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Abstract8

The effects of isothermal initial stratification on the dynamics of the vorticity for single-mode Rayleigh-9

Taylor instability (RTI) are examined using two-dimensional fully compressible wavelet-based direct numer-10

ical simulations. The simulations model low Atwood number (A = 0.04) RTI development for four different11

initial stratification strengths, corresponding to Mach numbers from 0.3 (weakly stratified) to 1.2 (strongly12

stratified), and for three different Reynolds numbers, from 25,500 to 102,000. Here, the Mach number is13

based on the Atwood-independent gravity wave speed and characterizes the strength of the initial stratifi-14

cation. All simulations use adaptive wavelet-based mesh refinement to achieve very fine spatial resolutions15

at relatively low computational cost. For all stratifications, the RTI bubble and spike go through the ex-16

ponential growth regime, followed by a slowing of the RTI evolution. For the weakest stratification, this17

slow-down is then followed by a re-acceleration, while for stronger stratifications the suppression of RTI18

growth continues. Bubble and spike asymmetries are observed for weak stratifications, with bubble and19

spike growth rates becoming increasingly similar as the stratification strength increases. For the range of20

cases studied, there is relatively little effect of Reynolds number on bubble and spike heights, although the21

formation of secondary vortices becomes more pronounced as Reynolds number increases. The underlying22

dynamics are analyzed in detail through an examination of the vorticity transport equation, revealing that23

incompressible baroclinicity drives RTI growth for small and moderate stratifications, but increasingly leads24

to the suppression of vorticity production and RTI growth for stronger stratifications. These variations in25

baroclinicity are used to explain the suppression of RTI growth for strong stratifications, as well as the26

anomalous asymmetry in bubble and spike growth rates for weak stratifications.27
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I. INTRODUCTION28

Rayleigh-Taylor instability (RTI) is formed at the interface of two fluids with different densities29

when an accelerative force is applied across the interface in the direction of the less dense fluid30

[1, 2]. Such a scenario arises in a number of practical engineering and physics problems, including31

inertial confinement fusion (ICF) [3, 4], supernova ignition fronts [5–9], X-ray bursts [10], and32

various topics in geophysics [11–13], to name just a few examples. In many of these problems,33

as well as in many experiments [13, 16–19], the Atwood number (namely, the density ratio of the34

two fluids normalized to take values between 0 and 1) is small, the background or initial state is35

stratified, and the Reynolds number is large, resulting in compressible dynamics driven by relatively36

small density differences over a wide range of length and time scales. In the present study, two37

dimensional (2D) fully compressible wavelet-based direct numerical simulations (DNS) are used38

to examine, from a dynamical standpoint, the evolution of low Atwood number RTI for different39

isothermal initial stratification strengths and Reynolds numbers.40

The present focus on initial stratification strength is intended to reveal the effects of flow41

compressibility on RTI evolution. Both flow and fluid compressibility may affect RTI growth; the42

former is related to the thermodynamic state and the stratification of background density and43

pressure fields, while the latter is related to the equation of state and differences in the specific44

heat ratio between the two fluids [46]. Flow compressibility is associated with quantities that45

are independent of fluid properties, for example the velocity or thermodynamic state, while fluid46

compressibility relates to material properties that can only be changed by changing the fluid itself.47

Gauthier [15] refers to these two types of compressibility as “static” and “dynamic” compressiblity,48

respectively. In the present context, the strength of the initial stratification is given by a Mach49

number characteristic of flow compressibility, namely M =
√
gλ/a, where g is the gravitational50

acceleration, λ is the wavelength of the initial perturbation used to generate the RTI, and a is51

the sound speed. The Atwood number does not appear in this definition of M , since the Atwood52

number is most relevant to the change in fluid properties at the interface between the two fluids53

and is thus more directly associated with fluid compressibility.54

Until relatively recently, many DNS studies of RTI used incompressible, low-Mach number,55

Boussinesq, or anelastic approximations to reduce the computational cost, often yielding valuable56

physical insights (see, e.g., [20–24, 46]). However, the present study is one of a growing number of57

fully compressible DNS analyses of RTI growth and characteristics. Lafay et al. [25] examined RTI58

growth in the linear regime for different compressibility strengths (addressing both flow and fluid59
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compressibility), and Gauthier [26] examined RTI growth into the nonlinear regime for two different60

stratification strengths. More recently, Reckinger et al. [27] examined single-mode, 2D RTI growth61

rates for a range of stratification strengths, and Gauthier [15] performed a comprehensive study62

of the dynamics of multi-mode, three-dimensional (3D) RTI for a relatively strongly stratified63

case. Both of these more recent studies employed variable-resolution numerical methods to achieve64

high Reynolds numbers within the context of fully compressible DNS; Reckinger et al. [27] used65

the parallel adaptive wavelet collocation method (PAWCM) [28] and Gauthier [15] used an auto-66

adaptive multi-domain Chebyshev-Fourier method [29]. Using currently available computational67

resources, these and other adaptive techniques are unavoidable when performing fully compressible68

DNS at high Reynolds numbers. The present study correspondingly employs PAWCM to study69

the effects of flow compressibility and Reynolds number, including high Reynolds numbers, on RTI70

growth and dynamics.71

Based in large part on observations from these prior fully compressible DNS studies, the general72

effects of compressibility on RTI growth are now relatively well understood. Despite some initial73

ambiguity regarding the specific impacts of compressibility (dating back, at least, to the studies74

by Bernstein & Book [30] and Baker [31]), Livescu [46] used a linear analysis of the Navier-Stokes75

equations to show that, for isothermal background stratification, flow compressibility is associated76

with a reduction in the rate of RTI growth, while fluid compressibility is associated with an increase77

in the growth rate, as compared to the corresponding incompressible case. A number of studies78

have confirmed these results, particularly with respect to the suppression of RTI growth by flow79

compressibility [15, 25, 27, 32–34]. In particular, as the stratification strength of the background80

density field increases, an increasing suppression of RTI growth has been observed. Reckinger et al.81

[27] further found that there are asymmetries in the locations and speeds of upward propagating82

low density fluid (i.e., “bubbles”) and downward propagating high density fluid (i.e., “spikes”),83

even at relatively small Atwood number, that may be different than in the incompressible limit. It84

was also shown by Reckinger et al. [27] that drag and potential flow models are unable to predict85

the suppression of RTI growth for strong stratifications.86

Compared to the effects of flow compressibility, Reynolds number effects on RTI growth have87

received somewhat less attention (although the Péclet number is more directly related to the88

balance between convective and diffusive effects in RTI, the Schmidt and Prandtl numbers are89

taken as unity, or close to unity, in nearly all prior simulation studies, resulting in a correspondence90

between the Péclet and Reynolds numbers). Wei & Livescu [34] used the incompressible variable-91

density form of the Navier-Stokes equations to show that, at early non-dimensional times t
√
Ag/λ,92
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where t is time and A is the Atwood number, RTI growth rates are larger for smaller Reynolds93

numbers due to diffusive effects. At long times, however, RTI growth rates were found to be94

greater for larger Reynolds numbers. The crossover in growth rates between low and high Reynolds95

numbers was found to occur at non-dimensional times of roughly 3− 4, corresponding to the end96

of the potential flow growth stage of the RTI. There are indications, however, that the RTI re-97

accelerates at later times [35] and may, in fact, grow quadratically at sufficiently high Reynolds98

numbers [34], contrary to the “terminal velocity” assumption in previous studies. In this case,99

single-mode RTI may represent an upper bound for the multi-mode case. The single-mode growth100

rate was also found to become independent of Reynolds number at sufficiently large Reynolds101

numbers. Using fully compressible DNS, Gauthier [15] similarly found that smaller Reynolds102

numbers are associated with faster early growth rates of the turbulent mixing layer produced by103

the RTI. At later times, growth rates for higher Reynolds numbers are similar to, or exceed, those of104

lower Reynolds numbers. These results were, however, obtained for a single stratification strength,105

and it remains to be seen how these Reynolds number effects depend on stratification strength,106

if at all. It should be noted that these Reynolds number effects are likely associated with the107

observation by Dimotakis [36] that, when the Reynolds number is sufficiently high, small-scale108

turbulent features develop beyond the mixing transition and further increases in the Reynolds109

number do not yield significant changes to the turbulence characteristics. In the Rayleigh-Taylor110

literature, this has been explored, for example, by Cook et al. [37].111

In order to understand compressibility and Reynolds number effects in more detail, several au-112

thors have examined the dynamics of the vorticity during RTI evolution, generally finding that113

changes in the baroclinic torque are responsible for changes in RTI growth rates. Lafay et al.114

[25] examined the linear regime and found that vorticity production decreases as the stratifica-115

tion strength increases. More recently, Schneider & Gauthier [38] performed a systematic study116

of vorticity during RTI growth using 3D multimode simulations that employ the Boussinesq ap-117

proximation. This study showed that there is an increase in the strength of baroclinic torque118

production with time, although the contribution to the overall dynamics is dwarfed by the effects119

of nonlinear vortex stretching. Gauthier [15, 26] was the first to examine vorticity using fully120

compressible DNS, and showed the importance of baroclinic torque in producing vorticity during121

RTI growth for a single strongly stratified case. However, changes to the relative magnitudes of122

the various terms in the vorticity transport equation for different stratification strengths are still123

not completely understood in the fully compressible case.124

Despite the improved understanding of compressibility and Reynolds number effects provided125
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by the recent, primarily computational, studies noted above, a number of outstanding questions126

remain, and the present study is specifically focused on addressing the following: (i) How does the127

behavior of low Atwood number RTI depend on both initial stratification strength and Reynolds128

number?; (ii) What are the dynamical causes of the observed RTI phenomena?; and (iii) How129

do the dynamics (specifically, the vorticity dynamics) depend on initial stratification strength?130

The first question is motivated by the studies of Lafay et al. [25] and Wei & Livescu [34]; the131

former studied the effects of compressibility, but within the linear regime and for only one Reynolds132

number, while the latter studied a range of Reynolds numbers, but using an incompressible variable-133

density formulation of the Navier-Stokes equations that precluded the study of compressibility134

effects. The second and third questions are motivated primarily by the studies of Reckinger et al.135

[27], Schneider & Gauthier [38], and Gauthier [15]. The first of these studies observed bubble-spike136

asymmetries but not their dynamical causes, while the second and third studies both performed137

extensive analyses of the vorticity dynamics, but using the Boussinesq approximation (i.e., not a138

fully compressible study) and for only one stratification strength, respectively. It should also be139

noted that several prior studies [13, 39, 40] have examined incompressible RTI in the presence140

of stable background stratification, and here we examine fully compressible RTI under similar141

circumstances, with the notable distinction that the present stratification is vertically asymmetric.142

In the present paper, DNS are performed at low Atwood numbers (0.04 here, as compared143

to 0.1-0.7 in [27]) for different Reynolds numbers and different strengths of initial hydrostatic144

stratification, corresponding to Mach numbers between 0.3 (weak stratification) and 1.2 (strong145

stratification) [41, 42, 46]. The DNS are performed using adaptive mesh refinement based on146

PAWCM, as described, validated, and implemented for RTI by Reckinger et al. [27, 28]. This147

method allows high spatial resolution to be used where it is needed (e.g., where density and148

velocity gradients are large), while reducing the total number of computational collocation points.149

The present focus on low Atwood numbers is motivated primarily by the observations of quadratic150

high Reynolds number single-mode RTI growth in regimes with similarly low Atwood number in151

the study by Wei & Livescu [34]. In order to understand the dynamical causes of the observed152

results, the various terms in the vorticity transport equation are examined as functions of time and153

stratification strength.154

It should be noted that several simplifications are made here to allow the underlying physics155

to be more easily understood. In particular, complex interactions of multiple wavelengths are156

eliminated by applying only single-mode initial perturbations to the unstable interface between the157

two fluids with differing densities. Moreover, in the classical incompressible case, where the density158
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of both fluids is constant, RTI growth eventually leads to a re-acceleration of the bubble and spike159

tips, finally resulting in chaotic dynamics and development. The compressible case is, however,160

more complicated due to spatial and temporal variations in the background density, pressure, and161

temperature fields. The effects of changing any of these fields are largely unknown, and thus only162

isothermal initial stratifications are studied here to eliminate thermal effects, since the initial state163

is already in thermal equilibrium. Future work will explore the effects of multi-modal perturbations164

and different stratification types. Finally, the present simulations and analysis are performed in165

2D in order to enable the examination of several different stratification strengths and Reynolds166

numbers. Each such simulation is computationally expensive and performing a similarly expansive167

study in 3D remains the focus of future research, due primarily to the need for substantially more168

computational resources. The primary disadvantage of the present 2D approach is the resulting169

lack of nonlinear vortex stretching in the vorticity dynamics, although the absence of this effect170

does have the benefit of more clearly revealing the effects of baroclinicity on the dynamics.171

The rest of this paper is organized as follows. The next section discusses the problem setup, in-172

cluding the governing equations and initialization of the RTI. Section III provides a brief discussion173

of how the wavelet-based adaptive method (i.e., PAWCM) was used to complete the simulations.174

In Section IV, the paper goes in depth into the results of this study, looking at the effects of strati-175

fication strength and Reynolds number on RTI growth. In Section V, the dynamics of the vorticity176

for fully compressible RTI are outlined and examined. Finally, a summary and conclusions are177

presented in Section VI.178

II. DESCRIPTION OF THE PHYSICAL PROBLEM179

In the present study, RTI occurs through the initial placement of a heavier fluid, denoted by180

index ‘2’ with molar mass W2, above a lighter fluid, denoted by index ‘1’ with molar mass W1,181

in the presence of a gravitational accelerative force. The addition of a perturbation leads to the182

onset of the RTI, and the heavier fluid begins to fall into the lighter fluid in a spike-like formation,183

while the lighter fluid rises into the heavier fluid in a bubble-like formation. For the present184

low Atwood number cases, “bubbles” are defined as upward-traveling low density features, while185

spikes are downward-traveling high density features. In the following, the fully compressible fluid186

flow equations solved by the DNS are outlined, followed by a description of the initial isothermal187

hydrostatic stratifications of different strengths (as characterized by a static Mach number). It188

should be noted that the equations solved are identical to those used in the study by Reckinger et189
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al. [27], but are repeated here since they are the starting point for the study of vorticity dynamics190

in Section V.191

A. Governing Equations192

The numerical simulations solve the fully compressible Navier-Stokes equations for two miscible193

fluids given by [41]194

∂ρ

∂t
+
∂(ρuj)

∂xj
= 0 , (1)

∂(ρui)

∂t
+
∂(ρuiuj)

∂xj
= − ∂p

∂xi
+ ρgi +

∂τij
∂xj

, (2)

∂(ρe)

∂t
+
∂(ρeuj)

∂xj
= −∂(pui)

∂xi
+ ρuigi +

∂(τijui)

∂xj
− ∂qj
∂xj

+
∂[T (cp)lsjl]

∂xj
, (3)

∂(ρYi)

∂t
+
∂(ρYiuj)

∂xj
=
∂sji
∂xj

, (4)

where ρ is the density, ui is the velocity in the xi direction, p is the pressure, gi is the gravitational195

acceleration, τij is the viscous stress tensor, e is the specific total energy, qi is the heat flux, T is196

the temperature, (cp)l is the specific heat capacity at constant pressure for fluid l, sji is the mass197

flux for fluid i in the xj direction, and Yi is the mass fraction for the ith fluid. Note that, for a198

two-fluid system, Y2 = 1 − Y1, and so Eq. (4) is only solved in the present simulations for i = 2199

(i.e., the heavier fluid). The pressure and caloric ideal gas laws are assumed to hold, so that the200

pressure and specific total energy can be expressed as201

p = ρRT , (5)

e =
1

2
uiui + cvT , (6)

where R is the mixture gas constant defined in terms of the universal gas constant R and the molar202

mass of each fluid, Wi, as203

R = YiRi = R Yi
Wi

. (7)

In the above expression, the species gas constant is defined as Ri ≡ R/Wi. The mixture specific204

heat at constant volume, cv, appearing in Eq. (6) is similarly defined as205

cv = (cv)iYi , (8)
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where the specific heats at constant pressure and volume are related by (cp)i = (cv)i+Ri and their206

mixture values by cp = cv + R. The specific heats at constant volume are assumed constant and207

the same for the two fluids, so that the mixture specific heat at constant pressure varies with the208

flow due to the different molar masses of the two fluids.209

The viscous stress τij in Eqs. (2) and (3) is assumed to be Newtonian and is given by210

τij = µ

(
∂ui
∂xj

+
∂uj
∂xi
− 2

3

∂uk
∂xk

δij

)
= 2µS′ij , (9)

where S′ij = Sij − Skkδij/3 is the deviatoric strain rate and the dynamic viscosity is given by211

µ = ρν, with the kinematic viscosity ν assumed to be constant (i.e., temperature independent212

and the same for both fluids) such that spatial and temporal variations in µ are due entirely to213

variations in ρ. The strain rate tensor, Sij , is given by214

Sij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (10)

The heat flux in Eq. (3) is written as215

qj = −k ∂T
∂xj

, (11)

where k is the thermal conductivity, and the species mass flux in Eqs. (3) and (4) is defined as216

sji = ρD
∂Yi
∂xj

, (12)

where D is the mass diffusivity. For the range of parameters considered here, the baro-diffusion217

term is small in the mass flux, and Soret and Dufour effects are neglected in the mass and heat218

fluxes, respectively. Both k and D, like the kinematic viscosity ν, are assumed to be constant and219

temperature-independent, and both Prandtl and Schmidt numbers are unity, resulting in an exact220

correspondence between the Reynolds and Péclet numbers.221

The majority of fluid properties are taken to be the same between the two fluids for simplicity.222

This includes the kinematic viscosity, ν, the heat conduction coefficient, k, and the mass diffusion223

coefficient, D. It should be noted that effects due to bulk viscosity and non-equilibrium thermo-224

dynamics are neglected in the simulations. Investigating these effects is beyond the scope of the225

present study, although Sagert et al. [43] and Lai et al. [44] have recently made progress in this226

direction.227

8



The system of equations given by Eqs. (1)-(12) is solved using the PAWCM numerical approach,228

which is described in Section III, for an RTI with a physical setup as outlined in the following229

section.230

B. Initialization of Rayleigh Taylor Instability231

The RTI problem is initialized in the DNS by imposing a perturbation on a stratified isothermal232

background state that is in hydrostatic equilibrium. The gravitational acceleration is assumed to233

be in the negative x1 direction, such that gi = −gδi1, where g is the magnitude of the gravitational234

acceleration. The resulting density, ρ(x1, x2, t), and pressure, p(x1, x2, t), fields at t = 0 can be235

expressed as236

ρ(x1, x2, 0) = ρ0(x1) + ρ′(x1, x2, 0) , (13)

p(x1, x2, 0) = p0(x1) + p′(x1, x2, 0) , (14)

where ρ0 and p0 are hydrostatic initial background states and ρ′(x1, x2, 0) and p′(x1, x2, 0) represent237

the initial perturbations to the background states.238

Assuming an isothermal background state at temperature T0, the background density and pres-239

sure fields for fluid α (where α = [1, 2] and summation over Greek indices is not implied) are given240

by241

ρ0α(x1) =
pI

RαT0
exp

(
− gx1
RαT0

)
, (15)

p0α(x1) = pI exp

(
− gx1
RαT0

)
, (16)

where the initial interface between the two fluids lies at x1 = 0, pI is the interfacial pressure, and242

Rα = R/Wα is the gas constant based on the molar mass of fluid α. The heavier fluid (α = 2)243

is initially located above the interface for x1 > 0 and the lighter fluid (α = 1) is initially located244

below the interface for x1 < 0. A corresponding interfacial density is given using the ideal gas law245

as ρI = pI/(RIT0) where RI = R[(W1 +W2)/2]−1.246

In each of the cases examined here, the kinematic viscosity ν = µ/ρ, which is constant and the247

same in both fluids, is set using the Reynolds number, Re, defined as248

Re ≡
√
gλ3

ν2
⇒ ν =

√
gλ3

Re2
, (17)
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where λ is the wavelength of the applied perturbation. The non-dimensional Atwood number, A,249

is defined as250

A ≡ W2 −W1

W2 +W1
. (18)

Note that in the present study, W2 > W1 in order to generate RTI. It should be noted that the251

definition of Re in Eq. (17) does not include A, despite its appearance in the definition of the252

perturbation Reynolds number, Rep = Re[A/(1 + A)]1/2 in previous studies (e.g., [34]) of low-253

Atwood RTI. Here, A is not included in Re in order to ensure a consistent non-dimensionalization254

of the vorticity dynamics in Section V based only on g, λ, and the interfacial density ρI . The255

definition of Re in Eq. (17) is also consistent with the prior PAWCM study by Reckinger et al.256

[27].257

The degree of flow compressibility defined by the thermodynamic conditions enters the RTI258

problem by affecting both the background stratification and the further development of dilata-259

tional (non-zero velocity divergence) effects [41, 46]. While dilatational effects and their acoustic260

manifestations are usually characterized by the Mach number denoting the ratio between veloc-261

ity and sound speed, together with dilatational to solenoidal kinetic energy ratios, stratification262

strength can also be recast as a Mach number. This can be done by re-expressing gx1/(RαT0) in263

Eqs. (15) and (16), as described below.264

In the present study, the relevant incompressible limit is found by simultaneously increasing265

the background pressure and temperature to cause an increase in the speed of sound such that266

the density remains unaffected. This incompressible limit is also easily obtained in practice by267

uniformly heating a fixed volume of fluid. This results in the definition of an isothermal Mach268

number based on the ratio of the Atwood-independent gravity wave speed,
√
gλ, and the isothermal269

speed of sound, a0 =
√
pI/ρI [32, 46]. The resulting Mach number, M , is then given by270

M =

√
ρIgλ

pI
⇒ M2 =

gλ

RIT0
. (19)

It should be noted that M is equivalent to stratification strength parameters used in prior studies271

of flow (or “static”) compressibility [15, 23, 45], and that larger values of M indicate stronger initial272

stratification. The Atwood number, A, is not included in the definition of M since the present Mach273

number is intended to be characteristic of the initial background stratification, which is independent274

of A. Similar Mach number definitions have also been used in prior studies of compressible RTI275
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(e.g., [46]). A Mach number characterizing fluid (or “dynamic”) compressibility, by contrast, would276

be expected to include A.277

Normalizing ρ0α in Eq. (15) and p0α in Eq. (16) by ρI , g, and λ, the non-dimensional background278

states can be rewritten as279

ρ∗0α(x∗1) =
RI
Rα

exp

(
−M2RI

Rα
x∗1

)
, (20)

p∗0α(x∗1) =
1

M2
exp

(
−M2RI

Rα
x∗1

)
, (21)

where the characteristic pressure is given as ρIgλ and x∗1 ≡ x1/λ is a normalized distance variable.280

It can be shown that the ratio RI/Rα can be written in terms of the Atwood number A as281

RI
Rα

=
2Wα

W1 +W2
= 1 + (−1)αA for α = 1, 2 . (22)

Since α = 1 corresponds to the lighter fluid for which x∗1 < 0 initially and α = 2 corresponds to the282

heavier fluid for which x∗1 > 0, the non-dimensional background states ρ∗0 and p∗0 can be written in283

final form as284

ρ∗0(x
∗
1) = (1±A) exp

[
−M2(1±A)x∗1

]
, (23)

p∗0(x
∗
1) =

1

M2
exp

[
−M2(1±A)x∗1

]
, (24)

where ρ∗0 = ρ0/ρI , p
∗
0 = p0/(ρIgλ), with (1 − A) for x∗1 < 0 (i.e., the lighter fluid) and (1 + A)285

for x∗1 > 0 (i.e., the heavier fluid). The resulting initial background stratifications are shown for a286

variety of Mach numbers in Figure 1, where the size of the density difference at x∗1 = 0 is determined287

by the value of A (A = 0.04 in the present study).288

Following the procedure extensively outlined by Reckinger et al. [27], a single-mode velocity289

perturbation was applied at t = 0 to initialize the RTI. Although they are not perfect represen-290

tations of multi-mode engineering problems found in ICF and other practical applications, the291

present single-mode simulations can nevertheless be used to gain insights into compressibility-292

driven physics and dynamics. As shown by Reckinger et al. [27], single-mode simulations can293

expose any numerical directional bias in the code, which is generally hidden in multi-mode simu-294

lations. As a result, single-mode simulations allow the opportunity to ensure that the simulations295

are completely resolved from the initial state through to late times, and also allow simple checks296

for symmetry and the introduction of extraneous perturbation modes throughout the simulation.297
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In addition, the results of Wei & Livescu [34] show that single-mode RTI may represent the upper298

bound for the multi-mode growth rate at low Atwood numbers, when the Reynolds number is299

sufficiently large.300

III. DETAILS OF THE DIRECT NUMERICAL SIMULATIONS301

Due to the spatial localization of the developing region, the RTI problem lends itself naturally to302

state-of-the-art adaptive grid numerical methods. In particular, to effectively capture the instability303

evolution, very long domains are needed to ensure that late-time growth is captured, but very small304

grid spacing is required to fully resolve the high gradients at the interface of the instability. For a305

static computational grid with fixed cell size, this results in a very dense grid and incredibly high306

computational costs. During the majority of the simulation, however, very fine grid resolutions307

far away from the interface are unnecessary and, as a result, high grid compression ratios can308

be achieved through the use of adaptive grid approaches. A method that has proven effective at309

achieving high compression ratios is the Parallel Adaptive Wavelet Collocation Method (PAWCM)310

[27, 28], which is the method that is applied here.311

A. Wavelet-Based Grid Adaptation312

The PAWCM numerical approach has been applied previously to the simulation of compressible313

RTI by Reckinger et al. [27], where validation and details of the numerical method are exhaustively314

outlined. These details are repeated only briefly here, and the reader is referred to [27] for additional315

information.316

Fundamentally, PAWCM uses the natural properties of the wavelet transform to locate areas of317

steep gradients and to provide direct control over the grid cell size used to resolve the gradients.318

Essentially, through PAWCM, a flow field variable is transformed into wavelet space, resulting in319

wavelet basis functions and coefficients that are localized in both wave and physical spaces. From320

there, the coefficients are passed through a thresholding filter where all of the coefficients with321

magnitudes above the parameter ε are kept, and any of those below ε are set to zero. The resulting322

thresholded decomposition can thus be written for a generic variable f as323

f≥(x) =
∑
k

c0kφ
0
k(x) +

∞∑
j=0

2n−1∑
α=1

∑
l

|dα,jl |≥ε||f ||

dα,jl ψα,jl (x) , (25)
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where φk are scaling functions on the coarsest level, ck are the corresponding coarse-level wavelet324

coefficients, ψl are the scaling interpolating functions on any arbitrary level, dl are the coefficients325

to which the thresholding is applied, l and k represent physical grid points, and α and j represent326

the wavelet family and level of resolution, respectively [47, 48]. The effect of setting any one of the327

coefficients dl to zero is the removal of a grid point at that level of resolution. These coefficients328

take on large values for large gradients, and small values in relatively uniform regions. The effective329

resolution is set by a base grid size and the limit put on j (referred to as jmax herein). This results330

in the error being O(ε) and the resolution in a single direction being p · 2(jmax−1), where p is the331

base resolution [47–49].332

As outlined in Reckinger et al. [27], PAWCM has been implemented in a way that enables333

it to work with finite difference approaches to solving governing equations such as those in Eqs.334

(1)-(4). In solving these equations, fourth-order central differences have been applied spatially, and335

a third-order total variation diminishing explicit Runge-Kutta scheme has been applied in time.336

The PAWCM algorithm is highly parallelized, having successfully run on up to 5,000 cores, and is337

able to perform arbitrary domain decompositions using the Zoltan library. It has a tree-like data338

structure for easy MPI communications, as well as direct error control. As a result, the additional339

computational overhead introduced by the wavelet methodology is offset by the capability to use340

many processors and to achieve grid compression ratios greater than 90% [47–49].341

Substantial discussion was provided in Reckinger et al. [27] regarding the flow variables on342

which to adapt the grid in the DNS. Since the wavelet method is so flexible, it is possible to adapt343

the grid on any flow field variable that is calculable and of interest. In the present study, adaptation344

for the initial time steps was performed using the vorticity, the norm of the strain rate tensor, and345

the gradient of the species mass fraction Y2, in addition to the velocity and mass fraction fields.346

This approach allowed the RTI to develop with sufficient accuracy prior to further refining the grid347

on more complex flow variables at later times to reflect the increasing complexity of the flow. In348

particular, at late times in the present study, adaptation was performed using the baroclinic torque349

to ensure that this dynamically important term was fully resolved for the analysis of the vorticity350

dynamics. Additional details on grid convergence and resolution can be found in [27].351

B. Simulation Setup352

In the present study, PAWCM is used to solve the governing equations outlined in Section II A353

for the background and initial conditions described in Section II B. The simulations have been354
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carried out in 2D and the total domain size was 16λ in the x1 direction and λ in the x2 direction,355

where λ corresponds to the wavelength of the applied perturbation. The maximum effective grid356

resolution resulting from the adaptive wavelet approach was ∆x∗ = 2.4×10−4, where ∆x∗ = ∆x/λ357

and ∆x is the grid cell size. This results in a maximum of 4,096 grid cells in the x2 direction, which358

occurs primarily near x∗1 = 0 where the RTI develops. Although there is a potential maximum of359

65,536 points in the x1 direction, the adaptive wavelet method only provides high resolution near360

the RTI and, thus, each simulation includes far fewer points along the x1 direction.361

The Atwood number studied was 0.04, and the Mach numbers used were 0.3 (nearly incompress-362

ible), 0.6, 0.9, and 1.2. The Reynolds numbers, Re, investigated were 25,500, 51,000, and 102,000363

(corresponding to perturbation Reynolds numbers, Rep, of 5,000, 10,000, and 20,000, respectively),364

giving a total of twelve simulations performed in the present study (i.e., four different values of M ,365

and three values of Re for each M). The highest Reynolds number is of particular interest because366

it has been shown to be the minimum perturbation Reynolds number necessary to reach the chaotic367

growth regime for the incompressible limit (i.e., M → 0) of this particular case [34]. Each of the368

simulations were performed up to a non-dimensional time of t∗ = t/
√
λ/g = 20, corresponding to369

the time at which the bubble and spike had reached heights of roughly λ (or x∗1 = ±1) for the370

M = 0.3 case.371

Boundaries in the x2 direction are taken to be periodic. In the x1 direction, at the top and372

bottom of the domain, shear-free slip boundary conditions were implemented with numerical dif-373

fusion buffer zones immediately before each boundary interior to the domain. The purpose of374

these “open” boundary conditions is to essentially mimic an infinite domain and to ensure that375

both the background stratification is preserved and that none of the shocks introduced by the RTI376

initialization are reflected back into the domain. In particular, the buffer zones ensure that any377

shockwaves are dissipated prior to reaching the boundaries [27].378

As discussed in [27], some artificial thickening of the interface at x∗1 = 0 and t∗ = 0 can be379

beneficial since the thicker interface can act as a buffer layer to absorb other numerical errors.380

In general, however, thicker interfaces have the potential to introduce asymmetries in the initial381

conditions which propagate as undesirable longer-time asymmetries during RTI growth. Based on382

these two competing considerations, the number of points across the interface was chosen to be 16,383

to both minimize the asymmetry and to gain some measure of beneficial buffering effects. Finally,384

it was found that higher resolutions led to better initial conditions. At a level of jmax = 7, it was385

found that the asymmetry drops below machine precision, and thus this level of resolution was386

deemed sufficient for the present simulations.387
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IV. RAYLEIGH TAYLOR INSTABILITY GROWTH AND CHARACTERISTICS388

The PAWCM-enabled simulations performed here are designed to allow examination of stratifi-389

cation strength (as parameterized by M) and Reynolds number (as parameterized by Re) effects on390

RTI growth and characteristics. In the following, these two effects are investigated with a primary391

focus on the heights and velocities of bubbles and spikes formed during the RTI development. Here392

the “height” is denoted h and refers to the absolute value of the respective distances from x1 = 0 of393

the bubble and spike “tips” in the x1 direction. The bubble and spike tips correspond to the 99%394

and 1% mass fraction values, respectively. Bubble and spike velocities, denoted uh, are computed395

from the time derivatives of the bubble and spike heights. An analysis of the dynamics underlying396

the observed bubble and spike behaviors is outlined in Section V.397

A. Effects of Stratification Strength398

Figure 2 shows RTI growth as a function of time for each of the four stratification strengths,399

where Re = 102, 000 in all cases. For each case, bubbles and spikes form soon after initializing400

the simulation and the RTI grows as t increases. Small-scale features in each case become increas-401

ingly pronounced as the RTI evolves, and secondary vortices are most prominent for the weakest402

stratification (i.e., M = 0.3). The corresponding bubble and spike growths decrease as the stratifi-403

cation strength increases; for the strongest stratification (i.e., M = 1.2), the RTI growth is halted404

relatively early in its evolution.405

Consistent with the fields in Figure 2, Figure 3(a) shows that the suppression of RTI growth406

compared to the incompressible (i.e., M → 0) case from Wei & Livescu [34] occurs for all strati-407

fications considered. For the two strongest stratifications (i.e., M = 0.9 and 1.2), the bubble and408

spike each reach maximum heights before t∗ = 4 and stop growing.409

The dependence of RTI growth on stratification strength can be investigated further by con-410

sidering time series of the bubble and spike tip velocities, as shown in Figure 3(b). This figure411

indicates that bubble and spike velocities for the larger Mach numbers all trend towards zero,412

indicative of the complete suppression of RTI for strong stratifications. For M = 0.3, however,413

there is a re-acceleration of the spike tip shortly after t∗ = 15.414

In addition to these changes in the bubble and spike heights with varying stratification strength,415

Figure 3(a) also shows that spikes reach consistently greater heights than bubbles for all M . This416

asymmetry, particularly for low M , is not present in the purely incompressible case of Wei &417
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Livescu [34], where it was found that for the low Atwood number case of 0.04, bubble and spike418

heights were close until after the re-acceleration regime. As indicated by Figure 3(b), the velocities419

at the tips of the spikes are consistently larger than those at the tips of the bubbles, although the420

difference between these velocities becomes significant only for the M = 0.3 case after t∗ > 10.421

It should be noted that full suppression of RTI growth for all but the lowest value of M cannot422

be predicted based solely on considerations of the potential energy of the system. This is shown in423

Figure 3(b), where only the lowest value of M reaches a plateau near the velocity predicted from424

either drag [50, 51] or potential flow [52] models (namely, uh/
√
gλ ≈ 0.063).425

Based on the DNS results for M = 0.3 to 1.2, the primary observations are that larger strati-426

fications are associated with decreasing bubble and spike growth rates, resulting in a suppression427

of the RTI for all but the smallest value of M studied here, and that smaller stratifications are428

associated with more asymmetric bubble and spike growth rates. This amounts to an anomalous429

asymmetry at low stratifications (i.e. M = 0.3), since both zero and large M limits are more430

symmetrical. The results concerning the suppression of the instability are in general agreement431

with those from prior studies [15, 25, 27, 33, 34]. In particular, the suppression of the instability432

begins at slightly later times as M increases, consistent with results from, for example, Reckinger433

et al. [27]. To better understand the dynamics leading to RTI suppression and the development434

of bubble and spike asymmetries, an analysis of the underlying vorticity dynamics is performed in435

Section V.436

B. Effects of Reynolds Number437

Figure 4 shows RTI growth for the weakest (i.e., M = 0.3) and strongest (i.e., M = 1.2)438

stratifications for Reynolds numbers Re = 25, 500, 51, 000, and 102, 000. There is little qualitative439

dependence of the bubble and spike heights on Re, indicating that these large-scale characteristics440

of RTI growth are already in an asymptotic limit for Re = 25, 500. This is consistent with the441

results from Wei & Livescu [34], where it was found that there is little difference in the RTI growth442

rates before the onset of the very late chaotic development for values of Re above roughly 7, 500.443

Despite the relative similarity of the large-scale structure for the three values of Re examined444

here, however, there is substantial dependence of small-scale structure on Re. In particular, Figure445

4 shows that an increasing amount of small-scale detail emerges as Re increases, corresponding to446

the occurrence of viscous dissipation at increasingly smaller scales. This increase in scale range447

with increasing Re results in the formation of secondary vortices for M = 0.3. Even though there448
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is also increasing small scale structure for M = 1.2 with increasing Re, the formation of secondary449

vortices is less pronounced for this higher stratification due to the overall suppression in the RTI450

growth.451

From a quantitative perspective, Figure 5 shows bubble and spike heights and velocities for each452

of the four values of M examined in the present study. For the bubble and spike heights shown in453

Figure 5(a), there is little or no dependence on Re for any stratification strength. However, for the454

velocities in Figure 5(b), there is a clear trend towards faster initial accelerations as Re increases.455

The bubbles and spikes also reach larger maximum velocities as Re increases. However, at very456

early times in the evolution for each M , during diffusive growth, bubble and spike velocities are457

largest for small Re, eventually crossing over in each case at t∗ ≈ 5 such that the higher Re cases458

have greater velocities at later times. This result is consistent with the crossover in speeds observed459

by Wei & Livescu [34] and, to a somewhat lesser extent, by Gauthier [15].460

These trends are consistent for all stratification strengths, although the differences with Re461

become more pronounced as M increases. For example, the peak bubble and spike velocities for462

M = 1.2 are reached at roughly t∗ = 12 when Re = 102, 000 and at roughly t∗ = 14 when463

Re = 25, 500. After reaching the peak values, however, the bubble and spike velocities become464

substantially less dependent on Re. For the case with smallest M , the results approach the nearly465

incompressible limit (i.e., M → 0) where, as shown by Wei & Livescu [34], no dependence on Re is466

observed above Re ≈ 1, 500 during the times examined here (before the onset of late time chaotic467

development regime).468

Taken together, these results indicate that, for the values of Re examined here, there is little469

dependence of the global RTI growth on Re during the later stages of the instability at higher470

stratifications and through the early re-acceleration stage for M = 0.3. However, the early time471

evolution, small scale structure, and the appearance of secondary vortices are all substantially472

affected by Re. Given the increasing effect of Re with increasing M , it may be the case that Re473

effects become increasingly pronounced for even stronger stratifications than the M = 1.2 case474

examined here; exploring such more strongly stratified scenarios is left as a direction for future475

research.476
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V. VORTICITY DYNAMICS FOR COMPRESSIBLE RAYLEIGH TAYLOR INSTABIL-477

ITY478

Properties and dynamics of the vorticity vector, ωi = εijk∂uk/∂xj , where εijk is the alternat-479

ing tensor, have been widely studied to understand flow behavior in a variety of contexts. For480

compressible flows more specifically, vorticity has been studied in shock-driven [53–55], reacting481

[56, 57], and various types of buoyant [58] flows, revealing the dynamical importance of variable482

density effects such as dilatation and baroclinic torque. In the case of RTI, however, only Gauthier483

[15] has examined vorticity dynamics in the fully compressible regime, and for only one value of484

the initial stratification strength.485

In the following sections, properties of the vorticity during RTI growth are outlined as a func-486

tion of stratification strength, and terms in the non-dimensional compressible vorticity transport487

equation are subsequently examined to understand the underlying dynamics. The role of baro-488

clinic torque, in particular, in the suppression of RTI growth for strong stratifications and in the489

formation of bubble and spike asymmetries for weak stratifications is outlined. It should be noted490

that the importance of baroclinic torque in RTI growth is not new or surprising and has been491

highlighted in several previous studies [15, 25, 26, 34, 38]. The primary contribution of the current492

work is in explaining how the baroclinic torque varies with initial stratification strength, as well as493

how RTI suppression and asymmetry arise from a dynamical perspective.494

A. Vorticity Evolution for Compressible RTI495

In the 2D simulations, ω3 is the only nonzero component of the vorticity, and Figure 6 shows496

the temporal evolution of the non-dimensional vorticity ω∗3 = ω3

√
λ/g for each of the stratification497

strengths. In each case, the vorticity field initially develops as a vortex pair with generally positive498

vorticity for x∗2 < 0.5 and negative vorticity for x∗2 > 0.5. These initial vortex pairs evolve by499

moving downwards slowly in the domain, while the Kelvin-Helmholtz instability on the sides of the500

bubbles and spikes sheds further vortex pairs. The overall spatial extent of vorticity production501

is greatest for weak stratification (i.e., M = 0.3), with “fronts” of non-zero vorticity magnitude502

that propagate upwards and downwards in an analogous way to the propagation of bubbles and503

spikes, respectively, as shown in Figure 2. The vorticity evolution at M = 0.3 is reminiscent of the504

overall picture in the incompressible (i.e., M → 0) case, with induced vortical velocity supporting505

the instability growth and leading to re-acceleration and late time chaotic development. However,506

18



at higher values of M , no additional vortex pairs are generated. The overall magnitude of the507

vorticity is also shown in Figure 6 to decrease with increasing M .508

The overall M -dependence of the vorticity magnitude is also explored in Figure 7 using the509

vorticity averaged over the half domain, denoted ω3, where the half-domain averaging operator is510

defined for an arbitrary quantity f as511

f(t) =
2

λ

∫ λ/2

0

[
1

2λ

∫ λ

−λ
f(x1, x2, t)dx1

]
dx2 . (26)

Figure 7 shows that ω3 generally increases at early times at a rate that is larger with decreasing512

stratification. After the initial growth of ω3 shown in Figure 7, the average vorticity decreases with513

time for all but the weakest stratification (i.e., M = 0.3). This result mirrors the suppression of514

RTI growth for all but the weakest stratification, seen in Figure 3.515

B. Non-Dimensional Compressible Vorticity Transport Equation516

The dynamics governing the evolution of the vorticity in compressible RTI can be understood517

from the non-dimensional vorticity transport equation, which reveals the explicit dependence of the518

dynamics on A, M , and Re. A similar equation was derived using the Boussinesq approximation by519

Schneider & Gauthier [38], although any explicit dependence on the initial stratification strength520

was omitted in the derivation. Here, the non-dimensional transport equation is derived for the fully521

compressible case, permitting the explicit identification of dependencies on stratification strength522

M .523

By taking the curl of the momentum equation in Eq. (2), the transport equation for the 3D524

vorticity vector is obtained for a variable density, variable viscosity compressible flow as525

Dωi
Dt

= ωjSij − ωiSkk − εijk
∂v

∂xj

∂p

∂xk
+ εijk

∂

∂xj

[
v
∂(2µS′kl)

∂xl

]
, (27)

where D/Dt ≡ ∂/∂t + ui∂/∂xi is the Lagrangian derivative and v ≡ 1/ρ is the specific volume,526

which is used here instead of ρ to simplify the derivation. The first term on the right-hand side of527

Eq. (27) represents vortex stretching, the second term represents dilatation, which is zero in the528

incompressible limit where Skk = 0, the third term is the baroclinic torque, and the last term is529

viscous diffusion, where the viscous stress tensor τkl has been expressed in terms of the deviatoric530

strain rate tensor S′kl [see Eq. (9)]. It should be noted that in Section V C we will examine the531

vorticity evolution in 2D simulations for which the vortex stretching term vanishes exactly.532
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The last term in Eq. (27), representing viscous diffusion, can be separated into an essentially533

incompressible term that is present regardless of whether viscosity, µ, is spatially and temporally534

varying, and into a term that is only present when µ is non-constant. In the present simulations,535

µ = νρ, where ν is a constant given in terms of problem parameters as in Eq. (17), and ρ is the536

spatially and temporally varying density. Expansion of the diffusion term in Eq. (27) then gives537

the vorticity transport equation for a variable density, variable viscosity flow as538

Dωi
Dt

= ωjSij + ν
∂2ωi
∂xj∂xj

− ωiSkk − εijk
∂v

∂xj

∂p

∂xk
− 2νεijk

∂

∂xj

(
S′kl
v

∂v

∂xl

)
. (28)

The first two terms on the right-hand side of this equation are present even in constant density,539

constant viscosity flows, while the last three terms are only nonzero when v (and, by extension,540

the density) is non-constant.541

Using the characteristic time scale
√
λ/g to define the non-dimensional vorticity ω∗i ≡ ωi

√
λ/g,542

and using ρIgλ as the characteristic pressure, Eq. (28) can be written in non-dimensional form as543

Dω∗i
Dt∗

= ω∗jS
∗
ij +

1

Re

∂2ω∗i
∂x∗j∂x

∗
j

− ω∗i S∗kk − εijk
∂v∗

∂x∗j

∂p∗

∂x∗k
− 2

Re
εijk

∂

∂x∗j

[
S′∗kl

∂(ln v∗)

∂x∗l

]
. (29)

Based on the above equation, both diffusive terms scale in an identical way with Re. It should544

be noted, however, that the stratification strength M does not appear explicitly in Eq. (29),545

although it is present implicitly in the baroclinic torque term [i.e., the fourth term on the right-546

hand side of Eq. (29)]. To reveal this dependence, the baroclinic torque can be rewritten by defining547

new perturbation variables v′∗ and p′∗ that express v∗ and p∗ relative to their respective A = 0548

background stratifications as549

v′∗(x∗, t∗) ≡ v∗(x∗, t∗)− [v∗M (x∗1)− 1] , (30)

p′∗(x∗, t∗) ≡ p∗(x∗, t∗)−
[
p∗M (x∗1) + x∗1 −

1

M2

]
, (31)

where x∗ = [x∗1, x
∗
2, x
∗
3], v

∗
M ≡ 1/ρ∗M , and ρ∗M and p∗M correspond to the A = 0 profiles of ρ∗0 and550

p∗0 from Eqs. (23) and (24), respectively. The A = 0 profiles are used for normalization purposes551

to avoid discontinuities in the derivatives of the background profiles that arise when A is nonzero552

(particularly for the first derivative of p∗0). The resulting A = 0 profiles are, nevertheless, not553

substantially different than the A = 0.04 profiles (see Figure 1) and serve the purpose of explicitly554

revealing the dependence of the baroclinic torque on M .555

The decompositions in Eqs. (30) and (31) are designed to yield v′∗ = v∗ and p′∗ = p∗ in the556
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limit as M → 0, as well as ∂v′∗/∂x∗i = ∂v∗/∂x∗i and ∂p′∗/∂x∗i = ∂p∗/∂x∗i in the same limit. The557

baroclinic torque term in Eq. (29) depends only on gradients of v∗ and p∗, and the equivalency of558

the perturbation and total gradients can be shown for M → 0 as559

∂v′∗

∂x∗i
=
∂v∗

∂xi
−M2v∗Mδi1 ⇒ ∂v′∗

∂x∗i
=
∂v∗

∂xi
as M → 0 , (32)

∂p′∗

∂x∗i
=
∂p∗

∂xi
+ (M2p∗M − 1)δi1 ⇒ ∂p′∗

∂x∗i
=
∂p∗

∂xi
as M → 0 , (33)

where v∗M → 1 and M2p∗M → 1 as M → 0. As M becomes large and background stratification560

becomes increasingly strong, the magnitude of ∂v′∗/∂x∗i becomes increasingly small and ∂p′∗/∂x∗i561

approaches the background stratification everywhere, as shown in Figure 8.562

Using Eqs. (32) and (33), it can be shown that the baroclinic torque on the right-hand side of563

Eq. (29) can be written as564

− εijk
∂v∗

∂x∗j

∂p∗

∂x∗k
= −εijk

∂v′∗

∂x∗j

∂p′∗

∂x∗k
+
(
M2p∗M − 1

)
εij1

∂v′∗

∂x∗j
+
(
M2v∗M

)
εij1

∂p′∗

∂x∗j
, (34)

where it is assumed that v∗M and p∗M depend only on x∗1. The first term on the right in Eq. (34)565

represents the baroclinic torque that is independent of the initial background stratification, and566

this is the only remaining term in the limit as M → 0. The second and third terms represent the567

baroclinic torques associated with the initial stratified background pressure and specific volume568

fields, respectively. It should be noted that the present analysis is specific to the isothermal forms569

for v∗M and p∗M obtained from Eqs. (32) and (33), and that the scaling may differ for different initial570

background conditions (e.g., isentropic or isobaric conditions).571

After substituting Eq. (34) into Eq. (29), the non-dimensional 3D vorticity transport equation572

is obtained for a compressible flow with initial background stratification as573

Dω∗i
Dt∗

=ω∗jS
∗
ij +

1

Re

∂2ω∗i
∂x∗j∂x

∗
j

− ω∗i S∗kk − εijk
∂v′∗

∂x∗j

∂p′∗

∂x∗k
(35)

+
(
M2p∗M − 1

)
εij1

∂v′∗

∂x∗j
+
(
M2v∗M

)
εij1

∂p′∗

∂x∗j
− 2

Re
εijk

∂

∂x∗j

[
S′∗kl

∂(ln v∗)

∂x∗l

]
,

where, once more, the first four terms are present even in the limit as M → 0 and the fifth574

and sixth terms are only significant for nonzero M . The corresponding transport equation for the575
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vorticity magnitude ω∗ ≡ (ω∗i ω
∗
i )

1/2 is given by576

Dω∗

Dt∗
=

T ∗1︷ ︸︸ ︷
ω̂∗i ω

∗
jS
∗
ij

T ∗2︷ ︸︸ ︷
+
ω̂∗i
Re

∂2ω∗i
∂x∗j∂x

∗
j

T ∗3︷ ︸︸ ︷
−ω∗S∗kk

T ∗4︷ ︸︸ ︷
−ω̂∗i εijk

∂v′∗

∂x∗j

∂p′∗

∂x∗k
(36)

+
(
M2p∗M − 1

)
ω̂∗i εij1

∂v′∗

∂x∗j︸ ︷︷ ︸
T ∗5

+
(
M2v∗M

)
ω̂∗i εij1

∂p′∗

∂x∗j︸ ︷︷ ︸
T ∗6

−2ω̂∗i
Re

εijk
∂

∂x∗j

[
S′∗kl

∂(ln v∗)

∂x∗l

]
︸ ︷︷ ︸

T ∗7

.

where ω̂∗i ≡ ω∗i /ω∗ is the vorticity unit vector (where the magnitude of ω̂∗i is unity by definition).577

This expression is valid for any M , A, and Re provided that v∗M and p∗M are given by Eqs. (32) and578

(33) and that ν is constant. In the above expression, T ∗1 represents production and destruction of ω∗579

due to vortex stretching, T ∗2 represents diffusion of vorticity by viscosity, T ∗3 represents dilatational580

effects, T ∗4 represents stratification-independent baroclinic torque, T ∗5 represents baroclinic torque581

associated with the background pressure field, T ∗6 represents baroclinic torque associated with the582

background specific volume (or density) field, and T ∗7 represents diffusion associated with variable583

viscosity. In the limit as M → 0, both T ∗6 and T ∗7 terms go to zero. In the following, we examine584

each of these terms to understand their relative effects on the creation and destruction of vorticity585

as a function of initial stratification strength. It should be noted that, by focusing this analysis586

on the dynamics of the vorticity magnitude ω∗, we are able to specifically isolate effects leading to587

variations in the strength of vortical motions, independent of the sign of the vorticity.588

C. Effects of Stratification Strength on the Dynamics of the Vorticity589

Figure 9 shows fields of viscous diffusion, T ∗2 , dilatation, T ∗3 , total baroclinic torque, T ∗BT =590

T ∗4 + T ∗5 + T ∗6 , and variable viscosity diffusion, T ∗7 , for the four different stratification strengths591

(with Re = 102, 000 in all cases) at a late stage (t∗ = 20) in the 2D simulations. The vortex592

stretching term T ∗1 is identically zero in 2D and is thus not shown here. Figure 9 shows that, for all593

values of M , the dilatation term T ∗3 has a similar magnitude to T ∗BT, while the constant viscosity594

diffusion term, T ∗2 , is much larger than the variable viscosity contribution, T ∗7 , and reaches peak595

magnitudes similar to, but still smaller than, T ∗BT.596

The relative contributions of the perturbation baroclinic torque, T ∗4 , the baroclinic torque asso-597

ciated with the background pressure, T ∗5 , and the baroclinic torque associated with the background598

density, T ∗6 to the total baroclinic torque T ∗BT, are indicated as a function of stratification strength599

in Figure 10. For small M , Figure 10 shows that T ∗4 , representing the perturbation baroclinic600
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torque, is primarily positive (indicating vorticity production) and roughly an order of magnitude601

larger than T ∗5 (baroclinic torque due to the background pressure) and T ∗6 (baroclinic torque due602

to the background specific volume). The stratification independent baroclinic torque, T ∗4 , is the603

primary contribution to T ∗BT for small M .604

Taken together, Figures 9 and 10 thus indicate that the primary dynamical effects for low M605

are the perturbation baroclinic torque (i.e., T ∗4 ) and constant viscosity diffusion (i.e., T ∗2 ), although606

the former dominates the latter, resulting in the growth of the instability for low M . The relative607

magnitudes of these terms are shown in Figure 11, where the terms T ∗i from Eq. (36) are averaged608

over half of the domain along the x2 direction to give T ∗i as a function of x1, with the average609

defined for an arbitrary quantity f as610

f(x1, t) =
2

λ

∫ λ/2

0
f(x1, x2, t)dx2 . (37)

Figure 11 also shows results for the averages of T ∗i over x1 for x1 < 0 and x1 > 0. For the weakest611

stratification examined here, Figure 11(a) shows that the enstrophy is created on average due612

almost entirely to the perturbation baroclinic torque. There is only a relatively small enstrophy613

destruction contribution due to the constant viscosity diffusion.614

Although the perturbation baroclinic torque T ∗4 can become locally negative due to density615

inversions (i.e., negative density gradients) created by vortical motions, Figures 10 and 11 show that616

this term remains mostly positive for all but the strongest stratification, due to the presence of the617

instability. Nevertheless, T ∗4 does decrease in magnitude as M increases and, in particular, Figure618

11(d) shows that this term can contribute to the destruction of vorticity magnitude for sufficiently619

large stratification. This is consistent with Figure 8, which shows that ∂v′∗/∂x∗i approaches zero,620

while ∂p′∗/∂x∗i becomes close to 1, as M increases. The reduced vorticity production at larger621

stratifications corresponds to the suppression of the instability growth.622

For all values of M considered here, Figures 10 and 11 show that T ∗4 has the largest contribution623

to the total baroclinic torque in general, but, since it decreases with M , becomes more similar in624

magnitude to the other terms at the largest stratification considered. At M = 1.2, the vorticity625

production is much smaller, consistent with the overall suppression of the instability. For large626

stratifications, the reduced vorticity magnitude also translates into lower self-propagating velocity627

for the vortex pairs generated at the bubble/spike interface. In turn, this results in part of the628

fresh fluid brought towards the bubble/spike peaks by the induced vortical velocity returning back629

to the mixing layer. Thus, at M = 0.9, Figure 11(c) shows density inversions (i.e., negative T ∗4 or630
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stabilizing regions) near the edges of the layer, while at M = 1.2 in Figure 11(d) these regions can631

occur throughout the layer. The reduced self-propagating velocity in the stronger stratification632

cases also appears to be connected to the slower development of the dynamics, which is connected633

to the delayed onset of the RTI suppression shown in Figure 3(b).634

Variations in the magnitudes of T ∗5 and T ∗6 with M shown in Figures 10 and 11 are somewhat635

more complicated. In particular, the peak magnitudes of both terms increase from M = 0.3, but636

start decreasing again at larger M and become smaller for M = 1.2. Term T ∗5 reaches its peak637

magnitude at slightly smaller Mach number than T ∗6 (M ∼ 0.6 versus M ∼ 0.9). At large M ,638

the gradient contributions to both terms become uniform, with values of 0 and 1, respectively (see639

Figure 8). The prefactors (M2p∗M − 1) and M2v∗M depend on the initial background stratification640

and become large in the far-field, but are small near the centerline, even for large M . Therefore,641

as the instability growth is suppressed at large stratifications, T ∗5 and T ∗6 are more confined to the642

region close to the centerline and never reach regions with large prefactor values.643

Perhaps most significantly, both T ∗5 and T ∗6 exhibit asymmetries that affect the overall growth644

of the instability. Aside from local inversions, Figures 10 and 11 show that T ∗5 presents a top-645

bottom asymmetry with respect to the x1 = 0 initial location of the instability (i.e., it is positive646

on the spike side and negative on the bubble side). On the other hand, Figure 10 shows that T ∗6647

presents a left-right asymmetry with respect to the interface between the heavy and light fluid,648

with negative values inside the spike and positive values inside the bubble regions. Conversely, the649

dilatation term T ∗3 shows the opposite left-right asymmetry, with positive values inside the spike650

and negative values inside the bubble regions. It should be noted, however, that T ∗5 becomes larger651

with respect to T ∗4 as M increases. The term T ∗4 is itself also asymmetric, as shown in Figure 11,652

and it is likely that this asymmetry is the underlying cause of the differences in bubble and spike653

growth rates, particularly for small M . Moreover, weak asymmetry in bubble and spike growth654

rates is observed in the incompressible limit (i.e., M → 0), indicating that T ∗5 may be a contributor655

to, but not the sole cause of, the asymmetry, since this term approaches zero as M → 0.656

As explained above, the bubble-spike asymmetry is small in the incompressible case before the657

chaotic stage, it becomes noticeable at M = 0.3, and then decreases again at large stratifications.658

The history of the top-down asymmetry in the vorticity generation can also be seen from the time659

evolutions of T i in Figure 12. This figure does not identify the left-right asymmetry, which has a660

more dynamical effect, as it influences the vortical motions separately within the bubble and spike661

regions. However, it does show that T ∗4 begins symmetrical and develops the top-down asymmetry662

at some later time. On the other hand, T ∗5 is asymmetric from the beginning, such that it represents663
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the source of this asymmetry. This is consistent with the incompressible (i.e., M → 0) flow results,664

where terms T ∗3, T
∗
5, and T ∗6 are zero, and T ∗4 remains relatively symmetrical until later times.665

Again, at large stratifications, the overall reduction in vorticity production and suppression of the666

instability prevents the bubble/spike asymmetry from becoming more pronounced.667

Figure 13 shows the time evolution of averages of Ti, where the averaging is performed from 0668

to λ/2 along the x2 direction and separately along x1 from 0 to λ, denoted T
+

i , and from −λ to 0,669

denoted T
−
i . These averaging operators are defined for an arbitrary quantity f as670

f
+

=
2

λ

∫ λ/2

0

[
1

λ

∫ λ

0
f(x1, x2, t)dx1

]
dx2 , (38)

f
−

=
2

λ

∫ λ/2

0

[
1

λ

∫ 0

−λ
f(x1, x2, t)dx1

]
dx2 . (39)

As the stratification strength increases, the viscous diffusion and other baroclinic torque terms671

become larger relative to the perturbation baroclinic torque, T4, and the average of T4 actually672

begins to decrease at increasingly early times. Figure 13 also indicates that T4 is, on average,673

larger for x1/λ < 0 for all times, but this reverses, with T4 larger for x1/λ > 0, as the stratification674

strength increases. As M increases and the relative magnitude of T4 decreases, it is the baroclinic675

torque associated with the background pressure field (i.e., T5) that becomes correspondingly more676

dominant in the overall dynamics. This term is strongly asymmetric and leads to vorticity creation677

for x1/λ < 0 and destruction for x1/λ > 0.678

Finally, Figures 9, 11, and 12 show that the variable viscosity diffusion term, T ∗7 , is negligible for679

all M considered here and all times. By contrast, the magnitude of the constant viscosity diffusion680

term, T ∗2 , remains more uniform with increasing M , although it does become more consistently681

negative as M increases, as shown most clearly in Figure 12. This indicates that constant viscosity682

diffusion is the primary term leading to destruction of vorticity magnitude, and this term begins683

to rival the magnitude of the perturbation baroclinic torque term (i.e., T ∗4 ) for large M .684

Taken together, these results are indicative of larger vorticity production within the spike re-685

gion, as compared to the bubble region, due to compressibility and stratification effects. Because686

the bubble and spike vertical axes are maintained throughout the flow evolution for the single687

mode case, the vorticity field itself retains a similar symmetry. This results in an induced vortical688

velocity along the bubble/spike axes, which helps the instability grow, similar to the incompressible689

(i.e., M → 0) case [34]. However, for the compressible case, the dilatation term and baroclinic690

contributions sum up to a bubble/spike asymmetry even at low Mach numbers. At higher Mach691
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numbers, due to the overall suppression of the instability, these contributions also decrease and the692

asymmetry becomes small again. Overall, the primary dynamical balance is between constant vis-693

cosity diffusion, which leads to the destruction of vorticity magnitude, and perturbation baroclinic694

torque, which leads to vorticity magnitude production. It should be noted that the asymmetry695

in the overall dynamics is fundamentally attributable to the presence of the asymmetric back-696

ground stratification, where the magnitude of the background pressure gradient is larger above697

the initial interface at x1/λ = 0 than below the interface. If the background stratification were698

instead uniform (i.e., a linear variation in background pressure), then the asymmetry observed in699

the present study would not be expected to form. Consequently, the present asymmetry should700

not be considered a non-Boussinesq effect.701

VI. CONCLUSIONS702

In the present study, wavelet-based adaptive mesh refinement has been used to perform DNS of703

2D single-mode compressible low Atwood number RTI for four different isothermal stratification704

strengths, corresponding to Mach numbers from 0.3 to 1.2, and for three different perturbation705

Reynolds numbers from 25, 500 to 102, 000. The simulation results have been examined to under-706

stand the effects of stratification strength and Reynolds number on the characteristics, dynamics,707

and rate of RTI growth. In the present context, compressibility is controlled through the values708

of the background pressure at the interface between the heavier and lighter fluids, which also af-709

fects the background stratification strength, and would be considered flow, as opposed to fluid,710

compressibility. In this context, the incompressible limit (i.e., M → 0) is reached as the speed of711

sounds goes to infinity by increasing the interface pressure and temperature, such that the inter-712

face density remains constant. The practical setup corresponds to an enclosed fluid system that is713

uniformly heated (i.e., heating at constant volume).714

For weak stratifications, RTI growth was found to undergo a re-acceleration after reaching a715

plateau in the growth rate that approximately matched predictions from potential flow theory. As716

the stratification strength increased, however, this re-acceleration was found to no longer occur,717

and the RTI growth was suppressed; this suppression occurred in the present study for all Mach718

numbers greater than 0.3. For weak stratifications, the bubble was found to grow at a slower rate719

than the spike, but this asymmetry progressively weakened as the stratification strength increased.720

The Reynolds number was found to have little impact on RTI growth for the range of Mach numbers721

and for the simulation length examined here. However, small-scale structure was found to become722
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more pronounced as the Reynolds number increased. At very early times, during the diffusive723

stage, the growth rates were larger at smaller Reynolds numbers, but the instability became faster724

during the linear and weakly nonlinear stages at higher Reynolds numbers, consistent with prior725

studies of Reynolds number effects [15, 34].726

To determine the origins of the observed results, the dynamics of the vorticity magnitude were727

examined in detail. A non-dimensional compressible vorticity transport equation was derived to728

explicitly show dependencies on the Mach, Atwood, and Reynolds numbers, and the effects of729

stratification strength were studied for each of the terms in the transport equation. This analysis730

showed that incompressible baroclinic torque was the dominant driver of RTI growth for the range731

of stratifications considered, and its decrease at higher stratifications corresponded to the overall732

instability suppression. Asymmetries in the RTI growth were found to be the result of compress-733

ibility effects, as a consequence of the dilatation term and background stratification contributions734

to the baroclinic torque. However, for strong stratifications, since the instability did not evolve far735

from the centerline, the latter contributions remain small and the bubble/spike asymmetry does736

not become pronounced.737

In total, the simulations and analysis performed in this study have enabled the three questions738

posed in Section I to be fully addressed. However, much work remains to be done. In particular, the739

present analysis of vorticity dynamics should be extended to multi-mode initial perturbations, to740

different stratification types (e.g., isopycnic and isentropic stratifications), and to 3D cases where741

vortex stretching effects in the vorticity dynamics are nonzero. It would also be of interest to742

explore longer simulation times for the weakly stratified cases to determine whether the chaotic743

development regime noted by Wei & Livescu [34] is recovered in the context of fully compressible744

simulations.745
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FIG. 1. [Color online] Background density (a) and pressure (b) profiles for A = 0.04 and stratification
strengths from M = 0.3 to 1.2. The background states, indicated by solid lines, are hydrostatic and are
given by Eqs. (23) and (24). The density difference at x1 = 0 is determined by A. The dashed lines show the
A = 0 background profiles used in Section V for the analysis of baroclinic torque in the vorticity equation.
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FIG. 2. [Color online] Instantaneous fields of the heavier species mass fraction, Y2, in x1-x2 planes as
a function of non-dimensional time t∗ = t

√
g/λ for stratification strengths M = 0.3, 0.6, 0.9, and 1.2

(increasing from top to bottom). The progression in time from t∗ = 5 to t∗ = 20 is shown in columns from
left to right.
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FIG. 3. [Color online] Time series of bubble and spike tip heights, h, (panel a) and velocities, uh, (panel b)
for M = 0.3, 0.6, 0.9, and 1.2. Bubble results are shown by dashed lines and spike results are shown by solid
lines. Heights, velocities, and times have each been non-dimensionalized using λ and g. The dash-dot line
in panel (a) shows incompressible results from Wei & Livescu [34] and the horizontal dotted line in panel
(b) shows the predicted bubble velocity from drag and potential flow models [50–52], uh/

√
gλ ≈ 0.063.
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FIG. 4. [Color online] Instantaneous fields of the heavier species mass fraction, Y2, in x1-x2 planes for
Reynolds numbers Re = 2.55 × 104, 5.10 × 104, and 1.02 × 105 (left to right columns), for stratification
strengths M = 0.3 (top row) and M = 1.2 (bottom row). Panel labels are defined as [M,Re]. Results are
shown at t∗ = t

√
g/λ = 20 in each case.
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FIG. 5. [Color online] Time series of bubble and spike tip heights, h, (panel a) and velocities, uh, (panel
b) for M = 0.3, 0.6, 0.9, and 1.2, at Re = 2.55× 104, 5.10× 104, and 1.02× 105. Bubble results are shown
by dashed lines and spike results are shown by solid lines. Results forRe = 2.55 × 104, 5.10 × 104, and
1.02× 105 are shown using black, red, and blue lines, respectively. Heights, velocities, and times have each
been non-dimensionalized using λ and g.
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FIG. 6. [Color online] Instantaneous fields of the non-dimensional vorticity ω∗3 = ω3

√
λ/g, in x1-x2 planes

as a function of non-dimensional time t∗ = t
√
Ag/λ for stratification strengths M = 0.3, 0.6, 0.9, and 1.2

(increasing from top to bottom). The progression in time from t∗ = 1 to t∗ = 4 is shown in columns from
left to right.
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FIG. 7. [Color online] Temporal evolution of the average vorticity ω3 over the left half of the domain (i.e.,
x2 < λ/2) for stratification strengths M = 0.3, 0.6, 0.9, and 1.2, where the averaging operator is defined in
Eq. (26).

FIG. 8. [Color online] Instantaneous fields showing the magnitudes of ∂v′∗/∂x∗i (top row) and ∂p′∗/∂x∗i
(bottom row), where the perturbation gradients are given in Eqs. (32) and (33). Fields are shown at non-
dimensional time t∗ = t

√
Ag/λ = 20 and for stratification strengths M = 0.3, 0.6, 0.9, and 1.2 (left to

right).
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FIG. 9. [Color online] Instantaneous fields of T ∗i = Ti(λ/g) appearing in Eq. (36), which describes the
dynamics of ω∗ = |ω∗3 |, for the 2D simulation cases. Fields are shown at non-dimensional time t∗ =
t
√
g/λ = 20 for (from top to bottom) T ∗2 (viscous diffusion), T ∗3 (dilatation), T ∗BT (total baroclinic torque),

and T ∗7 (variable viscosity transport) and for stratification strengths M = 0.3, 0.6, 0.9, and 1.2 (left to
right). Note that the color axes are different for each term.
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FIG. 10. [Color online] Instantaneous fields of the baroclinic torque terms appearing in Eq. (36), which
describes the dynamics of ω∗ = |ω∗3 |, for the 2D simulation cases. Fields are shown at non-dimensional
time t∗ = t

√
g/λ = 20 for (from top to bottom) T ∗4 (perturbation baroclinic torque), T ∗5 (baroclinic torque

associated with the background pressure), T ∗6 (baroclinic torque associated with the background density),
and T ∗BT = T ∗4 + T ∗5 + T ∗6 (total baroclinic torque) and for stratification strengths M = 0.3, 0.6, 0.9, and
1.2 (left to right). Note that the color axes are different for each term.
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FIG. 11. [Color online] Spatial dependence along the x1 direction of the half-domain averages of T ∗2 –T ∗7
appearing in Eq. (36) for stratification strengths M = 0.3, 0.6, 0.9, and 1.2 (a-d) in the 2D simulation cases.
The sums of terms T ∗2 –T ∗7 are also shown. The averaging operator (·) is defined in Eq. (37) and T i is written

in non-dimensional form as T ∗i = T i(λ/g). The vertical black dashed lines show averages of the sum of all
terms for x1/λ > 0 and x1/λ < 0. All results are shown at a non-dimensional time of t∗ = t

√
g/λ = 20.
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FIG. 12. [Color online] Spatial dependence of the half-domain averages of T ∗2 –T ∗7 (columns from left to
right) appearing in Eq. (36) for stratification strengths M = 0.3 (a-f), M = 0.6 (g-l), M = 0.9 (m-r), and
M = 1.2 (s-x) at non-dimensional times t∗ = t

√
g/λ = 5, 10, 15, and 20. The averaging operator (·) is

defined in Eq. (37) and T i is written in non-dimensional form as T ∗i = T i(λ/g).
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FIG. 13. [Color online] Temporal dependence of half-domain averages of the dilatation, T2, perturbation
baroclinic torque, T4, the baroclinic torque associated with background pressure, T5, and the baroclinic
torque associated with the background density, T6 for non-dimensional times t∗ = t

√
g/λ = 5, 10, 15, and

20 and for stratification strengths M = 0.3, 0.6, 0.9, and 1.2 (a-d). The half-domain averages used here are

defined in Eqs. (38) and (39), with T
+

i indicating an average over x1/λ > 0 (solid lines) and T
−
i indicating an

average over x1/λ < 0 (dashed lines). All results are normalized by the maximum values of the perturbation
baroclinic torque over both halves of the domain for each M .
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