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Abstract

A perspective is presented on how machine learning (ML), with its burgeoning popularity and

the increasing availability of portable implementations, might advance fluid mechanics. As with

any numerical or experimental method, ML methods have strengths and limitations, which are

acknowledged. Their potential impact is high so long as outcomes are held to the long-standing

critical standards that should guide studies of flow physics.
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I. INTRODUCTION

In the last five years there has been a leap in the visibility of machine learning, with

computational algorithms now carrying out tasks that a decade ago seemed far off or even

impossible. Examples range from the vast improvements in speech recognition and machine

translation of natural language to medical diagnostics.

The progress in machine learning that led to these advances has been mostly technological,

and is well reviewed for fluid mechanics elsewhere [1]. Though any compact expression will

not express all the complex ways ML algorithms can use data, simplistically they take an

input x and map it to an output y: y = F
w
(x) via a mapping parameterized by w. The

w values are chosen by attempting to minimize a function C(x,y), often termed a cost

or loss function. Machine learning per se is the determination of w—learning it—so that

F can be used for some task. Historically such algorithms used a relatively small number

of parameters with analytically tractable loss functions for ease of computation. For linear

regression with a quadratic cost function, the problem can be solved analytically. To facilitate

analysis, cost functions have often been chosen to be convex so that there is a single, unique

minimum. Although fluid mechanics primarily focuses on physical mechanisms for fluid

phenomena, variants of this broader machine learning framework have played an important

role in situations where mechanisms are difficult to parameterize. A prominent example is

Proper Orthogonal Decomposition [2], which is equivalent to a linear ML autoencoder.

Recent progress derives from the surprising discovery in multiple application domains

that choosing y = F
w
(x) with an extraordinarily large numbers of parameters (w) and with

non-convex C(x,y) can produce models that are both accurate and generalizable, working

outside the set of training examples used to set w. Particularly successful mapping func-

tions have been parameterized with neural networks, invented more than thirty years ago,

though progress initially lagged due to the computational complexity for increasing numbers

of parameters exceeding the computational power then available. Modern neural networks

can easily have hundreds of millions of weights. Although their mathematical formulation is

straightforward to describe as layers of simple neuron functions, mathematical explanations

are incomplete regarding why or how minimizing non-convex functions, with so many pa-

rameters, can lead to generalizable models. To many the idea of working with a model that
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is not fully understood is disturbing, and caution is indeed warranted. Still, it is impossible

to dismiss the utility of these models in multiple domains.

Two factors made it possible to train these complex models (seek local minima). The

first was the expanded use of automatic differentiation and back propagation algorithms, es-

pecially the ease of programming them. These algorithms are essentially the neural-network

analogue of adjoint-based sensitivity methods, which have been used in fluid mechanics for

over fifty years [3]. The adjoint in that case is derived from the governing equation whereas

for ML the neural-network parameters are inferred based on data representing flow solu-

tions. In general, deriving an adjoint for such an optimization is tedious; robust packages

now exist for carrying out these calculations automatically for neural-network models as well

as for discrete representations of flow equations, either automatically [4] or directly derived

for greater implementation efficiency. The second factor is computational, with open-source

toolkits that enable ML models to leverage modern graphical processing units [5, 6]. To

broad surprise, the results were both wondrous and practical. Special purpose hardware is

even being developed that is optimized for evaluating neural networks. These same technolo-

gies, as they continue to improve with greater power and parallel scaling, have the potential

of making a major impact in fluid mechanics, giving a methodology for asking y = F
w
(x)

questions and answering them in flow regimes that were once unimaginable.

II. AN EXAMPLE

To be concrete about potential we consider an example where ML has impacted science,

in which a ML classifier was trained to detect diseases of the retina [7]. The input x was

the image pixels and the output y the classification. The authors constructed a large data

set of more than 50,000 fundus images of the eye, and then a panel of ophthalmologists

labeled the images for whether or not they had eye disease, and if so, the level of severity. A

large convolutional neural network, trained on these images, performed better than a panel

of ophthalmologists in its first instantiation and, with improvements, better than a panel of

retinal specialists [8].

Though of obvious practical importance, more interestingly this study also led to a discov-

ery. The retinal images also came with additional data from the person’s medical record. A
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retrained version of the model was able to predict blood pressure, age, and sex. Though un-

precedented, age and blood pressure were not particularly surprising, except perhaps in the

accuracy (the 95% confidence interval for age was 3.26 years), because morphology changes

with age and blood vessels are the most obvious features in a fundus image. The fundus

image–sex correlation, however, was a scientific discovery, as up until that point there had

been no known connection between the structure of the retina and sex. Yet the model

predicted this correlation with 97% accuracy.

What is interesting about these results is that the computer with data, set up to con-

struct what might be considered a mundane albeit intricate correlation, enabled discovery

of something that had not been previously suspected. This example is particularly inter-

esting because it was possible to then disentangle the decision tree of a neural network to

extract the rules for diagnosing macular disease, and provide new guidelines for diagnosis.

Computer classification led to diagnosis rules that can be implemented by humans. Such

disentanglement is hard, and the sex–retina correlation is still unexplained, though it is now

a target of hypothesis generation for potential discovery and generalization of findings more

broadly to human physiology.

Although fluid mechanics is not typically presented as classification problems, it can

be. For example, images of flows under different conditions (turbulent or not, Reynolds

number, stable or not, separated or not) can be classified, so a ML classifier can be trained

to categorize. At the outset this might be technically challenging and scientifically mundane,

maybe as mundane as implementing a numerical method or setting up a PIV system, but

it facilitates questions about how the classifier makes the classification that it does. We

would expect flow structure to be classified as higher and higher Reynolds number as eddies

of decreasing size show influences of viscosity. An opportunity exists in dissecting the logic

of how networks carry out classifications, ideally mathematically though more likely first

conceptually, to advance understanding. This is easy to envision in a currently understood

simple context, such as near a stability threshold; extending this to increasingly complex

nonlinear situations is less clear, though such situations are where opportunities lie. This

should be done with care, and some concerns are addressed in the following section, followed

by examples from fluid mechanics selected to illustrate how progress might follow.
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III. SKEPTICISM AND RESPONSES

Recent advances in ML methods are in the computational science underlying function

approximation, which is common in fluid mechanics. Indeed, the apparent truth of many

correlations is almost codified (e.g., the law of the wall), with debates about their coefficients.

A difference is that these established correlations are typically supported by a combination of

dimensional analysis and physical insights, and their mathematical form is explicit, with few

inputs and outputs. An aspect of ML that fosters discomfort is the complexity of its mapping

from inputs to outputs. Correspondingly, the desiderata for a function can be specified with

much more freedom than ever and tailored to particular problems. This is contrary to

the traditional approach for function approximation, such as Galerkin expansion, Fourier

transforms, or Proper Orthogonal Decomposition. Even boundary layer approximations are

general, applying whenever the underlying problem has the appropriate separation of length

scales. Of course, however an approximation is constructed, if it is done well, then it can

be usefully applied. And, if it is done badly, then it is undeniably not useful. Few can

say we should not deploy every useful mathematical technique we can find to advance fluid

mechanics, and for that reason the community should take advantage of the recent advances

if they are useful.

There are, however, significant pitfalls that must be avoided. First and foremost, the

core goal of the science of fluid mechanics is to discover mechanisms. Reducing a flow

process to its essence can, for example, require recognizing dominant mechanisms within

the Navier–Stokes equations and understanding why these terms govern the process. In

contrast, many advances in machine learning proceed without regard to mechanism. For

example, it is striking that state-of-the-art approaches to machine translation (from one

language to another) forego grammar and are entirely data driven [9]. Similarly, speech

recognition models are not based on acoustic models of sound production, but instead on

large datasets correlating acoustic input to words [10]. To advance fluid mechanics as a

discipline, correlations are clearly not enough, though they might have immediate impact in

engineering or other applications of fluid mechanics.

Yet, there is also an opportunity for addressing age old problems in a completely new way.

Old methods also have their share of historical accident. Not all stages of science discovery
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demand the same level of rigor, and certainly are not restricted to optimizing convex functions

that are analytically tractable. Linear algebra should be used when there is an L2 norm,

and Sturm–Liouville theory should be applied when problems are well-described by their

bases. We have historically used these in fluid mechanics for computational or calculational

convenience, though they are not fundamental representations of flow.

It is also important to recognize that the components of modern neural networks are not

far removed from our familiar linear modeling toolbox. For example, a convolutional neural

network (CNN) [11] is, at its heart, a local filtering operation. The difference is that, rather

than relying on filter kernels that are pre-ordained by some underlying physical law or in-

tuition, kernels are learned from the training process. Sometimes the trained weights that

emerge resemble a discrete form of differential operation on the underlying data. Further-

more, the linear filtering operation in a CNN is usually augmented with crucial nonlinear

operations, such as locally pooling the output field and applying activation (generally, recti-

fying or saturating the output), that enrich the network’s ability to approximate functions.

Suitable deep networks provide a range of operations that can be useful for extracting corre-

lations. Similarly, a recurrent neural network (and particularly, Long Short-Term Memory,

or LSTM [12]) correlates time-varying inputs and output signals by providing a richer ver-

sion of the already-familiar convolution with an impulse or indicial response function. Some

event in the past, experienced in the input data, lingers in a memory propagated from one

LSTM cell to the next. But, importantly, the LSTM provides nonlinear enhancements: the

response kernel (and its time constant) can vary as time proceeds, and it can forget past

events based on a trigger. Thus, we do not completely lose interpretability with such machine

learning frameworks; what interpretability is lost is the price we pay for increased potency

for function approximation.

IV. APPLICATIONS TO FLOW: RECENT AND HYPOTHETICAL

Whether or not these methods are deemed to impact fluid mechanics depends, in some

sense, on the expectations, and maybe where one draws the boundaries of fluid mechanics

per se versus application of fluid mechanics. We select but a few examples; a much more

complete discussion, including a historical perspective, is available in a forthcoming review
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article [1].

There are already many examples showing how the correlation/data-compression proper-

ties of data-trained mathematical models can aid predictions. Closure of Reynolds-averaged

Navier–Stokes (RANS) models against DNS is an important example [13–16], including cases

where the trained system provides an ‘alarm’ for anticipated errors [17]. In a similar vein,

they can correct approximate models, such as for finite-sized particle drag [18]. Both the

RANS governing equations and asymptotic drag models in these examples embody physics,

which is then augmented with ML. There are sure to be many such applications. Many

of these will unfortunately not have provable properties, because of the complexity of the

learned representation, though neither do the models they augment or replace because of

the complexity of the physical system. Still, they are potentially useful.

ML models are also starting to have influence closer to the principles of fluid mechanics,

when they are used in conjunction with human reasoning to organize complex flow field in-

formation in a manner that facilitates the asking and answering of questions. This is similar

to the classification discussed in context of the retinal fundus example. Recent examples in

these cases involve identifying the nominally important features in two-dimensional turbu-

lence [19], deducing energy-saving principles underlying the schooling dynamics of fish [20],

and deducing key features leading to successful ignition of combustibles in turbulence [21].

Each of these leveraged the trained ML model in a different fashion. Jiménez [19] reasoned

what an important structure should do, and then used ML analysis of a large database to

explore the consequences of this idea for its definition. Verma et al. [20] used reinforcement

learning, to model in a sense what a fish’s biological neural network might do given the op-

portunities afforded by the complex wake structures surrounding fish. Popov et al. [21] used

a relatively simple network to facilitate disentanglement of its sub-features (the convolution

kernels in the CNN) and a corresponding sensitivity analysis to define important features.

More complex scenarios might challenge these methods, though we do not seem to be near

a fundamental complexity limit in expanding such applications.

There are also examples of using ML to discover facile definitions within complex sys-

tems that are consistent with the intuitive expectations of the users. This is useful when a

concept is clear and enabling for subsequent analysis but lacks a specific definition, such as

classical boundary layer thickness. An unsupervised self-organizing map was used recently
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to cluster regions of a transitioning boundary layer into a consistent and robust data-driven

definition of the turbulent boundary layer interface [22], avoiding some concerns with typical

threshold definitions. There are other likely opportunities for ML methods to provide means

of developing definitions automatically based on simpler notions.

Recent results also show that a trained network can, in a sense, replace challenging dynam-

ics. Examples are the deduction of drag and lift given limited field information [23], inference

of flow characteristics from aerodynamics surface measurements [24] super-resolution of un-

steady flow details from limited information [25], and anticipation of extreme events in a

Kolmogorov flow [26]. These examples are interesting, though only two dimensional, with-

out the stronger chaos of the true turbulence that would exist in corresponding applications.

It will be interested to understand the limits of such an approach in this regard and when a

more complete physical description is needed.

It is hoped that this survey is illustrative regarding opportunities for ML in fluid me-

chanics applications and studies. Many other examples are not discussed. It is noteworthy

that there does not yet seem to be an example of ML impacting what might be consid-

ered foundational fluid mechanics. All of the examples above were constructed around fluid

mechanics principles that were already understood. Still, we can speculate what a funda-

mental contribution might look like, if only to recognize that it is potentially a long way

off. Though it might be unlikely, let us hypothesize that a hitherto undiscovered invariant

constrains incompressible turbulent flow, perhaps in the same vein as impulse integral con-

straints apply in two dimensions. Since it surely could aid the input–output description of

the training setup, a deep neural network, trained on trusted turbulence data, might indeed

make implicit use of this hypothetical invariant. However, at present there is no sure route

for extracting it from the trained network weights as a physical or mathematical law. Its

existence in the parameterized ML network might be equally opaque as it is within the flow

phenomena. Means of seeking such properties might constitute an interesting research di-

rection in ML applied to scientific applications. Such efforts might build on methods such

as Layer-wise Relevance Propagation, which is a network analysis to deduce how it labels

images [27]. Speculating still further, it is even harder to imagine how ML would discover

a new concept. For this, we might craft another thought experiment: by what route could

training data lead to, for example, the distilled form of boundary layer theory at the foun-
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dation of high-Reynolds-number fluid mechanics? When or if human understanding will be

advanced in such a way will remain a mystery until a point, if ever, such a feat is achieved.

Still, the first step might be the more mundane present-day applications oriented around

classification and definition.

V. PERSPECTIVE SYNOPSIS

The primary perspective we offer is based on two main observations. Although they are

often constructed based on heuristics, ML algorithms are themselves well-defined mathemat-

ically, and indeed the training procedures of the presently pervasive deep learning network

models leverage this characteristic. They also have a massive infrastructure supporting their

broad use. As such, ML will certainly play some role for the correlations they can find, of-

fering ways to enrich fluid mechanics. In addition, we also offer a perspective based on some

speculation, which we do with less confidence but in the hope it provides some framework for

how ML might develop in fluid mechanics. As with its much touted successes with images

and language, success will depend in part upon the availability of training data, which can

be hard to come by in the form of high-fidelity simulations or experiments; many ML algo-

rithms need a lot of data to reduce the error to suitably low values, and ways to pre-train in

the context of fluid mechanics will be an interesting research direction. The examples pro-

vided illustrate its potential in melding observational data into precise fluid mechanics. How

this links with the biological neural networks in the head of the fluid mechanician remains

unclear, though there is little risk so long as discoveries are held to the same high standards

for any generalizable advance in understanding. It would be bold to predict just how these

methods will make the greatest inroads in fluid mechanics, and no two people will share a

common view—still less, these three authors—but such a flexible method would seem to be

well-positioned to help, and we are excited to see attempts.
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