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Abstract

Detailed studies of modern large scale wind turbines represent a significant challenge. The

immense length scales characteristic of these machines, in combination with rotational effects,

render numerical simulations and conventional wind tunnel tests unfeasible. Field experiments can

give us important insight into the aerodynamics and operation, but they are always accompanied

by large amounts of uncertainty, due to the changing nature of the inflow, and the lack of accurate

control of the test conditions. Here, a series of experiments is presented, using an alternative

method that enables us to represent and study much of the physics governing the large scale

wind turbines in small scale models. A specialized, compressed-air wind tunnel is used to achieve

dynamic similarity with the field-scale, but under accurately controlled conditions of the laboratory.

Power and thrust coefficients are investigated as a function of the Reynolds number up to ReD =

14× 106, at tip speed ratios representative of those typical in the field. A strong Reynolds number

dependence is observed in the power coefficient, even at very high Reynolds numbers (well exceeding

those occurring in most laboratory studies). We show that for an untripped rotor, the performance

reaches a Reynolds number invariant state at Rec ≥ 3.5×106, regardless of the tip speed ratio. The

same model was also tested with scaled tripping devices, with a height of only 9 µm, to study the

effect of transition on the rotor performance. In the tripped case, the Reynolds number dependence

was eliminated for all tested cases, suggesting that the state of the boundary layer is critical for

correct predictions of rotor performance.

I. INTRODUCTION

Modern wind turbine design has been defined by ever-increasing rotor diameters with a

ten-fold increase over the last four decades. Larger wind turbines mean a reduction in the

total number of individual units requiring installation and maintenance, per kilo-Watt-hour

produced, compared to a farm comprised of smaller turbines. The trend towards larger

rotors holds whether installation is on- or offshore, with new onshore units exceeding 158

meters and offshore moving past 200 meters [1]. The power that can be extracted from

the wind scales linearly with the rotor’s swept area, or equivalently with the square of its
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diameter. Furthermore, a larger wind turbine implies access to higher wind speeds higher

up in the atmospheric boundary layer. A wind turbine’s ability to convert this available

power to useful mechanical power is expressed in the power coefficient:

Cp =
P

1
2
ρU3 π

4
D2

(1)

where ρ is the air density, U the wind speed, and D the turbine diameter. The measured

power output, P , of a turbine depends on the fluid density, velocity, viscosity (µ), speed

of sound, as well as specific turbine geometry and operating conditions. The exact nature

between these parameters and the power output is not known, which implies that numerical

and experimental simulations, and modeling are necessary to determine the effect these

parameters have on the actual turbine performance. Dimensional analysis can inform us

that the aerodynamics of a given turbine design is a function of three other non-dimensional

parameters. These three parameters are the Reynolds number, the tip speed ratio, and the

Mach number, which describe the relative effects of viscosity and rotor rotation to the inertia

of the fluid, as well as the compressibility effects.

While these non-dimensional parameters govern the overall rotor response, added com-

plexities in the atmosphere, such as turbulence, wind shear, and buoyancy, as well as struc-

tural properties further complicate the problem. For example, Herges et al. [2] show a

remarkable difference between unstable and stable atmospheric conditions. One of the most

common methods for quantifying turbine performance is through field measurements of the

power coefficient. This method is complicated by the constantly changing, and challenging

to monitor, inflow conditions present at any field site. Factors such as temperature, static

pressure, wind shear, turbulence, and wind direction must all be constantly monitored and

quantified, as no steady-state conditions exist in the field [3].

Power curves must then be collected over long periods of time, typically requiring months

before acceptable convergence is observed in the statistics [4]. Therefore, although impor-

tant as a validation tool, field experiments are both difficult to perform and expensive to

implement while having a large amount of uncertainty in the results. This has driven a

decades-long effort by wind turbine manufacturers and researchers to develop engineering

design tools and modeling techniques for predicting turbine performance. The reliance on

these modeling methods has a long history, with the basic design tool for aerodynamic input
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loads (known as blade element momentum or BEM) remaining essentially the same since

being developed in 1935 by Glauert [5, 6]. It is widely used in industry due to its low com-

putational cost and the extensive legacy of modeling, validation, and certification efforts on

which most of the current iterations of the method are based. However, BEM has a num-

ber of inherent deficiencies which must be accounted for through various engineering-type

models. Some of the more common corrections attempt to capture three-dimensional and

rotational effects, high thrust loading, yawed and turbulent inflow, and many other condi-

tions commonly encountered in the field. These corrections are essential to model the loads

accurately, and as such remain an active area of research. One downside of such methods is

that limited additional insight can be gained into off-design conditions commonly encoun-

tered in the field, such as unsteady or time-varying loads, forcing designs to remain relatively

conservative to meet the certification and life-time requirements of the modern turbine.

The dilemma of BEM and field testing has long been known to the research community,

and the lack of experimental validation cases was cited as one of the biggest research chal-

lenges in a recent review article by van Kuik et al. [7]. Attempts at reducing the uncertainty

in the power coefficient measurements have been made in two parallel tracks, via numerical

simulations using the actuator-line method and laboratory experiments. The challenge for

both approaches lies in the large physical scale of the turbine units themselves. This implies

that the Reynolds number is very high, which in turn implies that the flows are turbulent:

ReD =
ρUD

µ
(2)

Values of ReD range from O(105) for small-scale turbines with D ≈ 1− 10 meters up to

O(108) for the largest, offshore units with D ≥ 200 meters. Unfortunately, the high Reynolds

numbers make Direct Numerical Simulations (DNS), where the governing equations are

numerically solved at all length and time scales, unfeasible. Instead, Large Eddy Simulation

(LES), Reynolds-Averaged Navier Stokes simulations (RANs), or inviscid/vortex-method

solvers are used for studying wind turbine flows, where some or all of the turbulence is

modeled within the solver. Additionally, except for all but the most advanced LES methods,

the flow over the blades and rotors is not resolved, but instead modeled with a distributed

forcing on the local numerical grid, in a BEM-like fashion, which requires two-dimensional

airfoil data as input, meaning that 3-D and unsteady effects are not directly captured with

these methods either.
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From an experimental standpoint, few studies have been performed at what can reason-

ably be considered full-scale Reynolds number values. The underlying issue is the presence

of the two non-dimensional parameters in addition to the Reynolds number. The tip speed

ratio and Mach number are defined as:

λ =
ωR

U
Ma =

ωR

a
(3)

with ω the angular velocity, and a the sound-speed. Fundamentally, an experimental study

seeks to operate with a much smaller diameter than the full-scale, typically two orders of

magnitude or more. This means that, if the tests are conducted in conventional wind tunnels,

the free-stream velocity must be increased by approximately 100 times or more compared to

the field value, to match ReD. Altering velocity has a domino-like effect on the other non-

dimensional parameters, causing λ to decrease unless ω is increased to the rotor scale-ratio

squared, or more than four orders of magnitude. Mechanically, this is not feasible due to

the centrifugal forces created, and it also creates significant compressibility effects, as can be

seen in the equations of 3. For these reasons, many laboratory experiments are performed

at reduced Reynolds numbers [8], with only two notable exceptions where the models were

physically large (4-10 meters in diameter) and very large wind tunnels were utilized [3, 9].

These studies have provided a number of insights into turbine operation at the full-scale,

among them disparities between the BEM and measured loads [3], also clear indication of

Reynolds number effects despite the large ReD tested [10], and even some disparities between

the rotationally-driven performance augmentation of both studies [11]. While these works

provided some of the clearest insight yet into full-scale operation, there is still a definitive

need for additional work concerning Reynolds number effects on turbine performance.

An additional, complicating issue is that experiments (even those performed at large-

scale) are typically operated with fixed ω, while the tunnel velocity is altered to affect the

tip speed. This means that rotational effects and Reynolds number effects are intermixed,

as is also the case in field operation where ω can only vary by a small amount (due to

restrictions on the generator, while blade pitch is used to control shaft power). A truly

variable speed wind turbine model is required to extensively characterize both Reynolds

number and tip speed ratio effects in detail. The lack of prior experimental work in this

area again points to a need for additional quantification of these effects in a manner that
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independently lends additional physical insight to the problem of scaling behavior for wind

turbines.

In this study we aim to address the question of performance scaling with Re and λ for

Horizontal Axis Wind Turbines (HAWTs). The challenges associated with wind tunnel

tests, as discussed above, have been bypassed by implementing a specialized wind tunnel

which uses highly compressed dry air as the working fluid. Increasing the pressure up

to 238 bar allows for working fluid densities of over 200 times that of air at atmospheric

pressure. Operating at variably densities effectively decouples the Reynolds number from

the tip speed ratio, as the density only enters via the Reynolds number. This allows high

Reynolds numbers to be achieved without the need for high tunnel velocities, instead they

are on the same order as in the field, which avoids compressibility effects, and keeps the

time scales relatively large. In this context, Reynolds number and tip-speed-ratio effects

can be characterized independently of each other, and without Mach number effects or any

assumptions or modeling.

II. EXPERIMENT DESCRIPTION

The experimental facility used in this work is a specialized, compressed air wind tunnel

known as the High Reynolds number Test Facility (or HRTF). It is a recirculating-type, low-

velocity, high static pressure wind tunnel which uses air as the working fluid. The facility

can support up to 24 MPa, and free-stream velocities in the test section of up to 10 m/s.

The test section itself is 4.88 m long with an inside diameter of 48.9 cm. This gives a

blockage ratio (using the turbine swept area) of Amodel/Atunnel = 16.7% for the 20 cm rotor.

Upstream of the test section is a contraction with an area ratio of 2.43:1 in which a series of

flow conditioning screens and honeycomb straighteners are located. Free-stream velocity is

measured via a pitot-static tube located upstream of the turbine model using a differential

pressure transducer with a range of 3, 447 Pa (Validyne DP-15). This facility has been used

previously to study wakes of axisymmetric bodies [12–14], zero-pressure gradient turbulent

boundary layers [15], and more recently various wind turbine models of both vertical and

horizontal axis varieties [16–18]. The HRTF is shown in figure 1.

In the pressurized test environment, real-gas effects are accounted for via:
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FIG. 1. The High Reynolds number Test Facility (HRTF, in light blue) located at the Princeton

Gas Dynamics Laboratory.

ρ = ps/(ZRaT ) (4)

where Ra is the specific gas constant for air, T the tunnel temperature, and Z the compress-

ibility factor. For dry air Z changes by only 10% for static pressures in the range 1 - 233

bar, meaning that density changes nearly linearly with static pressure in the test section.

For all experimental data sets, the exact density and viscosity of the compressed air are

calculated using the real-gas relationship of equation 4 with measurements of ps and T from

the test section [this method is outlined in 19]. The key to high Reynolds number testing

using compressed air is that both dynamic viscosity and sound speed are only very weak

functions of pressure, meaning that free-stream velocity can remain relatively low and the

ω required for λ matching is mechanically feasible.

A. Wind Turbine Model

Challenges of operating in a pressurized environment include large forces and torques

acting on the model, which scale linearly with fluid density. For instance, a model tested at

the maximum HRTF pressure will see loads which are in excess of 200 times compared to

those experienced in an atmospheric wind tunnel at the same velocity. Careful consideration

was given to model design so as to minimize rotor deflections during even the most extreme

operating conditions.

The rotor model used in these experiments is 20 cm in diameter and attaches to the tower

gearbox via a threaded M7 hub. In this series of experiments, the rotor solidity is increased,
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TABLE I. Wind Turbine Model Geometry. Between sections 1 and 2 the geometric shape transi-

tions from a circular hub to an airfoil shape. The relative twist of these intermediate sections is

set to 13 degrees.

Section Radius (mm) Chord (mm) Twist (degrees) Airfoil

1 3.704 11.11 13 Circular

2 14.815 28.89 13 NACA 63-235

3 100.0 11.11 0 NACA 63-214

in order to delay the stall tip speed ratio as well as increase the blade Reynolds number and

torque. However, the current model operates in the same fashion as a full-scale, slender unit,

such as the observed tip speed ratios and power/thrust coefficients are reasonable (i.e. in

the lift-producing regime). Lower solidity would likely push the operational tip speed ratio

range to larger values and the resulting lower Reynolds numbers (based on chord length)

would probably increase the transition effects observed in this study. Future investigations

will include studies of the effect of solidity, and allow for investigations of rotors more similar

to modern field turbines.

Geometrical details of the three driving sections at hub, root, and tip locations are given

in table I. The airfoil geometries, chord, thickness, and twist distribution between the

sections were input to a Computer Aided Design (CAD) program. For sections 2 to 3 the

extrapolation is straightforward since the airfoils are of the same family, and only the twist,

chord, and thickness should be altered. Near the hub, the extrapolation between sections

1 to 2 is more complicated due to the circular hub geometry. It is expected that this has

little effect on the performance, however, since it only comprises the inner 15% of the rotor.

Three-dimensional CAD files are available upon request if additional information is needed

regarding geometrical features of the rotor.

In general, the twist axis of the rotor was located at the quarter-chord of the airfoils,

with the exception of the circular hub at section 1 where the twist axis was at the center of

the circle. Twist schedule between sections 2 and 3 is nonlinear and was determined with

the following equation:
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(a) (b)

FIG. 2. Twist and thickness schedule for the rotor are shown in plot (a). The finished model rotor

is given by the image in (b).

Twist (◦) =

13, if r/R ≤ 4/27

18.148
(
R−r
R

)3 − 7.698
(
R−r
R

)2
+ 8.504

(
R−r
R

)
, otherwise

(5)

Similarly, the thickness has a linear distribution between sections 1 and 2, but is nonlinear

between 2 and 3, as given by equation 6. The distribution of both the twist and thickness

schedules are shown graphically in figure 2 (a).

Thickness (%) =


100 if r = 0

585.01R−r
R
− 463.34 if 0 < r/R ≤ 4/27

27.42
(
R−r
R

)3 − 61.41
(
R−r
R

)2
+ 57.07

(
R−r
R

)
+ 14, otherwise

(6)

Meanwhile, the chord schedule between locations 2 and 3 is purely linear for any section

falling between that given in table I. Rotor pitch is fixed at 5◦ defined as positive into the

oncoming flow from the rotor plane. Yaw, cone and teeter angle have all been set to 0◦.

The spinner hub geometry was taken directly from Reynolds [20], and consists of a NACA

1 series spinner scaled to the appropriate size for the model. The final rotor is CNC milled

from a solid block of aluminum alloy which ensures a high tolerance on the surface finish and
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HAWT model

Tower

Load cell

Torque transducer

Magnetic hystersis brake

FIG. 3. Sectional view of the HRTF test section with the model wind turbine and measurement

stack in place. Red arrow shows direction of flow.

dimensional accuracy. The final model is shown in figure 2 (b). Particular care was given

to the surface finish of the model as matching all length-scales is required for full-dynamic

similarity. The surface roughness was carefully measured using an Olympus LEXT OLS4000

confocal microscope and the area-averaged, root-mean-square roughness height was found

to be Sq ≤ 800 nm consistently among all three blades. The effect of surface condition on

observed rotor performance is discussed in section VI. Section V B details the addition of

prescribed tripping devices designed with this same methodology to force transition on the

rotor blade surface.

The model tower and nacelle were designed to handle the high loading cases present

at maximum tunnel density inside the HRTF. Their design and construction is detailed in

Miller et al. [16]. The tower cross-section resembles a diamond-shape with rounded edges,

so as to support the large aerodynamic thrust and torque imposed by a spinning rotor with

minimal deflection and additional drag. Details concerning blockage effects due to the tower

and rotor are discussed in appendix A.
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B. Instrumentation and turbine operation

A measurement and control stack was designed to accurately resolve the mechanical loads

produced by the model turbine. Shaft torque, τ , angular velocity ω, force components at

the tower base (Fx, Fy, and Fz), as well as moments at the tower base (Mx, My, and Mz)

are measured simultaneously during an experimental campaign. The physical layout of the

model and measurement stack starts with the solid rotor model of fixed pitch as described in

II A. The model is mounted on the input shaft of the tower. Inside the tower itself is a small

right-angle bevel gearbox which re-directs the mechanical power 90 degrees and outside of the

tunnel test section for measurement. Correction methodologies which account for gearbox

inefficiencies are discussed in section A 1. A six axis force and moment transducer (JR3 Inc.

model 75E20A4) is mounted at the base of the tower, for measurement of the aforementioned

forces and moments on the tower. The force sensor body is bolted to a rotary table, allowing

for adjustment of the turbine yaw. The output shaft for the tower gearbox is located in the

center of the measurement stack and passes through the central axis of the force sensor and

rotary table. The output shaft is then coupled to a torque transducer (Magtrol model TM-

305 with a range of ±2 Nm). This unit allows for time-resolved measurements (temporal

resolution of 5 kHz.) of the torque signal and determination of the rotational speed via an

internal optical encoder. Power is dissipated from the system using a magnetic hysteresis

brake (Magtrol model AHB-3), which applies precise shaft torque loads; giving full control

over ω independently of wind speed and density. The brake serves the same function as

the generator of a full-scale turbine, with greatly increased accuracy and flexibility in its

operating window. All of these components together make up the measurement stack, shown

in figure 3. The uncertainties associated with each measurement device are summarized in

table II.

III. EXPERIMENTAL PROCEDURE

The HAWT model used in these experiments is operated in a manner similar to that

of full scale modern wind turbines with full variable speed drives [21]. The experiments

presented here can easily be operated at many different rotation rates as all the mechanical

energy is dissipated as heat by the magnetic hysteresis brake, which is passively cooled
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TABLE II. Experimental uncertainty sources listed include linearity, hysteresis, and temperature

influences combined in a root-mean-square sense for each sensor.

Measurement Unit Symbol Total Uncertainty

Torque Signal τ uτ = ±0.003 (Nm)

Angular Velocity ω uω = ±0.105 (rad/s)

Axial Thrust Force Ft uFt = ±2.5 (N)

Pitot-Static Pressure Transducer p̄ up̄ = ±34 (Pa)

Density ρ uρ = ±0.36%

Viscosity µ uµ = ±0.8%

by the high density air. This method is in principle a full variable-speed wind turbine,

where any ω may be specified during operation. Field data is often viewed in terms of the

inflow velocity U , since ω is fixed. This creates uncertainty when viewing data plotted as

a function of λ, as wind and rotor speed correlation only is obtained through the 10 min

binning discussed earlier. Another issue with this method of viewing data is that not only

is λ changing, but ReD is additionally being altered along the abscissa, making it inherently

difficult to separate these two effects in the field when plotting data as a function of tip

speed. For the experiments presented here we have elected to keep U and ρ approximately

constant during a run, and vary ω over a pre-determined range. This means that for a given

measured Cp or Ct curve, the inflow conditions, and hence ReD, remain constant while

λ is altered. In this way Reynolds number effects and tip-speed-ratio effects can directly

and independently be observed and studied. Operating the model turbine with fixed inflow

additionally allows for convenient data collection. If the model were to be operated as in the

field, an additional controller would be needed to maintain a fixed rotation rate as the tunnel

velocity or density is altered. If field-style data is required, it may be interpolated from the

finely resolved measurements at the desired inflow conditions. Dynamic similarity implies

that for a geometrically similar rotor, when ReD and λ are matched, all other Reynolds

numbers such as Rec, or however Re is defined, are matched as well.

The following sections explore the power-output and resulting thrust forces on the HAWT

model. The experiments presented herein are the first of their kind in which a small-scale

model is tested with Reynolds number, tip speed ratio, and Mach numbers that simultane-
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ously match those experienced by full-scale wind turbines. The primary goal of this work

is to gain quantitative insight into the effects of Reynolds number on the performance of

modern day wind turbines. Furthermore, it sets the stage for a long list of questions that

can be answered using the same methodology. The set of experiments presented here have

been restricted to what can be considered the most canonical case for a wind turbine, where

the inflow is steady, uniform and laminar, the rotor plane is aligned perpendicular to the

inflow velocity vector, and the free-stream conditions are fixed for each power curve (i.e.

ReD constant during a run). A significant amount of consideration has also been given to

account for experimental uncertainties in the drive-train and for blockage effects, as detailed

in the appendix A. All of these methods have enabled an unprecedented level of precision

in the data acquisition, and allowed for a detailed investigation of ReD and λ effects.

IV. UNTRIPPED HAWT ROTOR PERFORMANCE WITH REYNOLDS NUM-

BER

Performance of the wind turbine model is characterized using the non-dimensional power

coefficient as given by equation 1 and the thrust coefficient:

Ct =
Ft

1
2
ρU2A

, (7)

where Ft is the streamwise force exerted on the hub by the rotor (commonly referred to as

the thrust force). Together, Cp and Ct indicate the forcing placed onto the flow and therefore

drive wake structure and dynamics. Furthermore, they are typically used as the defining

performance metrics during the design phase, with Cp in particular being directly tied to the

projected revenue of a turbine. In the context of these experiments, careful measurements

have been made of both parameters so that conclusions may be drawn as to their dependence

on both tip speed ratio and Reynolds number. The following section describes the method

of data validation used for these experiments. Then Reynolds number trends are discussed

for the untripped rotor. The same rotor is then studied with the transition location fixed

near the leading edge along the span via the use of an array of miniature tripping devices.
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(a) (b)

FIG. 4. Dimensional plots in (a) show measured power versus the rotational frequency at a matched

Reynolds number of ReD = 5.099× 106 ± 34, 000. Note that the data set at ρ = 252 kg/m3 (with

shaded symbols) was taken with a different gearbox. The plot to the right in (b) shows the same

data non-dimensionalized by the free-stream conditions. Shaded area represents experimental

uncertainty.

A. Experimental Data Validation

The unique nature of the HRTF allows for adjustment of the tunnel density indepen-

dently of the free-stream velocity to achieve a given value of the Reynolds number. Utilizing

this capability, a specific Reynolds number case can be achieved using various combinations

of operating conditions. As such, different combinations of velocity, density and rotational

speed can result in exactly the same Reynolds number and tip-speed-ratio and thus yield

identical values of the power and thrust coefficient. For all possible operating conditions,

the free-stream Mach number is always low enough to neglect compressibility effects. This is

not only an excellent method to validate the experimental results, it also enables significant

reduction of measurement uncertainty since the forces and torques can be tailored to the in-

strumentation. Figure 4 highlights this unique feature, where different operating conditions

together yield a mean Reynolds number of ReD = 5.099 × 106 ± 34, 000. The bounds on

ReD reflect the maximum deviation of any given data set from the mean Reynolds number

value due to slight variations in tunnel conditions from run-to-run. Tunnel density is shown
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in the legend of figure 4 (a), as well as the gearbox used for the run (with the legend also

applying to plot 4 (b)). Note that despite very different densities between the data sets, the

power curves collapse well within the experimental uncertainty when non-dimensionalized in

4 (b) with the shaded bars giving the uncertainty calculated at each operating point (details

of the uncertainty analysis are given in table II). Collapse is seen across all cases in Cp,

with slightly more scatter in the ρ = 131 kg/m3 case, which may be due to the increased

rotational rate of the lower-density, higher free-stream velocity of this run. A single, high-

density case using a different gearbox at ρ = 252 kg/m3 is also given and agrees well with

the other three data sets, providing validation for the correction methodology used for the

gearbox (as discussed in appendix A). The experimental data were validated using the above

methodology at several Reynolds numbers (ReD = 7 × 106, 10 × 106, and 12 × 106). The

resulting non-dimensional power and thrust are shown in figure 5. The right-most column

of plots of figure 5 show the thrust coefficient, which displays more scatter than the power

coefficient, especially at higher Reynolds numbers of 10×106 and 12×106. This is primarily

due to the larger uncertainty associated with the load cell used for axial force measurement

(details in section II B). The power coefficient shows excellent collapse across all tested

Reynolds numbers and gearboxes used for these measurements. As the Reynolds number is

increased, the ratio of signal to noise ratio also increases due to the larger loads measured.

This has the direct effect of reducing the uncertainty as ReD is increased, which is reflected

by the shrinking error-bars shown in gray. As mentioned earlier, each case can be tailored

to maximize the measurement range of the sensors, and as such reducing the uncertainty.

For example, at low Reynolds number combining lower density with higher velocity yields

larger forces and torques. Such optimization of the operating conditions are not possible in

an atmospheric-pressure facility, where instead larger uncertainty often must be accepted,

or different instrumentation must be used for each test case.

B. Untripped Rotor Performance with Reynolds Number

The power and thrust coefficients are shown in figure 6 for a range of ReD values from 4

to 14 million. The power coefficient shows a clear dependence on Reynolds number, with the

lowest ReD case tested giving the highest power coefficient and a clear trend where the power

coefficient is reduced as Reynolds number is increased. This observation is quite unexpected,
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FIG. 5. Power and thrust coefficient data validation for three different Reynolds numbers. Labels

for the Reynolds number and the legends apply to each pair of horizontal plots. Data sets with

shaded symbols used a different gearbox.

as prior literature near these ReD values has reported the opposite trend [10], although the

specific airfoils used for these two rotors are different. It is further observed that the power

coefficient levels off and is starting to exhibit collapse at higher Reynolds numbers. This

implies that for the specific rotor geometry and inflow conditions used here, above a critical

ReD value the power coefficient is independent of Reynolds number. The results on the thrust

coefficient are less pronounced with no clear trend evident with Reynolds number, although
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(a) (b)

R
e D

×106

FIG. 6. Reynolds number trends of the untripped rotor for power (a) and thrust (b) coefficients.

Colorbar at right represents the Reynolds number based on rotor diameter for both plots, and is

held constant for each measured curve.

strong conclusions cannot be made at this point, as the data fall within the experimental

uncertainty. However, it is clear that if a trend exists with Reynolds number it is much less

pronounced compared to that in the power coefficient.

Results from the power coefficient indicated a relatively large ReD value was necessary for

invariance to the Reynolds number. However, higher values of λ appear to show invariance

at lower ReD. For instance, at λ = 7, invariance occurs around ReD ≥ 8 × 106 whereas

at λ = 5 a ReD ≥ 10 × 106 is required. Such a two-parameter dependence indicates that

neither parameter independently captures the physical mechanisms at play. Traditionally,

aerodynamics is parameterized with the Reynolds number based on the chord length and

the relative velocity [8]. Such parameterization is quite inconvenient in this case as the

chord Reynolds number varies throughout the rotor. However, the physical effects described

by the chord Reynolds number can be captured by a combination of ReD and λ and, for

example, the chord length along the blade. This results in a non-dimensional group from

easily measured and reproducible quantities. Here, a Reynolds number based on the tip

geometry has been utilized which may be determined if ReD, λ, and the ratio of tip chord

to diameter are known as:
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(a) (b)

FIG. 7. Power coefficient as a function of the local blade Reynolds number for a variety of fixed

tip speed ratios in (a). Figure (b) shows the Reynolds number invariant power curve for the model

turbine geometry used under laminar inflow conditions. This plot was created by finding the mean

value of Cp at fixed λ when Rec ≥ 3.5× 106.

Rec =
ρc
√
U2 + (ωR)2

µ
= ReD

c

D

√
1 + λ2 (8)

The parameter Rec represents the maximum possible Reynolds number which could be

encountered at the rotor tip, and as such the true chord Reynolds number is slightly lower.

Furthermore, experimental data from many sources can be couched in terms of this definition

of the Reynolds number if only a few measured quantities are known and no modeling is

necessary to determine Rec. The current data was not acquired at predetermined values of

the tip speed ratio, and so the data presented in figure 6, along with data from additional

cases, have been interpolated to a fixed λ grid. This makes calculating Rec straightforward

for all data points. The power coefficient as a function of Rec is shown in figure 7 (a) for

various values of the tip speed ratio.

Individual curves in this figure represent the fixed λ grid values to which the measured

power coefficient was interpolated. Moving up in Rec (i.e. across the abscissa of figure

7 (b)) is equivalent to fixing λ and traveling vertically downwards in the power curves of

figure 6 (a). Whenever a power curve is crossed, the local value of Cp is interpolated and

the resulting value of Rec is calculated. Since the power curves are relatively dense with
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FIG. 8. Power coefficient normalized by the value at Reynolds number invariance for several tip

speed ratios. Symbols correspond to λ: 5.0 = ◦, 5.5 = 4, 6.0 = �, 6.5 = /, 7.0 =I, 7.5 = +.

data points (typically consisting of more than fifteen individual tests), errors due to this

interpolation are expected to have minimal effect on the results. In this way, the rate at

which the power curves approach the high Reynolds number limit can be directly observed.

The resulting plot gives the power coefficient as a function of the blade Reynolds number

and is shown in figure 7 (a).

Neglecting the λ = 3.5, 4.0, and 4.5 cases due to the low maximum values of Rec, the

remaining curves show a plateau-like behavior above Rec = 3.5×106 whereby any additional

increases in Rec do not appear to affect the power coefficient of the turbine. This suggests

that Cp has become invariant to the Reynolds number above this limit. Using the data of

figure 7 (a), the invariant power coefficient can then be directly calculated by averaging power

coefficient values which fall above the threshold of Rec ≥ 3.5×106. The resulting parameter

is denoted as Cp,∞ and is shown in figure 7 (b). This is the power curve which would be

returned by a model or field-scale turbine of the same geometry when Rec ≥ 3.5×106. Such

a Reynolds number invariant power curve can be used as a reference point for numerical

simulations or model building studies, and to evaluate Re behavior of other experiments

using the same geometry.

Further insight can be gained into the behavior of the rotor aerodynamics at lower

Reynolds number by combining the results of figures 7 (a) and (b). For each tip speed
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ratio, the entire curve of figure 7 (a) is normalized by the relevant Cp,∞ value of figure 7 (b).

This is shown in figure 8. If the cutoff Reynolds number has been chosen correctly, all curves

will trend to unity, with some scatter due to experimental uncertainty as can be seen in the

figure. An expected collapse is seen across all tip-speeds for lower Rec values as well. This

further indicates that the parameter Rec accurately characterizes the physics responsible for

the lower Reynolds number augmentation. This implies that the performance of the turbine

at reduced Reynolds numbers can be found with a limited number of experiments. For

example, if the invariant power curve is known, then experiments at a single λ for a range

of Rec values gives the resulting Cp for any other tip speed. While this specific result is only

applicable to the current turbine and test conditions, future work will aim to determine if

this is a universal trait of wind turbine operation at high Reynolds numbers.

V. BOUNDARY LAYER TRANSITION EFFECTS

Generally, increasing the Reynolds number of a boundary layer will move the point of

transition, from laminar to turbulent, upstream. The exact position where the boundary

layer transitions is not fully understood and as such, is challenging to predict. The situa-

tion is further complicated on a wind turbine rotor where the boundary layer is experienc-

ing imposed external pressure gradients, streamline curvature, as well as centrifugal forces.

Therefore, it is common to pin the transition point using tripping devices near the leading

edge with the goal of forcing the boundary layer to be turbulent over nearly all of the airfoil

[22, 23]. Fundamentally, this has the benefit of eliminating some of the problems which

are commonly associated with an airfoil section experiencing transition, such as extreme

sensitivity to boundary and initial conditions and laminar separation. Ideally, a tripped

airfoil will better approximate the performance of the untripped model tested at very high

Re values, where the boundary layer would naturally transition early on the airfoil surface.

Practically, tripping devices are not perfect and typically add some amount of section drag,

thus affecting overall performance compared to a naturally transitioning flow.

To determine if transition is contributing to the somewhat unexpected Reynolds number

behavior observed with the untripped rotor, the same rotor model was equipped with trip-

ping devices close to its leading edge. The exact same methodology as was used to study

the untripped rotor was otherwise used for the tripped rotor. In the field, effects due to
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FIG. 9. Critical roughness height for Rek = 600 as a function of radial location for various free-

stream Reynolds numbers. Note that the external tip speed was fixed at λ = 5.0.

transition might be less significant as debris and other imperfections on the rotor contribute

to earlier transition. However, since transition is highly sensitive to Reynolds number, and a

phenomenon well known to be challenging to capture numerically, it is important to perform

any such studies at field-scale relevant Reynolds numbers.

A. Trip Geometry

Tripping devices were added to the suction and pressure side of the model rotor blade

with the goal of fixing the transition location. The trip height, kcr, was determined by

using a roughness Reynolds number, Rek = 600 as in the work of Braslow and Knox [22].

External velocity was estimated along the rotor span via Uext =
√
U2 + ωr2, where U is

the free-stream velocity and r the local radius. Determination of kcr was performed at a

fixed external tip speed of λ = 5.0 for simplicity and due to the fact that this corresponds

to the maximum power coefficient of the untripped rotor for most Reynolds numbers (see

figure 7 (a)). The value of kcr along the rotor span is given for a variety of representative

ReD values in figure 9.

From this figure, it was determined that a critical roughness height of kcr ≈ 8 µm would

be sufficient to trip the rotor at all Reynolds numbers and tip speed ratios. Ideally, the

roughness height would vary with ReD, λ, and radial location, but this would have created

an impractical number of experimental configurations. The main drawback of using a single
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FIG. 10. Dot application process shown at left, performed via microscope and an epoxy-bonding

tool. Right image shows the tip of a finished rotor blade with dots applied.

sized tripping device is that it can yield additional drag in some cases.

Various methodologies were attempted to produce a reliable and repeatable tripping ge-

ometry at the micron scale. Traditional tripping devices such as sand-grain type grit, zig-zag

tape, and trip wires could not be applied at sufficiently small scale to satisfy the requirements

on kcr. The final methodology involved using MEMS-based clean-room tools (West-Bond

Incorporated epoxy bonder model 7200A) to manually apply ultra-violet cureable epoxy

dots (Norland Electronics Adhesive part number 123SBL) to the surface of the rotor. A

macro-photograph of the resulting epoxy micro-dots is shown in figure 10.

Following application to both the suction and pressure side of the rotor, a sample of

dots were imaged with a confocal microscope (Leica DCM 3D micro-optical system) at

various locations on both sides of two blades. The resulting trip height was found to be

k = 8.82 ± 3.95 µm for the front row and k = 10.86 ± 4.11 µm for the downstream row.

Average diameter was measured to be 184 µm with a spacing around 700 µm. Row spacing

was found to be 330 µm, on average. The dimensions of the trip pattern approximately

correspond to classical zig-zag tape used in full scale wind turbine testing.

B. Tripped Rotor Performance

Plots of power and thrust coefficients for the tripped rotor are given in the figures of 11.

Untripped rotor data from figure 6 (a) and (b) are shown for comparison in the left-most

plots. Note that not all ReD cases tested for the untripped case are currently available for
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the tripped rotor. Interestingly, collapse in the power coefficient is seen, within experimental

error, over the entire Reynolds number range, with only the lower Reynolds number and

tip speed deviating slightly. This result implies that whatever mechanism is causing the

performance augmentation at lower ReD values observed on the untripped rotor is related

to, or at least affected by, transition. Interestingly, a more clear Reynolds number trend is

observed in the plots of Ct than that for the untripped rotor. Higher ReD values correspond

to a larger thrust coefficient for the tripped case, with ReD = 10 × 106 and 14 × 106 cases

collapsing. Data for the tripped rotor was interpolated to a fixed λ grid, as previously

done for the untripped rotor, to determine the Reynolds number trends in more detail.

Figure 12 (a) shows the tripped data as a function of Rec. Note that very little change

is seen for any tip speed ratio as Rec is increased. This confirms the trend observed in

the prior figure. It appears that prematurely forcing boundary layer transition along the

rotor surface causes it to perform in a similar manner as the untripped rotor in the high

Reynolds number limit. There are slight differences in the behavior, which are more readily

observed when viewing the respective Cp,∞ values for the tripped versus untripped rotor in

figure 12 (b). It appears that the addition of tripping devices has slightly decreased the high

Re performance. This could be due to the additional drag introduced by the trip devices

themselves.

Finally, the data of figure 12 (a) are normalized with the invariant power curves as in the

untripped case. The result is given in figure 13. As expected, the specific tip speed chosen

has little effect on how the power coefficient changes with Rec. When calculating Cp,∞ for

the tripped case, the restriction of Rec ≥ 3.5× 106 could be removed. Invariant behavior is

achieved almost immediately, although no Rec values below 1 million are available to check

this behavior at what could be considered conventional laboratory Reynolds numbers.

VI. DISCUSSION OF OBSERVED ROTOR BEHAVIOR

Two potential mechanisms for the observed rotor behavior are discussed: changes to the

2-D lift curve due to thick airfoil sections and sectional drag changes due to surface geometry.

The first mechanism is related to a decrease in the lift coefficient with Reynolds number.

This method of operation is non-standard with regard to classic thin-airfoil behavior [23],

however a majority of the rotor utilizes airfoils above 20% thickness ratio, and could be
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FIG. 11. Power and thrust coefficients for the untripped and tripped rotor geometries. The left-

most plots are reproduced from figure 6 for comparison. The red lines represent the respective

Cp,∞ curve for each rotor case. The value is defined as the mean Cp when Rec ≥ 3.5× 106.

expected to have different behavior from the thin airfoil case. Preliminary measurements

have been conducted for two sectional airfoil profiles in order to gain additional insight into

their behavior. These are the tip NACA 63-214 (14% thickness) and the root NACA 63-235

(35% thickness) airfoils. Several different Reynolds numbers were investigated (on the same
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(a) (b)

FIG. 12. Power coefficient as a function of the local blade Reynolds number in (a) for a variety of

fixed tip speed ratios, similar to figure 7. Figure (b) shows the Reynolds number invariant power

curve for the model turbine geometry used under laminar inflow conditions. Untripped data points

are shown as gray symbols in both plots for reference.

order as the fully-three dimensional rotor tests) with the 63-214 profile agreeing well with

numerical simulations performed using Mark Drela’s XFoil code [24]. The thicker 63-235

airfoil section diverged from typical Reynolds number behavior, specifically the lift-curve

slope with angle of attack, ∂Cl

∂α
, was observed to decrease as Reynolds number of the airfoil

increased. This would indicate reduced performance of the inner sections with increased

Rec (for a fixed α value) consistent with the observed decrease in rotor performance. These

preliminary experiments indicate that the thicker sections of the NACA 6-series may diverge

significantly from thin-airfoil theory, with the mechanism causing this divergence still under

investigation. It is also not yet clear at what thickness this behavior begins to manifest,

experiments by other authors performed at up to 21% thickness ratios using this airfoil

family (NACA 633-221 section by Abbott and Von Doenhoff [23]) did not display a changing

lift curve slope with Reynolds number. Therefore, we expect this transition from classical

airfoil behavior to that observed for the thicker 6-series to occur somewhere between these

two values. Given that the airfoil section at mid-radius of the rotor is approximately 26%,

a majority of the rotor may be susceptible to these effects.

Another plausible mechanism accounting for the decreased rotor performance is related
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FIG. 13. Power coefficient normalized by Cp,∞ for the tripped rotor (color filled symbols) and

the untripped rotor data (as gray markers). Symbol shape corresponds to λ: 5.0 = ◦, 5.5 = 4,

6.0 = �, 6.5 = /, 7.0 =I, 7.5 = +.

to the surface features on the rotor itself. In section II A the surface roughness was measured

to be 800 nm in height, on average, across the rotor blade. Although this value is small,

the roughness height may be large enough to have some effect if Rec is made large enough.

The complicated nature of surface roughness interactions with the airfoil boundary layer

means that a variety of sectional performance changes are possible. In one case, the airfoil

boundary layer may be transitioning from a laminar state to turbulence earlier than would be

predicted with a numerical code. This would cause additional drag on the rotor, and hence

reduce performance, with this effect becoming more pronounced as Rec is increased until

the boundary layer over the airfoil is completely turbulent. This mechanism is supported by

the results of section V where the rotor was artificially forced to transition from laminar to

turbulent flow near the leading edge, which resulted in decreased, low Re performance that

approximated the un-tripped rotor case operating at high Re.

A second method by which the surface features can affect rotor performance is via aero-

dynamic roughness. A surface in turbulent flow may become aerodynamically rough if the

roughness height becomes larger than the viscous sublayer. In this context, the flow is al-

ready turbulent over the airfoil surface and as Re is increased, the height of the viscous

sublayer decreases so that the roughness elements begin to reach beyond the sublayer and
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affect the buffer region (and potentially beyond) in the boundary layer. This causes an

increase in overall section drag as Reynolds number is increased, until a fully-rough regime

is achieved where pressure drag on the surface elements dominates viscous drag. In this

case, above a particular Reynolds number no additional changes in the drag coefficient of

the surface are observed. This type of behavior is evident in a global sense with the power

coefficient measurements of the rotor, which are particularly susceptible to changes in drag

coefficient.

Both lift reduction (via changes to the lift-curve slope) and drag augmentation (via

transition and/or aerodynamic roughness) could be acting on the rotor surface to varying

degrees. Additional numerical and experimental work which carefully probes the near-

surface flow condition is required to further understand the relevance of each mechanism.

The authors do not suspect that rotational (or so-called 3-D effects) are causing the observed

behavior due to the de-coupling of λ and Rec possible in this work. If λ effects were present,

we would expect to see no change as ReD is altered for a fixed λ (see figure 7 (a)). The

results do highlight how sensitive a design can be to the effects of Reynolds number, even

for commonly utilized airfoil families at very large values of Rec.

VII. CONCLUSIONS

This study presents the highest Reynolds number data currently available for a horizontal

axis wind turbine in a laboratory setting. The unique conditions were achieved using a wind

tunnel that uses highly compressed air as the working fluid. For a rotor with free-transition,

Reynolds number effects were clearly seen across a large range of ReD up to 10 million, when

considering the peak power coefficient. These observations are surprising given the relatively

large values of Re of this rotor, compared to previous work which examined Reynolds number

scaling of performance. It is shown that Reynolds number, and hence scale effects, can alter

turbine performance significantly even at relatively large values. Although the exact nature

of the trends might be a direct function of the specific rotor geometry and airfoils chosen.

However, it is likely that a number of designs may show similar performance trends as this

rotor uses an airfoil family which is common in the wind industry. Further work is needed

to identify the exact mechanism driving the the observed trends and to explore the large

parameter space of geometric effects in detail.
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The ability to control tip speed ratio independently from the Reynolds number is lever-

aged to gain additional insight into scaling of the performance with the blade Reynolds

number, Rec. This has allowed for exploration of Re sensitivity beyond the BEM calcula-

tions based on data from individual airfoil sections tested in wind tunnels. With the ability

to change model rotational speed accurately, similar to a truly variable speed drive on a

full-scale turbine, many different λ were tested for fixed ReD values. The data could then

be re-interpreted in terms of the chord-based Reynolds number which more clearly outlined

the scale dependency. For the untripped rotor, a value of Rec ≥ 3.5 × 106 was required

before Reynolds number invariance was observed in the power coefficient. This cutoff value

was independent of the specific ReD and λ operating point, indicating that the performance

scaling of this rotor was not driven by rotational effects but by the Reynolds number of

the rotor blade itself. This was further tested by re-normalizing the power curves by the

Reynolds number invariant Cp values. In this way the rotational dependence is removed

and all curves showed a similar shape. This result has direct implications for modeling and

simulation efforts of rotor performance.

Finally, the effect of transition on rotor performance was investigated in detail by adding

carefully prescribed tripping devices to the rotor surface in the form of microdots. With

these elements in place, low-Re performance augmentation was eliminated; suggesting that

whatever mechanism is causing the increase in Cp is related to, or affected by, transition.

Future work will investigate this mechanism in additional detail. The results indicate that

the boundary layer state is of critical importance to the operation of a turbine, even at

relatively high Reynolds numbers.
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Appendix A: Appendix: Correction Methodologies

In the processing of the experimental data sets, two specific corrections were made to

account for the effects of drivetrain losses inside the gearbox and model blockage in the
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tunnel. These corrections were standardized and included in the post-processing of all

experimental data sets. The results of section IV and V are therefore the true aerodynamic

power produced by the rotor.

1. Gearbox Efficiency Correction

To recover the aerodynamic input power, measured mechanical power from the turbine

model was corrected in post-processing to account for drive-train losses. These inefficiencies

mainly stem from the constant meshing of gear teeth inside the turbine gearbox, but can

also be attributed to frictional losses in the bearings and lubricant. To capture these effects,

a bulk efficiency of the drive-train is defined as the ratio of output to input power

ε =
τω|output
τω|input

(A1)

where ε is the measured efficiency. Prior to beginning an experimental campaign, ε was

measured with a custom-designed test rig located outside of the HRTF wind tunnel facility.

Using this setup, shaft loads representative of those undergone by a wind turbine model could

be directly applied to the drive-train. The rig itself consists of a 2.24 kW variable-frequency

(AC) motor connected to a torque transducer via a flexible coupling. Input torque and

rotational speed output from the motor are measured by the first transducer. Next, in place

of the model rotor, a second coupling is attached to the input shaft of the tower gearbox. At

this point, the measurement stack is the same as that used during an experiment (described

in II B). This process involves measuring the output power transferred from the tower to the

second torque transducer. Power is then removed via the magnetic hysteresis brake. The

main benefit of this setup is that the entire measurement stack as used during an experiment

(and as shown in figure 3) is used for measuring ε. The test rig with measurement stack

mounted in place is shown in figure 14. Measurements of ε are completed at over 175 different

operating points (torque and speed settings) representative of those encountered inside the

HRTF. The resulting efficiency map is shown in figure 15. The individual test points for

ε are shown as black dots and the contour has been generated to aid in visualizing the

dependency of the efficiency on ω and τ . A sharp drop is seen in ε when τoutput ≤ 0.1 (Nm).

This indicates that below some loading threshold the uncertainty in measured efficiency is

large due to the steep slope in the efficiency curve. In contrast, very little dependency is
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FIG. 14. Test rig shown with measurement stack loaded for efficiency tests.

seen for ω. Only small variations are seen across the range of speeds for a fixed output

torque. The exception to this case is when ω/2π ≤ 40 where less data is available. However,

experiments are rarely performed in this regime and so for the bulk of the operating space

of the turbine, speed dependence is negligible.

A functional and simple correction methodology was desired so that mapping the mea-

sured power to the true aerodynamic power would be a straightforward and repeatable

process. Given the results shown in figure 15, a fit of the form ε = f(τ) was sought, with

errorbars which are proportional to the scatter in ω. A power-law relationship was found to

capture the changes in efficiency with torque:

ε = a(τoutput)
b + c (A2)

where a, b, and c are adjustable constants determined by a best fit of the measured efficiency

from the test rig. Since the dependency on ω has been neglected, data was bin-averaged

by τ across all speeds in steps of ∆τ = 0.05 (Nm) over τ ∈ [0.10, 1.2]. The standard

deviation of the resulting bin-averaged value of ε gives an estimate of the error associated

with neglecting the speed dependency. The results of this method are shown in figure 16.

Above a minimum applied torque (with a small functional dependence on operating speed)

the gearbox efficiency exceeded 90%, which compares well to the value of ε = 98% found

in the literature for right-angle bevel gearboxes [25, 26]. It is interesting to note the sharp

drop off in efficiency at low torque values in figure 15, supporting the idea that a gearbox

of this type needs some minimum loading in order to operate efficiently.
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FIG. 15. Efficiency map as measured on the test rig. Black crosses represent individual test points

where ε was measured. To aid in visualizing the efficiency and its dependence on both τ and ω, a

color contour map was generated from the data at these test points with the magnitude given by

the color bar at right.

FIG. 16. Measured gearbox efficiency as a function of the input torque only. Also shown are the

bin-averaged data and resulting curve fit using equation A2 implemented to correct experimental

data.

2. Model Blockage Correction

Flow acceleration due to the presence of a model and constraining walls affects all wind

tunnel experiments to a varying degree. For turbine and propeller studies, the method of

Glauert [5] is typically used to correct the free-stream velocity (see for example Mikkelsen

[27], Bahaj et al. [28]). This methodology has been applied to the current experiments by
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utilizing the thrust coefficient (as given by the axial force measured at the tower base) and

the known geometric blockage of the turbine. An iterative solver is implemented to find the

corresponding equivalent free air speed, U . This is the free-stream velocity that gives the

same thrust for a corresponding rotor velocity as the model operating in the tunnel and is

used in place of the tunnel velocity, Ut for all experimentally determined values.

a. Tower Drag Effects on Blockage

The axial thrust force is recorded by the 6-axis load cell located at the base of the turbine

and therefore the reported thrust coefficient values include the axial force generated by the

turbine plus drag due to the tower assembly. The magnitude of this effect can be estimated

if it is assumed that the rotor thrust and tower drag are linear so that the measured thrust

is Ft = Frotor + Ftower, and the thrust coefficient becomes:

Ct =
Frotor + Ftower

1
2
ρU2Arotor

= Ct,rotor + Cd,tower
Atower

Arotor

(A3)

where Cd,tower is the drag coefficient of the tower geometry and Atower is the frontal area of

the tower which characterizes this drag. For a cylinder at moderate Reynolds numbers, this

drag coefficient could be as large as 0.5 but will decrease as Re of the tower increases. In the

case of the HAWT model tower, a more aerodynamic diamond-shaped profile was used. For

these experiments, the drag coefficient of the tower was not measured directly as a function

of Reynolds numbers, but estimates can be made of their effect using equation A3 and an

assumed value for Cd,tower. For the total frontal area of the rotor:

Atower

Arotor

= 0.161 (A4)

For a worst-case scenario of Cd,tower = 0.5, the increase in measured thrust coefficient

would be 0.081, or using a more realistic value of Cd,tower = 0.1 returns a change in Ct of

0.0161, which is nominally near the sensor resolution. For all of the data reported here,

no correction for tower drag was made to any of the reported thrust coefficient values for

several reasons. The first is that the specific value of Cd,tower is in reality difficult to separate

from the measured Ct,rotor because the two interact in a complicated, and likely non-linear

fashion with Reynolds number. The prior discussion also assumed a single velocity scale
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determined the tower drag, but a significant portion of the tower is downstream of the

rotor, meaning that the resulting drag force could be much less than expected. Therefore

any corrections applied to the thrust coefficients for the tower drag would need to make

a number of assumptions about the way the drag various across the tower and with Re.

Ideally, an alternative method would be utilized to measure the rotor thrust, but this is not

feasible with the current setup.
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