 (1 + 2eePZcos(¢ — 27rft)) (1 + FrRo) ) (12)

where the subscript b refers to the scenario depicted in Fig. 1(b). If gravitational effects are deemed negligible (i.e.,
Fr — o0), then Eq. (12) reduces to Eq. (11). In addition, if the jet does not exhibit wavy oscillations about the
free-surface (i.e., ee”* — 0), then Eq. (12) reduces to Eq. (10). It must be noted that, owing to gravity, waves are
stretched along the axial direction. Therefore the wavenumber decreases with z, and thus waves take on a range of
growth rates before impact. A comprehensive report on the consequences of jet elongation is given by Frankel &
Weihs (1985) [49]. The normalized wavenumber incorporating gravitational dependence is given by

~1/2
k(z) = 2 (1 + ;;}) . (13)

Vo

Although the waves change wavenumber, the wave frequency remains constant, as required by mass conservation.
Equation (12) indicates that the jet impingement force is oscillatory in time with frequency f, and increases in the z
direction. If the impact surface is positioned past the breakup length then a series of droplet impacts will occur.

V. FORCE INDUCED BY DROPLETS

The impact force of a single droplet has been experimentally investigated and modelled in several studies [50-54].
These studies reveal that the impact force-time history is characterized by a rapid increase to a maximum followed by
a progressively longer decay to zero. For droplet impacts where viscous effects are negligible (Rep = pvD/p Z 200),
the peak force occurs at a non-dimensional time of = tv/D = 0.15, where { = 0 corresponds to the moment of impact,
and reaches a peak magnitude of approximately F = Farop/pv?D? = 0.85[53]. Note that a tilde denotes quantities
normalized using the droplet diameter D, and a caret for quantities normalized using the initial jet diameter dy. The
droplet impact time duration (total time of loading) occurs for approximately # ~ 2. In this regard, peak force is
attained rapidly, and thus the force profile is highly asymmetric in time.

In terms of modelling the time-dependent impact force, studies have predicted the early-time (before peak) force to
scale as v/t [54]. This early-time behavior has been confirmed in recent experimental studies [52, 53]. Unfortunately, to
date, an exact, theoretically-derived model does not exist for the entire time-dependent droplet impact force. Recent
work [53], however, shows that the post-peak behaviour is well-described as a lumped system and thus accurately
approximated with an exponential decay model. In Ref[53] a semi-empirical model that incorporates the early-time
V/t dependence and the observed exponential post-peak decay is constructed. The model equation for the entire
time-dependent loading of droplet impacts with negligible viscous effects is expressed as
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Fdrop(t): 243 e 3 (14)

and is applicable over the range of droplet Reynolds numbers (280 $ Rep < 30000) and Weber numbers (37 $ Wep =
pDv? /o < 6400). As indicated by experiments, this model equation sastifactorly predicts the force induced by a wide
range of droplet impacts [53]. Equation (14) is restricted to droplets that are spherical upon impact. Droplets that
are oblate or prolate upon impact exhibit different profiles from spherical droplets. With respect to a spherical droplet
impact, oblate impacts have shorter time durations and higher peak forces, while prolate impacts exhibit longer time
durations and lower peak forces. Within this context the area under the profiles of spherical, oblate and prolate
impacts are approximately the same.

Another important aspect of characterizing a droplet impact is its impulse. The impulse is the area under a force-
time profile, and physically indicates the amount of momentum exchanged during a collision. The area under the
curve [Eq. (14)] is, by design, equal to the droplet momentum just before impact. This implies that the inertially
dominated droplet impact is modelled by a perfectly inelastic collision. In this case the impulse is expressed as:

~ e T
Lirop = / Fdt = —. (15)
O 6

As specified, the value /6 is equal to the momentum of the drop muv, (where m is the droplet mass) normalized by
pD3v. Note that if the droplet rebounds from the surface with the same velocity but in opposite direction then the
impulse will be twice that given by Eq. (15). In this context, the droplet impact is perfectly elastic. Superhydrophobic
surfaces allow droplets to rebound [55], and consequently, the force induced by this type of impact differs fundamentally
from that given by Eq. (14). It is important to note that Eq. (14) and Eq. (15) model droplets impinging and adhering
onto solid dry surfaces. One may wonder if these expressions, which characterize a single droplet impact, may be
extended to a continuous train of droplet impacts emanating from a liquid jet, like that depicted in Fig. 1(c).

One important feature of droplet trains is the presence of a liquid film atop the impact surface. It is likely that
after the first droplet impact a film of liquid will pool about the impact location. Droplets impacting a deep pool,
(Lp, >> D, where L, is the pool depth), see Fig. 1(c¢), that have sufficient speed will create a Worthington jet [56]. In
contrast, droplets impacting a shallow pool L, < D, typically splash with an upward propagating crown [10, 14, 57],
which often fragments into smaller droplets. The force induced by water droplets impacting various depths of water
has been measured by Yu & Hopkins (2018) using an acoustic-based wavelet deconvolution method [51]. Their results
show that the force associated with capillary waves and the ascending crown tend to be negligible compared to the
force induced by the initial droplet impact. Qualitatively, the presence of a shallow pool increases the peak force
and time to reach peak force, making the force profile more symmetric. In addition, the presence of a pool increases
the observed impulse. This increased impulse indicates that the impact tends towards conditions in which the drop
momentum is redirected upwards. This is indeed the case for Worthington jets as liquid is send upward after the
drop coalesces with the deep pool. In general, however, for L, — 0, the shallow pool force profile approaches the
dry-surface force profile.

If the pool depth is very shallow and causes negligible affects to the droplet force profile, then the force induced
by a train of droplets can be modelled by a series of single droplet impacts via Eq. (14). If equal sized droplets of
diameter D, are formed at the breakup length L, at a rate f, and one droplet is produced per wavelength, then the
force induced by a series of droplet impacts is given by

N
Bl = 3 Bl (16)

where the subscript ¢ refers to the scenario depicted in Fig. 1(c¢), n corresponds to the droplet number, N is the total
number of droplets, and F}, = Fyop/pvad3, but shifted in time by amount tn = vo(n —1)/(dof). Explicitly, F, is the
droplet impact force normalized by the jet parameters and is written as

5/2 3/2 - R
A v D 10007t  =10vdgt
— 3vg D
a0 (m) <d0> V243 c (17)

where D = (37d?/k)'/? is the droplet diameter with v, d, and k, given by Eqgs. (8), (9) and (13), respectively. This
form ensures that mass conservation is satisfied assuming that one droplet is produced per wavelength. If indeed the
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FIG. 3. Force induced by droplet train according to the Rayleigh mode (solid blue), and force induced by a steady-state jet
(dashed green), shown for 3 cycles. The area under each profile (impulse) is approximately equal (i.e., both scenarios exchange
the same cycle-averaged momentum with the surface). Due to its discrete nature, the droplet train experiences a greater peak
force than the steady-state jet.

impact is perfectly inelastic then Eq. (16) also satisfies momentum conservation as the axial momentum of a section
of the jet (which has the volume of the drop) becomes the droplet momentum that is then transferred to the surface
upon impact. Accordingly, the impulse of one droplet in the series is equal to the impulse of the continuous (or wavy)
jet of equal volume. This is perhaps not surprising since in all three scenarios in Fig. 1 the same momentum exits
the nozzle, and thus by momentum conservation the same momentum must be exchanged with the surface. Figure
3 shows three cycles of the droplet train force profile given by Eq. (16), based on the Rayleigh mode, along with
the steady-state force profile given by Eq. (7). Note that the impulse given by Eq. (15) is evaluated from ¢ = 0 to
t — oo, and thus in order for the droplet train impulse Eq. (16) to be exactly equal to the steady-state (or wavy
jet) impulse one must allow ¢ — oco. This indicates that over one cycle, from ¢,, to t,41, the areas under each curve
are only approximately equal. To highlight this, the impulse of each profile determined for the first cycle in Fig. 3,
from £ = 0 to t = v /(dof), differ by 0.12%. Therefore, the impulse experienced by the two scenarios over one cycle
are approximately equal. In light of this subtlety, momentum conservation requires the droplet train force profile and
the steady-state force profile to exhibit the same impulse (as ¢ — o0). Owing to the droplet train’s discrete nature
there exists periods of approximately zero induced force. Therefore in order to satisfy momentum conservation, there
must be a greater peak force induced by the droplet train than the steady stream. This is apparent in Fig. 3, where
the peak force is greater by a factor of 3.85. Note that for decreasing wavenumber (i.e., longer wavelengths), droplets
become larger and are spaced further apart, resulting in higher peak forces. This may be appealing for industrial use.
However, in practice longer wavelengths are difficult to achieve due to secondary swellings [44]. It is worth noting
that a previous study has reported that the peak force induced by a droplet is 3.5-4 times greater than that of the
continuous stream counterpart [58]. In this study, the force induced by free-falling, dripping droplets were measured,
and compared to the theoretical impact force of a continuous jet, Eq. (7). The experiment conducted in [58] differ
from the experiments presented in this paper as direct force measurements of Rayleigh jets are conducted for each of
the possible outcomes (i.e., steady jet, wavy jet, and droplet train), and are compared with novel force models (i.e.,
Egs. (12), (16), and (17)).

The jet and droplet acceleration due to gravity, via Eq. (8), is incorporated into Eqgs. (10), (12), (16), and (17).
This indicates that the velocities of the steady-state jet, wavy jet and droplet train are equal upon impact, given
that the nozzle to plate distance and nozzle exit conditions are equivalent. Similarly, Eqs. (10), (12), and (16) are
all normalized with respect to the jet inertial parameters enabling direct comparison. The expressions characterizing
the induced force of steady-state jets, wavy jets, and droplet trains demonstrate the roles of impulse, peak force and
momentum conservation. Many industrial applications (and natural phenomena) exhibit these types of Rayleigh jet
impacts and thus the accuracy of the above models are of interest. Experimental comparisons with the given models
are now provided.

VI. EXPERIMENTAL SETUP AND PROCEDURES

A precisely reamed aluminum nozzle with a diameter d,, = 1.65mm and length L,, = 0.38mm, is used to form our
Rayleigh jet. A 260mm diameter reservoir supplies water to the nozzle through a 13mm diameter hose, see Fig. 4 for
a schematic of the experimental setup. Once formed, the jet travels in the direction § and impacts a piezo-electric
force sensor (PCB model 209C11), located a distance Z = 106mm from the nozzle exit. The bottom of the force
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FIG. 4. Schematic of experimental setup. A Rayleigh jet is formed and impacts normal to a piezo-electric force sensor. A
speaker stimulates the free-surface to form a wavy jet/droplet train.

sensor is threaded to a large steel plate. On top of the sensor rests a 17.9mm diameter polyoxymethylene plastic
impact plate and is the target for the impinging jet. Note that a 12.3mm diameter aluminium impact plate is used
for the wavy jet experiments. The excitation voltage necessary for the force sensor is supplied by a PCB model 482
signal conditioner. A Lecroy Wavesurfer 64MXs-B oscilloscope sampling at 100kHz is used to acquire the force sensor
response. A Photron SA4 Fastcam is used to take high speed photographs of the impinging jets at a frame rate of
13500fps and an exposure time of 74us. The camera is positioned next to the force sensor revealing the last 15mm of
the jet before impact. Time is synchronised between the camera and force sensor through the oscilloscope. A 0.2Watt
speaker is placed perpendicular to the stream at the nozzle exit to provide wavenumber stimulation (only used for the
wavy jet and droplet train experiments). The orientation of the speaker perpendicular to the jet assures negligible
momentum is added to the jet by the sound wave. A function generator provides the speaker with a sinusoidal
stimulation frequency of 340Hz and imposes a peak-to-peak voltage of 1.5V and 20V for the wavy jet and droplet
train experiments, respectively. The imposed frequency corresponds to a wavenumber of kR = 0.634 at impact. This
is close to the wavenumber of the Rayleigh mode (i.e., kR = 0.697), see Figure 2. The camera field of view is small
relative to the length of the jet. This allows one to assume a constant wavenumber at the impingement zone of the
wavy jet. With this field of view, approximately 2 wave crests are observed at any given time. By tracking the
free-surface, the wave growth rate 3, may be determined as well as the equivalent initial wave amplitude a. Once
obtained, these parameters permit use of Eq. (12) to compare with experimental results. If one droplet is produced
per wavelength, then the droplet diameter would be 2.7mm. However, satellite droplets form in-between primary
drops, and thus the primary droplet diameter is smaller than this value. In general, it is difficult to precisely measure
the droplet diameter as the droplet oscillates between an irregular prolate and oblate shape after pinch off. The
droplet impact velocity is approximately equal to the impact velocity of the steady-state and wavy jet as indicated
by high-speed images and position tracking software.

Nozzle exit velocity is controlled by the hydrostatic water level in the tank. Flow rate measurements determine the
nozzle exit velocity to be vg=1.84m/s. The velocity change due to reservoir drainage is negligible: after 60 seconds of
continuous flow the velocity decreases by about 1%, corresponding to a 2% decrease in induced force (i.e., force scales
as v2, in the inertial limit). The duration of one droplet impact or one wave impact occurs on a millisecond time
scale. Therefore, the change in velocity during the experiment is much smaller than 1%, permitting a constant flow
velocity assumption. According to images taken at the nozzle exit, the diameter of the jet contracts to dg = 1.56mm,
corresponding to a contraction ratio of x = 95%. This decrease in jet diameter is consistent with the study of Gavis
& Modan (1967) [46]. The density and viscosity of the water are p = 998kg/m? and u = 1.0cP, respectively. The
Reynolds and Weber numbers of the jet are Re = pdovg/p = 2860 and We = pdyvi /o = 73, respectively. These
ratios identify the inertial force as dominant compared to viscous and surface tension forces. With the ambient gas
being stagnant air, this Weber number satisfies Eqs. (1) & (2), and therefore the jet is considered to be within the
Rayleigh regime.

In order to mitigate transient effects associated with mechanically opening the nozzle supply valve, a sheet metal
plate is positioned in front of the stream close to the force sensor while opening the valve. This diverts the stream
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from the sensor and allows the jet to reach steady-state. After about 2 seconds, the shielding plate is quickly removed,
allowing the jet to freely impinge the force sensor. In this process, a liquid globule at the fore of the jet always develops
(see supplemental videos [59]). Although undesirable, the duration of the transient effect associated with the globule
is much shorter than that of opening the valve.

VII. RESULTS AND DISCUSSION

Images of the steady-state jet, wavy jet, and droplet train are shown in Fig. 5, while the force induced by these
impacts is shown in Fig. 6 for a duration of 60ms. The flow conditions exiting the nozzle in all three scenarios are
identical, as is the nozzle to plate distance. The state of the jet upon impact is governed by the artificial stimulation
induced by the audio speaker. The series of images displayed in Fig. 5 reveal the jet evolution in 12 increments of
370us for the steady-state and wavy jet, and 8 increments of 593us for the droplet train. These durations correspond
to slightly more than one time period. Notice that the steady-state jet (Fig. 5a) appears to be time invariant as
expected, while the wavy jet (Fig. 5b) exhibits a series of wave impacts. The droplet train (Fig. 5¢) displays a
series of droplet impacts. To correlate the time in which the impacts in Fig. 5 occur with their corresponding force,
green-shaded regions are outlined in Fig. 6. These regions allow the force to be directly compared with Fig. 5.
Supplemental movie files show how the force evolution compares with the images of the jets impact [59].

A. Steady-state jet

Figure 6(a) shows the force induced by the steady-state jet. Here, the transient effect associated with the globule
at the fore of the jet is apparent from Oms (initial impact) to about 3ms. Here a large increase in force is observed
due to the sudden redirection of momentum from the axial to radial direction of the jet. Once the transient effect
subsides, the force induced by the steady-state jet remains close to the inviscid prediction (dashed green line) while
slight deviations exists presumably due to random oscillations of excess liquid on the plate. The steady-state force
given by Eq. (10) is 8.2mN and compares well with the experimental results immediately following the transient.
As time increases, however, the force increases slightly due to mass accumulation on the force sensor. High-speed
images reveal that the excess liquid adheres to the plate and does not flow off the edge. Therefore to account for the
additional weight on the force sensor a mass accumulation term is included in Fig. 6(a) which is represented by a
dotted orange line. The additional weight is simply the accumulated liquid given by: pVgt, where V is the jet flow
rate. This modification to Eq. (10) follows the data trend.

B. Wavy jet

The force induced by the wavy jet is shown in Fig. 6(b). As is apparent, the force oscillates in accordance with
the sinusoidal free-surface radius at the fixed plate location. Physically, as the jet’s cross-sectional area expands,
the plate diverts more momentum, thus corresponding to a greater force. Equivalently, when the area contracts less
momentum is diverted by the plate driving the force towards its lower bound. The force amplitude is approximately
3.7mN and fluctuates about the steady-state jet force. The average oscillation frequency of the peak-to-peak force is
340Hz, corresponding to the stimulation frequency. In contrast to the steady-state jet, the excess liquid in the wavy
jet flows off of the impact plate owing to the smaller diameter plate used. Therefore, the linearly dependent mass
accumulation term used in Fig. 6(a) is not required. In order to use Eq. (12) to compare with the experiments, the
wave growth rate 3, and the equivalent initial wave amplitude a, must be determined.

High-speed images and edge detection software were used to record the free-surface of the wavy jet. The free-surface
of the jet is measured at fixed z locations, from ¢ = 10ms to t = 30ms, representing about 6 cycles. The axial locations
range from z = 91lmm to z = 105mm in 26 increments of about 0.55mm. Recall that in the laboratory reference
frame the wavy jet oscillation amplitude increases with axial distance. A linear regression performed on the observed
amplitudes was used to estimate their growth rate and equivalent initial wave amplitude. Figure 7(a) shows the free
surface at ¢ = 10ms, with an orange line, where two waves are observed. It is clearly noticeable that the amplitude
of oscillation increases with the z direction. The time-averaged amplitude is recorded and plotted in Fig. 7(b) with
blue dots. The line of best fit, using linear least squares, is presented with a green line. This yields 8 = 58.7m™!,
and a = 3.52x10~"m for the model Bz + In(a). With these parameters the time-averaged envelope is plotted in Fig.
7(a) with a dashed blue line. Figure 7(¢) shows the free-surface radius with respect to time for axial locations of
z = 91lmm and z = 104mm, respectively. Notice that the z = 104mm location oscillates with a greater amplitude (by
a factor of 2.01). This is due to the exponentially increasing free-surface radius along the z direction, as predicted by
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FIG. 5. High-speed images of the normal impingement of FIG. 6. Force induced by Rayleigh jets; (a) steady-state
Rayleigh jets; (a) steady-state jet, (b) wavy jet, and (c) droplet jet, (b) wavy jet, and (c) droplet train. Arrows indi-
train. The progression of images are from the left to right in cate model predictions (orange/green), e.g., Fo, Fy, F.
increments of 370us for (a-b), and 593us (¢). The time in which from Egs. (10), (12), and (16), respectfully. The (dashed
these impacts occur correspond to the shaded green regions in black) lines indicate integration bounds.

Fig. 6.

Rayleigh jet theory. The mean free-surface radius is 0.71mm, which is also the radius obtained for the steady-state
jet. These values fall within 3% of the predicted radius via Eq. (All). The edge detection software also allows us
to measure the jet wavelength, which is A\ = 6.61mm. This value is within 4% of that expected through Eq. (13).
In addition, the wave frequency may be measured by the frequency of the peak-to-peak free-surface amplitude at a
fixed z distance. This method is in agreement with the artificially induced frequency. Note that the droplet impact
frequency may also be measured in a similar manner.

The predicted oscillatory force, through Eq. (12), is plotted with an orange line in Fig. 6(b). Equation (12)
compares well with the measured force, containing the same frequency and approximately the same amplitude. Note
that the phase in Eq. (12) is arbitrary, depending only on the time in which the analysis starts, thus the phase is
chosen to coincide with the measurements, and is set to ( = 1.397. The wave amplitude at impingement is roughly
30% of the jet radius, which is rather large. Despite the small wave amplitude assumption considered in deriving
Eq. (12), there is good agreement with the theoretical prediction and the measurements. At ¢ = Oms, the transient
effect is apparent and occurs along a similar time duration as that for the steady-state jet. The droplet train does not
exhibit the same transient effect as the continuous jets, rather, two droplets at the fore of the train impact at similar
times.
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C. Droplet train

High-speed footage of the droplet train reveals that an irregularly-shaped, large droplet first impacts the plate away
from the center (at roughly r = 4mm, see supplemental videos [59]). Therefore, the first primary droplet and all
subsequent droplets impact the force plate center. The first irregular droplet is the remnant of the transient effect
associated with rapidly removing the shielding plate as previously described. In Fig. 6(c), the primary droplet force
profiles are labelled in sequence (i.e., 1, 2, 3, etc).

Coincident with the irregular drop and first primary drop, the force sensor shows a long period of induced force,
from ¢ = Oms to t = 3ms, with two distinct peaks. The first being from the irregular drop, and the second caused by
the first primary drop. The ensuing four droplet impacts exhibit similar force characteristics to one another. These
are labeled as 2-5, in Fig. 6(c¢) and also in Fig. 8, which is a magnified version of Fig. 6(c). For each of these impacts,
the force-time profiles exhibit a rapid increase in force, reaching a maximum of about 30mN. This is followed by a
longer fall-time to zero force. The total loading time for each droplet is about 3ms. Comparatively, peak force is
attained rapidly, just 200us from initial impact. The characteristics of these four initial force profiles are similar to
the profiles of indiviual droplet impacts onto dry surfaces [53]. The profiles of these impacts are clearly shown in Fig.
8(a), as well as the profiles of succesive drops, shown in Fig. 8(b). After the initial impacts (2-5), the successive force
profiles (labeled as 6+), exhibit greater peak forces, while becoming more symmetric about the time of peak force.
This effect is attributed to the presence of a growing pool of excess liquid [51]. High-speed images show that most
of the liquid from the droplet train remains on the plate, creating a pool about the impact location. The pool depth
varies chaotically as droplets impinge but in general, the pool depth at the plate circumference is larger than at its
center. Qualitatively, the presence of a pool increases the peak force and causes the force profile to become more
symmetric about the time of peak force. These observations coincide with the study of Yu & Hopkins (2018) [51],
where the authors measure the force of single droplets impinging a pool of water. It is therefore asserted that the
force induced by droplet trains are influenced by shallow pools.

The physical rationale for the increased peak force and the altered force profile (towards conditions of symmetry)
due to the presence of a pool is that the water layer fundamentally changes the transmission of momentum from the
droplet to the surface. In the case of a dry surface, all of the momentum muv is transmitted to the surface, see Eq.
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FIG. 7. Wavy jet free-surface profile. (a) Shows the free-surface along the axial direction z, at ¢ = 10ms (red line), with an
envelope representing the time-averaged amplitude (dashed blue line). (b) Shows the time averaged amplitude of z locations
near the plate (blue dot), with the line of best fit (green line). (c¢) Shows the free-surface with respect to time at locations
z = 104mm (purple line), and z = 91mm (red line).
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FIG. 8. Force induced by the droplet train (blue-raw), and (cyan-filtered) for primary droplet impact numbers 2-6 (a), and
10-14 (b). The force predicted by Eq. (16) is shown in orange. For successive impacts (b), the presence of a liquid pool increases
the peak force and alters the force profile towards symmetric conditions about peak force.

(15). Owing to the compliant nature of the water layer a portion of the axial momentum is redirected upwards. In this
context, the impact behaves towards conditions of a perfectly elastic impact where all of the momentum is reflected.
For such an idealized impact, the total impulse experienced by the surface would be 2mv and the force profile would
be symmetric about the peak force. Owing to the increased impulse (i.e., area under force-time curve), peak force
increases correspondingly, so long as the time durations are approximately equal. It is evident from Fig. 8 that with
successive impacts the individual force profiles deviate from the dry-surface profile, given by Eq. (14). Therefore,
the effects associated with the growing pool of liquid begin to invalidate the perfectly inelastic collision assumption
incorporated in Eq. (16). Accordingly, as the pool depth grows, the force predicted by a series of individual droplet
impacts, via Eq. (16), becomes less accurate.

The force predicted by Eq. (16) is plotted in Figs. 6(¢) and 8 with an orange line. Due to the first irregular
transitory drop, Eq. (16) is shifted in time by 0.7ms to coincide with the measurements. It is apparent that Eq.
(16) satisfactorily predicts the cyclic response of 340Hz. However, the peak force of successive impacts (64), is
underestimated. Again, this is attributed to the pool, as the profiles of primary drops 2-5 compare reasonably well
with Eq. (16), exhibiting a fast rise to maximum force followed by a progressively slower transition to zero. In all of
the individual profiles, however, high-frequency oscillations exists.

Superimposed oscillations hamper the underlying response of the droplet train. This effect has been found in other
droplet impact force studies [50-53]. The oscillations are attributed to the resonant vibration of the force sensor system
[60]. The undesired ringing can be mitigated by reducing the droplet impact velocity, or by spectrally filtering the
response. In addition, for these experiments, plates of low mass are used which reduce the influence of superimposed
oscillations [60]. The measured forces in Fig. 6(a-c) are not filtered revealing the sensor’s direct response. The
droplet train data presented in Fig. 8 is filtered with a low pass filter attenuating frequencies above 2000Hz (cyan
line). The steady-state and wavy jet exhibit oscillations as well, owing to the suddenly applied load but diminish
at about ¢ = 3ms, see Figs. 6(a-b). Unlike the continuous jets, however, each droplet impact in Figs. 6(c) and 8,
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appears to induce its own oscillations, therefore facilitating continuous ringing. Despite the ever-present oscillations,
their amplitudes are small, roughly 15% of the peak force magnitude. Note that the pool of water randomly fluctuates
and thus also introduces an additional, irregular force.

In contrast to the steady-state jet results, which show a linearly increasing force attributed to the accumulated
liquid, the droplet train response does not appear to exhibit such a feature. One possible explanation for this is that
the weight of the accumulating mass is insignificant compared to the large force induced by the droplets and their
associated ringing. In addition to these abnormalities (compared to a single droplet impact onto a dry surface), the
force dips below 0mN indicating that an upward force on the sensor is applied. According to high-speed images, after
a droplet impinges, its liquid travels radially from the center colliding with the annular globule at the perimeter. It is
suspected that capillary forces prevent the liquid from flowing off the plate edge, thus allowing liquid to accumulate
preventing further radial flow. Owing to this restriction, a component of radial momentum is then directed upward
only to yet again be bound by surface tension. Despite the greater peak forces experienced by successive droplet
impacts, the negative force experienced by the ascending liquid renders a net momentum change of zero. Therefore,
the impulse experienced by successive droplet impacts may be regarded as equivalent to primary drops.

In Fig. 5(c¢) and in supplemental videos [59], the impingement of satellite droplets in-between primary droplets are
clearly observed. The satellite drops are equally spaced in between primary drops and have a diameter of roughly
0.65mm. With this diameter and equal impact velocity as primary drops (i.e, v = 2.34m/s), the peak force of satellite
drops, via Eq. (14), is 1.96mN. This small level of force is hardly noticeable in Figs. 6(c¢) and 8, especially among the
ringing. Owing to this, the force of satellite drops can be regarded as negligible compared to primary drops.

One additional artifact of the droplet train is that the droplets are not spherical upon impact. Indeed, the drops
oscillate between an irregular prolate and oblate shape. Upon impact the drops are slightly prolate. This indicates
that the duration of momentum transmission from the drop to the surface is longer compared to a perfectly spherical
drop. Consequences of this are a decrease in peak force and an increase in time duration. Although Eq. (16) suitably
predicts the force induced by the initial droplets impacts, Fig. 8(a) shows that the peak force falls slightly lower than
that predicted by Eq. (16). Despite this and the inconvenient ringing, Eq. (16) compares reasonably well with the
measurements.

D. Impulse and momentum conservation

The jet momentum is assessed by integrating the force with respect to time (i.e., impulse). It is important that
the domain of integration covers an integer number of cycles for the wavy jet and droplet train. In this way, the
quadrature is representative of the total number of waves, or drops that impact the surface. The force is integrated
over 18 cycles for the wavy jet and droplet train. The dashed black lines in Fig. 6, which represent the lower and
upper bounds of integration, are at ¢ = 3.5ms and ¢ = 56.4ms, respectively. The momentum of the steady-state jet
is also assessed on the same domain. The measured impulse of the steady-state jet, wavy jet, and droplet train is
1,=5.00x10"%Ns, I,=4.70x10"*Ns, and I. = 4.99x10*Ns, respectively. It appears that the impulse exerted by the
steady-state jet and droplet train are similar owing to the accumulated mass on the sensor. In contrast the wavy jet
has a slightly smaller impulse. If the contribution from the mass accumulation term is subtracted from the steady-
state jet impulse I,,, then the steady-state jet impulse is 4.46x107*Ns. This value is close to the impulse of the wavy
jet, differing by about 5%. In light of the subtleties surrounding the accumulated mass, it may be regarded that in all
three scenarios the plate diverts the same n-cycle momentum. This should not be surprising as the same momentum
exits the nozzle. Only the planar area of the liquid arriving at the plate differs between the scenarios. In this regard,
the only inertial difference is the duration of momentum transmission from the liquid to the surface. This statement
essentially outlines a trade-off between a constant steady momentum flux (a), and discrete packets of momentum
arriving in short bursts (¢), with the momentum imparted by the wavy jet (b) being an intermediate scenario.

E. Steady-state jet versus droplet train

The normalized force induced by the steady-state jet (green line) and the droplet train (blue line) are shown in
Fig. 9. Here, the remarkable difference is with respect to the force signature. Despite the identical nozzle flow
conditions and equal nozzle to plate distance, the peak force induced by the droplet train is significantly greater than
the steady-state jet. Nevertheless, there exist periods of approximately zero induced force for the droplet train. For
the first several primary droplets, before the pool affects the force profile, the peak force is about 3 times greater. For
the successive primary drops, peak force is about 5 times greater than the steady-state jet. For industrial applications
such as waterjet cutting or surface cleaning, it may be advantageous to use a droplet train in lieu of a steady-state jet
owing to the greater peak forces experienced by the impingement surface. Although there is considerable difference
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FIG. 9. Normalized force of the steady-state jet (green) and droplet train (blue). Both jets have identical nozzle flow conditions,
yet peak force induced by the droplet train is over 3 times greater. Both profiles exhibit approximately the same impulse, as
required by momentum conservation.

in force between these two scenarios, their n-cycle momentum is approximately the same, as required by momentum
conservation.

VIII. CONCLUSION

The normal force induced by Rayleigh jets are measured with a high-sensitivity piezo-electric sensor. A high-speed
camera records the jets impingement and its free-surface profile. The force of these jets are measured for identical
nozzle flow conditions and for equal nozzle to plate distance. Upon impingement with the surface, the state of the jet
is categorized as either steady-state jet, wavy jet, or as a droplet train. The wavy jet and droplet train are created
by artificially stimulating the jet with an audio speaker placed next to the nozzle exit. The prescribed frequency
excites wavenumbers associated with fast wave growth rates allowing wave amplitudes to be larger than if left to
occur naturally.

An accurate force model for wavy jets, Eq. (12), is presented using the spatial form of Rayleigh jet theory. The
level of agreement between the model and experimental results is excellent, validating the model’s accuracy. In
addition, a series of single droplet impact force profiles are combined to provide a model for the force of droplet trains.
This model, which is based on momentum conservation, accurately captures the force induced by the initial primary
droplets; however, as a liquid pool develops about the surface, the force changes fundamentally. The pool increases
the peak force and delays the rise-time making the profile more symmetric.

Compared to the steady-state jet, the droplet train exerts a significantly greater peak force. However, due to its
discrete nature, the droplet train also exhibits periods of approximately zero induced force. While its force varies
periodically, its n-cycle momentum may be regarded as equivalent to the steady-state jet case, i.e., conservation of
momentum. It may be more beneficial for industrial applications to use a train of droplets instead of continuous
jets, owing to the greater forces experienced by the impingement surface. The normal impingement of Rayleigh jets
demonstrate the roles of inertia, impulse, and momentum conservation, while providing a fundamental platform for
the examination of impact force.
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Appendix A: Jet velocity and radius influenced by gravity

In this section we show how gravity accelerates the falling jet velocity v = v(z) and consequently contracts its
radius R = R(z). It is assumed that the jet is in a steady-state and travels along the axial direction z. Similarly
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gravity acts in this direction with magnitude g. The jet has a nozzle exit velocity of vy, and exhibits uniform flow (i.e.,
v =v(z)). It is also assumed that the jet Reynolds number is sufficiently high, such that viscous effects are negligible.
The steady Bernoulli equation may be applied along a streamline of the jet which we take to be the 2z axis. Points
z1 and 25 are two points on the z axis, where z; = 0 is the nozzle location, and 2o = z is an arbitrary axial location
where the jet velocity and radius are to be determined. Applying Bernoulli’s equation to these points we have:

1 1
P+ 51)1)3 =po+ va(Z)2 - pgz, (A1)

where v(z) = vo. The pressures may be determined through the Young-Laplace equation:

p=po+oV -, (A2)

where pg is the ambient pressure, and 7 is the free-surface normal vector (see Fig. 1). The V-7 term is the free-surface
curvature and may be expressed in terms of the two principal radii of curvature, R;, and Rs, as:

(11
V-n<R1+R2). (A3)

It is assumed that the azimuthal curvature 1/R; = 1/R(z) is much greater than the axial curvature 1/ Ry, permitting:
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The Bernoulli equation now becomes:
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Solving for the normalized velocity v(z)/vg, we obtain:
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where We and Fr are the previously defined Weber number and Froude number, respectively. By mass conservation
the flow rate at the nozzle z = z; is equal to the flow rate at the location z = z5:

TR3vy = TR*v. (A7)

Rearranging for the normalized radius we have:

R}gz) _ (viz))_1/2_ (AS)

Which corresponds to:

e o)) .

If capillary effects can be neglected (i.e., We — o0), then Egs. (A6) and (A9) reduce to:

PREE
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and,

R(z) 1 27V
= |14+ =—— . All
RO |: + Fr R0:| ( )
Notice that the jet velocity increases with the square root of the axial distance z, and correspondingly the radius

decreases along the z direction with power —1/4. Furthermore if gravitational effects are assumed negligible (i.e.,
Fr — c0), then the jet velocity and radius remain unchanged.
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