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Flexible slender structures in flow are everywhere. While a great deal is known about individual
flexible fibers interacting with fluids, considerably less work has been done on fiber ensembles –
such as fur or hair – in flow. These hairy surfaces are abundant in nature and perform multiple
functions from thermal regulation to water harvesting to sensing. Motivated by these systems, I
consider two examples of hairy surfaces interacting with flow which were presented in the Corrsin
lecture at the 2018 APS-DFD meeting. In the first example we consider a toy problem of angled
hairs in Couette flow. Using this simple model we explore asymmetry in the flow and anomalous
drag scaling by exploiting various limits in the parameter space. In the second example we consider
viscous dipping, a feeding method utilized by many nectar drinking animals. Previous studies have
analyzed these drinking strategies through the Landau-Levich-Derjaguin framework; however, many
viscous dippers have hairy structures on their tongues that enhance fluid uptake. Here we investigate
the impact of mesoscale hairy structures on feeding efficiency and conclude with general comments
on drainage through beds of hairs.

I have not had the good fortune to meet Stanley
Corrsin. And having given the Corrsin lecture, I am
quite certain that I missed out. Corrsin’s remarkable
accomplishments are of course well-known and his intel-
lectual impact on the fluid dynamics community is indis-
putable. What I previously failed to appreciate was the
profound impact he has had on the lives of so many peo-
ple in our community. Since receiving the Stanley Corrsin
Award, I have been the recipient of a number of heart-
felt correspondences from well-wishers; every one of those
notes included a personal story or an anecdote about
Stan which highlights not only his brilliance, but his hu-
mor, his friendship, and his genuine care and support
for his students and junior colleagues. The warmth of
his personality shines through in multiple remembrances
including the the JFM review by Phillips [1] who also
noted: “Science begins, [Stan] would say, by asking sim-
ple questions about complex phenomena but advances
by asking more penetrating questions about simpler sys-
tems, whose solution could be obtained with rigour and
explained with clarity.” That quote has inspired me to
take a fresh look at our work on mesoscale structures
interacting with flows and to focus this article on sim-
ple models that lend general insights into more complex
phenomena. In the following I will attempt to strip away
as much of the complexity from these systems as can be
reasonably removed with the goal of extracting general
optimization and design principles that may be relevant
to both biological and engineered systems.

The broad theme of this work is ensembles of slender
structures – i.e. hairs – interacting with flow. These in-
teractions are ubiquitous in natural systems; they appear
as wind through grass, as sensors in the inner ear and on
the antennae of insects and crustaceans [2], as fur on div-
ing marine mammals [3], and on the tongues of nectar-
feeding organisms [4] to name a few. Several years ago,
the pervasiveness of this recurring structure in nature,

inspired us to develop techniques for fabricating soft as-
semblies of hairs in which the geometric properties (hair
length, diameter, spacing, etc) could be precisely con-
trolled [see Supplementary Material in 3]). This ability
to manufacture beds of flexible slender structures turned
out to be a game-changer for my lab; it pushed us to
look at some of the most iconic fluid dynamic experi-
ments in a new light and ask what happens when hairs
or other mesoscale features are added to the boundaries.
A summary of the systems we have investigated to-date
is presented in table I, the details of which (along with
experimental data) have appeared in previous publica-
tions. In the following I will take a closer look at two of
these systems – channel flow and dip coating – and, in
the spirit of Corrsin, dig into a few simple calculations
that have not yet appeared in the literature.

FLEXIBLE HAIRS IN LOW REYNOLDS
NUMBER CHANNEL FLOW

Although flows interacting with hairs are common in
nature, our interest in hairs in channel flow began not
with biology but with machine design and Nicola Tesla.
In particular, we became interested in small-scale hy-
draulic systems which are comprised of a myriad of in-
dividual components – valves, pumps, throttles, etc.;
Tesla noted that each of these components “... is a del-
icate contrivance, very liable to wear and get out of or-
der and thereby imperil ponderous, complex and costly
mechanisms” [7]. He then goes on to suggest that these
shortcomings could be overcome if hydraulic components
were designed as solid state elements, i.e. with no mov-
ing parts. This eventually led to his 1920 patent for a
solid state valve – the “valvular conduit” – which offers
asymmetric resistance to flow via decorating the chan-
nel with intricate lobes that preferentially draw fluid
smoothly in one direction, and dissipate energy in the
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TABLE I. Overview of the hairy hydrodynamic systems we have investigated to-date. Check marks indicate the dominant
balances in the parameter regimes relevant to our experiments. Direction of flow indicates whether the fluid is moving primarily
parallel to the hairs || or perpendicular ⊥. Details of these studies appear in [3–6]

Viscosity Gravity Inertia Elasticity Capillarity Flow Analogous

Direction Classical Systems

X X || Dip coating

X X ⊥ Draining Films

X X ⊥ Channel flow

X X X X ⊥, || Drop impact

other: “... the interior of the conduit is provided with
enlargements, recesses, projections, baffles or buckets
which, while offering virtually no resistance to the pas-
sage of the fluid in one direction, other than surface fric-
tion, constitute an almost impassable barrier to its flow in
the opposite sense by reason of the more or less sudden
expansions, contractions, deflections, reversals of direc-
tion, stops and starts and attendant rapidly succeeding
transformations of the pressure and velocity energies.”
[7] This remarkably clever concept relies on the inertia in
the flow to break the directional symmetry in resistance;
unfortunately, while this design may be effective at high
Reynolds numbers, in a viscously dominated flow regime,
no amount of complicated “enlargements, recesses, pro-
jections, baffles or buckets” will result in a directionally
dependent flow owing to the time reversibility of Stokes
flow.

Hairs in Couette flow

In order to carry this concept down to low Reynolds
number, we require an additional effect to induce direc-
tional asymmetry. There are multiple ways this could
potentially be achieved; one possibility is to trigger a
flow dependent geometric change in the channel which, in
the spirit of this paper, can be achieved with deformable
hairs. We begin by considering a simple bed of rigid
hairs. In this system, deformation is achieved via tor-
sional springs (of spring stiffness K) at the base of each
hair which anchor the hairs to the substrate. The hairs
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FIG. 1. Schematic of a toy problem to illustrate asymmetry
induced by deformable hairs in channel flow. In the absence
of flow, θ = θS .

are fixed at angle θS (in the absence of flow) relative to
vertical. To illustrate key concepts, we will investigate
the response of this system when the bed of hairs is im-
mersed in a Couette flow (see figure 1). Inspection of
the schematic in figure 1 suggests that it is not unrea-
sonable to expect to observe asymmetry: if the top plate
is moved from left to right, the flow flattens the hairs,
opening up the channel and reducing resistance to flow;
in contrast, if the plate is moved from right to left, the
hairs “stand up,” obstructing the channel and increasing
the flow resistance.

As a first order estimate, we can model transport
within the hair bed using a Darcy-Brinkman model given
by

∇p+
µ

k
u = µe∇2u (1)

where p is pressure, µ is the dynamic viscosity of the
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fluid, µe is the so-called effective viscosity associated with
the Brinkman term, u is the velocity field, and k is the
permeability of the bed. In a long slender channel, at low
Reynolds number, we expect the flow profile to resemble
that sketched in figure 1 in which there is no flow near
the base of the bed and the velocity profile is linear in
the open channel above the hairs. These two regions are
connected via a boundary layer that penetrates a depth
δ into the bed of hairs. At this point, it is instructive to
estimate the size of this connecting boundary region, δ, in
the hopes of perhaps further simplifying our calculation
in certain limits. Since there is no pressure gradient in
Couette flow, the last two terms in equation (1) must
balance implying µV/δ2 ∼ µeV/k. Hence the thickness
of the boundary region scales as δ ∼

√
µek/µ.

This length scale δ can be compared to the length of
the hairs ` to estimate the fraction of the bed occupied
by the boundary layer. Such a comparison suggests two
potentially interesting limits: one in which the bound-
ary layer fills the entire hair bed, and one in which it is
negligibly small. While both of these limits are worth
investigating, I will focus on values of δ/` that are most
relevant to the biological and synthetic cases discussed
herein. In particular, in this paper we largely focus on
systems with dense arrays of hairs; that limit, Gopinath
and Mahadevan [8] have shown that the permeability can
be approximated as k ≈ a2(1−φs)2/(4φs) where a is the
radius of the individual hairs, and φs is the area fraction
occupied by the hairs. Hence, in the dense hair limit, the
fraction of the bed occupied by the boundary region can
be approximated as:

δ

`
≈ a(1− φs)

2`φ
1/2
s

(
µe

µ

)1/2

. (2)

In our systems a/` < 0.1 and values in the literature for
µe/µ range between 1 and 10 [9]. Hence δ is at least an
order of magnitude smaller than ` provided φs & 0.5 (as
is the case in our systems). Since δ/` � 1 we can make
two helpful simplifying approximations. First, since the
thickness of the boundary layer is much smaller than the
length of the hairs, we can approximate the fluid force
acting on the hairs as a concentrated force applied at the
tip of each hair. Second, since the bulk of the flow occurs
in the upper clear portion of the channel, to lowest order
we can estimate the fluid flux as that given by Couette
flow in the upper (non-hairy) portion of the channel.

Given these two approximations, the flow profile in the
x direction in the unobstructed portion of the channel is
given by v(y) = V y/G(θ) where V is the velocity of the
top plate, θ is the equilibrium angle of the hairs when
the plate is moving, and the gap G between the tip of
the hairs and the top plate is given by G = H − ` cos θ;
the channel height H and the hair length ` are shown
in figure 1. The equilibrium angle of hairs θ is set by a
torque balance between the torsional spring at the base

of each fiber and the shear stress acting at the tip. To
estimate the applied moment at the fiber tips, we assume
that the shear stress, τ = µV/G is completely supported
by hairs [10], where µ is the dynamic viscosity of the
fluid. Torque balance can then be written as

µV

H − ` cos θ

πa2

φ
` cos θ +K(θS − θ) = 0. (3)

Here a is the hair radius and φ is the volume fraction of
the undisturbed hairs. Rearranging equation (3) reveals
two relevant dimensionless quantities: the ratio of the
hair length to the channel height: α ≡ `/H, and the
ratio of the characteristic force arising from the torsional
spring to the characteristic viscous forces acting on the
hairs, β ≡ Kφ/(µV a2). These can be incorporated to
express (3) in its dimensionless form:

πα cos θ

1− α cos θ
+ β(θS − θ) = 0. (4)

Equation (4) is a transcendental equation for the equi-
librium angle of the hairs θ which can be solved numeri-
cally. Returning to Tesla we are reminded that the valve
efficacy “ ... is chiefly determined; first, by the mag-
nitude of the ratio of the two resistances offered.” This
ratio can be captured by computing the ratio of the flux
to the right QR = V G/2 = V

2 (H−` cos θ) to the similarly
computed flux to the left QL:

R =
1− α cos θR
1− α cos θL

(5)

where θR is equilibrium configuration of the hairs when
flow goes from left to right and θL is the equilibrium
configuration with flow in the opposite direction.

The design space of our toy “valve” can now be
parametrized by three dimensionless groups: the geomet-
ric ratio of channel height to hair length α, the dynamic
ratio of spring forces to viscous forces β, and the equilib-
rium angle of the hairs with no flow θS . In figure 2 we
show two slices through this space: one at fixed α = 0.7
and one at fixed θS = π/2. There are several features
in this design space that are worth emphasizing. First,
consider figure 2 (Top). In the limit of small θS , each
fiber is nearly vertical. If the fiber is vertical, the de-
formation under flow to the right is the mirror image of
the deformation under flow to the left, therefore R → 1
(i.e. there is almost no asymmetry). Second, in the small
β limit, the torsional spring is very soft relative to vis-
cous forces. Hence each fiber lies nearly flat against the
channel wall regardless of flow direction, and again there
is no asymmetry, R→ 1. Finally, in the large β limit, the
torsional spring is very stiff and the viscous stresses are
insufficient to impart a significant change in the hair ori-
entation when flow is turned on in either direction. Recall
that at low Reynold numbers, if the hairs do not change
configuration with flow direction, time reversal symmetry
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FIG. 2. (Top) Flow ratio R for a fixed ratio of channel height
to hair length α = 0.7. (Bottom) Flow ratio R at fixed θS =
π/2. Color indicates R with black indicating no asymmetry
in the flow.

dictates that the local velocity profiles are mirror images
of one another when the flow direction is reversed and
again R→ 1.

However, at large θS and at intermediate values of β
where spring and viscous forces are comparable, asym-
metry emerges. As one might expect, the asymmetry is
maximized as θS → π/2 and α→ 1. Setting θS = π/2 we
now consider a slice in the α-β plane (figure 2, Bottom)
and find that the optimal spring stiffness increases as the
fraction of the channel occupied by the hairs increases.
This is again intuitively consistent since for fixed V , the
maximum shear stress experienced by the fibers increases
as the gap decreases. As a side note, it appears that for a
given α and θS , the asymmetry drops precipitously when
β exceeds a critical value, This seems to indicate that if
there is some uncertainty in the design it is far better to
err on the side of selecting a β below the optimal value
rather than above.

Reconfiguration and anomalous drag scaling

The fundamental concept of a velocity-dependent resis-
tance to flow that is illustrated in this simple toy problem
is a recurring theme in the biological literature. It often
appears under the guise of reconfiguration or anomalous
drag scaling perhaps most famously in the works of Steve
Vogel and Mimi Koehl who have performed extensive
studies on wind- and water-loading on sessile organisms
[e.g 11–13]; in the words of Koehl, “... standing in one
place is not as simple as it may at first seem ...” [11].
Both Vogel and Koehl note that there is almost always a
compromise associated with standing still in flow. On the
one hand, organisms should reduce their cross-sectional
area to minimize drag and hence minimize internal me-
chanical stresses which increase the risk of damage. On
the other hand, many of these organisms rely on large
surface areas to collect nutrients, gain exposure to sun-
light, transport gases, etc.

The observed solution for many organisms is a finely
tuned geometry that leverages flexibility as flow speed in-
creases: “Shape becomes a function of speed ...” [12]. For
example, in trees there is a trade-off between exposing a
large leaf surface area to sun, and the danger of blowing
the tree over during periods of high wind. Simply adding
flexibility to the leaves without taking into account ge-
ometric considerations is not necessarily helpful; recall
that the drag on a flapping flag increases relative to its
rigid counterpart, hence adding flexibility to leaves such
that they act as flapping flags would be an unmitigated
disaster. However, tree leaves avoid this pitfall by rolling
into a conical configuration in high wind (rather than
flapping), reducing their effective cross-sectional area:
“Instead of being a pure liability, as in a flag, flexibil-
ity is at least in part a virtue in the upper portions of
a tree.” [13]. The available biological measurements sug-
gest that appropriately structured reconfiguration leads
to a reduction in the velocity exponent in the traditional
drag scaling laws, namely the effective drag force scales
like D ∼ V 2−E where E is a measure of the deviation
from the standard high Reynolds number drag scaling.

Given the importance of anomalous drag scaling in bi-
ological systems, we return to our toy model to determine
whether insights can be gleaned in computing E for our
simple hairy Couette cell. In this case, E is defined as the
deviation from the expected drag scaling at low Reynold
number, namely D ∼ V 1−E . We begin by estimating the
drag force on the hair bed in the potentially interesting
regime where α → 1 and β ≡ 1/ε � 1, which reflects
the small velocity, small deflection limit; to simplify the
calculation, we will take θS = 0. In these limits, equation
(4) becomes:

επ cos θ − θ(1− cos θ) = 0 (6)

which we can solve order by order by expanding θ in
powers of ε, namely θ = θ0 + εnθ1 + ε2nθ2 + .... The
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FIG. 3. Dimensionless drag as a function of β ∼ 1/V . The
dashed line indicates a slope of 1/3. Solid lines indicate dif-
ferent values of θS with the topmost (highlighted by circles)
θS = 0. In all calculations α = 0.999.

zeroth order balance yields θ0 = 0, as expected in the
low velocity limit. After some algebra, the next order
correction yields n = 1/3 and θ1 = (2π)1/3. Hence to
leading order

θ =

(
2π

β

)1/3

+ ... =

(
2πµV a2

Kφ

)1/3

+ ...

To calculate the drag anomaly E, we first write the drag
force acting on the hair bed as D = τA = µV A/(H −
` cos θ). Rescaling D by KφA/(Ha2) yields the dimen-
sionless form of the drag force: D∗ = [β(1 − α cos θ)]−1.
Substituting the leading order term for θ into this ex-
pression, we find

D∗ =
2

(2π)2/3β1/3
. (7)

Since β ∼ 1/V the drag scales as V 1/3. At low Reynolds
number, the expected scaling is linear in V hence the
correction to the classical drag law is E = 2/3. A com-
parison of this scaling prediction with the drag obtained
via the full solution to equation (6) is shown in figure 3.

Coincidentally, this correction is the same value found
by Shelley and Zhang in their work on the drag on flexi-
ble beams in soap films, which represents another iconic
chapter in the book of reconfiguration. In that case,
the scaling arises from a characteristic length scale that
reflects the effective cross-sectional area of the bending
fiber: L0 ∼ V 2/3; this leads to a drag scaling of V 4/3

which was observed in both experiments and numerical
simulations. (The fact that E = 2/3 in both systems
appears to be completely fortuitous given that the two
approaches apply to different Reynolds number regimes
and use different models for elasticity.)

A comment on hairs in Poiseuille flow

It is straight forward to extend our analysis of hairs in
Couette flow to hairs in Poiseuille flow with the added
twist that we can no longer neglect the flow inside bed
of hairs. Instead, as a first order estimate, one can patch
together Poiseuille flow in the hairless central region of
the channel with flow inside the hair bed given by Darcy
(or Darcy-Brinkman) flow. The full derivation of Q is not
dramatically different from the Couette case and is left as
an exercise for the reader. However, I felt it was appro-
priate to mention the pressure-driven case because the
identical approach was taken over 40 year ago to investi-
gate another biological system by none other than Stan-
ley Corrsin and collaborators [14]! In this work Erian,
Corrsin, and Davis investigate placental blood flow and
model the complex network of capillaries and so-called
“villous tree” as an effective medium with a velocity-
dependent permeability: another beautiful example of
the functional coupling of velocity and shape in biology.

BATS AND OTHER NECTARIVORES

The second system I will highlight here was inspired by
drinking bats. It is known that the tongues of bats and a
number of other nectarivores are covered in small hairs,
and it has been hypothesized that these hairs may play a
functional role in enhancing nectar uptake. In this case
our model system is a hairy plate withdrawn from a bath
of viscous fluid. At first glance this appears to be analo-
gous to the Landau-Levich-Derjaguin (LLD) dip coating
problem [15, 16] however a simple order-of-magnitude es-
timate reveals that surface tension does not play an im-
portant role at scales relevant to bats, hence the dom-
inant physical effects are quite different from those of
classical LLD when hairs are in play. Laboratory ex-
periments to measure fluid uptake reveal two competing
effects that predominantly determine the amount of fluid
withdrawn by the plate: on one hand, increasing the den-
sity of hairs slows the rate of drainage off the “tongue” so
in principle more fluid can be transported to the throat
of the nectarivore; on the other hand, more hairs also
take up precious real estate on the tongue that could be
used to carry more nectar. The optimal hair spacing is
set by a balance between these two effects; details of this
calculation appear in [4] and I will briefly outline a por-
tion of the derivation here to lay the groundwork for the
following discussion.

To estimate the amount of fluid lost to drainage, we
begin with Stokes flow through a bed of hairs where the
geometry is shown in figure 4:

∇p = µ∇2v + ρg. (8)

Here g is gravity and the other quantities remain as de-
fined above. To reduce the dimensionality of the model,
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FIG. 4. Schematic of hair geometry in draining films. Circles
represent hair cross-sections. Gravity points in the x direc-
tion.

we make an ansatz that flow is primarily confined to vir-
tual “channels” between hairs and that flow in the di-
rection of drainage can be reasonably approximated as
parabolic in y on the scale of the hair spacing. Substitut-
ing this ansatz into (8) yields a 2D Brinkman-like equa-
tion in which the hairs are essentially acting as a porous
medium. Finally, we exploit the fact that characteristic
length scales in z are much smaller than characteristic
length scales in x; we apply a lubrication approximation
to the 2D Brinkman equation which results in the follow-
ing ODE for the velocity profile (see [4] for details):

µ

(
∂2v

∂z2
− 12

r2
v

)
= −ρg (9)

where v(z) is the component of the fluid velocity in the
direction of drainage (x-direction), and r is the spacing
between hairs. Solving for v(z), we find

v(z)

Vdrain
= 1− cosh

(
2
√

3(`− z)
r

)
sech

(
2
√

3`

r

)
(10)

where the characteristic drainage velocity is given by
Vdrain = ρgr2/(12µ). We will return to this expression
for v(z) in the upcoming derivation of the evolution of
a draining film, but first we will simply make use of the
characteristic drainage velocity to connect back to nec-
tarivores.

To estimate the amount of fluid withdrawn by the
tongue, we assume that the hair bed is initially filled with
fluid; the amount of fluid that ultimately makes it to the
bird’s throat can be approximated using the total volume
available for nectar in the absence of hairs (namely the
surface area of the tongue times the length of the hairs),
and subtracting the volume occupied by hairs and the
fluid lost to drainage. In addition, we make this quantity
dimensionless by normalizing by total volume available.
This leads to the following expression for the amount of
fluid drawn up by the tongue where *’s indicate rescaled

FIG. 5. Fluid uptake as a function of dimensionless hair diam-
eter e∗ and dimensionless hair spacing r∗. Color corresponds
to dimensionless volume of fluid captured. The dashed line in-
dicates the optimal spacing for a given hair radius e∗; dotted
lines indicate the region in which the fluid uptake is within
99% of the maximum value. White points indicate measured
values of hair diameter and spacing for different species taken
from the literature.

dimensionless quantities:

M∗(e∗, r∗) =

[
1− π

6
√

3

e∗2

(e∗ + r∗)2

]
(1− r∗2). (11)

Here the second term in the square brackets represents
volume exclusion by the hairs and the (1−r2) represents
drainage. All lengths, e∗ and r∗, have been nondimen-
sionalized by r0 =

√
12µV/ρg. Equation (11) reflects

the total volume of nectar that the organism can cap-
ture as a function of hair radius and hair spacing; this
function is plotted in figure 5. As with our hairy channel
flow design space, there are a few interesting features in
this landscape worthy of discussion. First, the amount of
nectar taken up is maximized at the left edge of the plot.
This suggests that in an ideal world, the tongues of nec-
tarivores would all be covered in infinitesimally thin hairs
which impede flow without taking up any space (e∗ → 0).
Clearly this is not feasible as there are limits to how thin
biological structures can be and still withstand the rigors
of everyday life. Hence rather than asking where is up-
take maximized, a more sensible question to ask is, given
an achievable hair radius e∗, what is the ideal spacing of
the hairs? The answer to this question is shown as the
dashed line in figure 5 (dotted lines show the region in
which the fluid uptake is within 99% of this ideal spac-
ing).

Finally, in the figure we have included values of hair
diameter and hair spacing reported in the literature for
four species of nectarivore: Glossophaga soricina (bats),
Trichoglossus moluccanus (rainbow lorikeet), Tarsipes
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rostratus (honey possum), and Apis mellifera ligustica
(honey bee). All but the honey bee lie within the 99%
tolerance region of the hair spacing value that maximizes
nectar uptake in our simple model. In hindsight, it is
perhaps not surprising that the honey bee is an outlier;
bees are considerably smaller than the other organisms
represented here and hence our original assumption that
surface tension can be neglected may no longer be valid.

A comment on hairs and draining films

While figure 5 provides a reasonably satisfactory pic-
ture regarding the spacing of hairs on bat tongues, the
analysis reveals a number of unresolved fundamental fluid
dynamics questions. Shifting our attention away from
bats and returning to the canonical problem of a viscous
fluid draining through a bed of hairs, we can combine the
velocity profile derived in equation (10) with mass con-
servation and write down an equation for the evolving
shape of the free surface of a thin film draining through
a bed of hairs:

∂h

∂t
+ Vdrain

∂

∂x

[
h− r

2
√

3
tanh

(
2
√

3h

r

)]
= 0. (12)

Given this expression, there are a multitude of inter-
esting questions we can tackle, analogous to those ad-
dressed in the context of draining films on smooth plates
(e.g. stability, front propagation, fingering, undercom-
pressive shocks etc.). For starters, I will present just
the tip of the iceberg here and explore two limits of this
evolution equation: sparse and dense hair spacing.

First, consider dense hair spacing, h/r � 1. In this
limit tanh(2

√
3h/r) ≈ 1 hence the second term in the

square brackets in equation (12) can be neglected relative
to the first and the evolution equation becomes a linear
first-order wave equation with propagation speed Vdrain:

∂h

∂t
+ Vdrain

∂h

∂x
= 0.

This is the appropriate limit for the bat tongue analysis
hence using Vdrain to estimate the rate of drainage with-
out computing the details of the film profile as governed
by equation (12) is likely to be an acceptable approxima-
tion.

The sparse hairs limit h/r � 1 is perhaps mathemati-
cally more interesting; this calculation was suggested to
me by Howard Stone after I gave the Corrsin lecture
at the APS-DFD meeting and who moreover provided
a sketch of the solution on a napkin. Expanding on the
cocktail napkin calculation, in the sparse limit we ex-
pand tanhx = x− x3/3 + 2x5/15 + ... and equation (12)
becomes:

∂h

∂t
+
ρg

3µ

∂

∂x

[
h3
(

1− 24

5

h2

r2
+ ...

)]
= 0. (13)

At lowest order, the (h/r)2 term can be neglected and the
remaining two terms constitute Jeffreys’ equation for a
draining thin film on a vertical plate [17]. The similarity
solution h(x, t) = (µx/ρgt)1/2 in this limit is well-known
and follows a thinning law in which h ∼ 1/

√
t. Note that

this solution does not contain r or any parameters associ-
ated with the hairs; it merely reflects the fact that, in the
limit that the density of hairs goes to zero, we recover the
flat plate solution. To obtain the first order correction
term due to the hairs, we can rescale h by ` and and de-
fine ε = `/r � 1. We then expand this dimensionless h in
powers of epsilon, h(x, t) = h0(x, t)+ε2h1(x, t)+... where
h0(x, t) is the Jeffrey similarity solution. This yields
an inhomogeneous, variable coefficient, linear, first-order
wave equation for h1 which can be solved via a combi-
nation of integrating factors and the method of charac-
teristics. Comparison of this solution with experimental
data is currently underway.

IN CONCLUSION

Finally, I would like to conclude by listing the three
biggest lessons that I will take away from my Corrsin
lecture experience. First, a wealth of interesting fluid
dynamics appears when classical experiments are com-
bined with mesoscopic modifications of boundaries; pick
your favorite fluid dynamics experiment and add hairs!
Second, hearing from Stanley Corrsin’s many students,
colleagues, and friends reminded me that our best sci-
entific contributions are amplified through the personal
connections we develop and foster throughout our ca-
reers. And last but not least, when someone hands you
a napkin with equations at the APS-DFD meeting, save
the napkin.
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Appendix: Load distribution at the interface

In general, how load is distributed between the solid
and fluid phases at the boundaries of porous media re-
mains an open question. In the following I present an
estimate to argue that – in our systems which lie in the
parameter region of dense hair beds and low Reynolds
number flows – the load is primarily carried by the solid
phase. To determine the conditions under which this is
true, we take a closer look at the boundary layer depicted
in figure 1. First, denote the unknown velocity of the
flow at the top of the bed as ∆V . Solving the Darcy-
Brinkman equation for v(y), assuming fully-developed
flow in the x direction and applying the boundary con-
ditions v(y = 0) = ∆V (at the top of the bed), and
v(y → −∞) → 0 (which makes use of the fact that we
are operating in a regime where δ/` � 1), we find that
the flow profile inside the hair bed is given by

v(y) = ∆V

[
sinh

(
y

√
µ

µek

)
+ cosh

(
y

√
µ

µek

)]
. (14)

Just inside the bed at the top interface, the stress in
the fluid phase is approximately τfluid = µ(∂v/∂y)|y=0

where v(y) is given by equation (14). The portion of the
stress carried by the fibers can similarly be estimated
as τfiber = µ(V − ∆V )/G. Hence the ratio of the load
carried by the fluid to that carried by the hairs is given
by

Ffluid

Fhair
=

√
µ

µe

(
∆V

V −∆V

)
G√
k

(
1− φs
φs

)
. (15)

At this point, we have a reasonable approximation for
every quantity in this ratio except ∆V which can be es-
timated via force balance on an individual hair.

The three forces acting on each hair are: the traction
force acting at the tip, FT ; the drag force owing to the
moving fluid in the boundary layer at the top of the hair
bed, FD; and the reaction force anchoring the hair to the
substrate, FA. The shear stress acting on the tips of the
hairs can be approximated as µ(V − ∆V )/G hence the
traction force on a single hair is given by FT = µ(V −
∆V )πa2/G.

To estimate FD, we note that the drag per unit length
on a single cylinder in a dense periodic array was calcu-
lated by Sangani and Acrivos [18] to be:

fD(y) = C0µv(y)

[
1−

(
φs
φm

)1/2
]−5/2

(16)

ψ(φs / φm)
ψ2(φs / φm)

f(φ
s/φ

m
)

10−4

10−2

1

102

104

φs/φm
0 0.2 0.4 0.6 0.8 1.0

FIG. 6. Functional dependence on φs/φm for ∆V/V
and Ffluid/Fhair. The solid line depicts ψ(φs/φm) as
defined in the text. The dashed line depicts the de-
pendence of Ffluid/Fhair where ψ2(φs/φm) ≡ [1 −
(φs/φm)1/2]5/2/(φs/φm).

where φm is the maximum packing fraction of the hairs
and C0 is a dimensionless constant that depends on the
structure of the packing; for square arrays C0 = 9π/2

√
2

and for hexagonal arrays C0 = 27π/4
√

2. The total drag
force on an individual cylinder can then be computed as

FD =
∫ `

0
f(y) dy yielding

FD = C0µ∆V

√
µek

µ

[
1−

(
φs
φm

)1/2
]−5/2

. (17)

Here k may again be approximated using the expression
for the permeability of a dense array of cylinders derived
in Gopinath and Mahadevan [8]: k ≈ a2(1− φs)2/(4φs).

Finally, the reaction force at the base of the hairs can
be estimated by drawing a control volume around the
interior of the channel (i.e. the top of the control volume
is just inside the top wall of the channel and the bottom
of the control volume is just inside the bottom wall of
the channel). For this domain, the shear forces acting at
the top of the channel must be balanced by the elastic
shear stress τ0 sustained at the base of the fibers (since
there is no flow in the bottom portion of the channel)
namely, µ(V − ∆V )A/G + τ0Aφs = 0 where A denotes
the area of the top and bottom surfaces of the control
volume. Solving this force balance for τ0, we find the
reaction force at the base of an individual fiber is given
by FA = τ0πa

2 = −µ(V −∆V )πa2/(Gφs).
At equilibrium, FT +FD +FA = 0; substituting in the

expressions above for each force, applying the Gopinath
and Mahadevan approximation for k, and solving for
∆V/V we find

∆V

V
=

(
1 +

C0

2π

G

a

√
µe

µ
φ1/2m ψ(φs/φm)

)−1

(18)

where

ψ(φs/φm) ≡ (φs/φm)1/2[
1− (φs/φm)

1/2
]5/2 . (19)
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Next we note that C0/2π, (µe/µ)1/2, and φ
1/2
m are all

order one. The ratio of length scales G/a ≈ 10 in the
systems under consideration in this manuscript. Hence,
V is at least an order of magnitude larger than ∆V if
ψ(φs/φm) & 1. Equation (19) is plotted in figure 6 which
shows that ψ(φs/φm) & 1 when φs/φm & 0.1, a condition
that is easily satisfied in the dense limit under consider-
ation.

Finally, we return to equation (15) to address the orig-
inal question: Under what conditions is the load at the
top of the bed carried primarily by the hairs? Combining
equations (15) and (18), the ratio of the loads carried by
the fluid and the hairs simplifies to

Ffluid

Fhair
≈ µ

µe

4π

C0φm

[
1− (φs/φm)

1/2
]5/2

φs/φm
. (20)

Given that ∆V/V � 1, here we have approximated
V − ∆V ≈ V and neglected the first term (i.e. the
1) in equation (18). As before, µ/µe and 4π/C0φm
are both order one. Hence, Ffluid � Fhair if [1 −
(φs/φm)1/2]5/2/(φs/φm) � 1. This function is shown
in figure 6 where is it evident that this condition holds
provided φs/φm & 0.5 (a criteria that is easily met in our
dense beds). Hence we proceed with the assumption that
the bulk of the load at the interface between the hairy
region of the channel and the clear region of the channel
is carried by the hairs.
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