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Abstract

In many applications it is important to estimate a fluid flow field from limited and possibly
corrupt measurements. Current methods in flow estimation often use least squares regression
to reconstruct the flow field, finding the minimum-energy solution that is consistent with the
measured data. However, this approach may be prone to overfitting and sensitive to noise. To
address these challenges we instead seek a sparse representation of the data in a library of ex-
amples. Sparse representation has been widely used for image recognition and reconstruction,
and it is well-suited to structured data with limited, corrupt measurements. We explore sparse
representation for flow reconstruction on a variety of fluid data sets with a wide range of com-
plexity, including vortex shedding past a cylinder at low Reynolds number, a mixing layer, and
two geophysical flows. In addition, we compare several measurement strategies and consider
various types of noise and corruption over a range of intensities. We find that sparse represen-
tation has considerably improved estimation accuracy and robustness to noise and corruption
compared with least squares methods. We also introduce a sparse estimation procedure on
local spatial patches for complex multiscale flows that preclude a global sparse representation.
Based on these results, sparse representation is a promising framework for extracting useful
information from complex flow fields with realistic measurements.

Keywords– Flow estimation, coherent structures, sparse representation.

1 Introduction

Estimating the structure of a flow field from limited and noisy measurements is an important
challenge in many engineering applications. For example, accurate estimation is central to ac-
tive flow control [1–4], which has the potential to advance next-generation technology, ranging
from fuel-efficient, low-drag automobiles [5] to high-efficiency turbines [6] and internal combus-
tion engines [7]. The ability to reconstruct important flow features from restricted observations
is also critical in applications as diverse as cardiac bloodflow modeling [8, 9], ship wake identifi-
cation [10], and climate science [11]. All of these applications rely on estimating the structure of
complex fluid flows based on limited measurements. This work focuses on addressing this chal-
lenge using techniques from machine learning and sparse representation [12], which have recently
been applied to flow field classification [13–16].

Modern experimental methods and the increasing scale and resolution of numerical simula-
tions have led to an abundance of fluid flow data. Although we are able to achieve unprecedented
fidelity in measurement and simulation in lab settings, in applications we are typically limited
to a few noisy sensors. The challenge in flow field estimation is thus synthesizing the profusion
of offline data and limited, unreliable online information. This synthesis relies on learning and
representing the essential structure of the flow field by leveraging the physical behavior observed
∗ Corresponding author (jc244@uw.edu).
Matlab code: github.com/jcallaham/robust-flow-reconstruction
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in past data. Fluid mechanics is not unique in having a wealth of data, however, and recent years
have seen the rapid development of revolutionary machine learning techniques to leverage big
data, particularly in image processing [17, 18]. Since flow field data is often discretized on a grid,
many of these techniques can be applied to fluid mechanics with only minor modifications, for
example for flow field classification [13] and estimation [19].

A common model-free approach to flow field reconstruction is to represent the field as a lin-
ear combination of modes in a library, such as empirical eigenfunctions from proper orthogonal
decomposition (POD) [20, 21] or dynamic mode decomposition (DMD) [22–25]. Gappy POD was
introduced by Everson and Sirovich [26] to repair corrupted or missing data, and was adapted
to flow field reconstruction by Bui-Thanh et al. [27]. This method has been used to reconstruct
unsteady flow fields around a cylinder [28] and an airfoil [29], arterial blood flow data [8], and
low-dimensional ocean velocity and temperature fields [30]. Podvin et al. [31] used a similar
method to estimate POD coefficients for 3D cavity flow from 2D particle image velocimetry (PIV)
data. Other leading methods for flow field estimation include stochastic estimation and model-
based observers, which are discussed in more detail in section 2. However, these majority of these
approaches are based on least-squares regression, which may be prone to overfitting and sensitive
to noise. Furthermore, although these methods minimize the kinetic energy deviation between
the predicted and actual measurements, this does not guarantee that the reconstruction will be
globally optimal.

Inspired by the work of Wright et al. [12] on sparse representation for image recognition, we
propose searching for a sparse representation in a library of example flow fields rather than a
minimum-energy solution in the modal library, as shown schematically in figure 1. If the flow
is statistically stationary and the library is sufficiently extensive, it may be possible to identify a
sparse combination of the few most similar fields in the library that are consistent with the mea-
surements. If such a sparse representation is available, this approach corresponds to searching in
prior data for recurring coherent structures, which may be nonlinearly correlated with observa-
tions. Moreover, sparsity-promoting techniques are known to prevent overfitting and provide ro-
bustness to noisy and corrupt measurements, which are essential for flow field estimation. Sparse
representation has been previously applied to classify flow regimes in a library of POD modes
based on limited sensors in the seminal work of Bright, Lin, and Kutz [13], and sparse flow classi-
fication has been extended in related work [14–16]. Our work builds on this framework, extend-
ing regime classification to full flow field reconstruction and demonstrating sparse representation
in a library of training examples instead of a modal basis. We show that when the flows are
more complex than previously studied, or the measurements are corrupted, this method signifi-
cantly outperforms reconstruction with a POD library. Since highly complex flows may not have
a sparse representation in terms of POD modes, this result reinforces the importance of sparsity
for robustness to noise and accuracy of reconstruction. We extensively explore this method on
several example systems of increasing complexity with various levels of measurement noise, in-
cluding numerical and geophysical data sets, and find that it produces more accurate and robust
reconstructions than standard least-squares methods. Flow field estimation continues to be an im-
portant and difficult challenge, but improvements in robustness and accuracy are consistent with
previous work in sparse regression and highlight the value of sparsity in reconstruction methods.

The remainder of this work is organized as follows. Section 2 provides an overview of related
work on flow field estimation. In section 3, we describe the proposed method for flow field recon-
struction based on sparse representation. The four flow configurations used to test this method
are described in detail in section 4. Section 5 explores sparse reconstruction for flow field re-
construction on these examples with various sampling strategies from corrupted measurements,
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b) Sparse representation (online)

c) Full flow field estimation (online)
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Figure 1: Flow field reconstruction process using sparse representation. In offline library building
(a) the measurement operator C is applied to the training set  . The sparse representation step
(b) solves the relaxed convex optimization problem (7) to estimate sparse coefficients ŝ which are
consistent with the noisy measurements y. Finally the full flow field is reconstructed with as a
linear combination of the training examples (c). The reconstructed field shown in (c) is the actual
output of the sparse representation algorithm with the noisy test data and measurements shown
in (b). Flow past a cylinder is discussed further in section 5.1.

demonstrating that sparse representation exhibits improved robustness and accuracy compared
to least-squares estimation. These results include careful benchmark comparisons on four fluid
flows, including two canonical flows and two geophysical flows: periodic vortex shedding past
a cylinder at Re = 100 (section 5.1), a mixing layer at Re = 720 (section 5.2), global sea surface
temperature fields (section 5.3), and data from a Gulf of Mexico ocean model (section 5.4). On the
mixing layer and Gulf of Mexico ocean data, we demonstrate that when a globally sparse repre-
sentation is not available, the flow field can be more accurately estimated with a superposition of
local reconstructions and show that this improvement is facilitated by enhanced sparsity of the
local representations. In section 6 we summarize the main results and discuss limitations of the
method, and we conclude with section 7. To promote reproducible research, all code is available
online1.

1github.com/jcallaham/robust-flow-reconstruction
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2 Prior work in flow field reconstruction

Because of its far-reaching applications, flow field estimation is a rich field with seminal works
spanning the past half century. Here, we provide a brief overview of some of the most relevant
related works, which are organized into three broad groups: stochastic estimation, model-based
observers, and library-based reconstruction. Each of these methodologies approaches the problem
with a slightly different motivation, but many modern studies are driven by the overarching goals
of estimation and control.

Stochastic estimation (SE) was introduced by Adrian [32] to study coherent structures in tur-
bulence. SE is a statistical technique that estimates a quantity of interest in the flow as a con-
ditional average given the measurements. Expanding the conditional average in a Taylor series
and minimizing the mean-square estimation error yields a functional dependence between the
observation and flow field variables determined by unconditional statistics, such as the two-point
correlation tensor. SE has been extended to the estimation of POD coefficients [33], spectral coef-
ficients [34, 35], and inclusion of time-delayed measurements [36, 37]. The stochastic estimation
method has been used to study isotropic turbulence [32, 38, 39], turbulent boundary layers [40, 41],
axisymmetric jets [33, 35], the backwards-facing step [42–44], open cavities [45, 46], and for feed-
back in closed-loop control of flow separation over an airfoil [47].

In another approach to flow field estimation, an observer dynamical system is used to evolve
the estimate of the system state according to a reduced-order model while measurements provide
feedback used to improve the estimate. The model may be linear, for example, based on dynamic
mode decomposition (DMD) [22–25], with an estimate maintained by Kalman filtering [16, 48, 49].
The model could also be nonlinear, based on a Galerkin projection of the Navier-Stokes equations
onto a set of POD modes [50–52], or the result of model identification [53, 54]. Recent work has
investigated the use of data assimilation techniques (e.g. particle filters or ensemble Kalman fil-
ters) to estimate the mean flow [55–57] or the full flow field [58–62]. In any case, the accuracy of
observer-based methods depends on the quality of the reduced-order model, so there is inevitably
a tradeoff between low-latency and high-accuracy models. There are a number of excellent re-
views of modal decomposition and model reduction in fluids [63, 64] .

A third category of model-free flow field estimation takes advantage of large offline data sets
via library-based reconstruction. Often the flow field will be discretized and reshaped into a high-
dimensional vector, which is then approximated by a linear combination of modes in a library [64].
The modes may be generic (e.g. a Fourier or wavelet basis) or tailored to the particular flow (such
as POD or DMD modes), which each have advantages for sensor-based flow reconstruction [65].
Advanced data-driven algorithms such as K-SVD [66, 67] and GOBAL [68] may also be used.
Gappy POD [26] is a popular library-based method, where the library consists of POD modes and
coefficients are estimated by least-squares regression based on limited or masked data [27, 29, 46].
Podvin et al. [31] used gappy POD to estimate POD coefficients for a 3D flow past a cavity from 2D
PIV data, choosing the number of measurements to equal the number of modes, resulting in the
inversion of a square matrix. In a related approach, Yu and Hesthaven [19] use deep learning to
estimate POD coefficients, while Fukami et al and Erichson et al have both studied direct estimation
of flow fields with neural networks [69, 70].

Linear dimensionality reduction techniques, such as POD and DMD, have well-known limita-
tions, including the inability to efficiently capture symmetries in the data, such as traveling waves
or rotating structures [71, 72]. An alternative approach involves identifying a nonlinear coordinate
transformation onto a low-dimensional manifold, for example using an autoencoder neural net-
work with nonlinear activation functions [73]. With advances in deep learning, these nonlinear
embedding approaches are becoming more mainstream [74–78]. More generally, deep learning
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is a powerful emerging technique to represent multi-scale flow structure and model turbulence
closure [79–82], although it generally requires tremendous amounts of training data and may be
prone to overfitting unless care is taken to constrain the models with known physics. In a sense,
deep learning may be considered a sophisticated nonlinear interpolation scheme that leverages a
large library of historical examples [83]. However, linear dimensionality reduction is still widely
used, in part because of its simple formulation in terms of linear algebra, which enables fast com-
putations and methodological extensions [72].

The estimation and reconstruction algorithms described above are generally based on `2-
optimization, which suffers from the same limitations as standard least-squares parameter estima-
tion; sparsity-promoting methods have emerged as a principled way to address these shortcom-
ings by regularizing the regression [72, 84–86]. Sparse representation in a library takes advantage
of known structure in the data and is robust to measurement corruption [12]. If the coefficient
vector of the modal representation is sparse in the sense that it has relatively few nonzero entries,
the coefficients can be recovered from surprisingly few measurements with efficient tools, such
as matching pursuit [87–90] or by `1-minimization of the coefficient vector [91, 92], under certain
assumptions. If the library consists of generic modes, such as a discrete cosine transform (DCT)
basis, then recovery based on `1-minimization is known as compressed sensing (CS) [93–95]. Com-
pressed sensing has been used in fluid mechanics to reconstruct a signal in a linear-duct acoustic
problem [96], identify dominant frequencies in low-dimensional projections of sub-Nyquist rate
PIV data [97], and to find a compact representation for wall-bounded turbulence [98]. Although
these results are promising, general flows are often not sparse enough to take advantage of com-
pressed sensing, requiring prohibitively many measurements and expensive computations that
do not scale well.

The sparsifying library does not need to be universal, however. Sparse representation in a
data-driven POD basis was used to classify the Reynolds number for flow past a cylinder [13, 15].
Bai et al. [99] similarly demonstrated CS in a POD library to reconstruct PIV data. Wright et al. [12]
proposed a straightforward alternative to modal libraries, such as DCT and POD, in the sparse
representation for classification (SRC) algorithm for facial recognition. In SRC, an image of an
individual is downsampled and approximated with a sparse representation in terms of a library
consisting of the training data itself, which contains some example images of the same person. The
coefficients corresponding to the test individual will naturally be of greater magnitude, indicating
the identity of the subject. SRC is robust to noise, corruption, or occlusion of the image, and has
been applied for early diagnosis of Alzheimer’s disease [100], segmentation of MRI images [101],
automatic detection and classification of brain tumors [102], music genre categorization [103], and
dolphin whistle classification [104]. Although SRC was introduced for classification, the success
of sparse representation in a library of the training data has far reaching applications, including
for flow field reconstruction, as will be explored here. A similar idea has been used in the field
of analog weather forecasting, where identifying the most similar past conditions (i.e., finding a
sparse representation of current conditions in terms of past conditions) provides information that
enables future predictions [105–107].
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3 Sparse representation of a flow field in a library

In this work, we will investigate the utility of sparse representation for flow field reconstruction
in a library of historical flow field data, exploring robustness and scaling with flow complexity.
This section provides the methodological foundations for the results that follow. We describe
the general library-based signal recovery framework in section 3.1, including reconstruction from
sparse representation. In section 3.2 we introduce our method for sparse representation-based
flow field reconstruction.

3.1 Library-based signal recovery

Here we provide the general problem statement and notation for sensor-based reconstruction of
a high-dimensional state in a library. Given a discretized state vector x ∈ IRn, for example repre-
senting the fluid velocity or vorticity field at a set of grid points, and linear measurements y = Cx,
with y ∈ IRp and p � n, we seek an estimate x̂ of the full signal. We assume that the state x can
be accurately expressed as a linear combination of library elements

{
ψj
}
, j = 1, 2, . . . , r with

ψj ∈ IRn, so that
x ≈ Ψs, (1)

for some coefficient vector s ∈ IRr, where columns in the library Ψ ∈ IRn×r are the vectors ψj . The
reconstruction problem reduces to estimating the coefficients ŝ that satisfy

y ≈ CΨŝ. (2)

In other words, we seek an estimate that produces measurements ŷ = CΨŝ consistent with actual
observations y. As described earlier, the library Ψ may comprise a modal basis, such as Fourier,
wavelets, POD, or DMD modes, or it may be chosen to contain examples of flow fields from
training data. We will also explore reconstruction for different classes of measurement matrix C,
although it is also possible to tailor this matrix for a given library Ψ for improved reconstruc-
tion [65].

In practice, solving for ŝ in Eq. (2) must be formulated as an optimization problem, since CΨ
is not typically a square matrix. For instance, in the overdetermined case where p > r and there are
more measurements than library elements, we may choose to solve for the least-squares solution

ŝ = arg min
s
‖y −CΨs‖2. (3)

It is generally useful to modify the least-squares regression by adding a regularization term to
prevent overfitting and promote robustness to noise and outliers in the data:

ŝ = arg min
s
‖y −CΨs‖2 + λ‖s‖q. (4)

A choice of q = 2, corresponding to Tikhonov or ridge regression, penalizes high-variance solu-
tions. For instance, Buffoni [52] employed this regularization to estimate POD coefficients in a
nonlinear observer. A choice of q = 1 (LASSO regression) promotes a sparse representation [108].
The regularization parameter λ can be tuned to adjust the strength of this term. Other choices of
q are possible, but q = 1 and q = 2 are the most common since they can be solved with convex
optimization [109], which scales well to large problems.

For high-dimensional and multiscale data, it is often the case that there are fewer available
measurements than modes in the library, leading to an underdetermined problem with p < r. In
this case the appropriate optimization problem is

ŝ = arg min
s
‖s‖q subject to y = CΨs. (5)
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Again, q = 2 leads to the minimum-energy solution consistent with measured data, while q = 1
leads to a sparse representation in the library Ψ.

If the coefficient vector s is known to be sparse, and it is assumed to have exactly K nonzero
elements (i.e., the vector s is K-sparse), this problem can be formulated as

ŝ = arg min
s
‖y −CΨs‖2 subject to ‖s‖0 = K, (6)

where ‖s‖0 is the number of nonzero entries of s. Although an estimate of the sparsity K may not
generally be available, there are many efficient algorithms such as OMP [87–89] or CoSaMP [90]
that can solve this problem more efficiently than Eq. (5).

The representation problem in Eq. (5) can be applied to noisy sensor measurements y. In this
case, the measurements are y = Cx +η, where η is a noise vector. The optimization problem then
relaxes the equality constraint:

ŝ = arg min
s
‖s‖q subject to ‖y −CΨs‖2 < ε, (7)

where ε is an error tolerance. If the measurements have independent and identically distributed
Gaussian noise (i.e., η ∈ IRp with ηi ∼ N (0, σ)), ε may be chosen as a multiple of the total noise
σ
√
p. When noise is introduced artificially, we nondimensionalize the noise level σ by the RMS

fluctuations of the field variable in the training set.
The relaxation in Eq. (7) assumes that σ is relatively small compared to typical fluctuations in

the measurement vector y. Wright et al. [12] describe a method for sparse representation, with
q = 1, to handle sparse corruption with large amplitude, where some unknown fraction ρ of
random entries in y suffer from uniformly distributed corruption over the full range of observed
values. That is, the measurement y is now y = Cx + e, where e has ρp nonzero entries. The
optimization problem is extended to also identify e by direct minimization of its `1 norm. If the
signal is additionally corrupted by dense low amplitude noise as in (7), the problem becomes

ŝ = arg min
s, e
‖s‖1 + ‖e‖1 subject to

∣∣∣∣
∣∣∣∣
[
CΨ I

] [s
e

]
− y

∣∣∣∣
∣∣∣∣
2

< ε. (8)

We find, consistent with their results, that although the corruption e must be sparse in the sense
that it has enough zero entries to enable identification via minimization of its `1 norm, it can
actually consist of a substantial fraction of total measurements (see e.g. figure 5). We demonstrate
reconstruction from noisy measurements in sections 5.1 and 5.2, but we relax the optimization
problem even when noise is not explicitly added. Since Eq. (1) will generally not be exact, the
relaxation ε plays a similar role to the regularization parameter λ in Eq. (4); larger relaxations ε
allow sparser estimates ŝ which still satisfy the constraint in Eq. (7).

As mentioned earlier, there are many choices for the library of modes, and some may be more
natural depending on the application. Fourier modes or wavelets may be useful in audio or image
compression, and empirical POD modes are often used in fluids. In order to construct “tailored”
libraries, such as POD modes, it is necessary to have a training set X ∈ IRn×m of flow fields
that contains representative examples. Such a training set can be obtained from simulations or
experiments. Other libraries may be designed to be optimal in another sense. For instance, the K-
SVD algorithm [66, 67] iteratively constructs a library in which data should have a representation
with some prescribed sparsity. GOBAL [68] is a similar method that enforces observability of the
library modes. Wright et al. [12] simply use the training set as the library, so that the columns of
Ψ are the prior observations.

This reconstruction framework enables many choices for the library and the optimization for-
mulation. For example, gappy POD [26] solves the least-squares problem (3) with a library of
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ŝ = arg mins ksk1

ky � C sk2 < ✏x y = Cx + ⌘

x̂ =  ŝ

Figure 2: Schematic of the sparse representation method shown graphically in figure 1. After con-
structing the library C in an offline step, the sparse coefficients ŝ consistent with measurements
y are estimated. The full flow field can be reconstructed as a linear combination of the training
examples in .

POD modes.To identify the high-energy structures in the flow field and ensure that the problem
remains underdetermined, the library of POD modes can be truncated. This may be done auto-
matically, for instance with the hard threshold of Gavish and Donoho [110], although it is not clear
in general what level of truncation is optimal for flow reconstruction.

3.2 Flow field reconstruction from sparse representation

We now adapt the library-based reconstruction framework for fluid flow field reconstruction. The
procedure is shown schematically in figures 1 and 2. The signal x 2 IRn is the full discretized flow
field and the measurement operator C still relates measurements y to the full field by y = Cx.
Following the work of Wright et al. [12] in image analysis, we assume that the flow field has a
sparse representation in a library of training examples  , as opposed to POD modes. That is,
x =  s for some s with ksk0 = K ⌧ n. The coefficient vector s can be estimated using one of the
optimizations in Eqs. (5)–(8).

In order to improve the performance of this method for systems in fluid mechanics, we make
several modifications. First, the empirical mean of the training set may be subtracted from all data.
This is effective in cases where the mean represents a significant fraction of the energy in the data,
for instance in sea surface temperature fields (section 5.3). Second, the amplitudes of the recon-
structed flow fields can be rescaled so that the total energy of the flow is equal to that computed
from the training data. This rescaling is useful for reconstruction from noisy measurements; flow
fields reconstructed with (7) tend to have lower amplitudes than the true field, since high levels of
noise can be consistent with qualitatively accurate fields of reduced amplitude. In this work we
only use this modification in section 5.1.

Third, we develop a method of localized reconstruction for complex fluid flows. In the recon-
struction process above, it is assumed that the test field is a simple linear combination of global
fields in the library. However, for flows with coherent structures at multiple spatial scales, it may
be prohibitively expensive to collect enough data to have representative examples of all likely
global flow fields. Said another way, for multi-scale flows, it is difficult to collect enough data
for the library to converge to a statistical stationary distribution. Fortunately, if we decompose
the global domain into local patches, each patch may be much lower rank, enabling a local sparse
representation. To facilitate localized reconstruction, we introduce local kernels�j , j = 1, 2, . . . , k
that restrict the measurement yj = C�jx and reconstruction to the j�th local region:

ŝj = arg min
sj

ksjkq subject to kyj � C�j sjk2 < ✏. (9)

These decoupled optimization problems lead to compact local estimates x̂j = �j ŝj , with a full
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These decoupled optimization problems lead to compact local estimates x̂j = ΦjΨŝj , with a full
state estimate, x̂ =

∑
j x̂j , that is globally valid.

Finally, we define a metric to compare the quality of various reconstructions.The normalized
root-mean-square residual of the difference of the reconstruction x̂ and the test field x is:

error =
‖x− x̂‖2
‖x‖2

. (10)

If the empirical mean x̄ is subtracted from both x and x̂, then the appropriate metric is

error =
‖x− x̂‖2
‖x+ x̄‖2

. (11)

At this point, it is important to summarize some of the main assumptions that sparse represen-
tation relies on. First, as with all reconstruction methods based on a tailored library, we assume
that the flow is statistically stationary, so that a sufficiently large library based on training data
can generalize to future states. We then assume that the training set is comprehensive enough
that the observed states are well-approximated by a linear combination of library elements. This
is a related requirement, but while the former is a property of the flow, the latter is a property of
the training data itself. All reconstruction methods further rely on the measurements containing
sufficient information to accurately identify the coefficients ŝ. Just as reconstruction is impossible,
even with relatively dense sampling, for a flow state that is essentially orthogonal to the library,
we cannot realistically expect to accurately reconstruct a turbulent channel flow from one point
measurement, no matter how extensive the library. Finally, sparse representation assumes that a
flow field of interest may be expressed as a linear combination of a small number of other flow
fields in the training library. This assumption holds for simple flows, such as periodic vortex
shedding at low Reynolds number, but may be unjustified for complex, multiscale flows unless a
staggering amount of data is available. We examine the implications of these assumptions in the
following sections.

3.2.1 Algorithm

The complete flow field reconstruction based on sparse representation is as follows:

1. Compute the library Ψ ∈ IRn×r. The library may be given by the unmodified training data
X ∈ IRn×m, although we also investigate reconstruction using POD modes and a K-SVD
library. Optionally, the empirical mean flow field x̄ ∈ IRn may be subtracted fromX .

2. Take measurements y = Cx + η of the flow field x using the measurement operator C ∈
IRp×n with noise η. For the examples below, the measurement matrix C consists of rows of
the identity matrix corresponding to measured locations in the discretized field.

3. Solve the appropriate optimization problem in Eqs. (5)–(8) for the coefficient vector ŝ. If the
coefficients are found by minimizing the `1−norm, we refer to this as sparse representation.

4. Reconstruct the estimated flow field with x̂ = Ψŝ. Optionally, rescale the estimated field to
have the same variance as the training fields; this is helpful for very noisy measurements.

For dictionary learning with K-SVD, we use KSVD-Box v13. We solve the pursuit problem
in Eq. (6) with OMP-Box v10 [111]. To solve the convex optimization problems (7), (8), and (9),
we use the CVX Matlab package [112, 113]. The complexity of sparse approximation grows with
the number of measurements and the number of modes in the dictionary, but does not directly
depend on the number of points in the original discretized field.
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Figure 3: Example flow fields from the data sets which we investigate with the sparse
representation-based reconstruction method. We study two canonical flows (periodic vortex shed-
ding past a cylinder at Re = 100 and a mixing layer at Re = 720) and two geophysical data sets
(sea surface temperature and Gulf of Mexico vorticity fields).

4 Flow configurations

Here we describe the fluid flows explored in this work and the methods used to obtain the data.
We apply flow field reconstruction to four data sets of increasing complexity, shown in figure 3:
vortex shedding past a cylinder at Re = 100, a mixing layer at Re = 720, observations of sea
surface temperature, and sea surface vorticity in the Gulf of Mexico.

4.1 Periodic vortex shedding

The first test case is given by the two-dimensional fluid flow past a circular cylinder at Reynolds
number 100, which is characterized by periodic, laminar vortex shedding. This flow is a canonical
benchmark system, although it is considerably simpler than most flows of practical interest.

Our data was generated from direct numerical simulation of the incompressible Navier-Stokes
equations using the immersed boundary projection method [114, 115]. The computational domain
consists of four nested grids with the smallest grid covering a domain of 9 ⇥ 4 cylinder diameters
and the largest grid covering a domain of 72⇥32 diameters. The resolution for each grid is 450⇥200
(50 points per cylinder diameter) and the simulation uses a time step of �t = 0.02 time units that
are non-dimensionalized by the free-stream velocity and the cylinder diameter. We collect 151
post-transient snapshots, corresponding to five periods of vortex shedding, with each snapshot
separated by 10�t. The Reynolds number for this flow, based on the cylinder diameter and free-
stream velocity, is Re = DU1/⌫ = 100, where D is the diameter, U1 is the free-stream velocity, and
⌫ is the kinematic viscosity. The training set consists of the first 32 snapshots, which spans one full
period. We analyze the vorticity field, although the method could be applied to velocity, pressure,
scalar concentrations, or any other field variables of interest. The mean vorticity field is included
in visualizations, although analyses and error calculations are performed after subtracting the
empirical mean of the training data.
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4.2 Mixing layer

As a more complex example, we consider a two-dimensional, compressible mixing layer at Reynolds
number

Re =
∆U δ

ν
= 720,

where δ is the initial vorticity thickness, ∆U is the velocity difference across the layer, and ν is the
kinematic viscosity. Stanley and Sarkar [116] showed that two-dimensional numerical simulations
in this regime reproduce the flow structures observed in three-dimensional experiments.

We generated this data set by direct numerical simulation of the compressible Navier-Stokes
equations using a finite volume, 5th-order WENO scheme [117]. The spatial coordinates are nor-
malized by the vorticity thickness at the inlet. The velocities are normalized by the speed of sound
of the fluid far from the mixing region. The Mach numbers of the high- and low- stream veloc-
ity are 0.5 and 0.25, respectively. The computational domain is x ∈ [0, 800] and y ∈ [−200, 200].
The flow is forced at the inflow boundary at its most unstable fundamental frequency, and its
sub-harmonic. Non-reflective boundary conditions are implemented on the other boundaries.
The grid is smoothly stretched away from the mixing region to the non-reflective boundaries to
prevent contamination by reflections. The grid in the mixing region is uniform with ∆x = 0.08
and ∆y = 0.02, respectively. After removing the transient portion of the simulation, we collect
2400 snapshots of the vorticity field in a window of (x, y) ∈ (0, 128) × (−12, 12), separated by
non-dimensional time steps of ∆t = 0.5827. We compute the normal vorticity from these velocity
fields both for ease of visualization and for the importance of vorticity in identifying dynamically
significant coherent structures [118].

Forcing at the inlet excites instability waves, which roll up into vortices and convect down-
stream. These vortices pair and eventually merge into successively larger vortices. This pro-
cess contributes to the linear growth of the mixing layer [119], and at higher Reynolds number,
the turbulent mixing layer is dominated by the linear growth of the coherent structures [120].
These structures play a significant role in mixing, transport, and entrainment in turbulent shear
flows [118]. Therefore, we study this laminar mixing layer as a representative case to assess the
ability of sparse representation to generalize to other shear flow configurations.

4.3 Sea surface temperature field

Real-world data is rarely as well-behaved as the numerical solutions of canonical flows. How-
ever, it is these flows, with limited training data, multiscale dynamics, and unmodeled coupling
to external systems, where the ability to infer the structure of the field would be most useful. To
this end we explore reconstruction methods with the NOAA Optimum Interpolation Sea Surface
Temperature (SST) V2 data set. Due to seasonal fluctuations, the SST field exhibits strongly pe-
riodic structure, although complex ocean dynamics still lead to rich flow phenomena. Flow data
is available on a weekly basis on a one degree grid, and it is produced by combining local and
satellite temperature observations. We use all available data at the time of analysis (1914 weeks,
spanning October 1981-June 2018). Our training set consists of the first 20 years of data (1040
weeks, spanning 1981-2001). We calculate a long-term annual mean field and subtract the mean
for all analyses, since the mean accounts for the majority of the spatial structure of the field and is
therefore uninformative with respect to the performance of reconstruction methods.
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Figure 4: Singular value spectra for the flows studied in this work. Each is normalized by the sum
of singular values for that flow. The normalized cumulative sum of the singular values (bottom)
represents the energy captured in the dominant POD modes. The rate of convergence gives an
indication of the complexity of the flow. The singular values for vortex shedding past a cylinder
(blue) converge quickly, whereas the Gulf of Mexico vorticity data (purple) has a long tail. The sea
surface temperature (yellow) and mixing layer vorticity (red) are of intermediate complexity.

4.4 Gulf of Mexico surface vorticity

Finally, we consider the Gulf of Mexico surface velocity estimates from the HYbrid Coordinate
Ocean Model (HYCOM) group. This data-assimilative model synthesizes remotely sensed and
in situ measurements on a hybrid coordinate system. We use daily 1/12.5�-resolution data from
1992-2018 (9268 snapshots, combined from HYCOM experiment numbers 19.0, 19.1, 90.9, 91.1,
and 91.2). The training set consists of 8341 snapshots, or approximately 90% of the total data, with
the remainder withheld for independent validation. As with the mixing layer and cylinder, we
compute vorticity from 2D velocity measurements, although the methods are readily applied to
any quantity of interest. We analyze the fluctuating vorticity fields relative to the empirical mean
of the training set, but include the mean flow in visualizations.

Figure 4 shows the singular value spectra, equivalent to the POD eigenspectra, of the four
data sets. This offers a rough comparison of the complexity of the flows. The low-dimensional
dynamics of the flow behind a cylinder is clear from the sharp decay of singular values; most
of the energy is contained within the first twenty POD modes. On the other hand, the spectrum
for the Gulf of Mexico data converges slowly, indicating complex multiscale dynamics. The dif-
ficulties with this data set are intuitive: by restricting our view to the Gulf of Mexico we study
a flow with an unmodeled coupling to a much larger chaotic system. The mixing layer and sea
surface temperature data exhibit intermediate complexity. For the mixing layer, the flow near
the inlet is approximately periodic, and the behavior becomes more complex as the flow evolves
downstream. Similarly, the SST fields show strong seasonal fluctuations with perturbations.
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4.4 Gulf of Mexico surface vorticity

Finally, we consider the Gulf of Mexico surface velocity estimates from the HYbrid Coordinate
Ocean Model (HYCOM) group. This data-assimilative model synthesizes remotely sensed and
in situ measurements on a hybrid coordinate system. We use daily 1/12.5◦-resolution data from
1992-2018 (9268 snapshots, combined from HYCOM experiment numbers 19.0, 19.1, 90.9, 91.1,
and 91.2). The training set consists of 8341 snapshots, or approximately 90% of the total data, with
the remainder withheld for independent validation. As with the mixing layer and cylinder, we
compute vorticity from 2D velocity measurements, although the methods are readily applied to
any quantity of interest. We analyze the fluctuating vorticity fields relative to the empirical mean
of the training set, but include the mean flow in visualizations.

Figure 4 shows the singular value spectra, equivalent to the POD eigenspectra, of the four
data sets. This offers a rough comparison of the complexity of the flows. The low-dimensional
dynamics of the flow behind a cylinder is clear from the sharp decay of singular values; most
of the energy is contained within the first twenty POD modes. On the other hand, the spectrum
for the Gulf of Mexico data converges slowly, indicating complex multiscale dynamics. The dif-
ficulties with this data set are intuitive: by restricting our view to the Gulf of Mexico we study
a flow with an unmodeled coupling to a much larger chaotic system. The mixing layer and sea
surface temperature data exhibit intermediate complexity. For the mixing layer, the flow near
the inlet is approximately periodic, and the behavior becomes more complex as the flow evolves
downstream. Similarly, the SST fields show strong seasonal fluctuations with perturbations.
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5 Results

We now investigate flow field reconstruction from limited measurements using the four data sets
described in section 4, which span a range of physical scales and complexity. For the two nu-
merically generated flows, we study the impact of measurement noise on reconstruction accuracy
and find improved robustness with sparse representation. In the mixing layer, we demonstrate
the advantages of sparse representation by analyzing the flow in windows to enable higher levels
of sparsity. Finally, we demonstrate the proposed method on two geophysical data sets: global
sea surface temperature and Gulf of Mexico surface vorticity. In all cases, we compare the perfor-
mance of sparse representation to other library-based methods, including gappy POD.

5.1 Periodic vortex shedding

Figure 5 demonstrates reconstruction of the flow past a cylinder from various measurements with
increasing levels of noise and corruption. In particular, we consider sparse representation in a
library of the training data with and find that this flow can be accurately reconstructed, even in
the presence of significant noise. We also investigate various measurement strategies, including
random point measurements, a “window” inspired by PIV-type measurement, and continuous
“slices” in both vertical and horizontal orientations. For example, figure 5 demonstrates recovery
of the entire field using Eq. (8) from a cross-stream slice measurement where 70% of the measured
points are corrupted by replacing the observed value with a uniform random value on the range
of observed vorticity. In all cases, the measurement strategies with larger numbers of observations
(e.g., the red window) exhibit more robust reconstruction performance. In addition, for corrupt
measurements, there is a phase change observed at a critical corruption density, consistent with the
wider sparse representation literature. It is not surprising that sparse representation is effective
for this simple example, since the flow is periodic and patterns observed in the training data
generalize to the test fields. In fact, for this reason we do not have a truly independent set of
flow fields on which we validate the ability of these methods to generalize beyond training data.
However, these results are encouraging, as sparse representation exhibits accurate and robust
reconstruction across a variety of physical measurement configurations and noise intensity.

With the wealth of potential reconstruction techniques within the library-based optimization
framework, it is interesting to explore the relative resilience to noise of different choices of the
library and regularizing norm. Figure 6 shows a comparison of reconstruction accuracy with in-
creasing noise level for several of these combinations. We find that over a wide range of Gaussian
noise levels, the sparse reconstruction (`1 norm) with either the training library or a K-SVD library
outperforms POD-based methods. The slope of the `2-based methods are smaller than those of
the `1-based methods, so they will eventually achieve lower relative error, although at such large
levels of noise it is unlikely that any method will result in a useful reconstruction. The poor perfor-
mance of `1 optimization with a POD library indicates that the POD basis does not admit a sparse
representation; empirical POD modes are eigenfunctions of a time-averaged correlation matrix, so
that the energy in any particular flow field is distributed across modes. Thus, although the POD
basis is optimal in the sense that it offers the best global reconstruction for a given number, this
does not translate into optimality for the problem of reconstruction from limited measurements.
In contrast, the K-SVD library is designed to admit a sparse representation of the data, and it is
not surprising that this library results in the best performance2. However, sparse representation
in a library of the training data exhibits similar performance and benefits from simple implemen-

2K-SVD allows for tuning several parameters; although our chosen values work well, these are not necessarily optimal.
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Figure 5: Sparse reconstruction in a library of training data accurately recovers the flow past a
cylinder in the presence of noise and corruption using a variety of measurement strategies. (a)
Illustration of different measurements: random points (blue), vertical and horizontal slices (resp.
purple and green), and a window (red). (b) Flow field from the test data set. (c) Example flow
snapshot with corruption in 70% of grid locations. The vertical stripe shows the measurement
location. (d) Reconstructed flow field from sparse representation using corrupted measurements
shown in (c). (e) Normalized reconstruction error with increasing percentage of grossly corrupted
grid points (see section 3.1). Colors correspond to the measurements in (a) and error bars show
standard error as obtained by simulating 10 different realizations of the Gaussian noise for the
119 test fields. (f) Normalized reconstruction error with increasing levels of dense, normally dis-
tributed noise. In all cases, more measurements result in better performance. A contour plot of
reconstruction errors is shown in figure 18 in Appendix C.

tation and interpretable results. These results reinforce the importance of sparse representation
with respect to robustness to noise, a quality which has made `1�regularization a popular tool to
prevent overfitting in parameter estimation [84].

It is not surprising that sparse representation is so effective on this example, since the flow
is low-rank, periodic, and does not exhibit multiscale phenomena. For a periodic flow, sparse
representation reduces to choosing the single example with the correct phase from the library. In
contrast, each flow field is a dense linear combination of POD modes, so that this library does not
admit a sparse representation. Reconstruction from limited, noisy measurements via sparse rep-
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prevent overfitting in parameter estimation [84].

It is not surprising that sparse representation is so effective on this example, since the flow
is low-rank, periodic, and does not exhibit multiscale phenomena. For a periodic flow, sparse
representation reduces to choosing the single example with the correct phase from the library. In
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Figure 6: Comparison of reconstruction with different libraries and norms from a noisy vertical
measurement slice (figure 5, purple). The horizontal axis is the level of dense Gaussian noise,
the vertical axis is the normalized residual error in the reconstruction (10), and the error bars
indicate standard error on the mean residual. Insets show typical examples of reconstruction.
Over this range of noise, sparse representation with the training library (red) shows an average
35% improvement over the more standard gappy POD (purple).

resentation in a training library can therefore provide a robust alternative to `2�based methods.
In addition, the set of sparse coefficients can also be used for robust estimation integral quantities
such as the lift coefficient, provided the fields in the training set are labeled with the corresponding
quantity of interest, as demonstrated in Appendix C.

5.2 Mixing layer

The downstream evolution of the mixing layer leads to globally aperiodic dynamics, so we cannot
expect to exactly reproduce an arbitrary flow field with a single example from in the training
library, as was the case for the periodic vortex shedding behind a cylinder. However, we find
that highly sparse representations still lead to accurate flow field estimates. This suggest that the
library of mixing flow fields generalize to new flows that are not in the training set, allowing a
sparse representation.

Figure 7 demonstrates reconstruction of the normal vorticity of the mixing layer from spatially
downsampled measurements, given by 10:1 downsampling of the original data in the middle re-
gion containing the mixing layer. Since noise is added to the measurements, the sparse repre-
sentation is found using Eq. (7) with an optimally chosen value of ✏ (see Appendix B). This may
be thought of as a super-resolution problem [121, 122], where low-resolution measurement data is
synthesized into a higher-resolution field based on a high-resolution library. We compare recon-
struction via sparse representation in the training library to `2 minimization in a truncated library
of POD modes (r = 50). ’Both suffer from some degree of overfitting, since the specific global
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contrast, each flow field is a dense linear combination of POD modes, so that this library does not
admit a sparse representation. Reconstruction from limited, noisy measurements via sparse rep-
resentation in a training library can therefore provide a robust alternative to `2−based methods.
In addition, the set of sparse coefficients can also be used for robust estimation integral quantities
such as the lift coefficient, provided the fields in the training set are labeled with the corresponding
quantity of interest, as demonstrated in Appendix C.

5.2 Mixing layer

The downstream evolution of the mixing layer leads to globally aperiodic dynamics, so we cannot
expect to exactly reproduce an arbitrary flow field with a single example from in the training
library, as was the case for the periodic vortex shedding behind a cylinder. However, we find
that highly sparse representations still lead to accurate flow field estimates. This suggest that the
library of mixing flow fields generalize to new flows that are not in the training set, allowing a
sparse representation.

Figure 7 demonstrates reconstruction of the normal vorticity of the mixing layer from spatially
downsampled measurements, given by 10:1 downsampling of the original data in the middle re-
gion containing the mixing layer. Since noise is added to the measurements, the sparse repre-
sentation is found using Eq. (7) with an optimally chosen value of ε (see Appendix B). This may
be thought of as a super-resolution problem [121, 122], where low-resolution measurement data is
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Figure 7: Global reconstruction of a mixing layer vorticity field via super-resolution. The test field
(a) is measured with 10:1 downsampling (b) and reconstructed with both sparse representation
in a training library (c) and least-squares regression in a POD library (d). Though both methods
overfit the data, sparse representation captures the large-scale structures more effectively than
least-squares POD. Separating the domain into windows that grow linearly in the streamwise di-
rection, consistent with the flow dynamics, leads to a more realistic reconstruction from sparse
representation (e), although gappy POD does not improve with this approach. The relative spar-
sity, given by the fraction of nonzero coefficients, of the global and windowed sparse representa-
tions (g) shows that windowing enables improved sparsity. A color map of reconstruction errors
is shown in figure 19 in Appendix C.

arrangement of vortices in the test data is likely not observed in the training data. Still, sparse
representation builds a reasonable picture of the early perturbations and later large-scale vortical
structure, whereas both are barely identifiable in the POD reconstruction.

The relatively limited accuracy of sparse representation in this case suggests that the global
test field is not a sparse linear combination of examples in the training set, presumably because all
possible arrangements of vortices and their phases have not been observed. Compared to vortex
shedding past a cylinder, this flow exhibits more complex, multiscale dynamics that are driven
by the successive vortex pairing process. The local measurements may not be informative or
correlated with the global structure of the flow field, which is an implicit assumption of the global
library-based estimation. In such cases, where the global domain is larger than the de-correlation
length, it may be helpful to assume that measurements inform only the local spatial region of the
flow. Thus, we apply the localized reconstruction process introduced in section 3.2. We divide the
full flow field into ten windows that grow linearly in the streamwise direction, consistent with the
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Figure 8: Local mixing layer vorticity field reconstruction. As in figure 7, we construct windows
that grow linearly in the spanwise direction and collect ten point measurements at noise level
� = 0.3 (white and black dots) from the mixing layer centerline in each window (separated by
dashed lines). Local reconstructions are computed based on a windowed library of training ex-
amples (e, f). The normalized residual error averaged across the test set is 0.49 for the global
sparse reconstruction (c), 0.58 for the windowed sparse reconstruction (e), 1.06 for global gappy
POD reconstruction (d), and 1.05 for the local POD estimate (f). Although the windowed sparse
representation has larger global errors than the global estimation, the local reconstruction is more
accurate in the windows closer to the inlet, since the time scales of the flow are shorter there and
the training set is more likely to contain examples of similar fields (see also figure 12b). The rela-
tive sparsity of the global and windowed sparse representations in (g) shows improved sparsity
with windowing.

streamwise dynamical scaling, and solve the local sparse representation problems independently.
Reconstructions are then formed from sparse combinations of the windowed training fields.

Figure 7g compares the relative sparsity of the global and windowed sparse representations,
given by the fraction of total nonzero coefficients across all independent windowed optimization
problems. The local representations are more sparse and have higher fidelity than the global re-
construction. This suggests a connection between multiscale features of the flow and the sparsity
of representation. By restricting the scope of the reconstruction problem, we simplify the effective
dynamics, and this is reflected in the order of magnitude difference in the sparsity of represen-
tation. These results suggest that the proposed flow field reconstruction method may generalize
well to spatially complex flow fields. Note that when averaged across the test data, the various
reconstruction results are comparable in an `2 error metric (⇠ 0.4), even though the fields obtained

17
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that grow linearly in the spanwise direction and collect ten point measurements at noise level
σ = 0.3 (white and black dots) from the mixing layer centerline in each window (separated by
dashed lines). Local reconstructions are computed based on a windowed library of training ex-
amples (e, f). The normalized residual error averaged across the test set is 0.49 for the global
sparse reconstruction (c), 0.58 for the windowed sparse reconstruction (e), 1.06 for global gappy
POD reconstruction (d), and 1.05 for the local POD estimate (f). Although the windowed sparse
representation has larger global errors than the global estimation, the local reconstruction is more
accurate in the windows closer to the inlet, since the time scales of the flow are shorter there and
the training set is more likely to contain examples of similar fields (see also figure 12b). The rela-
tive sparsity of the global and windowed sparse representations in (g) shows improved sparsity
with windowing.

correlated with the global structure of the flow field, which is an implicit assumption of the global
library-based estimation. In such cases, where the global domain is larger than the de-correlation
length, it may be helpful to assume that measurements inform only the local spatial region of the
flow. Thus, we apply the localized reconstruction process introduced in section 3.2. We divide the
full flow field into ten windows that grow linearly in the streamwise direction, consistent with the
streamwise dynamical scaling, and solve the local sparse representation problems independently.
Reconstructions are then formed from sparse combinations of the windowed training fields.

Figure 7g compares the relative sparsity of the global and windowed sparse representations,
given by the fraction of total nonzero coefficients across all independent windowed optimization
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problems. The local representations are more sparse and have higher fidelity than the global re-
construction. This suggests a connection between multiscale features of the flow and the sparsity
of representation. By restricting the scope of the reconstruction problem, we simplify the effective
dynamics, and this is reflected in the order of magnitude difference in the sparsity of represen-
tation. These results suggest that the proposed flow field reconstruction method may generalize
well to spatially complex flow fields. Note that when averaged across the test data, the various
reconstruction results are comparable in an `2 error metric (∼ 0.4), even though the fields obtained
via sparse representations exhibit more qualitatively accurate flow structures. Gappy POD per-
forms relatively well in this case because there are more samples (p = 448) than POD modes in the
truncated basis (r = 50). The optimal performance of gappy POD tends to be in the oversampled
regime; see appendix B for a discussion and demonstration on the sea surface temperature data
set. However, the `2 metric is likely not ideal for measuring differences in convecting flow struc-
tures, as shifting the exact test field by a couple of pixels will result in an error that is comparable
to the gappy POD field.

Figure 8 demonstrates reconstruction from ten noisy point measurements evenly spaced along
the centerline of each window. In this case, sparse representation significantly outperforms gappy
POD, although when averaged across the test data, the global sparse reconstruction is more accu-
rate, in an `2 sense, than the windowed estimate. As discussed further in section 6 and shown in
figure 12, the dynamics have longer time scales in the downstream windows, as the flow evolves
from a linear instability wave to complex vortex interactions. Thus, the training data may not in-
clude enough representative examples of downstream behavior to admit a sparse representation.
Indeed, the local reconstructions in the first seven windows are highly accurate and the errors in
the total flow field estimate are largely due to the final three windows.

5.3 Sea surface temperature field

The global sea surface temperature (SST) data set represents a flow field that is strongly driven by
periodic seasonal forcing but also deviates from oscillatory behavior under the influence of com-
plex oceanographic and environmental processes. For this reason, the SST data may be viewed as
a problem of intermediate difficulty for the algorithm, with complexity somewhere between the
Re = 100 flow past a cylinder from section 5.1 and the strongly aperiodic Gulf of Mexico data in
section 5.4. Figure 9 shows a comparison of mean-subtracted temperature field reconstructions
from randomly located point measurements restricted to the mid-latitude region from 50◦S to
50◦N. We reconstruct the field with sparse representation in a training library and compare the
result to gappy POD with the same measurements in a heavily truncated library (r = 2) and with
many more measurements in a library of r = 50 POD modes. Both methods perform similarly
in the error metric given by Eq. (10); average reconstruction errors across the test data are within
standard error of one another.

Fluctuations in the sea surface temperature field are dominated by seasonal oscillations, so
that two POD modes capture a surprising amount of structure. In the absence of measurement
noise, gappy POD has proven effective in estimating flow fields that can be represented accurately
in terms only a few modes [29]. The fact that a flow as apparently complex as in figure 9a can be
accurately reconstructed with either method from as few as 10 random point measurements is a
reflection of the underlying low-dimensional structure of this data set.
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Gappy POD (p = 10, r = 2) Gappy POD (p = 500, r = 50)

a) b)
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Figure 9: Example reconstruction of a sea surface temperature field (a) using sparse representation
in a training library (b) and gappy POD with p = 10 and p = 500 measurements (resp. c and d).
The POD libraries were truncated r = 2 and r = 50 modes respectively, which were the empirically
determined optimal values. Errors in all three estimates are around 0.30. The long term annual
mean temperature field has been subtracted to highlight variations in the data. A color map of
reconstruction errors is shown in figure 20 in Appendix C.
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Figure 9: Example reconstruction of a sea surface temperature field (a) using sparse representation
in a training library (b) and gappy POD with p = 10 and p = 500 measurements (resp. c and d).
The POD libraries were truncated r = 2 and r = 50 modes respectively, which were the empirically
determined optimal values. Errors in all three estimates are around 0.30. The long term annual
mean temperature field has been subtracted to highlight variations in the data. A color map of
reconstruction errors is shown in figure 20 in Appendix C.

5.4 Gulf of Mexico surface vorticity

The final test flow is the HYCOM Gulf of Mexico ocean velocity data, which poses the greatest
challenge for reconstruction. On the time scale of the available data, the flow is not statistically
stationary, and given the spatial complexity of the flow, accurate reconstruction requires signifi-
cantly more measurements than the other fields considered in this work. Figure 10 shows a typ-
ical example of field reconstruction from p = 4000 random point measurements, which account
for about 8.5% of all grid locations. Global reconstructions from both sparse representation in the
training set and gappy POD with a truncated library of r = 500 modes successfully reconstruct
much of the large-scale structure in the field and have comparable reconstruction errors, although
the sparse representation estimate is contaminated by non-physical high-frequency fluctuations.

As with the mixing layer, the test field cannot be accurately represented as a sparse combi-
nation of training examples, because of the complexity of the flow and the fact that the training
data does not fully generalize to the test set. The sparsest representation identified by Eq. (7) con-
tains K = 3995 (around 48%) nonzero coefficients (figure 10c), around 400 times as many as the
sea surface temperature field in figure 9b. However, we achieve a more accurate reconstruction
through the local kernel approach outlined in section 3.2 and the appendix. By separating the
reconstruction problem into localized kernels, we can stitch these local reconstructions together
to obtain a global field that more accurately captures the large-scale vortical structures in the test
field. This is intuitive from a measurement perspective, since the localization essentially relaxes
the optimization constraints so that the sparse representation need only be consistent with local
measurements. Seeking a global reconstruction that matches all measurements simultaneously is
overly restrictive for a flow in which spatial correlations decay rapidly. As with the mixing layer,
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a) Test field b) Measurement locations

c) Global sparse representation d) Global gappy POD

e) Local sparse representation f) Local gappy POD

Figure 10: Reconstruction of Gulf of Mexico vorticity field (a) from p = 4000 random points (b).
The global sparse reconstruction from a training library (c) suffers from overfitting, since there
is not a highly sparse global representation of this flow field in the training set. Gappy POD on
the global field (d) is comparable to global sparse representation; residual errors in both cases are
⇠ 0.60. Sparse reconstruction from the same measurements, but using the local kernel method
described in section 3.2 with k = 96 equally spaced kernels, enables locally sparse representations
that combine to form a significantly more accurate global estimate (e), with a reconstruction error
of 0.37. The local least-squares POD still suffers from high-frequency overfitting (f). A color map
of reconstruction errors is shown in figure 21 in Appendix C.

6 Discussion

This work demonstrates the enhanced robustness and accuracy of flow field reconstruction by
sparse representation in a library of training data, and we have explored this approach on a range
of example flow fields of increasing complexity. We also discuss potential limitations of sparse
representation, along with proposed methodological extensions and improvements. The success
of sparse representation depends on the availability of both an extensive library that contains
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Figure 10: Reconstruction of Gulf of Mexico vorticity field (a) from p = 4000 random points (b).
The global sparse reconstruction from a training library (c) suffers from overfitting, since there
is not a highly sparse global representation of this flow field in the training set. Gappy POD on
the global field (d) is comparable to global sparse representation; residual errors in both cases are
∼ 0.60. Sparse reconstruction from the same measurements, but using the local kernel method
described in section 3.2 with k = 96 equally spaced kernels, enables locally sparse representations
that combine to form a significantly more accurate global estimate (e), with a reconstruction error
of 0.37. The local least-squares POD still suffers from high-frequency overfitting (f). A color map
of reconstruction errors is shown in figure 21 in Appendix C.

sparsity appears to be a hallmark of complexity; on average, each kernel representation contains
only K ≈ 106 (∼ 1%) nonzero coefficients. This suggests that features in local patches of the flow
may closely resemble those present in the training data, even if the global flow field does not.

Figure 11 demonstrates reconstruction from uniformly downsampled measurements. The test
field is sampled at a 5:1 ratio in the ocean region (p = 1261 points) and reconstructed with gappy
POD and local sparse representation, using the same parameters as in figure 10. Again, recon-
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a) Test field b) 5:1 downsampling

c) Local sparse representation d) Global gappy POD

Figure 11: Reconstruction of Gulf of Mexico vorticity field (a) from uniform 5:1 downsampling (b).
Local sparse representation (c) with k = 96 equally spaced kernels yields a 26% improvement in
reconstruction error over gappy POD in a library truncated to r = 500 modes (d). Global sparse
representation and local gappy POD both perform worse than these methods.

representative examples of relevant flow structures and sufficiently rich sensor information to
infer which of these structures are active. Both of these requirements are related to the flow physics
and spatiotemporal scales of the particular system under consideration.

First, the library must contain a sufficiently extensive collection of example flow fields, so
that a new flow field may be approximated by a sparse combination of these examples. Even for
aperiodic flows, this may be satisfied if the training set contains a long enough flow history. To
quantify if the training library is sufficiently complete to generalize to a new test field, we compute
the residual error obtained by approximating a test field by orthogonal projection onto the training
library. If the test field is well approximated in the training library, the residual is small, and if the
test field has new structures that are not observed in the training data, there will be a large residual.
Figure 12 shows the residual error for each of the four flow examples from section 5 as a function
of the length of the training data; the orthogonal projection is obtained by computing the POD
subspace for the given library with m training examples. Even with very few examples in the
library, the flow past a cylinder generalizes to the test data, since the flow is periodic. However,
the mixing layer and Gulf of Mexico vorticity data have relatively large generalization error, even
for large training libraries, indicating that there are new structures that haven’t been observed in
the training data. With enough training data, it is conceivable that the generalization error can be
controlled for these flows, although this may be prohibitively expensive in terms of data collection
and processing. Instead, decomposing the flow domain into local patches results in considerably
improved library generalization (see figure 12b), meaning that less training data is required for an
accurate representation of a new flow field in the library. As shown in figures 7, 8 and 10, the local
patches also admit a sparser representation in the library, resulting in more accurate and robust
flow reconstructions. The improved performance of a local sparse representation is intuitive, as
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Figure 11: Reconstruction of Gulf of Mexico vorticity field (a) from uniform 5:1 downsampling (b).
Local sparse representation (c) with k = 96 equally spaced kernels yields a 26% improvement in
reconstruction error over gappy POD in a library truncated to r = 500 modes (d). Global sparse
representation and local gappy POD both perform worse than these methods.

struction from a local sparse representation is more accurate than gappy POD, suggesting that the
method may be useful for interpolating low-resolution sensor data.

6 Discussion

This work demonstrates the enhanced robustness and accuracy of flow field reconstruction by
sparse representation in a library of training data, and we have explored this approach on a range
of example flow fields of increasing complexity. We also discuss potential limitations of sparse
representation, along with proposed methodological extensions and improvements. The success
of sparse representation depends on the availability of both an extensive library that contains
representative examples of relevant flow structures and sufficiently rich sensor information to
infer which of these structures are active. Both of these requirements are related to the flow physics
and spatiotemporal scales of the particular system under consideration.

First, the library must contain a sufficiently extensive collection of example flow fields, so
that a new flow field may be approximated by a sparse combination of these examples. Even for
aperiodic flows, this may be satisfied if the training set contains a long enough flow history. To
quantify if the training library is sufficiently complete to generalize to a new test field, we compute
the residual error obtained by approximating a test field by orthogonal projection onto the training
library. If the test field is well approximated in the training library, the residual is small, and if the
test field has new structures that are not observed in the training data, there will be a large residual.
Figure 12 shows the residual error for each of the four flow examples from section 5 as a function
of the length of the training data; the orthogonal projection is obtained by computing the POD
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Figure 12: Residual error in projection of test data onto the linear subspace spanned by POD
modes. As more data is added to the training set (horizontal axis), arbitrary fields from the test set
are more likely to be in the span of the training data. This residual represents a lower bound on the
error in a global reconstruction based on this linear subspace. (a) Comparison of all flows studied
in this work. (b) Subspace projection residuals for the windowing scheme shown in figures 7 and
8. Even for windows encompassing the complex vortex pairing behavior downstream, the test
data is approximately within the span of the subspace, although the time scales of convergence
are much longer.

decomposing the spatial domain makes it more likely to find similar local flow structures in the
training data. Thus, the generalization error of the training library provides a useful diagnostic to
quantify the expected performance of sparse representation.

Throughout these examples, we find that least-squares solutions generally overfit to noisy sen-
sor measurements, resulting in non-physical high-frequency fluctuations, as in figures 7 and 10.
In contrast, sparse representation in a library of training examples results in robust and accurate
flow reconstruction, preventing overfitting and ensuring that that the unmeasured regions of the
field are consistent with prior knowledge. If a sufficiently sparse approximation is not possible,
however, the method will not reliably produce a field that is qualitatively similar to actual obser-
vations. However, even if a sparse representation of the entire flow field does not exist, figures
8b-c and 10d demonstrate that locally sparse representations can be used for globally accurate
reconstruction.

A second condition for successful sparse flow reconstruction, even with a rich enough library,
is for the measurements to provide sufficient information to correctly identify the sparse library
coefficients. For example, it is unrealistic to hope that a single point measurement can be used
to reconstruct a highly turbulent flow field, no matter how comprehensive the training library.
In the Bayesian perspective, even perfect knowledge of the prior distribution is not enough for
an accurate estimation, unless it is sufficiently conditioned on measurement information. Figure
13 shows the accuracy of the sparse representation method versus the number of random point
measurements for each example. In each case, there is a rough number of sensors where the error
sharply decreases: p = 10 for the flow past a cylinder and sea surface temperature fields, p = 100
for the mixing layer, and p = 4000 for the Gulf of Mexico data, which roughly correspond to the
number of measurements used in section 5. Further increasing the number of sensors results in a
minimum error plateau, which is defined by the generalization error of the library, as described
above. It is important to note that it may be possible to reconstruct the flow field with less error
from fewer measurements by leveraging additional knowledge about the flow, for example from
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Figure 12: Residual error in projection of test data onto the linear subspace spanned by POD
modes. As more data is added to the training set (horizontal axis), arbitrary fields from the test set
are more likely to be in the span of the training data. This residual represents a lower bound on the
error in a global reconstruction based on this linear subspace. (a) Comparison of all flows studied
in this work. (b) Subspace projection residuals for the windowing scheme shown in figures 7 and
8. Even for windows encompassing the complex vortex pairing behavior downstream, the test
data is approximately within the span of the subspace, although the time scales of convergence
are much longer.

subspace for the given library with m training examples. Even with very few examples in the
library, the flow past a cylinder generalizes to the test data, since the flow is periodic. However,
the mixing layer and Gulf of Mexico vorticity data have relatively large generalization error, even
for large training libraries, indicating that there are new structures that haven’t been observed in
the training data. With enough training data, it is conceivable that the generalization error can be
controlled for these flows, although this may be prohibitively expensive in terms of data collection
and processing. Instead, decomposing the flow domain into local patches results in considerably
improved library generalization (see figure 12b), meaning that less training data is required for an
accurate representation of a new flow field in the library. As shown in figures 7, 8 and 10, the local
patches also admit a sparser representation in the library, resulting in more accurate and robust
flow reconstructions. The improved performance of a local sparse representation is intuitive, as
decomposing the spatial domain makes it more likely to find similar local flow structures in the
training data. Thus, the generalization error of the training library provides a useful diagnostic to
quantify the expected performance of sparse representation.

Throughout these examples, we find that least-squares solutions generally overfit to noisy sen-
sor measurements, resulting in non-physical high-frequency fluctuations, as in figures 7 and 10.
In contrast, sparse representation in a library of training examples results in robust and accurate
flow reconstruction, preventing overfitting and ensuring that that the unmeasured regions of the
field are consistent with prior knowledge. If a sufficiently sparse approximation is not possible,
however, the method will not reliably produce a field that is qualitatively similar to actual obser-
vations. However, even if a sparse representation of the entire flow field does not exist, figures
8b-c and 10d demonstrate that locally sparse representations can be used for globally accurate
reconstruction.

A second condition for successful sparse flow reconstruction, even with a rich enough library,
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Figure 13: Normalized residual error of sparse representation-based reconstructions with increas-
ing number of random point measurements. We use the global reconstruction method for the
periodic vortex shedding past a cylinder (blue), mixing layer (red), sea surface temperature fields
(yellow), and Gulf of Mexico (purple) flow fields. For computational efficiency we estimate coeffi-
cient vectors ŝ using Orthogonal Matching Pursuit (OMP) with empirical estimates of the sparsity
K. Accurate reconstruction requires both rich training data and sufficient measurement informa-
tion; the latter condition can vary widely depending on the flow.

a reduced-order model [63] or via time-delay embedding [123].

7 Conclusion

In this study, we develop a method for flow field reconstruction based on sparse representation
in a library of examples. This method builds on prior work in library-based reconstruction and
sparse representation, in particular the sparse representation for classification algorithm [12, 13].
We apply this method to several example flows, ranging from simple canonical flows to chal-
lenging geophysical data sets, and demonstrate improved accuracy and robustness to noise and
corruption compared to typical least-squares flow reconstruction, provided that the library is suf-
ficiently rich and the measurements are sufficiently informative.

This work suggests several directions of ongoing research to refine the method for practical
applications. For example, the requirement that the flow be statistically stationary appears to
preclude application in flows with changing operating conditions. However, the demonstration
of the method on the Gulf of Mexico vorticity field suggests that the stationarity requirement may
be violated, provided the library is rich enough. A more thorough investigation of parameter
variation, for example to reconstruct flow past a cylinder over a range of Reynolds numbers,
would be an interesting future direction; sparse representation has already been shown to identify
different dynamical regimes in a classification context [13]. In addition, sparse representation
fundamentally relies on a linear embedding, with the associated limitations. It is unclear how to
naturally extend these approaches to nonlinear embeddings, although this is an interesting avenue
of ongoing work. However, the localized methods of sections 5.2 and 5.4 provide a principled
approach to lessen the burden on the required training data.

Although figures 12 and 13 give rough metrics for sufficiency of the training data and mea-
surement information, more quantitative and principled criteria for both requirements would be
useful to determine a priori which flows are good candidates for this method, how much train-
ing data is required, and which sensor configurations will sufficiently inform the structure of the
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Figure 13: Normalized residual error of sparse representation-based reconstructions with increas-
ing number of random point measurements. We use the global reconstruction method for the
periodic vortex shedding past a cylinder (blue), mixing layer (red), sea surface temperature fields
(yellow), and Gulf of Mexico (purple) flow fields. For computational efficiency we estimate coeffi-
cient vectors ŝ using Orthogonal Matching Pursuit (OMP) with empirical estimates of the sparsity
K. Accurate reconstruction requires both rich training data and sufficient measurement informa-
tion; the latter condition can vary widely depending on the flow.

is for the measurements to provide sufficient information to correctly identify the sparse library
coefficients. For example, it is unrealistic to hope that a single point measurement can be used
to reconstruct a highly turbulent flow field, no matter how comprehensive the training library.
In the Bayesian perspective, even perfect knowledge of the prior distribution is not enough for
an accurate estimation, unless it is sufficiently conditioned on measurement information. Figure
13 shows the accuracy of the sparse representation method versus the number of random point
measurements for each example. In each case, there is a rough number of sensors where the error
sharply decreases: p = 10 for the flow past a cylinder and sea surface temperature fields, p = 100
for the mixing layer, and p = 4000 for the Gulf of Mexico data, which roughly correspond to the
number of measurements used in section 5. Further increasing the number of sensors results in a
minimum error plateau, which is defined by the generalization error of the library, as described
above. It is important to note that it may be possible to reconstruct the flow field with less error
from fewer measurements by leveraging additional knowledge about the flow, for example from
a reduced-order model [63] or via time-delay embedding [123].

7 Conclusion

In this study, we develop a method for flow field reconstruction based on sparse representation
in a library of examples. This method builds on prior work in library-based reconstruction and
sparse representation, in particular the sparse representation for classification algorithm [12, 13].
We apply this method to several example flows, ranging from simple canonical flows to chal-
lenging geophysical data sets, and demonstrate improved accuracy and robustness to noise and
corruption compared to typical least-squares flow reconstruction, provided that the library is suf-
ficiently rich and the measurements are sufficiently informative.

This work suggests several directions of ongoing research to refine the method for practical
applications. For example, the requirement that the flow be statistically stationary appears to
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preclude application in flows with changing operating conditions. However, the demonstration
of the method on the Gulf of Mexico vorticity field suggests that the stationarity requirement may
be violated, provided the library is rich enough. A more thorough investigation of parameter
variation, for example to reconstruct flow past a cylinder over a range of Reynolds numbers,
would be an interesting future direction; sparse representation has already been shown to identify
different dynamical regimes in a classification context [13]. In addition, sparse representation
fundamentally relies on a linear embedding, with the associated limitations. It is unclear how to
naturally extend these approaches to nonlinear embeddings, although this is an interesting avenue
of ongoing work. However, the localized methods of sections 5.2 and 5.4 provide a principled
approach to lessen the burden on the required training data.

Although figures 12 and 13 give rough metrics for sufficiency of the training data and mea-
surement information, more quantitative and principled criteria for both requirements would be
useful to determine a priori which flows are good candidates for this method, how much train-
ing data is required, and which sensor configurations will sufficiently inform the structure of the
flow field. The performance of this method may also be improved with more sophisticated library
learning methods [66–68] or optimal sensor placement strategies [29, 30, 65, 124], both of which
are active areas of research.

The localized reconstruction procedure presented here, while effective, has also not been op-
timized. Continuing to develop this procedure is a promising future direction, as it offers a route
to circumvent some apparent limitations of library-based reconstruction (see e.g. figure 4b). For
example, in convection-dominated flows or flows with continuous symmetries, one might envi-
sion a “universal” library constructed by convolving a kernel with the flow fields, in the spirit of
recent work on convolutional neural networks [69].

Further, there are many ways to formulate and solve the sparse optimization problem (7), and
alternative approaches, such as sequentially thresholded least-squares [86] or pursuit algorithms,
may outperform `1 regression. In addition, the sparse optimization procedure may be too compu-
tationally expensive for some real-time control applications, motivating ongoing work to improve
algorithmic efficiency; fortunately, the timescales of the geophysical flows investigated in this
work are slow compared with the sparse optimization. Finally, most flows of interest are three-
dimensional, and it will be important to demonstrate this method on three-dimensional flows.
While it is straightforward to generalize this method to three-dimensional fields, e.g., by the same
vectorization approach used for two-dimensional flows, the matrices representing discretized 3D
flows can become very large. The main computational cost is due to the optimization problem,
which scales with the number of measurements and not the dimensionality of the discretized flow
field; however, the number of measurements necessary to sufficiently inform the structure of a
complex three-dimensional flow field may lead to prohibitively expensive computations.

In the examples considered here, we have shown several advantages which make sparse rep-
resentation an attractive candidate for flow field reconstruction. In particular we find that recon-
struction from sparse representation in a library of training examples is robust to noise and leads
to physical flow field estimates. We have shown that this framework can be modified to handle
dense sensor noise and gross measurement corruption. The method can also be extended to com-
plex flow fields by decomposing the spatial domain and seeking localized sparse representations.
With this flexibility, sparse representation may provide a powerful tool for estimating complex
flow fields in a range of applications.
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Figure 14: Locations of kernel centers for the local reconstructions in figure 10e-f, shown superim-
posed on the empirical mean vorticity field. The contours shown are for Gaussian kernels prior to
normalization.

http://hycom.org.

Appendix A: Local reconstruction method

Here, we provide details on the kernel-based localized reconstruction method applied to the mix-
ing layer and Gulf of Mexico vorticity fields, for example to produce the estimates in figure 10e-f.
As described in section 3.2, we construct a global flow field estimate as a weighted superposition
of local reconstructions in a decomposed domain, which admits sparser representations in the
training library.

We introduce compact overlapping kernels �j , j = 1, 2, . . . , k normalized so that at each
grid location r,

P
j �j(r) = 1. These kernels separate the global estimation problem into k local

problems:
ŝj = arg min

sj

ksjkq subject to kyj � C�j sjk2 < ✏.

Since the kernels are normalized, the local flow field estimates x̂j = �j ŝj can be combined to
form a global estimate x̂ =

P
j x̂j . The simplest such kernels are the windows used for the mixing

layer reconstructions in figure 8c-d, where each kernel has the value 1 within its window and 0
outside.

For the Gulf of Mexico data we define 96 points r1, r2, . . . , rj , r96 as the kernel centers on a
uniform 12 ⇥ 8 grid covering the spatial domain, as in figure 14. Each kernel �j is constructed
with a radial Gaussian function of the distance from each grid location to the kernel center:

�j(r) =
1

N(r)
e|r�rj|2/�2

,

where the width � is half the longitudinal distance between successive kernel centers. Values
below 10�2 are set to zero, and the normalization factors N(r) are then calculated as the sum of
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Figure 14: Locations of kernel centers for the local reconstructions in figure 10e-f, shown superim-
posed on the empirical mean vorticity field. The contours shown are for Gaussian kernels prior to
normalization.
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ing layer and Gulf of Mexico vorticity fields, for example to produce the estimates in figure 10e-f.
As described in section 3.2, we construct a global flow field estimate as a weighted superposition
of local reconstructions in a decomposed domain, which admits sparser representations in the
training library.

We introduce compact overlapping kernels Φj , j = 1, 2, . . . , k normalized so that at each
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∑
j Φj(r) = 1. These kernels separate the global estimation problem into k local

25



problems:
ŝj = arg min

sj
‖sj‖q subject to ‖yj −CΦjΨsj‖2 < ε.

Since the kernels are normalized, the local flow field estimates x̂j = ΦjΨŝj can be combined to
form a global estimate x̂ =

∑
j x̂j . The simplest such kernels are the windows used for the mixing

layer reconstructions in figure 8c-d, where each kernel has the value 1 within its window and 0
outside.

For the Gulf of Mexico data we define 96 points r1, r2, . . . , rj , r96 as the kernel centers on a
uniform 12 × 8 grid covering the spatial domain, as in figure 14. Each kernel Φj is constructed
with a radial Gaussian function of the distance from each grid location to the kernel center:

Φj(r) =
1

N(r)
e|r−rj|

2/σ2
,

where the width σ is half the longitudinal distance between successive kernel centers. Values
below 10−2 are set to zero, and the normalization factors N(r) are then calculated as the sum of
the unweighted values of all kernels

N(r) =
k∑

j=1

Φj(r),

so that the resulting estimates may be combined in a weighted average.
Computationally, each location r is a point on the grid, and so just as the flow field snapshots

are arranged into column vectors, the corresponding values of Φj are the entries in a sparse diag-
onal matrix. The product Φjx of a kernel with a discretized flow field is then nonzero only in the
region surrounding the kernel center rj .

Appendix B: Parameter tuning

Machine learning methods typically allow for tuning some set of parameters for optimal perfor-
mance. For example, increasing the regularization parameter λ in Eq. (4) can prevent overfitting
to noisy data, but beyond some optimal value the solution is prone to bias. For the sparse rep-
resentation problem (7) which is central to our proposed method, the only free parameter is the
relaxation ε. A larger value of ε allows for a larger difference between the observations and the
estimated flow field, which may be useful for instance if the measurements are noisy or if the
training data may not generalize well. In these cases, relaxing the constraint can lead to a sparse
solution and accurate estimation.

The sparse representation method can be sensitive to the choice of ε. For example, figure 15a
shows the error in reconstructing a downsampled test field (see figure 7) with increasing relax-
ation. For clean data and global reconstruction (solid blue lines), the method is only weakly
dependent on the choice of ε, whereas a careful selection of this parameter is important for re-
construction from windows (red lines) and if measurements are noisy (dashed lines). For the win-
dowed reconstruction, error increases sharply beyond an optimal value of ε; figure 7b suggests
that this may be because overly relaxed constraints allow the solution to be highly sparse, but
generally inconsistent with observations. We expect that an appropriate choice of ε will in general
also depend on both the magnitude of observed fluctuations and the number of measurements.

Gappy POD can also be tuned via truncation of the POD library. In this case the optimiza-
tion problem is typically the overdetermined case (3), although if there are fewer measurements
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Figure 15: The sparse representation problem in Eq. (7) allows for choosing the relaxation param-
eter ✏. (a) Average reconstruction error across the test set vs. ✏ for the downsampled mixing layer
(see figure 7) from clean and noisy measurements (solid and dashed lines, respectively). (b) Spar-
sity of representation for the same reconstruction problem vs. ✏. Relaxing the problem improves
reconstruction accuracy, especially when the measurements are noisy, but increasing ✏ too far can
allow for solutions which are inconsistent with measurements.
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Figure 15: The sparse representation problem in Eq. (7) allows for choosing the relaxation param-
eter ε. (a) Average reconstruction error across the test set vs. ε for the downsampled mixing layer
(see figure 7) from clean and noisy measurements (solid and dashed lines, respectively). (b) Spar-
sity of representation for the same reconstruction problem vs. ε. Relaxing the problem improves
reconstruction accuracy, especially when the measurements are noisy, but increasing ε too far can
allow for solutions which are inconsistent with measurements.
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Figure 16: Parameter tuning for sea surface temperature field estimation. (a) Rank truncation of
gappy POD library. Sharp peaks correspond to p = r, when the number of point measurements
equals the number of retained modes and the matrix C becomes square. The optimal trunca-
tion appears to depend on the number of measurements, but is always in the oversampled case
r < p. (b) Relaxation of the sparse representation problem. As with the mixing layer, some relax-
ation of the constraint can improve accuracy, but an overly relaxed optimization problem leads to
inconsistent estimates. For both plots, shaded bands indicate standard error on the mean.

construction from windows (red lines) and if measurements are noisy (dashed lines). For the win-
dowed reconstruction, error increases sharply beyond an optimal value of ✏; figure 7b suggests
that this may be because overly relaxed constraints allow the solution to be highly sparse, but
generally inconsistent with observations. We expect that an appropriate choice of ✏ will in general
also depend on both the magnitude of observed fluctuations and the number of measurements.

Gappy POD can also be tuned via truncation of the POD library. In this case the optimiza-
tion problem is typically the overdetermined case (3), although if there are fewer measurements
than modes in the library, the least-squares solution to (5) with q = 2 is an analogous estimation
method. We find that gappy POD performs best in the oversampled case r < p. That is, the library
is truncated to contain fewer modes than measurements. For example, gappy POD has compa-
rable accuracy to sparse representation for the sea surface temperature field estimates in figure 9,
but this accuracy is sensitive to the truncation. Figure 16a shows gappy POD reconstruction error
vs. rank truncation r averaged across the test data for various numbers of random point measure-
ments p. The error peaks sharply when the measured library matrices C become nearly square,
but for any value of p the optimal truncation is r < p.

Figure 16b shows reconstruction error vs. relaxation parameter ✏ for sparse representation-
based estimates of the sea surface temperature fields for varying number of point measurements.
The points are chosen at random with a new realization for each field in the test set. In this case we
do not artificially introduce noise, although an appropriate choice of ✏ still improves the accuracy
of the sparse representation method.
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Figure 17: Several perspectives on the global `2 error metric. The projection onto the POD basis
is the optimal representation in the linear span of the training data. However, shifting the field
by one grid step in the streamwise direction generates an `2 error nearly the same as the POD
projection. A shift of four steps results in more than 50% error, although the fields capture exactly
the same coherent structures. Whether it is more important to capture global energy content or
estimate physically accurate structures may depend on the application.

Appendix C: Reconstruction errors and integral quantities

Although the global `2 error as defined by Eq. (10) is a convenient metric for the reconstruction
accuracy, it is an incomplete description. For example, figure 17 explores shifting a mixing layer
vorticity field by a single pixel, which results in an `2 error comparable to the optimal representa-
tion in the training set (via projection onto the POD basis).

It may therefore be helpful to visualize the errors in reconstruction for the various flows in-
vestigated here. This appendix includes plots of the reconstruction error corresponding to figures
5 (cylinder wake), 7 (mixing layer), 9 (sea surface temperature), and 10 (Gulf of Mexico vorticity).

The sparse coefficient vector can also be used to estimate integral quantities such as the lift
coefficient. This may be thought of as a “labeled” problem, where each field in the training set
is augmented with the quantity of interest. The estimate of this quantity for the test field is then
given by the product of the sparse coefficient vector with the vector of labels. For example, fig-
ure 22 compares the lift coefficient estimate for the cylinder wake using this approach against
the standard least squares prediction. The measurements are taken from the “horizontal slice”
(green line in figure 5a) with noise level � = 0.01 and varying levels of sparse corruption. Sparse
representation outperforms least squares over a wide range of corruption levels.
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Figure 16b shows reconstruction error vs. relaxation parameter ε for sparse representation-
based estimates of the sea surface temperature fields for varying number of point measurements.
The points are chosen at random with a new realization for each field in the test set. In this case we
do not artificially introduce noise, although an appropriate choice of ε still improves the accuracy
of the sparse representation method.
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The sparse coefficient vector can also be used to estimate integral quantities such as the lift
coefficient. This may be thought of as a “labeled” problem, where each field in the training set
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a) Test field b) Corrupted measurement

c) Reconstructed field d) Reconstruction error

Figure 18: Visualization of reconstruction error for the cylinder wake from corrupted measure-
ments (see figure 5). (a) Test snapshot. (b) Example flow snapshot with corruption in 70% of grid
locations. The vertical stripe shows the measurement location. (c) Reconstructed flow field from
sparse representation using corrupted measurements shown in (b). (d) Errors in the flow field
estimate (c), shown on the same scale as the original field. The contours are on intervals of 0.1
between -0.5 and 0.5.

a) Test field b) 0.2% sampling

c) Sparse representation (global) d) Gappy POD (global)

e) Sparse representation (window) f) Gappy POD (window)

Figure 19: Error in the reconstruction of a mixing layer vorticity field via super-resolution (see
figure 7). The test field (a) is measured with 10:1 downsampling (b) and reconstructed with both
sparse representation in a training library (c) and least-squares regression in a POD library (d). The
global reconstructions are compared to separating the domain into windows that grow linearly in
the streamwise direction and reconstructing with sparse representation (e) and gappy POD. On
average, the windowing approach does not lead to more accurate reconstructions in an `2 sense
than global sparse representation, although the error structures are more localized.
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Test field Sparse representation (p = 10)

Gappy POD (p = 10, r = 2) Gappy POD (p = 500, r = 50)

a) b)

c) d)

Figure 20: Visualization of errors in estimates of sea surface temperature field (a) using sparse
representation in a training library (b) and gappy POD with p = 10 and p = 500 measurements
(resp. c and d). The POD libraries were truncated to r = 2 and r = 50 modes respectively, which
were empirically determined to be optimal. Global `2 errors in all three estimates are around 0.30.
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Figure 20: Visualization of errors in estimates of sea surface temperature field (a) using sparse
representation in a training library (b) and gappy POD with p = 10 and p = 500 measurements
(resp. c and d). The POD libraries were truncated to r = 2 and r = 50 modes respectively, which
were empirically determined to be optimal. Global `2 errors in all three estimates are around 0.30.

(green line in figure 5a) with noise level σ = 0.01 and varying levels of sparse corruption. Sparse
representation outperforms least squares over a wide range of corruption levels.
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a) Test field b) Measurement locations

c) Global gappy POD d) Gappy POD errors

e) Local sparse representation f) Sparse representation errors

Figure 21: Reconstruction of Gulf of Mexico vorticity field (a) from p = 4000 random points (b).
Although gappy POD resolves the large scale structures (c-d), the localized version of sparse rep-
resentation represents a significant reduction in error (e-f). Errors are on the same color scale as
the fields. The global `2 error in the gappy POD estimate is 0.60, while the sparse representation
error is 0.37. Parameters for the estimation are the same as described for figure 10.

31

Figure 21: Reconstruction of Gulf of Mexico vorticity field (a) from p = 4000 random points (b).
Although gappy POD resolves the large scale structures (c-d), the localized version of sparse rep-
resentation represents a significant reduction in error (e-f). Errors are on the same color scale as
the fields. The global `2 error in the gappy POD estimate is 0.60, while the sparse representation
error is 0.37. Parameters for the estimation are the same as described for figure 10.
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Figure 22: Estimation of the lift coefficient CL for the Re = 100 cylinder wake from the horizontal
slice measurement (green line in figure 5). The vertical axis shows the estimation error normal-
ized by the rms lift coefficient over the vortex shedding period. The sparse representation method
described in Appendix C outperforms least squares estimation over a wide range of sparse cor-
ruption levels.
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Figure 22: Estimation of the lift coefficient CL for the Re = 100 cylinder wake from the horizontal
slice measurement (green line in figure 5). The vertical axis shows the estimation error normal-
ized by the rms lift coefficient over the vortex shedding period. The sparse representation method
described in Appendix C outperforms least squares estimation over a wide range of sparse cor-
ruption levels.
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