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The dynamics behind the multi-scale energy transfer in turbulent flows is investigated in a numerical simula-
tion of homogeneous isotropic turbulence (HIT). The investigation relies on conservation laws derived from the
incompressible morphing continuum theory (MCT) on the basis of the Boltzmann-Curtiss kinetic theory. The
resulting conservation laws reveal the existence of small-scale routes for the flow of energy, which broadens the
view on energy cascade (forward or inverse). The comparison of the turbulence characteristic with the reference
study indicates that the turbulence features in both frameworks are equivalent at the global and small-scales;
however, the presented framework shows a more detailed energy flow mechanism, while maintaining the same
global dissipation rate. The study reveals that the theoretical small-scale structures can represent the small-scale
structures in the turbulent flow. Finally, the energy analysis is carried out based on the presented conservation
laws. The analysis reveals that at the small-scale both forward and inverse energy cascade exist in HIT; however,
an overall negative energy flux (forward cascade) is present globally. Finally the energy analysis shows that the
energy cascade is highly dependent on the rotation of the small-scale structure as well as their translational
motion.

I. INTRODUCTION

Turbulence remains as one of the most relevant problems
in physics today. For a century, much work has been done
on finding universal physical parameters that can describe the
behavior of all turbulent flows[1]. Nevertheless, most of the
applied turbulence models to date still lack universality [2].
This quality holds true for turbulence closure models in Large
eddy simulations [3], Reynolds-averaged Navier-Stokes equa-
tions [4], and for flows in complex configurations [5]. With
the rapid developments in aerospace engineering, the need for
a universal turbulent model for all types of flows is apparent.

To further the understanding of turbulence, it is important to
study the energy flow in both small and large-scale turbulent
structures[1]. Large scale structures are usually of the order
of the flow width, and contain most of the energy. They dom-
inate the transport of mass, momentum, and internal energy.
Small scales, on the other hand, are responsible for most of
the energy dissipation[1]. Although theses scales can be eas-
ily defined at high Reynolds numbers [6], a certain level of
ambiguity has always been persistent in flows with moderate
Reynolds number[1].

Of the two turbulent scales, characterizations of the small-
scale turbulent structures have a higher prospect of produc-
ing a universal or quasi-universal model than the large-scale
structures[1]. Taylor [7] and Betchov [8] pioneered the study
on the small-scale characteristics, evolution, and contribution
to the turbulent bulk flow. Their work, though limited to ho-
mogeneous turbulence, established the importance of small-
scale strain amplification and vortex stretching in energy cas-
cade.
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It is not until the celebrated work of Kolmogorov’s K41 the-
ory [9], the study of the small-scale turbulent structure became
a focal point in the characterization of turbulence. The first
premises of the K41 theory is, at small large Reynold num-
bers, the average energy dissipation rate is independent of the
viscosity. The second premise (known as local isotropy) is
that small-scale structures at sufficiently high Reynolds num-
bers are statistically independent of the large-scale one. These
small-scale structures are homogeneous, isotropic, and steady.
In short, K41 states that the statistical properties at the dissi-
pation scales are determined universally by the viscosity and
average dissipation rate, while those at the inertial range, (at
high Reynolds number), are determined by the average dis-
sipation rate only. It implies that Richardson’s multistep en-
ergy cascade process disappears at the smallest scales. The
K41 theory has made remarkable predictions on the statisti-
cal properties of homogeneous and isotropic turbulence both
experimentally and numerically[1]. Kolmogorov K41 theory
was by far the first theory which gave a quantitative meaning
for turbulence.

Although Kolmogorov’s theory unveiled universal features
depicting the flow of energy at the small-scale and inertial
scale, these results were derived under the assumption of a
globally homogeneous and isotropic turbulence. The global
isotropy assumption can be relaxed, but, apparently, not the
assumption of global homogeneity[10]. Zubair [11] showed
that at atmospheric Reynolds numbers, large-scale structures
can contribute to the energy dissipation in a much greater
scale than what Kolmogorov had predicted. Vincent and
Meneguzzi [12] observed that when the small-scale turbulent
vortices are arranged in tube like structures, the energy cas-
cade does not follow the traditional view described by Kol-
mogorov and Richardson in the inertia-range. Instead, it is a
one step process with a strong correlation between the small
and large-scale structures. Jimenez and Wray [13] showed
that the highest dissipation of kinetic energy is achieved when
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the small-scale structures are arranged as sheets. Horiuti [14]
later showed that the topology of the sheets contributes to the
magnitude of energy dissipation with flat sheets dissipating
more energy than curved sheets. Even if the global homo-
geneous isotropy condition was satisfied, Kolmogorov’s K41
was found to be inconsistent with some numerical and exper-
imental studies[1]. Thus, the challenge of understanding the
energy flow at the level of small-scale turbulence still remains.

In light of these publications, the motivation behind the
present work is to analyze the flow of energy at the small-
scale level. The study aims at understanding the relation be-
tween the kinematics of the small-scale structures and the en-
ergy flow. In particular, the work decouples small-scale ro-
tational motions from the translational motions to explain the
energy flow. Resorting to Navier-Stokes (NS) based direct
numerical simulations to showcase this energy flow is tedious
considering the strong coupling between translational and ro-
tational motions of the fluid. The present work is on the basis
of a morphing continuum theory (MCT), a high order con-
tinuum theory. MCT incorporates small-scale structures and
has their own independent degrees of freedom for translational
and rotational motions[15]. These small-scale structures de-
couple the rotational motion from the translational motion of
the flow, giving the fluid element a total of six-degrees of mo-
tion. The study assumes that the small-scale structures adopt
the role of the smallest turbulent structures. The present work
emphasizes the contribution of the small-scale kinematics on
the energy flow in turbulence.

The current study utilizes the incompressible MCT govern-
ing equations to explore the physics of energy transfer in Ho-
mogeneous Isotropic Turbulence (HIT), a regime where the
flow shows agreement with the universal teardrop features of
turbulence[16]. To accomplish this task, the study starts by
giving a brief description of the morphing continuum theory,
and its balance laws in dimensional and dimensionless form in
section II. In section III, the study derives the morphing con-
tinuum conservation laws in the framework of a translational
symmetry. The conservation laws shed light on the routes that
control the energy flow at small-scale. These energy routes
are implemented to analyze the HIT work of Ooi et. al.[17]’s
in section IV. The section starts by proposing a model that
translates an NS case into the MCT framework, and is fol-
lowed by analyzing the capability of the model in reproducing
the turbulent characteristics of the reference case at the global
and small scale. Finally, the study employs the newly derived
energy routes derived in section III to investigate the energy
cascade at the level of the small-scale turbulent structures in
section V.

II. MORPHING CONTINUUM THEORY

A morphing continuum theory (also known as microcon-
tinuum [18, 19], micro-fluid [20], or generalized extended
Navier-Stokes[21]), describes a continuous fluent medium
composed of finite-size structures at the small scale, whose
properties and behaviors affect the global motion of the fluid.
A morphing continuum differs from the classical continuum

which considers the space as a continuous set of volume-less
points. Eringen[18, 19, 22, 23] and De Groot & Mazur[24],
the pioneers behind the theory, developed it to deal with a
class of fluids which exhibit certain small-scale effects aris-
ing from the local structure and small-scale motions of the
fluid elements. Most importantly, their work showed that the
independent description of rotational motion (including gyra-
tion) allows capturing the small-scale structures without rely-
ing on arbitrarily fine meshes. It provides the opportunity to
explore regimes where classical fluid equations break down.
Recently, Wonnel and Chen [25] have formulated the govern-
ing laws of MCT under the framework of kinetic theory with
Boltzmann-Curtiss Distribution, and demonstrated the corre-
lation between the MCT and NS governing laws.

The theory has been implemented in simulating flows that
diverge from NS equations, like flows in microchannels [26],
lubrication theory [27], and blood flow through tapered arter-
ies with stenosis [28]. More recently, MCT was implemented
in simulating incompressible turbulence over a flat plate [29],
and compressible turbulence over different types of geome-
tries [30–32].

The current work assumes a continuum that is made up of
rigid small-scale structures that retain their own rotational ef-
fects and small-scale rotational inertia [20]. The small-scale
structures do not incorporate axial contractions or expansions,
but compromise solely of rotational motion about their center
of mass. The small-scale structures are considered to be rigid
spherical structures with constant material properties. Thus
the inertia of these structures ( j) has the relation j = 2

5 r2,
where r represents the radius of a sphere [33]. The motion
variables that control the behavior of the small-scale structures
are the translational velocity vk, and the gyration, ωk which
characterizes the local rotation of these structures. From the
aforementioned variables, one can see that the kinetic energy
of the flow is two folds; the classical translational kinetic en-
ergy ( 1

2 vivi) and a new form of kinetic energy that is charac-
terized by the gyration of the small-scale structures called the
rotational kinetic energy ( 1

2 jωiωi) [33]. The resultant defor-
mation rate tensors that govern the behavior of a morphing
continuum flow are [15, 34]:

akl = vl,k + εlkmωm (1)
bkl = ωk,l (2)

where akl resembles the classical deformation-rate tensor
from the Navier-Stokes equations with an additional term rep-
resenting the effect of the gyration of the small-scale struc-
tures. The bkl tensor is a new deformation tensor not found in
the classical fluid theory, representing the strain and rotation
gradients experienced by gradients of the gyration[15].

A. Balance Laws

With the aforementioned deformation rate tensors, the lin-
ear constitutive equations can be derived from Clausius-
Duhem inequality [15, 22]. By inserting the constitutive equa-
tions into the thermodynamic balance laws, the morphing con-
tinuum governing equations for incompressible fluids can be
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found as,
Conservation of Mass:

vm,m = 0 (3)

Balance of Linear Momentum:

Dvm

Dt
=− p,m

ρ
+

(µ +κ)

ρ
vm,nn +

κ

ρ
εmnkωk,n +Fm (4)

Balance of Angular Momentum:

Dωm

Dt
=

(α +β )

jρ
ωl,lm +

γ

ρ j
ωm,nn +

κ

ρ j
(εmnkvk,n

−2ωm)+Lm

(5)

Balance of Internal Energy:

De
Dt

=− p
ρ

vk,k +
µ

ρ

(
vl,k + vk,l

)
vl,k +

κ

ρ

(
vl,kvl,k

−2ωmεmklvl,k +2ωmωm
)
+

α

ρ
ωm,mωk,k

+
β

ρ
ωk,lωl,k +

γ

ρ
ωl,kωl,k−

qk,k

ρ

(6)

Clausius-Duhem Inequality:

−
(

Dψ

Dt
+η

Dθ

Dt

)
+

µ

ρ
(vl,k + vk,l)vl,k +

κ

ρ
(vl,kvl,k

−2ωmεmklvl,k +2ωmωm)+
α

ρ
ωm,mωk,k

+
β

ρ
ωk,lωk,l +

γ

ρ
ωl,kωk,l−

qk

ρθ
θ,k ≥ 0

(7)

where ρ is the fluid density, qk is the heat flux, ψ is Helmholtz
free energy density, θ is absolute temperature, e is the internal
energy density, p is the hydrostatic pressure, j is the inertia
of the small-scale structures, µ is the dynamic viscosity, κ

is the rotational viscosity (also called the coupling coefficient
between the linear and angular momenta [33]), γ is the gy-
ration diffusion coefficient, α and β are viscous coefficients
related to the gyration. Fm and Lm are the large scale forcing
and large scale torque divided by the density, and added to the
momentum equations respectively.

B. Balance Laws in Dimensionless Form

The current subsection dimensionalizes the MCT balance
laws with the dimensionless groups defined based on the phys-
ical parameters of interest. Only the continuity and momen-
tum balance laws are non-dimensionalized.Starting with the
distance and motion variables, the length scales xm, and the
translation velocity vm are parameterized with the the root-
mean square velocity vrms, and the Taylor microscale λ de-
fined as [17],

λ =

√
〈vpvp〉
〈vi,iv j, j〉

(8)

where 〈...〉 is the volume average over the computational
domain. In this regard, normalizing the balance laws with the
Taylor microscale leads to the dimensionless form, i.e.

Dimensionless Linear Momentum Equation:

∂ (v̂)
∂ t̂

+ v̂ • ∇̂v̂ =− ∇̂p̂+
1

Reλ

∇̂
2v̂

+
1

Erλ

(
2∇̂× ω̂+ ∇̂

2v̂
)
+Fm

(9)

Dimensionless Angular Momentum Equation:

∂ (ω̂)

∂ t̂
+ v̂ • ∇̂ω̂ =

1

Cαβ

λ

∇̂(∇̂ · ω̂)+
1

Cγ

λ

∇̂
2ω̂

+
D

Erλ

(
∇̂× v̂−2ω̂

)
+Lm

(10)

where D = 2λ 2/ j = 5(λ/r)2 represents the square ratio of
the Taylor micro-scale, to the radius of the MCT small-scale
structures. This parameter illustrates one of the biggest ad-
vantage of MCT over classical fluid theory, namely the ability
to probe the physics of the smallest length scale without the
need for extremely fine grids, or ad-hoc models [29, 35].

One of the non-dimensional variables that appears in the
governing equations is the MCT Taylor Reynolds number,
which measures the ratio of the inertial forces to the viscous
forces. In the current work, µ + κ/2 is used to represent
the viscous forces, due to the fact that it will appears in the
dissipation term of the total kinetic energy (ε) in section III.
Earlier work used µ +κ to represent the viscous forces [35];
however, after deriving the energy routes in section III, it be-
came apparent that only µ + κ/2 contributes to the total ki-
netic energy dissipation, while the remaining κ/2 contributes
to energy loss through the MCT enstrophy. Consequently, the
Taylor-Reynolds number is

Reλ =
ρvrms λ

µ +κ/2
(11)

The next three dimensionless terms are Eringen’s number Er
in honor of Eringen, Cαβ

λ
a dimensionless parameter that gov-

erns the gyration viscous coefficients and Cγ

λ
a dimensionless

parameter that governs the diffusion of the gyration,

Erλ =
ρvrms λ

κ/2
, Cαβ

λ
=

ρvrmsλ j
α +β

, Cγ

λ
=

ρvrmsλ j
γ

(12)

III. CONSERVATION LAWS FOR INCOMPRESSIBLE
FLUIDS

Ever since the work of Arnold et. al. [36] on two and three-
dimensional incompressible flows, it has been shown that the
Eulerian form of the governing equations for many fluid sys-
tems can be expressed as an infinite-dimensional, generalized
Hamiltonian dynamical system [37]. Such expression per-
mits the use of analytical mechanics, in particular Noether’s
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theorem. This theory states that for each conservation law
there exists an adjacent variational symmetry associated with
the law itself [38]. Following Noether’s theorem, theoretical
physicists tended to combine conservation laws with symme-
try. For example, the momentum conservation law in classical
fluid theory corresponds to the symmetry of space translation,
x(t,~r) = x(t,~r+~p) [10].

The current section derives the conservation laws for an
incompressible flow by utilizing the the symmetry of spatial
translation, which assumes periodic boundary conditions over
the whole domain. The study assumes smoothness of the ve-
locity, gyration, and pressure fields to permit any differential
manipulations of the said fields. All source terms in the gov-
erning equations are nullified, and all variables are averaged
over the whole domain where the angular brackets are denoted
for the volume average,

〈 f 〉= 1
R3

∫
BR

f (~r)d~r (13)

where f (~r) is an arbitrary periodic function, BR is the domain
boundary, and R is the domain width. Some useful identities
can be found in the book by Frisch[10].

In the following sections the word “global” references the
volume average (〈...〉), and the word “local” refers to the un-
averaged or total field. Thus, “local” is for a single point while
“global” is for the whole domain. Since MCT assumes the
continuum to be comprised of small-scale structures, every
point is associated with a small structure. So the local scale in
this regard becomes equivalent to the MCT small-scale struc-
ture.

A. Conservation of Linear Momentum:

Conservation of linear momentum is derived by applying
spatial averaging over the incompressible linear momentum
balance (equation 4) as,

d〈vm〉
dt

=−〈p,m〉
ρ

+
µ +κ

ρ
〈vm,nn〉+

κ

ρ
〈εmlnωn,l〉 (14)

All the spatial derivatives of a periodic function in the linear
momentum equation are dropped after spatial averaging. The
final form of the conservation of linear momentum equation is

d〈vm〉
dt

= 0. (15)

This signifies that the linear momentum is conserved in MCT,
similar to results obtained in the classical fluid theory[10].

B. Conservation of Angular Momentum:

Similarly, the conservation of angular momentum is derived
by applying spatial averaging over the angular momentum,

d〈ωm〉
dt

=
(α +β )

jρ
〈ωl,lm〉+

γ

jρ
〈ωm,ll〉+

κ

jρ
〈εmlnvn,l−2ωm〉

(16)

By removing all the spatial derivatives, the equation becomes

d〈ωm〉
dt

=−2κ

ρ j
〈ωm〉 (17)

From the equation, one can see that the angular momentum is
not conserved, but decays with a characteristic time constant
τω = ρ j

2κ
. This is inconsistent with the definition of conser-

vation of angular momentum, which requires that d〈ωm〉/dt
= 0. Thus to ensure conservation of angular momentum, the
mean gyration 〈ωm〉 of the system should equal to zero, or the
local vorticity of the flow should equal to twice the gyration
(εmlnvn,l = 2ωm).

Such concept of relaxation time has been reported in the ex-
tended Kinetic theory[39]. Kinetic theory describes many sys-
tems that diverge from their equilibrium state, and one of the
most famous equations that model such systems is the BGK
model of the Boltzmann’s equation [39]. The BGK model
replaces the nonlinear collision term of the Boltzmann equa-
tion by a simpler term that describes molecular interaction by
introducing a characteristic time scale τBGK . The character-
istic time scale in the BGK model represents weak departure
from the local equilibrium, and has long been recognized as
a good approximation [40]. One approximation to the char-
acteristic time τBGK , is to use the turbulence relaxation time
τ turb for the departure from local equilibrium due to turbulent
eddy interactions and their inhomogeneity in the main flow
[41]. Following this logic, the derived τω could be used as a
turbulence relaxation time, since it represents the decay time
of the rotational speed of the turbulent eddies.

C. Conservation of Energy:

The kinetic energy in MCT is decomposed into translation
( 1

2 vivi) and rotation ( 1
2 jωiωi) components[33]. The transla-

tional kinetic energy can be derived by multiplying the bal-
ance law of linear momentum (equation 4) by the velocity,

1
2

d(vmvm)

dt
=− p,kvm

ρ
+

(µ +κ)

ρ
vm,kkvm

κ

ρ
vmεmlkωl,k (18)

Applying spatial averaging over equation 18 yields the global
average conservation of the translational kinetic energy

1
2

d〈vmvm〉
dt

=
µ +κ

ρ
〈vmvm,nn〉+

κ

ρ
〈vm(εmlnωn,l)〉 (19)

This equation is similar to the Navier-Stokes conservation of
energy [10], but contains an extra term on the right hand side.
The first term on the right hand side can be expanded as the
mean dissipation rate of the translational motion 〈εv〉,

1
2

d〈vmvm〉
dt

=− µ +κ

2ρ
〈(vk, j + v j,k)(vk, j + v j,k)︸ ︷︷ ︸

〈εv〉

〉

+
κ

ρ
〈vm(εmlnωn,l)〉︸ ︷︷ ︸
〈T v〉

(20)
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where the small-scale local translation dissipation rate is,

ε
v =

µ +κ

2ρ
(vk, j + v j,k)(vk, j + v j,k) (21)

Instead of expanding the first term to get the mean transla-
tional dissipation term 〈εv〉, one can expand it to get the mean
enstrophy 〈Zv〉 as

1
2

d〈vmvm〉
dt

=−2
µ +κ

ρ
〈1

2
εi jkvk, jεimnvn,m〉︸ ︷︷ ︸
〈Zv〉

+
κ

ρ
〈vm(εmlnωn,l)〉︸ ︷︷ ︸
〈T v〉

(22)

where the small-scale local enstrophy is,

Zv =
1
2

εi jkvk, jεimnvn,m (23)

Both the mean enstrophy and mean translational dissipation
rate are equivalent at the global scale, but at the small local
scale they are related by the pressure Poisson equation as,

Zv− ρ

2(µ +κ)
ε

v =
p,mm

ρ
(24)

As for the second term on the right hand side,

T v =
κ

ρ
vm(εmlnωn,l), (25)

it represents the small-scale local energy transferred in or out
of the translation kinetic energy through gyration. This term
represents the impact of the gyration on the energy flow of the
translational kinetic energy equation. One should note that
this term does not mean that the translational energy is taking
or giving energy to the rotational energy, it only means that
the existence of the gyration impacts the translational kinetic
energy either by injection or ejection regardless of the source.

The rotational kinetic energy component ( 1
2 jωiωi), is de-

rived by multiplying the balance law of angular momentum

(equation 5) by the gyration,

1
2

d( jωmωm)

dt
=
(α +β )

jρ
ωl,lmωm +

γ

ρ
ωm,llωm

+
κ

ρ
(εmlkvk,lωm−2ωmωm)

(26)

Applying spatial averaging over equation 26 yields the mean
conservation of rotational energy,

j
2

d〈ωmωm〉
dt

=− (α +β )

jρ
〈ωl,lωm,m〉︸ ︷︷ ︸
〈εω

αβ
〉

− γ

ρ
〈ωm,lωm,l〉︸ ︷︷ ︸
〈εω

γ 〉

+
κ

ρ
〈ωm(εmlnvn,l)〉︸ ︷︷ ︸
〈T ω〉

−2
κ

ρ
〈ωmωm〉︸ ︷︷ ︸
〈δ ω〉

(27)

Similar to the translational energy, the first two terms on the
right hand side represent the mean of the rotational dissipation
terms,

ε
ω

αβ
=

α +β

ρ
ωm,mωl,l , ε

ω
γ =

γ

ρ
ωm,lωm,l (28)

The first term (εω

αβ
) measures the dissipation of rotational ki-

netic energy due to the expansion or contraction of the gy-
ration. The second term (εω

γ ) measures the mechanical dis-
sipation of rotational kinetic energy due to friction between
adjacent gyrations. The last term (δ ω ) represents the small
scale decay of the rotational energy, i.e.

δ
ω = 2

κ

ρ
ωmωm (29)

This term is also associated with the time constant τω which
governs the decay of angular momentum in MCT as shown
in equation 17. Therefore, δ ω is a decay term, not a dissipa-
tive term. The difference between the dissipation terms (εω

αβ

and εω
γ ) and the decay term (δ ω ) is that the dissipation terms

cause a loss of rotational kinetic energy through the gradient
of the small-scale local motion. Therefore, if the small-scale
local rotational motion (ωm) is constant throughout the whole
domain, then εω

αβ
and εω

γ are zero. On the other hand, δ ω

measures the energy loss from the rotational motion of the
small-scale structures until rotation equilibrium is achieved.
The only term left in equation 27 is,

T ω =
κ

ρ
ωm(εmlnvn,l) (30)

This term represents the small-scale energy transferred in or
out of the rotational kinetic energy by the curl of the velocity
(vorticity). Note that both T v and T ω are equal on the global
average scale i.e.,

〈T v〉= 〈T ω〉 (31)

indicating that they transfer equal amounts of energy to both
forms of the kinetic energy in the same quantity. On the small-
local scale, these components are related by the equation,

κ

ρ
(εmlnωlvn),m = T v−T ω (32)
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where the spatial average of (εmlnωlvn),m is zero, leading it to
vanish at the global scale. On the small- local scale, however,
κ

ρ
(εmklωkvl),m controls the direction of energy flow , either to

the translational or rotational component of the kinetic energy.
If κ

ρ
(εmklωkvl),m is positive, the translational component gains

kinetic energy, and the rotational component loses it. Another
way to understand how κ

ρ
(εmklωkvl),m works, is to look at the

motion of the small-scale structures. If the curl of the gyration
(∇× ~ω) is generating a translational motion along the direc-
tion of the velocity (i.e. α < 90), energy is injected into the
translational motion as shown in figure 2a. On the other hand,
if the resultant translation caused by the curl of the gyration is
opposing the velocity of the small-scale structure, the transla-
tional energy is lost as heat. Similarly, T ω has the capability
of giving rise to both forms of energy transfer. If the vorticity
is generating a rotational motion in the same sense of the gyra-
tion (i.e. β < 90), energy is injected into the rotational motion
motion as shown in figure 2b. On the other hand, if the vor-
ticity is opposing the gyration of the small-scale structure (i.e.
β > 90), the rotational kinetic energy is lost as heat.

By decoupling the rotational energy from the translational
energy, the detailed interaction between the two is revealed.
In the translational kinetic energy, i.e. equation 19, It can be
seen that the existence of an additional energy routes that in-
ject energy through T v. As for the rotational kinetic energy,
it contains its own terms for the injecting, decaying and dissi-
pating energy in the system.

To ensure conservation of total energy, all the kinetic energy
that was lost or gained by the translational or rotational kinetic
energy should appear in the conservation of internal energy.
Applying spatial averaging over the internal energy (equation
6) yields

d〈e〉
dt

= 〈εv〉−〈T v〉−〈T ω〉+ 〈δ ω〉+ 〈εω

αβ
〉+ 〈εω

γ 〉 (33)

All the terms that attributes to the rate of change of the trans-
lational or rotational kinetic energy are found in the conserva-

tion of internal energy but with opposite signs. This confirms
the conservation of total energy in the system. The global pic-
ture of energy transfer is shown in figure 1. The figure reveals
two different kind of routes of the energy flow. The first routes
are unidirectional, i.e. one-way arrow. These routes refer to
the dissipative and decay terms (δ ω , εω

αβ
, εω

γ , and εv). The
second routes are multi-directional routes, and they represent
the transfer terms (T v and T ω ). The multi-directional routes
couple the energy flow between the rotational and translation
kinetic energies.

The spatial average of Clausius-Duhem inequality (equa-
tion 7) is examined to ensure thermodynamical consistency,
i.e.

−
〈

dψ

dt
+η

dθ

dt

〉
+ 〈εv〉−〈T v〉−〈T ω〉

+ 〈δ ω〉+ 〈εω

αβ
〉+ 〈εω

γ 〉 ≥ 0
(34)

One can see that there is no constraint on the routes that
dissipate or decays energy (〈δ ω〉, 〈εω

αβ
〉, 〈εω

γ 〉, and 〈εv〉) at
steady state. The 2nd law only constrains the two multidirec-
tional routes 〈T v〉 and 〈T ω〉. From equation 34, one can see
that at steady state 〈T v〉 and 〈T ω〉 have an upper limit for in-
jecting energy into the translational or rotational components
of the kinetic energy. The upper limit is equal to the sum-
mation of the other four routes (〈δ ω〉, 〈εω

αβ
〉, 〈εω

γ 〉, and 〈εv〉).
If the two multidirectional routes 〈T v〉 and 〈T ω〉 are ejecting
kinetic energy, there is no constraint on them.

In order to compare the conservation of energy between
the classical fluid theory and morphing continuum, one has to
look at the total kinetic energy (KE = 1

2 uiui +
1
2 jωiωi). Equa-

tions 19 and 27 describe the transfer of energy in the transla-
tional and rotational components of the kinetic energy. The
MCT conservation law for the total kinetic energy is derived
by adding equations 18 and 26, followed by a spatial averag-
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FIG. 3: Global total kinetic energy decay in (a) Navier-Stokes (b) Morphing Continuum

ing,

d〈KE〉
dt

=〈T v〉+ 〈T ω〉−〈εv〉−〈δ ω〉−〈εω

αβ
〉−〈εω

γ 〉 (35)

From the above equation one can see that there are four
terms that eject kinetic energy: 〈εv〉, 〈εω

αβ
〉, 〈εω

γ 〉, and 〈δ ω〉;
and two terms that may inject or eject kinetic energy: 〈T v〉
and 〈T ω〉. Combining 〈T v〉, 〈T ω〉, and 〈δ ω〉, the conserva-
tion of total kinetic energy becomes,

d〈KE〉
dt

=− µ +κ/2
2ρ

〈(vl,k + vk,l)(vl,k + vk,l)〉︸ ︷︷ ︸
〈εV 〉

−
(

α +β

ρ
〈ωm,mωl,l〉+

γ

ρ
〈ωl,nωl,n〉

)
︸ ︷︷ ︸

〈εΩ〉

− κ

ρ

(
1
2
〈Ωa

mΩ
a
m〉
)

︸ ︷︷ ︸
〈ZΩ〉

(36)

where Ωa
m = εlkmvm,k − 2ωl is the absolute rotation field,

ZΩ = 1
2 Ωa

mΩa
m is the MCT enstrophy. The absolute rotation

is a relativistic field that measures the difference in rotational
speed between the gyration and the vorticity[42]. The total
small-scale local rotational dissipation is εΩ = εω

γ +εω

αβ
. The

small-scale local translational dissipation rate of the total ki-
netic energy becomes

ε
V =

µ +κ/2
2ρ

(vk, j + v j,k)(vk, j + v j,k) (37)

The relationship between the small-scale local translational
dissipation of the total kinetic energy εV and the small-scale
local translational dissipation of the translational kinetic en-
ergy εv is

ε
V = ε

v +
κ

4ρ
(vk, j + v j,k)(vk, j + v j,k) (38)

Equation 36 shows that although both translational and rota-
tional kinetic energies have terms that could inject energy into

them (T ω and T v), the global flow of the total kinetic en-
ergy is always dissipative, similar to the classical fluid the-
ory [10]. Equation 36 can be further reduced down if the
conservation of angular momentum is conserved by enforcing
the small-scale vorticity to be equivalent to twice the gyration
(2ωm = εmlnvn,l). In that case, both the absolute rotation (Ωa

m)
and the MCT enstrophy (ZΩ) become null, and the conserva-
tion of total kinetic energy becomes,

d〈KE〉
dt

=− µ +κ/2
2ρ

〈(vk, j + v j,k)(vk, j + v j,k)〉

− γ

4ρ
〈v j,iiv j,ll〉

(39)

One can see that the MCT conservation of total kinetic energy
becomes similar to the classical conservation of energy with
an additional term representing the impact of the rotation on
the dissipation of energy.

IV. NUMERICAL SIMULATION OF HOMOGENEOUS
ISOTROPIC TURBULENCE

The present work is based on simulations of homoge-
neous isotropic turbulence in a triply periodic box. The
reference case is taken from Ooi et. al.[17] with Taylor-
Reynolds number Reλ = 70.9 and Kolmogorov length scale
η = 2.3× 10−2. The aim of the current work is to repro-
duce Ooi’s Navier-Stokes (NS) work in the presented mor-
phing continuum framework (MCT) framework, and explore
the energy cascade phenomena. The current study utilizes
the small-scale structures to capture the small-scale turbulent
structures or smallest eddies. This approach enables a clear in-
sight into the effect of the translational and rotational motion
of the small-scale eddies on the energy cascade phenomena.

To accomplish the above task, the current section is divided
into three parts. In the first part, a model that gives meaning
to the material parameters is presented. The model is imple-
mented to translate a NS-based HIT case into the presented
framework. Afterwards, the study presents the details of the
numerical simulation. In the final section, the study assess the
accuracy of the proposed model. The study compares the tur-
bulent characteristic of both cases, and evaluates whether the
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small-scale structures are capturing the smallest eddies in the
flow.

A. Advanced Kinetic Theory

The difficulty in simulating a NS case in the MCT frame-
work comes from estimating the value of the new dimension-
less parameters that are not present in the classical theory
(Erλ , Cαβ

λ
, Cγ

λ
, D). For this reason, the current study employs

the work of Chen [42], and Wonnell and Chen [25] to give a
kinetic description for the new material properties. The study
by Wonnell and Chen shows that the only parameters that con-
tribute to the viscous forces in MCT are the rotational viscos-
ity (κ), and the gyrational diffusion (γ). Both of them are
related by the equation γ = 3

2 jκ . From these definitions, two
of the dimensionless parameters can be represented in terms
the Taylor-Reynold number as,

Cαβ

λ
= 0 , Erλ = Reλ , Cγ

λ
=

Reλ

3
(40)

B. Details of the NS and MCT Numerical Simulations

The simulation domain spans a distance of 2π ≈ 273η in all
directions. For the current case, isotropic forcing is achieved
by adding energy into the linear momentum balance law only
(i.e. Lm = 0). Different methods for injecting energy into
low wave numbers have been described in the literature [43–
45]. The linear momentum forcing implemented in the current
study is similar to the work of Eswaran et. al. [43] and Ooi et.
al.[17]. The energy inserted in the domain is added in the form
of low wavenumber Fourier modes (k ≤ 2

√
2) as a forcing

term in the linear momentum equation of the MCT balance
laws. A Wiener statistical process is used to increment forcing
in each time step. The forcing is projected onto a plane normal
to the wave vector to ensure incompressibility.

The statistical quantities that are calculated at each time
step are based on the three-dimensional translational energy
spectrum Ev,

1
2

vivi =
∫

∞

0
Ev(k)dk (41)

where the r.m.s velocity is,

v2
rms =

2
3

∫
∞

0
Ev(k)dk (42)

the integral length scale is,

L =
π

2v2
rms

∫
∞

0

Ev(k)
k

dk (43)

The other statistical quantities that are calculated only for the
Navier-Stokes reference case is the Kolmogorov scale, i.e.

η =

(
ν2

2
∫

∞

0 k2Ev(k)dk

)1/4

(44)

TABLE I: Numerical and flow parameters for the two cases
that are implemented or measured in this study.

case µ κ γ j λ η τ D
NS 0.025 0 0 - 0.38 0.023 0.21 -

MCT 0 0.05 1.8×10−5 2.4×10−4 0.38 - - 3
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FIG. 4: Time evolution of the total mean kinetic energy

and the eddy turnover time is [6],

τ =
L

vrms
(45)

Table I summarizes the characteristics of the two different
cases. The first case [17] is used as a reference case for the
universal features of turbulence[16]. The second case rep-
resents a replica of the reference case, but in the proposed
framework. The diameter of the small-scale structure in case
2 is taken to be equal to the mesh size d = 2π/128, which is
about seven times smaller than the Taylor microscale. This
signifies that the small-scale structures are capturing eddies
that are seven times smaller than the Taylor microscale.

Both cases are run sufficiently long (∼ 200 eddy turnover
times) for the instantaneous energy spectra and other integral
characteristics to become statistically steady. It may not be
long enough for the large scales to reach statistical steadiness,
but enough for the small-scales. To ensure the simulation
reached a steady state solution, the temporal evolution of the
volume-averaged total kinetic energy ( 1

2 vivi+
1
2 jωiωi) is plot-

ted in figure 4. The transient phase took around 10 large-eddy
turnover times, while the steady state solution was run for 200
large-eddy turnover times. One interesting observation from
figure 4, is that both cases show a similar trend in the instan-
taneous mean kinetic energy. If the steady-state data are aver-
aged temporally, the values are very close to each other (NS:
16.52±2.57; MCT:16.42±2.72). As for the lag between the
peaks of the data, it can be attributed to the time constant de-
rived in the conservation of angular momentum in section III.

The translational kinetic energy spectra, shown in figure
5a, are averaged both spatially and temporally after the flow
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FIG. 5: The comparison of (a) three-dimensional
translational kinetic energy spectra for the two cases; and (b)

time evolution of the skewness and kurtosis of the
x-component of the velocity for the four cases.

reaches a steady solution. The wave numbers shown in figure
5a are normalized by the Kolmogorov scale obtained from the
reference case. The figure confirms that the -5/3 Kolmogorov
power-law slope exists for the total energy spectrum of the
two cases around the integral scale.

The skewness (F3) and kurtosis (F4) of the x-component of
the velocity are plotted in figure 5b for all four cases to ensure
homogeneity. The Fn operator is defined as [17],

Fn(vα) = (−1)n 〈vn
α〉

〈v2
α〉n/2 (46)

where vα is any one component of the velocity. Figure 5b
shows that the kurtosis of the velocity remains constant at ∼
2.85, which agrees with the kurtosis value reported by Batch-
elor’s experimental data of grid turbulence [6]. The skewness
of the velocity remained approximately zero throughout the
computational time, in accordance with Batchelor [6].

C. Validation for the Morphing Continuum Theory

After confirming that both cases have the same kinetic en-
ergy at the global scale, and that the simulation results are
homogeneous, the next objective is to assess the feasibility of
the proposed framework in two folds. The first objective is
to evaluate the degree to which the small-scale structures are
capturing the smallest eddies in the flow. Second, compare
the turbulent features of the presented case with the reference
case.

Figure 6 maps the joint probability distribution function
(pdf) of the magnitude of the vorticity squared versus the mag-
nitude of the gyration squared. The figures shows that highest
concentration for the gyration is along the line, ∇× v = 2ω ,
which indicates that most of the small-scale MCT structures
are rotating at the same speed as the smallest eddies. There-
fore, analyzing the gyration of the flow is equivalent to analyz-
ing the rotational speed of the smallest eddy. The small-scale
MCT structures can be used to capture the smallest turbulent
structures (eddies) in the flow.

The next objective is to reproduce the invariant maps of So-
ria et. al. [46], and show that both cases are able to generate
the universal features of turbulence[16]. A brief review of
the invariants employed in the classical fluid theory and their
derivation is given first, followed by an analysis of the invari-
ant maps for both cases.

The deformation gradient in the classical fluid theory is the
velocity gradient tensor vl,k, which can be split into a symmet-
ric and skew-symmetric tensors,

vl,k = Skl +Ωkl (47)

where Skl is the strain rate tensor defined as,

Skl =
1
2
(vl,k + vk,l) (48)

and Ωkl is the spin rate tensor defined as,

Ωkl =
1
2
(vl,k− vk,l) (49)

The characteristic equation that satisfies the eigenvalue equa-
tion for the velocity gradient tensor is,

λ
3
i +Pλ

2
i +Qλi +R = 0 (50)

where λi is the eigenvalues of vk,l , and P, Q, and R are the first,
second, and third invariants of vk,l . The nature of the three
roots of the characteristic equation helps identify the small-
scale flow topology by varying in the form of four possibili-
ties: (1) three distinct real roots; (2) two equal real roots and
one different; (3) three equal real roots; and (4) one real root
with two complex conjugate roots.

Instead of solving for the roots of the characteristic equation
to infer the category of solution, Chong et. al. [47] showed
that by studying the properties of the three invariants P, Q, and
R of the velocity gradient, one can infer the nature of the roots,
and the topology of the flow. The first invariant P defined as,

P =−tr(vk,l) =−vk,k =−Skk. (51)
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FIG. 6: Joint pdf of the magnitude of the vorticity squared vs
the magnitude of the gyration squared. The colors correspond

to the value of the joint pdf. (Red:10−5 and Violet: 0.1)

It represents the compressibility of the flow, thus vanishes for
an incompressible flow. The second invariant Q for an incom-
pressible flow is defined as,

Q =
1
4
(ΩkΩk−2SklSkl) (52)

where Ωk = ekmlvm,l is the vorticity field. Q measures the rel-
ative straining and enstrophy (Zv = ΩkΩk/2) experienced by
a fluid element. The third invariant R for an incompressible
flow is defined,

R =−1
3

vk,lvl,mvm,k =−
1
3

(
SklSlmSmk +

3
4

ΩkΩlSkl

)
(53)

It measures the relative strain production or amplification
(Si jS jkSki) over the enstrophy production term (ΩiΩ jSi j). A
similar decomposition for the invariants of the velocity gra-
dient is used on the strain rate tensor, Skl , and the spin rate
tensor, Ωkl . The invariants of the rate-of-strain tensor Skl are

PS =−tr(Slk) =−vk,k (54)

QS =−
1
2

SklSlk (55)

RS =−
1
3

Si jS jkSki (56)

The second invariant QS is proportional to the small-scale rate
of viscous dissipation of translational kinetic energy in both
classical theory and morphing continuum theory. As for the
third invariant RS, it is proportional to the skewness of the
strain rate, and its production. The only non-zero invariant for
Ωkl is the second invariant

QW =−1
2

ΩklΩlk =
1
4

ΩmΩm (57)

This invariant is proportional to half the enstrophy (Zv).

In order to validate the turbulence features of the MCT sim-
ulation, the three most common invariant maps of the pre-
sented simulation are compared with the reference simulation
shown in figure 7. The invariants are normalized with 〈Si jSi j〉
following the work of Da Silva and Pereira [48]. The first
invariant map that is analyzed is the second invariant of the
velocity gradient tensor Q versus third invariant R. The clas-
sical (Q, R) diagram gives insight in to the nature of the flows
small-scale topology (strain or enstrophy dominated), and the
topology of the vortices (compression or expansion) [48]. The
joint pdfs of R and Q for the both cases are shown in figures
7a, and 7b. The black dotted line represent the locus of points
at which D = 0, where D is the discriminant [47], and for an
incompressible flow its defined as

D =
27
4

R2 +Q3 (58)

Figure 7a, which refers to the reference case, and figure 7b,
which refers to the presented case, show a joint pdf, similar
to the well known universal teardrop diagrams of Ooi et. al.
[17]. This shape implies that the majority of the flow is en-
strophy dominated (Q > 0) with a strong correlations between
the vortex stretching part (R < 0) and the vortex compression
part (R > 0). An interesting observation from both figures, is
that the invariants of the presented case show to a high prox-
imity the same distribution and magnitude as the invariants of
the reference case.

Another classical invariant map implemented in the study
of the topology of the flow is the (RS, QS) map. The impor-
tance of this map lies in its ability to analyze the geometry
of the small-scale straining of the fluid element. In particular,
the third invariant RS is associated with the strain production
[48]. A negative RS indicates a region undergoing intense con-
traction and destruction of the strain product, and a positive RS
implies regions of high expansion, and production of the strain
product. Figures 7c and 7d show the joint pdfs of the (RS, QS)
invariant maps for both cases. The two joint pdfs are identical,
and show a clear preference for the region where RS is greater
than zero. It indicates that most of the flow is experiencing
regions of intense expansion of the fluid element, while only
a few regions are experiencing compression.

The third invariant map is the (−QS, QW ) map, analyzes
the dissipation of translational kinetic energy. Points close to
the horizontal line (QW ) represents regions at the center of the
vortex tubes that have high enstrophy (Zv) but small transla-
tional dissipation (εv). On the other hand, points close to the
vertical line (−QS) represents regions away from the vortex
tubes with high translational dissipation but low enstrophy.
Figures 7e and 7f confirm the observations previously made
on the topology of the flow in each case. The figures show a
joint pdf similar to the work done on isotropic turbulence by
Ooi et. al.[17], with no desirable tendency for the flow to be
aligned near the horizontal or vertical lines.

The current section shows that the proposed methodology is
not only capable of replicating the turbulence characteristics
of an NS simulation at the global scale, but also capable of
replicating the topological features of turbulence at the small-
scale.
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(a) (b)

(c) (d)

(e) (f)

FIG. 7: Joint pdfs of the invariants maps of (Q,R), (QS,RS) and (−QS,QW ) for both cases: (a,c,e) for the NS case, and (b,d,f) for
the MCT case. Each map contains 7 colors, which correspond to a different joint pdfs. All invariants are normalized by 〈Si jSi j〉.

V. ENERGY ANALYSIS

The energy routes are employed to investigate the flow of
energy in homogeneous isotropic turbulence. The analysis be-

gins by investigating these energy routes at the global scale,
followed by an analysis at the small-scale. In section III, six
routes that control the energy flow were derived; two for the
translational kinetic energy (εv and T v) and four for the ro-
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FIG. 8: Temporal evolution of the decay rate of the total
kinetic energy

( d
dt 〈 1

2 vivi〉+ 〈 1
2 jωiωi〉

)
tational kinetic energy (εω

γ ,εω

αβ
, δ ω and T ω ). These routes

were found to be dependent on the translational velocity vi and
the gyration of the small-scale structures ωi. However, sec-
tion IV shows that the majority of the small-scale structures
are capturing the smallest eddy characterized by vorticity, i.e.
ωi ≈ 1

2 εi jkvk, j. Thus, the five active energy routes (εω

αβ
= 0)

can be written in term of the translational velocity vi only.

A. Energy Transfer at the Global Scale

The mean value of the newly derived energy routes are in-
vestigated in this section. The analysis sheds light on the sim-
ilarities between the classical energy route and newly derived
energy route. In the classical fluid theory, the only component
that contributes to the change of the mean kinetic energy is
the mean dissipation term 〈ε〉. In the presented framework,
there are six components that contribute to the change of the
mean total kinetic energy (equation 35). However, if the gy-
ration is equivalent to the rotational speed of the fluid element
( 1

2 εi jkvk, j), the six components can be reduced to two compo-
nents one of them similar to the classical dissipation term as
shown in equation 39.

The mean decay rate of the total kinetic energy of the box
turbulence study cases is shown in figure 8. The figure shows
that both reference and presented cases are decaying almost
identical amount of total kinetic energy on a global scale (NS:
20.4±3.2; MCT: 20.3±3.4). The plot strengthen the earlier
observation, that the two cases are not only experiencing the
same trend in total kinetic energy, but also similar decay rates.

In order to understand the detailed energy loss in the homo-
geneous isotropic turbulence, the total kinetic energy is de-
coupled into the translational kinetic energy field 1

2 vivi, and
the rotational kinetic energy field 1

2 jωiωi. Figure 9(a - b) plots
the temporal evolution of the components responsible for the
change in translational or rotational kinetic energy. The sign

of the plot is based on whether the component is causing a
loss or gain in kinetic energy, i.e. a negative value implies a
loss of kinetic energy, and a positive value implies a gain of
kinetic energy. It should be noted that the summation of tem-
poral evolution in figure 9(a - b) yields the total kinetic energy
decay rate shown in figure 8.

Figure 9a plots the evolution of the components responsi-
ble for the dissipation and decay of kinetic energy; the mean
translational dissipation (〈εv〉), the mean rotational dissipa-
tion (〈εω〉), and the mean rotational decay rate (〈δ ω〉). Fig-
ure 9b plots the evolution of the components responsible for
the transfer of kinetic energy; translational transfer rate (〈T v〉)
and rotational transfer rate (〈T ω〉). Figure 9b shows that the
sign of the evolution of the transfer rates is positive, unlike the
sign of the evolution of the dissipation or decay rates (figure
9a). This implies that 〈T v〉 and 〈T ω〉 are not dispersing ki-
netic energy, but are injecting kinetic energy into the system.
This behavior indicates a new type of inverse energy cascade.
One should note that T v and T ω do not take energy from the
small-scale and give it to the large-scale like the conventional
notation for inverse cascade. Instead, they take energy from
the internal energy and gives it to the system as a whole. This
energy can either go from the small-scales to the large-scales
as the conventional inverse cascade or stay at the small-scales
and dissipate into heat as the classical forward cascade.

Adding the two components responsible for the change in
translational kinetic energy 〈T v〉 and 〈εv〉 yields a mean dissi-
pative rate equivalent to the one shown in figure 8. Although
MCT seems to dissipate more translational kinetic energy than
the classical theory, this larger loss is compensated by the en-
ergy taken from the internal energy by T v. As for the ro-
tational energy, comparing the temporal evolution of 〈T ω〉 ,
with 〈εω〉, one sees that they are identical. Thus the lose in
rotational kinetic energy due to 〈δ ω〉 is accompanied by an in-
crease in kinetic energy gain through the transfer component
〈T ω〉. Resulting in an average rate of change of rotational ki-
netic energy to be very close to zero. Thus, the energy gained
by the rotational kinetic energy is equal to the energy lost by
it. In other words, the conservation of rotational kinetic is
achieved at the global scale, which implies a conservation of
angular momentum i.e. 〈ω〉= 0.

B. Energy Transfer at the Small Scale

The previous section investigated the energy routes on
global scale, i.e. mean throughout the domain. The current
section instigates the same routes but on the small-scale local
scale. However, since the MCT small-scale structure is seven
times smaller than the Taylor micro-scale, the local scale is
close to the small-scale turbulent structures. Thus, the inves-
tigation at the local scale is equivalent to that at the turbulent
small-scale. Since In addition, since the results have already
reached a statistical steady-state, one can investigate the in-
stantaneous behavior of the energy routes, and assume it is
the same through out the full elapsed steady-state time. Figure
10(a - f) plots the instantaneous isolines of the components re-
sponsible for the change in the kinetic energy in the MCT and
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FIG. 9: Temporal evolution of the components responsible rate of change of the translational and rotational kinetic energy; (a)
mean translational dissipation 〈εv〉 , mean rotational dissipation 〈εω〉, and mean rotational decay 〈δ ω〉, (b) mean translational

transfer rate 〈T v〉, and mean rotational transfer rate 〈T ω〉.

NS cases. The color of the plot is based on whether the com-
ponent is causing a loss or a gain in kinetic energy; a red color
implies a loss, and a blue color implies a gain of kinetic en-
ergy. The isolines are normalized by the instantaneous mean
value for each component.

Figure 10a plots the isolines for the dissipation rate of ki-
netic energy from the case (ε). Figures 10(b-f) plot the iso-
lines for the components responsible for the change of kinetic
energy in the presented case. Figures 10b, 10c, and 10d plot
the isolines for the components responsible for the decay of
total kinetic energy; translation dissipation (εv), rotational dis-
sipation (εω ), and rotational decay rate (δ ω ) respectively. Fig-
ures 10d, and 10e plot the isolines for the components respon-
sible for injecting or ejecting kinetic energy (T v and T ω ). The
isolines for those two figures are mostly colored blue indicat-
ing that they are causing a new type of inverse energy cascade
(energy flow from internal to kinetic). On the global scale,
〈T ω〉 and 〈T v〉 were shown to be equal as shown in figure 9b.
On the small-scale, however, it is a different story. Section III
shows that on the small-scale T ω and T v are related through
the equation

κ

ρ
(εmlnωlvn),m = T v−T ω (59)

where the mean average of (εmlnωlvn),m is zero. Figures 10(d-
e) which refer to T v and T ω respectively, show that these two
terms never inject kinetic energy in the same location at the
same time. At a single location, either rotational kinetic en-
ergy is injected by T ω , or translational kinetic energy is in-
jected by T v. Zone A, in figure 10d, shows a blue spot in the
middle surrounded by white lines indicating a gain in trans-
lational kinetic energy. On the other hand, zone A in figure
10e shows a white in the middle indicating no transfer of en-
ergy. This implies that at the small-scale, points with high
value of T v have almost a null value of T ω , and vice versa.
This phenomena is clearly explained in the joint pdf of the en-

ergy routes shown in figure11. The only way for T v and T ω

to be equal on the small-scale is for (εmlnωlvn),m to be zero.
One possible scenario is to have the velocity (vn) and the axis
at which the gyration (ωn) is rotating to be parallel to each
other. This case can only occur when the rotational motion
of the small-scale structures decouples from the translational
motion.

Comparing figures 10e and 10f for T ω and δ ω , one can see
that the isolines are similar but their colors are different. This
proves that the rotational decay (δ ω ) and the rotational trans-
fer rate (T ω ), are equivalent at the global and small-scales
but with an inverted function. This can be easily proved by
going back to the definition of both routes and noting that
ωi ≈ 1

2 εi jkvk, j,

T ω =
κ

ρ
ωm(εmlnvn,l)≈

κ

2ρ
εm jkvk, jεmlnvn,l (60)

δ
ω = 2

κ

ρ
ωmωm ≈

κ

2ρ
εm jkvk, jεmlnvn,l (61)

Thus any point, that is experiencing a decay in the rotational
kinetic energy, also experiences an equivalent gain in the rota-
tional kinetic energy so that the mean rotational kinetic energy
is kept constant. This behavior indicates that the conservation
of the angular momentum at both the global and small-scale is
conserved, i.e. the rate of change of the small-scale gyration
equals zero (dω/dt = 0).

Out of the six isolines shown in figure 10, only figure 10d
which is for T v is showing both forms of energy transfer as
evident in zones A and B. Thus, T v is the only term that is
showing both forms of energy cascade. To understand the dual
function of T v in providing or dissipating energy one has to
look at the kinematics of the small-scale structures. Figure 2a
shows that if the curl of the gyration (∇× ~ω) is generating
a translational motion along the direction of the velocity (i.e.
α < 90), energy is injected into the translational motion. On
the other hand, if the resultant translation motion created by
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FIG. 10: Snapshot of the instantaneous isolines depicting the small-scale components responsible for the rate of change of
kinetic energy; (a) energy dissipation for the NS case ε , (b) translational dissipation εv, (c) rotational dissipation εω

γ , (d)
translational transfer rate T v, (e) rotational transfer rate T ω , and (f) rotational decay δ ω .

the curl of the gyration is opposing the velocity of the small-
scale structure, the translational energy is lost as heat. Going
back to figure 10, one can see that the dominant behavior for
the curl of the gyration and the velocity to be aligned in the
same direction. In some cases, the curl of the gyration and the
velocity are against each other. This occurs when the small-
scale structures suddenly shift their translational direction and
move in a completely opposite manner. One reason for this
is due to absorbing so much translational kinetic energy in a
small duration of time and not allowing the gyration enough
time to adjust to it.

To gain more insight into the relation between the energy
routes, the joint pdf of the routes are plotted in Figure 11.
Figure 11a plots the joint pdf of (T v , εv), while figure 11b
plots the joint pdf of (T v , T ω ). Figure 11a shows that highest
absolute levels of dissipation "|εv|" occurs in locations where

the translational transfer rate "T v" is almost null. The fig-
ure also shows that that regions experiencing the highest |T v|
are accompanied by the lowest values for |εv|. It Indicates
that at the small scale, the two routes T v and εv are inversely
proportional. Figure 11b reveals a similar relationship be-
tween the two transfer routes T v and T ω . The highest lev-
els in rotational transfer rate "T ω " occurs in locations where
the translational transfer rate "T v" is almost null, and vice
versa. Even though the two transfer routes are equivalent at
the global scale, locally they are inversely proportional. The
figure shows that at the small-scale only one route can domi-
nant the flow of the energy, with the deciding factor lies with
the kinematics of the small-scales.
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FIG. 11: Joint pdf of the energy routes. (a) (T v,εv) and (b) (T v,T ω ) .

VI. CONCLUSION

The current paper addresses the energy flow in homoge-
neous isotropic turbulence (HIT) from the perspective of a
completely decoupled rotational and translational motions.
The paper begins by presenting the incompressible balance
laws for MCT in their dimensional and dimensionless form,
and explains the meaning behind the new dimensionless pa-
rameters. The conservation laws for linear momentum, angu-
lar momentum and energy are then derived. The laws show
similarities between the morphing continuum theory and the
classical Navier-Stokes in conservation of linear momentum,
but difference in the conservation of angular momentum. It
shows a new time constant τω that represents the characteris-
tic time for the angular momentum to reach equilibrium, and
links the derived time constant with the time constant of the
Extended Boltzmann equation[41]. The conservation of en-
ergy shows that by segregating the kinetic energy into its rota-
tional and translational components, one can realize new en-
ergy routes not found in the classical theory. In particular, the
conservation law for the translational kinetic energy, shows in
addition to the classical dissipation route (εv), a new transfer
route (T v) that could inject or eject energy. As for the conser-
vation law for the rotational kinetic energy they posses their
own routes; one route that dissipates energy (εω ), one route
that decays it (δ ω ), and one transfer route (T ω ) that could in-
ject or eject energy in it. The new transfer routes show that in-
ternal energy can be converted into rotational or translational
kinetic energy depending on the kinematics of the small-scale
rotation and translation.

The conservation laws are later employed in Ooi et. al.’s

[17] HIT study. The study begins by presenting a model to
reproduce the Navier-Stokes case into the presented frame-
work, followed by a comparison of both cases to assess the
accuracy of the proposed model. The two cases show similar
results on the global scale by having equivalent mean kinetic
energy and on the small-scale by agreeing to Kolmogorov 5/3
law. In addition the two cases show similarities in joint pdfs of
the invariants of the velocity gradient indicating similar turbu-
lent characteristics at all scales. Finally, the study implements
these routes to investigate the flow of energy. The study shows
on the global scale, sum of the energy routes is equivalent to
the single classical dissipation route in NS. If divided up, how-
ever, the study shows that out of the six energy routes, two
transfer routes are injecting kinetic energy into the flow while
the rest are dissipating energy. On the small-scale, the study
shows that the relation between the rotational and translational
motions of the small-scales affect the flow of energy through
the translation transfer rate (T v). If the translational veloc-
ity and the curl of the rotational velocity (ω) are aligned , T v

causes a gain in kinetic energy. However, if the two motions
are misaligned by more than 90o, T v will dissipate kinetic en-
ergy. Finally, the study analysis the joint pdfs of the three
dominant routes (T v,T ω , and εv). The study shows that at the
global scale T v and T ω are equal, but on the small-scale they
are inversely proportional.
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