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Electroconvection driven by unipolar charge injection in the presence of cross-flow between 9 
two parallel electrodes is investigated in a numerical study. The two-relaxation-time Lattice 10 
Boltzmann Method with fast Poisson solver is used to resolve the spatiotemporal distribution 11 
of flow field, electric field, and charge density. Couette and Poiseuille cross-flows are applied 12 
to the solutions with established electroconvective vortices. Increasing cross-flow velocity 13 
deforms the vortices and eventually suppresses them when threshold values of velocities are 14 
reached. At intermediate flow velocities, partial suppression of the vortices leads to the 15 
reduction in electroconvection. This behavior is parameterized by a non-dimensional 16 
parameter, Y — a ratio of the electrical forcing term to the viscous term in the Navier-Stokes 17 
Equations. For high values of Y, the electric force dominates the flow, while for values below 18 
the critical threshold, the electric force influence is negligible, and the flow is dominated by 19 
the shear.  20 

I. INTRODUCTION 21 

 Electroconvection (EC) phenomenon has been first reported by G. I. Taylor in 1966 22 
describing cellular convection in the liquid droplet [1]. Since then, EC has been observed in a 23 
number of systems where the interaction of electrostatic force with fluids is present. In 24 
nonequilibrium electrohydrodynamic (EHD) systems [1-22], poorly conductive leaky 25 
dielectric fluid acquire unipolar charge injection at the surface interface in response to the 26 
electric field. Charge transport in the fluid can trigger instabilities leading to the development 27 
of EC vortices [23,24]. In charge-neutral electrokinetic (EK) systems, electroconvection is 28 
triggered by the electro-osmotic slip of electrolyte in the electric double layer at membrane 29 
surfaces [25-36].  30 

 Insights into the complex multiphysics interactions are essential for understanding EK 31 
and EHD phenomena. These include (1) the electric field from the potential difference 32 
between the anode and cathode and its modifications by the space charge effects; (2) the ion 33 
motion in the electric field; (3) the interaction between the motion of ions and the neutral 34 
molecules; and (4) the inertial and viscous forces in the complex flow. The EHD was used to 35 
describe the cellular convection in deforming oil droplet under a DC electric field [1], and 36 
droplet generation in microfluidic flow and oil separation [1,24,37]. The EC vortices have 37 
been observed in the systems where convective transport is induced by unipolar discharge 38 
into a dielectric fluid [2-22]. The model system describing EHD electroconvection is also 39 
known as the Taylor-Melcher (TM) model. The experiment demonstrating the 40 
electroconvective flow in the system with unipolar charge injection was first reported by 41 
Jolly & Melcher in 1970 [2] and by Watson and Schneider in the same year [38]. Jolly & 42 
Melcher had found that the incipient cellular convection can be characterized by the electric 43 
Hartmann number /eHa Eε μσ= (ε-permittivity, E-applied electric field intensity, μ-44 
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viscosity, σ-electric conductivity) with the assumption of uniform charge density in the fluids 45 
[2]. Watson and Schneider performed experiments on EHD stability in a space-charge-limit 46 
(SCL) current injection and found that there is a transition between SCL conduction and 47 
convection-enhanced conduction marked by the increased conductivity due to the motion of 48 
the fluids [38]. Atten et al. have shown that for the SCL scenario 100cT = , where cT  is the 49 
linear stability threshold for the electric Rayleigh number T— a ratio between electric force 50 
to the viscous force [13,18,39,40]. The parameter T is also sometimes referred to as electric 51 
Taylor number [18], thus denoted as T. The chaotic behavior of EC instabilities was 52 
investigated experimentally by Malraison & Atten, who characterized two types of power 53 
spectra of intensity fluctuations, i.e., an exponential decay when viscous force is dominant 54 
and a power-law decay when inertial force is dominant [3].  The EC coupled to heat transfer 55 
was first experimentally shown by Atten et al., who observed that the Nusselt number (Nu) 56 
depends on applied electric field intensity [41]. In the annulus between concentric circular 57 
electrodes, the electric Nusselt number (Ne) trend can be described by the power-law 58 
function of electric Rayleigh number and electric Prandtl number [7,8].   59 

 The analysis of EC stability was first performed using a simplified non-linear 60 
hydraulic model [42,43] and linear stability analysis without charge diffusion [38,44]. Atten 61 
& Moreau [45] showed that in the weak-injection limit, C<<1, where C is the charge 62 
injection level, the flow stability is determined by the criterion 2

cT C . In the SCL injection, 63 
C → ∞ , the flow stability is determined by cT only. Non-linear stability analysis yields 64 

160.75cT = [46], while the experiments yield 100cT = for the same conditions [47]. Atten et al. 65 
suggested that the discrepancy may be due to the omission of the charge diffusion term in the 66 
analysis [46,48]. The effect of charge diffusion was investigated by Zhang et al. by 67 
employing linear stability analysis with a Poiseuille flow [13] and by non-linear analysis 68 
using a multiscale method [18]. The authors found that the charge diffusion has a non-69 
negligible effect on cT  and the transient behavior depends on the Reynolds number ( Re ) 70 
[13,18]. More recently, Li et al. performed linear analysis of EHD-Poiseuille system and 71 
found that when the ratio of Coulomb force to viscous force increases, the transverse rolls can 72 
transition from convective instability to absolute instability [49]. Even with the inclusion of 73 
charge diffusion in the linear and non-linear stability analysis, the predicted stability criterion 74 

cT  is always greater than the experimental value obtained by Lacroix et al. [47] and Atten et 75 
al. [46]. Lacroix et al. attributed this discrepancy to the instability associated with finite 76 
perturbation [47] suggesting that the experimental instability resulted from small perturbation 77 
(disturbance due to imperfection or error) and the theoretical solutions developed from 78 
applied finite-amplitude perturbation [47].  79 

 In the charge-neutral EK system, Rubinstein and Zaltzman showed that the electro-80 
osmotic slip at the surface leading to instability of the double layer generating EC paired 81 
vortices; thus enhancing ion exchange at the membrane surface[25-27]. Demekhin et al. [50] 82 
modeled electrokinetic instability (EKI) decoupling the nonlinear Poisson-Nernst-Planck 83 
(PNP) equations and neglecting the inertial term in the Navier-Stokes equations (NSE). Pham 84 
et al. [29] performed direct numerical simulation (DNS) demonstrating that the charge-85 
neutral EKI system exhibits a hysteretic behavior in the transition between the limiting and 86 
overlimiting regimes. Kwak et al. [30] have examined the effect of the cross-flow on the EKI 87 
and proposed a scaling law relating the field strength and shear to the height of the vortices. 88 
More recently, Kwak et al. extended the scaling law analysis for the electric Nusselt number 89 
as a function of the electric Rayleigh and Reynolds numbers for the EC-induced convective 90 
ion transport [31]. 91 



 The EC stability problems in both EK and EHD systems were shown to be analogous 92 
to Rayleigh-Bernard convection (RBC) [22,51-58]. Of particular interest to this work is the 93 
suppression of the RBC cells in the cross-flow [59]. Richardson number 2/Ri Gr Re= , the 94 
ratio of buoyancy to the inertia force, has been used to parametrize the effect of the applied 95 
shear, where Gr is the Grashof number. For 10Ri > , the effect of the cross-flow is 96 
insignificant, while for 0.1Ri < , the effect of the buoyancy can be neglected. In the EC 97 
scenario, 2D finite volume simulations of Poiseuille flow show that the critical electric 98 
Rayleigh number, cT , depends on the Re  and ion mobility parameter, M [14]. The model for 99 
the EC system is more complicated than the RBC due to the introduction of two independent 100 
variables, i.e., the charge density and electric field. With the Boussinesq approximation, the 101 
RBC system is a two-way coupling of fluids motion and heat [60], on the other hand, EC is a 102 
three-way coupling between fluids, charge density, and electric field.  103 

 To gain insight into the complexity of the EC flow, the problem can be investigated 104 
using numerical simulations. The earlier finite-difference simulations have shown that strong 105 
numerical diffusivity may contaminate the model [4]. Other numerical approaches include the 106 
particle-in-cell method [61], finite volume method with the flux-corrected transport scheme 107 
[62], total variation diminishing scheme [9,11,15-17], and the method of characteristics [6]. 108 
Luo et al. showed that a Lattice Boltzmann model (LBM) could predict the linear and finite-109 
amplitude stability criteria of the subcritical bifurcation [19-22] for both 2D and 3D EC flow 110 
scenarios. This unified LBM transforms the elliptic Poisson equation to a parabolic 111 
advection-diffusion equation and introduces tuning coefficients to control the evolution of the 112 
electric potential, requiring additional sub-iterations at each time step.   113 

 Researching the interaction between EHD-driven EC instabilities and the external 114 
flow, Castellanos et al. performed a linear stability analysis of Poiseuille and Couette flow 115 
under unipolar injection. The authors showed that the external flow inhibits the transverse 116 
perturbation, but the longitudinal rolls remain unaffected [63]. Lara et al. found that the 117 
stability of traverse rolls depends on the mobility ratio M (Eq. (9)) in the low Reynolds 118 
number Poiseuille flow by performing linear stability analysis [64]. The current paper 119 
investigates the effects of crossflow on EC convection in unipolar charge injection scenario 120 
numerically.   121 

 In this paper, we parameterize the 2D EC stability in the cross-flow between two 122 
parallel electrodes in the presence of strong unipolar injection and electric field. The 123 
segregated solver combines a two-relaxation-time (TRT) LBM modeling fluid and charged 124 
species transport, and a Fast Fourier Transform Poisson solver to solve for the electric field 125 
directly [65]. Couette and Poiseuille cross-flow scenarios provide shear stress; the dominant 126 
terms are determined by non-dimensional analysis of the governing equations. A subcritical 127 
bifurcation is characterized by the ratio of the electrical force to the viscous force.  128 

II. GOVERNING EQUATIONS AND DIMENSIONAL ANALYSIS 129 

 The governing equations for EHD flow include the Navier-Stokes equations (NSE) 130 
with the electric forcing term cρ ϕ= − ∇eF  in the momentum equation, the charge transport 131 
equation, and the Poisson equation for electric potential. The TM model describes cellular 132 
convection driven by unipolar charge injection for fluids with constant dielectric, and it can 133 
be parameterized in terms of non-dimensional parameters[11-17,19-22,49,66].  134 
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where ρ and μ are the density and the dynamic viscosity of the working fluid, ( )y,xu u=u  is 139 

the velocity vector field, P  is the static pressure, bμ is the ion mobility, cD  is the ion 140 
diffusivity, cρ  is the charge density, ε is the electric permittivity, and ϕ is the electric 141 
potential. The electric force provides a source term in the momentum equation (Eq. (2)) 142 
[13,67-69]. The variables to be solved are the velocity field -- u , pressure -- P , charge 143 
density -- cρ , and electric potential --ϕ . The flow is modeled as periodic in the horizontal 144 
direction (x-direction), and wall-bounded in the y-direction. Cross-flow is applied in the x-145 
direction.  146 

 In the absence of cross-flow, the system can be non-dimensionalized with the electric 147 
field properties alone [13], i.e., H is the distance between the electrodes (two plates infinite in 148 
x and y), 0ρ is the injected charge density at the anode, and 0ϕΔ is the voltage difference 149 
applied to the electrodes. Respectively, the time t is non-dimensionalized by ( )2

0/ bH μ ϕΔ , 150 

the velocity u by the ion drift velocity 0 /drift bu Hμ ϕ= Δ , the pressure P by ( )2 2
0 0 /b Hρ μ ϕΔ , 151 

and the charge density in the domain cρ by 0ρ . Therefore, a non-dimensional form of the 152 
governing equations (Eq. (1)-(4)) is: 153 
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where the asterisk denotes the non-dimensional variables. These non-dimensional governing 158 
equations yield four dimensionless parameters describing the system’s state [9-22]. 159 
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The physical interpretations of these parameters are as follows: M  is the ratio between 161 
hydrodynamic mobility and the ionic mobility; T  is the ratio between electric force to the 162 
viscous force; C  is the charge injection level [13,18]; and Fe  is the reciprocal of the charge 163 
diffusivity coefficient [13,18].  164 

 With the addition of a cross-flow, the velocity term in the non-dimensional analysis of 165 
the momentum equation is modified to account for external flow, extu , while in the previous 166 



definitions (Eq. (9)), the velocity term was non-dimensionalized by the drift velocity of 167 
charges 0 /drift bu Hμ ϕ= Δ . Here, we consider the velocity of the upper wall ext wall xu=u e  in 168 
Couette flow or the centerline velocity ext center xu=u e  for Poiseuille flow, where xe is the x-169 
direction unit vector. For a system with the cross-flow the governing equations become: 170 
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- a ratio of electric force to inertial 175 

force [68], * /ext ext driftu u= u - the non-dimensional external velocity, and pF is a uniform force 176 

for Poiseuille cross-flow and zero otherwise, such that and ucenter= 
21

2 2 p
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μ
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. Although X 177 

was first introduced to analyze the local flow acceleration effect due to electric force [68], the 178 
parameter can also be used in global stability analysis by adopting the global variables 179 
( 0ρ and 0ϕΔ ), which has a direct analogy to Richardson number in flow with heat convection 180 
(Ri – ratio of buoyancy to viscous shear) [59,60,70].   181 

III. RESULT AND DISCUSSION 182 

 The TRT LBM approach is used to solve the transport equations for fluid flow and 183 
charge density, coupled to a fast Poisson solver for electric potential [65]. The equilibrium 184 
state was obtained when the flow patterns became stable. The numerical code is in SI units, 185 
and the physical constants are determined by the non-dimensional parameters. The numerical 186 
method is implemented in C++ using CUDA GPU computing. The number of threads in the 187 
x-direction in each GPU block is equal to NX ; the number of GPU blocks in the y-direction 188 
is equal to NY . FFT and IFFT operations are performed using the cuFFT library [71]. All 189 
variables are computed with double precision to reduce truncation errors. The numerical 190 
method was shown to be 2nd order accurate in space. Error analysis is provided in 191 
supplementary materials [72]. To reduce computational cost while maintaining accuracy, the 192 
grid of 122NX = , 100NY =  is used throughout this work. The macroscopic and mesoscopic 193 
boundary conditions are specified in Table I. The no-slip boundary conditions are applied at 194 
both electrodes for fluid flow. A constant charge density at the anode (lower wall) represents 195 
a unipolar injection; a zero-diffusive flux condition 0cρ∇ =  at the cathode (upper wall) 196 
represents an outflow current. A constant electric potential is applied at the anode; the 197 
cathode is grounded ( 0ϕ = ). At mesoscale, the discrete distribution function of velocity 198 

( ),if tx  and charge density ( ),ig tx  are used. The details on the transformations between 199 
macro-variables ( u , cρ ) and meso-variables ( if , ig ) are presented in the supplementary 200 
materials [72] and can be found in the recent publication [65]. The LBM full-way bounce-201 
back (FBB) scheme is used for the Dirichlet (no-slip) boundary conditions for the fluid flow 202 



[19,20,73] and for charge density at the lower wall. The ig  Neumann boundary condition is 203 
set as a current outlet boundary condition for charge density transport [19,20,74].  204 

 205 
Table I. Boundary conditions for the numerical simulations. 206 

Boundary Macro-variables Conditions Meso-variables Conditions 

x direction  Periodic Periodic 

Upper wall 0=u , 0ϕ = and 0cρ∇ =   
LBM FBB scheme for if [74-78] 

Neumann boundary condition 0ig
y

∂ =
∂

  

Lower wall 0=u , 0ϕ ϕ= and 0cρ ρ=  
LBM FBB for if [74-78] 
LBM FBB for ig [74-78] 

 207 
 For the hydrostatic based state the numerical solutions of electric field and charge 208 
density agree with the model of Luo et al. [19,20] and the analytical solution based on a 209 
reduced set of equations for the electric field in 1D coordinates [61,69], see FIG. 1. This 210 
comparison acts as a validation of the numerical method. 211 

 ( ) 1/2
c a ay yρ ρ −= + , (14) 212 

 ( )1/22 a
y aE y yρ

ε
= + , (15) 213 

where aρ and ay are two-dimensional parameters, which depend on the boundary conditions 214 
and geometry. At the hydrostatic based state, parameter C and Fe  dominates the system. FIG. 215 
1 shows the profiles of normalized charge density and electric field for 0.1C = and 216 

10C = with 4000Fe = .  A more detailed description of the analytical solution is included in 217 
the supplementary material [72].  218 

 219 
FIG. 1. Hydrostatic solution comparison of the TRT LBM and fast Poisson solver[65], unified SRT 220 
LBM [19], and the analytical solution [61,69] for 0.1C =  and 10C = , 4000Fe = . (a) Electric field and 221 

(b) charge density.  222 
 To model EC vortices, the hydrostatic base-state is perturbed using a finite-amplitude 223 
wave-form functions that satisfies the boundary conditions and continuity equation: 224 
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  226 

The physical domain size 1.22Lx m=  and 1Ly m=  limits the perturbation 227 
wavenumber to 2 / 5.15(1/ )x xL mλ π= ≈ , yielding the most unstable mode under the 228 
conditions 10, 10C M= = , and 4000Fe =  [20]. The perturbation magnitude, 310ε −= , is 229 
small enough to not affect the flow structures within the linear growth region [65]. The 230 
electric Nusselt number, 0/Ne I I= , serves as a flow stability criteria, where I  is the 231 
cathode current for a given solution and 0I  is the cathode current for the hydrostatic solution 232 
[9,20]; thus if the EC vortices exist, 1Ne > . In the cases with strong ion injection, the EC 233 
stability largely depends on T ; so, in this analysis, T is varied while other non-dimensional 234 
parameters are held constant at 10C = , 10M = , and 4000Fe = .  235 

 Couette cross-flow is added to the simulation with the established EC vortices by 236 
assigning constant upper wall velocity. To model Poiseuille flow, a body force in the x-237 
direction is added. FIG. 2 shows the charge density and x-direction velocity for intermediate 238 
cross-flow strength Couette cross-flow ( * 2.0wallu = ) and Poiseuille cross-flow ( * 2.0centeru = ) at 239 
T = 170.07. The Couette cross-flow stretches the vortices in the direction of the bulk flow, 240 
eliminating one of the two vortices. In a Poiseuille cross-flow, the vortex pair becomes 241 
separated; the vortices are pushed toward the opposite walls. With the increasing cross-flow, 242 
both vortices are eliminated, and I=I0, 1Ne = (see FIG. 6). The EC contribution to the flow 243 
field is negligible at higher values of shear stress (higher velocity), and the flow field 244 
becomes identical to the cross-flow without the charge injection. 245 

 246 



FIG. 2. Charge density and x-direction velocity color contours of the EC with cross-flow. Top: 247 
Couette flow with * 2.0wallu = ; one of the two vortices is suppressed. Bottom: Poiseuille flow with 248 

* 2.0centeru = ; both vortices are suppressed and displaced towards the walls.  249 

 FIG. 3 shows the extended stability analysis of EC without cross-flow [65] by 250 
introducing (a) finite velocity of the upper wall (cathode) and (b) a uniform body force for 251 
pressure-driven flow Fp. For a constant T , Ne decreases as *

wallu  or *
centeru increases. FIG. 3 252 

shows that in the cases without cross-flow, a hysteresis loop is observed for Ne as a function 253 
of T, which is consistent with previous theoretical studies [13,18], experimental results [46], 254 
and numerical simulations [11,15,17,19,20,65]. The shape of the Ne vs. T plot in cases with 255 
cross-flow is similar. However, the magnitude of Ne is lower, thus the convective charge 256 
transport (and the current) are reduced when the crossflow is applied due to the partial 257 
suppression of the EC vortices. 258 

 259 
FIG. 3. Electric Nusselt number as a function of the electric Rayleigh number T and (a) applied 260 

velocity of the upper wall *
wallu for Couette type cross-flow or (b) applied body force Fp represented 261 

by the centerline velocity *
centeru  for Poiseuille type cross-flow. Partial suppression of the EC vortices 262 

leads to the reduction in electroconvection for the entire range of the electric Rayleigh number. 263 
 FIG. 4 (a-b) shows that Ne decreases as Re increases (stronger cross-flow), which 264 
agrees with the observation that cross-flow suppresses EC vortices and stabilizes the system. 265 
As previously shown, the intensity of convection strongly depends on T when cross-flow is 266 
not present [65]. FIG. 3 shows that when cross-flow is present and while holding C, M, and 267 
Fe constant, ( )*

1 , extNe f T u= . To gain insight into the vortices and the cross-flow interaction, 268 
it is convenient to plot Ne vs. non-dimensional groups that contain the velocity term. The 269 
analysis can be aided by taking a non-dimensional curl ( *∇ × ) of Eq. (6) for * 0extu =  and Eq. 270 
(11) for * 0extu ≠ : 271 

 ( )
* * 2

*2 * 2 * * * *
* * c

D M CM
D t T

ω ω ρ ϕ= ∇ − ∇ ×∇  , (17) 272 

 ( )
* *

*2 * * * * *
* *

1
c

D X
D t Re

ω ω ρ ϕ= ∇ − ∇ ×∇  , (18) 273 

where *ω is the non-dimensional vorticity, which is a scalar the in the 2D flow.The two terms 274 
on the right-hand side of Eq. (17) and Eq. (18) are significant with respect to growth or decay 275 
of the vortices. FIG. 4 (a-d) shows that Re and X cannot serve as a similarity parameter that 276 



describes the behavior of the system. However, if the Ne plotted against the product of Re and 277 
X (defined as Y) the ( )*

1 , extNe f T u=  collapses on a single curve, see FIG. 4 (e-f). Here Ne 278 

normalized by Re0Ne , XNe ∞  or YNe ∞ , which are the solutions without cross-flow 279 
0Re → , ,X Y→ ∞ → ∞  [65]. The physical interpretation of Y is as follows. Since Re  is the 280 

ratio of inertia to viscous force and X  is the ratio of electric force to inertia, their product is 281 
the ratio of electric force to viscous force: 282 

  0 0 0 0

ext

HY X Re ρ ϕ ρ ϕ
μ
Δ Δ

= × = =
u τ

,  (19) 283 

where τ is the shear stress. In Couette flow, τ = constant; in Poiseuille flow, the average 284 
value for the channel flow is used. In terms of non-dimensional parameters M, C, T, and *

extu , 285 

( )22 */ extX CM u=  and */ extY CT u= . When the cross-flow is not 286 

present, Re0 2( )X YNe Ne Ne f T∞ ∞= = = [19,20,65]. Since / YNe Ne ∞ (T) collapse on the same 287 
curve when plotted against Y, the EC stability in cross-flow can be parameterized by a single 288 
non-dimensional parameter, which is inversely proportional to τ . In other words, 289 

* *
1 2 3/ ( , ) / ( ) ( / )Y ext extNe Ne f T u f T f T u∞ = = for constant C, M, and Fe, ( ( ) , 1, 2,3if i = denotes 290 

a functions of). As the */ extY CT u=  for C=const, *
3 3/ ( / ) ( )Y extNe Ne f T u f Y∞ = = . FIG. 4 291 

shows the solutions with the established EC vortices, which represents the upper bifurcation 292 
branch with Ne>1 (as shown in FIG. 6).  293 

 294 



FIG. 4. Electric Nusselt vs. non-dimensional parameters. (a,c,e) Couette cross-flow is applied. (b,d,f) 295 
Poiseuille type cross-flow is applied. (a-b) The Ne/NeRe0 vs. Re showing that the flow becomes more 296 

stable for increasing Re or cross-flow. (c-d) The Ne/NeX∞ vs. X. (e-f) The Ne/ NeY∞ collapses on a 297 
single curve for various T and Y indicating that Ne/ NeY∞ is only a function of Y for constant C. NeRe0= 298 

NeX∞= NeY∞ is the electric Nusselt number without cross-flow 299 

FIG. 5 shows the effects of intermediate and strong cross-flow on vorticity *ω and curl 300 

of electric force ( )* * * *
c

ρ ϕ− ∇ ×∇ , the diffusion term 
2

*2 *M
T

ω∇ as in Eq. (17) without cross-301 

flow or *2 *1
Re

ω∇ as in Eq. (18) with cross-flow, and the forcing term ( )2 * * * *
c

CM ρ ϕ− ∇ × ∇ as in 302 

Eq. (17) without cross-flow or ( )* * * *
c

X ρ ϕ− ∇ × ∇  as in Eq. (18) with cross-flow. As expected, 303 
maximum and minimum values of vorticity correlate with the maximum and minimum values 304 
of the curl of electric force and forcing term, see Eq. (17) and Eq. (18), implying that 305 
coulombic forcing term leads to vorticity generation. When an intermediate cross-flow is 306 
applied (FIG. 5 (b,d)), the symmetry of the vortex pair is disrupted, and the curl of the 307 
electric force is also asymmetric. For strong cross-flow (FIG. 5 (c,e)), the magnitudes forcing 308 
term is lower, leading to lower vorticity generation. One of the most significant findings in 309 
this analysis is that the reduction in the forcing term ( )* * * *

c
X ρ ϕ∇ × ∇  does not come from the 310 

expression ( )* * * *
c

ρ ϕ∇ × ∇  but rather from the X, as seen by comparing FIG. 5 (columns 2 and 311 
4). Thus variations in values of X are responsible for the changes in vorticity generation.  312 

On the other hand, it is apparent from FIG. 5 the diffusion balances the forcing term; for 313 
all the cases, the diffusion terms have equal and opposite values of the forcing terms over the 314 
wide range of values, while the vorticity magnitudes do not change significantly. Similarly to 315 
the forcing, the diffusion term in Eq. (18) is the product of two non-dimensional groups: 1/Re 316 
and *2 *ω∇ . FIG. 4 shows that Re changes by order of magnitude acting as a scaling factor in 317 
the diffusion term Eq. (18). Multiplication of both diffusion and forcing terms by Re yields a 318 
coefficient of unity in diffusion term and parameter Y in the forcing term.  319 



 320 

FIG. 5. Color contours of vorticity *ω , curl of electric force ( )* * * *
c

ρ ϕ− ∇ ×∇ , diffusion and forcing 321 
terms from Eq. (17) and Eq. (18) with and without cross-flow. (a): No cross-flow; both vortices exist 322 

(b): Intermediate Couette flow with * 2.0wallu = ; one of the two vortices is suppressed. (c): Strong 323 
Couette flow with * 4.0wallu = . (d): Intermediate Poiseuille flow * 2.0centeru = ; vortices are suppressed 324 

and displaced towards the walls.  (e): Strong Poiseuille flow with * 4.0centeru = . 325 

To examine hysteresis associated with the formation and suppression of EC vortices, FIG. 326 
6 shows the Ne = f(Y) for fixed 10C = , 10M = , 170.07T =  , and 4000Fe = . Both Couette 327 
and Poiseuille cross-flow are examined. A hysteresis loop with subcritical bifurcation is 328 
observed; the bifurcation thresholds are 625.25cY = , 297.32fY =  for Couette flow and 329 

218.58cY = , 159.36fY =  for Poiseuille flow. The critical values of Yc correspond to Rec~O(1) 330 
(Rec=4.63 for Couette flow and Rec=2.94 for Poiseuille flow), which is consistent with linear 331 
stability analysis [64] for T = 170.07. Similar to stability parameter T for Re=0 (FIG. 3), for 332 

cY Y< , the system does not yield the EC instability, returning to the unperturbed state 333 
( 0I I= and 1Ne = ). If Y decreases after the EC vortices are formed, Ne decreases 334 
nonlinearly, until fY Y= , then the EC vortices are suppressed; the flow is not influenced by 335 
the electric forces. 336 



 337 
FIG. 6. Electrical Nusselt number Ne versus Y. Bifurcation thresholds are: (a)  Couette cross-flow 338 

625.25cY = and 297.32fY = ; (b) Poiseuille cross-flow 159.36fY =  and 218.58fY = . 339 

The results presented in this work consider the interaction crossflow electroconvective 340 
transport due to the unipolar charge injection; the presented methodology can be extended to 341 
more complex convective systems such as RBC and charge-neutral electrokinetic systems. 342 
The 2D case in this work can be regarded as a special case in the 3D flow scenario, i.e., the 343 
traverse rolling pattern [19,20]. Multimodal 3D structures (square patterns, hexagonal 344 
patterns, and mixed patterns) are ubiquitous in convective flows such as in EKI [58], EHD 345 
[20,21,79], and RBC[51,52,59,80-83]. The effect of cross-flow has been observed in all three 346 
scenarios; the summary and the analogy to EKI and RBC is shown in Table II. 347 
Table II. Non-dimensional parameters analogy for RBC and EHD electroconvection in the presence 348 

of the cross-flow velocity extu   349 

Physical 
interpretation 

Electrohydrodynamic convection (EHD) Heat convection 
(RBC) 

 As presented here 
(including charge density) 

Based on average field properties 
(without charge density) 

 
Body force

inertial force
  0 0

2

ext

X ρ ϕ
ρ

Δ=
u

 [68] 
2
0

22ei
ext

N
H
ε ϕ

ρ
Δ=

u
 [84,85] 

2
2

'/
ext

g HRi Gr Re= =
u

 [59] 

Body force
viscous force

 0 0Y X Re
ρ ϕΔ

= × =
τ

 
2
0
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ext

N N Re
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ε ϕ

μ
Δ= × =

u
[84,85] 

2'/
ext

g HGr Re ρ
μ

=
u

 

where 'g g ρ
ρ

Δ= is the reduced gravity [60]. In the context of EKI, the convection can also be 350 

characterized by non-dimensional parameters such as electric Nusselt number, electric 351 
Rayleigh number and Reynolds number [30,31]. 352 

IV. CONCLUSION 353 

 The 2D numerical study extends the EC stability analysis to Couette and Poiseuille 354 
flows between two infinitely long parallel electrodes with unipolar charge injection. The 355 
numerical approach utilizes the two-relaxation-time LBM to solve the flow and charge 356 
transport equations and a Fast Poisson Solver to solve the Poisson equation. Increasing cross-357 
flow velocity deforms the vortices and eventually suppresses them when threshold values of 358 
velocities are reached. Partial suppression of the vortices leads to the reduction in 359 
electroconvection for the entire range of the electric Rayleigh number. The non-dimensional 360 
analysis of the governing equations is used to derive parameter Y, a ratio of electric force to 361 
viscous force, in the presence of cross-flow. The non-dimensional parameter Y accounts for 362 



the effect of the shear stress, analogous to the Richardson number , Ri - ratio of buoyancy to 363 
the inertial forces, that is used to parametrize the effect of the applied shear in RBC. Similar 364 
to the stability parameter T for the hydrostatic case, a hysteresis loop with subcritical 365 
bifurcation is observed.  For 10C = , 10M = , 170.07T =  , and 4000Fe = , the bifurcation 366 
thresholds are 625.25cY = , 297.32fY = for Couette flow and 218.58cY = , 159.36fY = for 367 
Poiseuille flow.  368 
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