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1Department of Aerospace and Mechanical Engineering,
University of Southern California, Los Angeles, CA, 90089

2Department of Mechanical Engineering, University of Texas at Dallas, Richardson, TX, 75080
3Center for Turbulence Research, Stanford University, Stanford, CA, 94305

4Ming Hsieh Department of Electrical and Computer Engineering,
University of Southern California, Los Angeles, CA, 90089

We utilize the externally forced linearized Navier-Stokes equations to study the receptivity of
pre-transitional boundary layers to persistent sources of stochastic excitation. Stochastic forcing is
used to model the effect of free-stream turbulence that enters at various wall-normal locations and
the fluctuation dynamics are studied via linearized models that arise from locally parallel and global
perspectives. In contrast to the widely used resolvent analysis that quantifies the amplification of
deterministic disturbances at a given temporal frequency, our approach examines the steady-state
response to stochastic excitation that is uncorrelated in time. In addition to stochastic forcing
with identity covariance, we utilize the spatial spectrum of homogeneous isotropic turbulence to
model the effect of free-stream turbulence. Even though locally parallel analysis does not account
for the effect of the spatially evolving base flow, we demonstrate that it captures the essential
mechanisms and the prevailing length-scales in stochastically forced boundary layer flows. On the
other hand, global analysis, which accounts for the spatially evolving nature of the boundary layer
flow, predicts the amplification of a cascade of streamwise scales throughout the streamwise domain.
We show that the flow structures that are extracted from a modal decomposition of the resulting
velocity covariance matrix can be closely captured by conducting locally parallel analysis at various
streamwise locations and over different wall-parallel wavenumber pairs. Our approach does not rely
on costly stochastic simulations and it provides insight into mechanisms for perturbation growth
including the interaction of the slowly varying base flow with streaks and Tollmien-Schlichting waves.
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I. INTRODUCTION

Laminar-turbulent transition of fluid flows is important in many engineering applications. Predicting the point of
transition requires an accurate understanding of the mechanisms that govern the physics of transitional flows. Since
the 1990’s, numerical simulations with various levels of fidelity have been used to uncover many essential features
of the transition phenomenon. In spite of this progress, the complicated sequence of events that leads to transition
and the inherent complexity of the Navier-Stokes (NS) equations have hindered the development of practical control
strategies for delaying transition in boundary layer flows [1–3].

It is generally accepted that the transition process can be divided into three stages; receptivity, instability growth,
and breakdown [1]. In the laminar boundary layer flow, disturbances that lead to transition are amplified either
through modal, i.e., exponential, instability mechanisms or non-modal amplification, e.g., via transient growth mech-
anisms such as lift-up [4, 5] and Orr mechanisms [6–8]. An important aspect in both scenarios is the receptivity
of the boundary layer flow to external excitation sources, e.g., free-stream turbulence and surface roughness. Such
sources of excitation perturb the velocity field and give rise to initial disturbances within the shear that can grow
to critical levels. Depending on the amplitude and frequency of excitation, initial disturbances can take different
routes to transition. For example, low-amplitude excitation of the boundary layer flow can cause the growth of
two-dimensional Tollmien-Schlichting (TS) waves, which can trigger natural transition to turbulence [9–13]. On the
other hand, sufficiently high levels of broad-band excitation can induce the growth of streamwise elongated streaks
that play an important role in bypass transition [2]. The effect of free-stream turbulence on the growth of boundary
layer streaks has been the subject of various experimental [14–16], numerical [17, 18], and theoretical [19, 20] studies.
In particular, it has been shown that free-stream disturbances that penetrate into the boundary layer are elongated
in the streamwise direction [21]. While nonlinear dynamical models that are based on the NS equations provide
insight into receptivity mechanisms, their implementation typically involves a large number of degrees of freedom and
it ultimately requires direct simulations. This motivates the development of low-complexity models that are better
suited for comprehensive quantitative studies.

In recent years, increasingly accurate descriptions of coherent structures in wall-bounded shear flows, e.g. [22, 23],
have inspired the development of reduced-order models. Such models are computationally tractable and can be trained
to replicate statistical features that are estimated from experimentally or numerically generated data measurements.
However, their data-driven nature is accompanied by a lack of robustness. Specifically, control actuation and sensing
may significantly alter the identified modes which introduces nontrivial challenges for model-based control design [24].
In contrast, models that are based on the linearized NS equations are less prone to such uncertainties and are, at the
same time, well-suited for analysis and synthesis using tools of modern robust control. While the nonlinear terms
in the NS equations play an important role in transition to turbulence and in sustaining the turbulent state, they
are conservative and, as such, they do not contribute to the transfer of energy between the mean flow and velocity
fluctuations but only transfer energy between different Fourier modes [25, 26]. This feature has inspired modeling the
effect of nonlinearity using additive stochastic forcing with early efforts focused on homogeneous isotropic turbulence
(HIT) [27–29]. In the presence of stochastic excitation, the linearized NS equations have been used to model heat
and momentum fluxes and spatio-temporal spectra in quasi-geostrophic turbulence [30–32]. Moreover, they have been
used to characterize the most detrimental stochastic forcing and determine scaling laws for energy amplification at
subcritical Reynolds numbers [33–35], and to replicate structural [36, 37] and statistical [38, 39] features of wall-
bounded turbulent flows. In these studies, stochastic forcing has been commonly used to model the impact of
exogenous excitation sources and initial conditions, or to capture the effect of nonlinearity in the NS equations.

The linearized NS equations have been widely used for modal and non-modal stability analysis of both parallel
and non-parallel flows [40–42]. In parallel flows, homogeneity in the streamwise and spanwise dimensions allows for
the decoupling of the governing equations across streamwise and spanwise wavenumbers via Fourier transform, which
results in significant computational advantages for analysis, optimization, and control. On the other hand, in the
flat-plate boundary layer, streamwise and wall-normal inhomogeneity require discretization over two spatial directions
and lead to models of significantly larger sizes. Conducting modal and non-modal analyses is thus more challenging
than for locally parallel flows. However, due to the slowly varying nature of the boundary layer flow, parallel flow
assumptions can still provide meaningful results. For example, primary disturbances can be identified using the
eigenvalue analysis of the Orr-Sommerfeld and Squire equations [41] and the secondary instabilities can be obtained via
Floquet analysis [12, 43]. Moreover, the NS equations can be parabolized to account for the downstream propagating
nature of waves in slowly varying flows via spatial marching. This technique has enabled the analysis of transitional
boundary layers and turbulent jet flows using various forms of the unsteady boundary-region equations [44, 45],
parabolized stability equations [46, 47], and the more recent one-way Euler equations [48]. Furthermore, drawing
on Floquet theory, the linear parabolized stability equations have also been extended to study interactions between
different modes in slowly growing boundary layer flow [49].

While the parallel flow assumption offers significant computational advantages, it does not account for the effect of
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the spatially evolving base flow on the stability of the boundary layer. Global stability analysis addresses this issue
by accounting for the spatially varying nature of the base flow and discretizing all inhomogeneous spatial directions.
Previously, tools from sparse linear algebra in conjunction with iterative schemes have been employed to analyze the
eigenspectrum of the governing equations and provide insight into the dynamics of transitional flows [50–54]. Efforts
have also been made to conduct non-modal analysis of spatially evolving flows including transient growth [55, 56] and
resolvent [57–61] analyses. In particular, for the flat-plate boundary layer flow, the sensitivity of singular values of
the resolvent operator to base-flow modifications and subsequent effects on the TS instability mechanism and streak
amplification was investigated in [57]. The growth of flow structures in flat-plate boundary layer flow was also studied
in [58] and a connection between the results from local eN method and global resolvent analysis was established.
However, previous studies did not incorporate information regarding the spatio-temporal spectrum and spatial local-
ization of excitation sources. The widely used resolvent analysis [62–64] is limited to monochromatic forcing, and as
such, may not fully capture naturally occurring sources of excitation. Furthermore, the evolution of exact optimal
perturbations that are identified using resolvent analyses is seldom encountered in practical configurations [65].

The approach advanced in the present work enables the study of receptivity mechanisms in boundary layer flows
subject to stochastic sources of excitation. We model the effect of free-stream turbulence as a persistent white-in-
time stochastic forcing that enters at various wall-normal locations and analyze the dynamics of velocity fluctuations
around locally parallel and spatially evolving base flows using the solution to the algebraic Lyapunov equation. Our
simulation-free approach enables computationally efficient assessment of the energy spectrum of spatially evolving
flows, without relying on a particular form of the inflow conditions or computation of the full spectrum of the
linearized dynamical generator. Moreover, the broad-band nature of our forcing model captures the aggregate effect
of all time-scales without the need to integrate the frequency response over all energetically relevant frequencies.

We compare and contrast results obtained under locally parallel flow assumption with those of global analysis.
Coherent structures that emerge as the response to free-stream turbulence are extracted using the modal decomposition
of the steady-state velocity covariance matrix. We demonstrate how parallel and global flow analyses can be used to
quantify the amplification of streamwise elongated streaks and Tollmien-Schlichting (TS) waves, which are important
in the laminar-turbulent transition of boundary layer flows. Our analysis shows that subordinate eigenmodes of the
steady-state velocity covariance matrices that result from global flow analyses have nearly equal energetic contributions
to that of the principal modes. This observation demonstrates that global covariance matrices cannot be well-
approximated by low-rank representations. On the other hand, we show how locally parallel analysis, which breaks
up the receptivity process of the boundary layer flow over various streamwise length-scales, can uncover certain flow
structures that are difficult to observe in global analysis. We also demonstrate that modeling the effect of free-stream
turbulence using the spectrum of HIT yields similar results as the analysis based on white-in-time stochastic excitation
with identity covariance matrix. For the considered range of moderate Reynolds numbers, our results support the
assumption of parallel flow in the low-complexity modeling and analysis of boundary layer flows.

The remainder of this paper is organized as follows. In Section II, we introduce the stochastically forced linearized
NS equations and describe the algebraic Lyapunov equation that we use to compute second-order statistics of velocity
fluctuations, extract information about the energy amplification, and identify energetically dominant flow structures.
In Section III, we study the receptivity to stochastic excitations of the velocity fluctuations around a locally parallel
Blasius boundary layer profile. In Section IV, we extend the receptivity analysis to stochastically forced non-parallel
flows. We also discuss the effect of exponentially attenuated HIT on the amplification of streaks and TS waves. In
Section V, we compare the results of locally parallel and global analyses and examine the spatio-temporal frequency
response of the linearized dynamics. We provide concluding remarks in Section VI.

II. STOCHASTICALLY FORCED LINEARIZED NS EQUATIONS

In a flat-plate boundary layer, the linearized incompressible NS equations around the Blasius base flow profile
ū = [U(x, y) V (x, y) 0 ]T are given by

vt = − (∇ · ū)v − (∇ · v) ū − ∇p +
1

Re0
∆v + d,

0 = ∇ · v,
(1)

where v = [u v w ]T is the vector of velocity fluctuations, p denotes pressure fluctuations, u, v, and w represent
components of the fluctuating velocity field in the streamwise (x), wall-normal (y), and spanwise (z) directions, and
d denotes an additive zero-mean stochastic body forcing. The stochastic perturbation d is used to model the effect
of exogenous sources of excitation on the boundary layer flow and, as illustrated in Fig. 1, it can be introduced in
various wall-normal regions. In Eqs. (1), Re0 = U∞δ0/ν is the Reynolds number based on the Blasius length-scale

δ0 =
√
ν x0/U∞, where the initial streamwise location x0 denotes the distance from the leading edge, U∞ is the free-

stream velocity, and ν is the kinematic viscosity. The local Reynolds number at distance x to the starting position x0
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FIG. 1. Geometry of transitional boundary layer flow with stochastic excitation d entering in the blue shaded region.

is thus given by Re = Re0

√
1 + x/x0. The velocities are non-dimensionalized by U∞, time by δ0/U∞, and pressure

by ρU2
∞, where ρ is the fluid density.

A. Evolution model

Elimination of the pressure yields an evolution form of the linearized equations with the state variable ϕ = [ v η ]T ,
which contains the wall-normal velocity v and vorticity η = ∂zu− ∂xw [41]. In addition, homogeneity of the Blasius
base flow in the spanwise direction allows a normal-mode representation with respect to z, yielding the evolution model

∂tϕ(x, y, kz, t) = [A(kz)ϕ(·, kz, t)](x, y) + [B(kz)d(·, kz, t)](x, y),

v(x, y, kz, t) = [C(kz)ϕ(·, kz, t)](x, y),
(2)

which is parameterized by the spanwise wavenumber kz. Definitions of the operators A, B, and C are provided in
Appendix A. We note that an additional wall-parallel base flow assumption that entails ū = [U(y) 0 0 ]T renders the
coefficients in Eqs. (1) independent of x and thus enables a normal-mode representation in that dimension as well.

We obtain finite-dimensional approximations of the operators in Eqs. (2) using a pseudospectral discretization
scheme [66] in the spatially inhomogeneous directions. For streamwise-varying base flows we consider Nx and Ny

Chebyshev collocation points in x and y, and for streamwise invariant base flows we use Ny points in y. Furthermore,
a change of variables is employed to obtain a state-space representation in which the kinetic energy is determined by
the Euclidean norm of the state vector; see Appendix B. We thus arrive at the state-space model

ψ̇(t) = Aψ(t) + B d(t),

v(t) = C ψ(t),
(3)

where ψ(t) and v(t) are vectors with 2NxNy and 3NxNy complex-valued components, respectively (2Ny and 3Ny

components, respectively, for parallel flows), and state-space matrices A, B, and C incorporate the aforementioned
change of variables and wavenumber parameterization over kz (over (kx, kz) for parallel flows).

B. Second-order statistics of velocity fluctuations

We next characterize the structural dependence between the second-order statistics of the state and forcing term
in the linearized dynamics. We also describe how the energy amplification arising from persistent stochastic excita-
tion and the energetically dominant flow structures can be computed from these flow statistics. All mathematical
statements in the remainder of this section are parameterized over homogeneous directions.

In statistical steady-state, the covariance matrices Φ = limt→∞ 〈v(t)v∗(t)〉 of the velocity fluctuation vector and
X = limt→∞ 〈ψ(t)ψ∗(t)〉 of the state vector in Eq. (3) are related by

Φ = C X C∗, (4)

where 〈 · 〉 denotes the expectation and superscript ∗ denotes complex conjugate transpose. The matrix Φ contains
information about all second-order statistics of the fluctuating velocity field in statistical steady-state, including the
Reynolds stresses. We assume that the persistent source of excitation d(t) in Eq. (3) is zero-mean and white-in-time
with spatial covariance matrix W = W ∗,

〈d(t1)d∗(t2)〉 = W δ(t1 − t2), (5)

where δ is the Dirac delta function. When the linearized dynamics (3) are stable, the steady-state covariance X of
the state ψ(t) can be determined as the solution to the algebraic Lyapunov equation

AX + X A∗ = −BWB∗. (6)
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The Lyapunov equation (6) relates the statistics of white-in-time forcing, represented by W , to the infinite-horizon
state covariance X via system matrices A and B. It can also be used to compute the energy spectrum of velocity
fluctuations v,

E = trace (Φ) = trace (C X C∗) . (7)

We note that the steady-state velocity covariance matrix Φ can be alternatively obtained from the spectral density
matrix of velocity fluctuations Sv(ω) as [67],

Φ =
1

2π

∫ ∞
−∞

Sv(ω) dω.

For the linearized NS equations, we have

Sv(ω) := Tvd(ω)W T ∗vd(ω) (8)

where the frequency response matrix

Tvd(ω) = C (iωI − A)
−1
B, (9)

is obtained by applying the temporal Fourier transform on system (3). We note that the solution X to the algebraic
Lyapunov equation (6) allows us to avoid integration over temporal frequencies and compute the energy spectrum E
using (7); see Section V B for additional details.

Following the proper orthogonal decomposition of [68, 69], the velocity field can be decomposed into characteristic
eddies by determining the spatial structure of fluctuations that contribute most to the energy amplification. For
turbulent channel flow, it has been shown that the dominant characteristic eddy structures extracted from second-
order statistics of the stochastically forced linearized model qualitatively agree with results obtained using eigenvalue
decomposition of DNS-generated autocorrelation matrices; see Figs. 15 in [38] and [69]. In addition to examining the
energy spectrum of velocity fluctuations, we will use the eigenvectors of the covariance matrix Φ (defined in Eq. (4))
to study dominant flow structures that are triggered by stochastic excitation.

Remark 1 Since linearized dynamics (3) are globally stable even when the flow is convectively unstable [40], the
Lyapunov-based approach can be used to conduct the steady-state analysis of the velocity fluctuations statistics for
many flow configurations that are not stable from the perspective of local analysis.

C. Filtered excitation and receptivity coefficient

Let us specify the spatial region in which the forcing enters, by introducing

d(x, y, z, t) := f(y)h(x)ds(x, y, z, t), (10)

where ds represents a white solenoidal forcing, f(y) is a smooth filter function defined as

f(y) :=
1

π
(atan (a (y − y1)) − atan (a (y − y2))) , (11)

and h(x) is a filter function that determines the streamwise extent of the forcing. Here, y1 and y2 determine the
wall-normal extent of f(y) and a specifies the roll-off rate; Fig. 2 shows f(y) with y1 = 5 and y2 = 10, for two cases
of a = 1 and a = 10. In Sections III and IV, we study energy amplification arising from stochastic excitation that
enters at various wall-normal locations; see Table I. For the near-wall forcing (with y1 = 0 and y2 = 5) with a = 1,
more than 96% of the energy of the forcing is applied within the δ0.99 boundary layer thickness; on the other hand,
for the outer-layer forcing (with y1 = 15 and y2 = 20) with a = 1, less than 0.1% is applied in that region. Our study
mainly focuses on the forcing with h(x) = 1; the effect of changing the function h is considered in Section IV A.

We quantify the receptivity of velocity fluctuations to stochastic forcing that enters at various wall-normal regions
using the receptivity coefficient

CR :=
limt→∞ 〈(Dgv(t))∗Dgv(t)〉

limt→∞ 〈d∗(t)d(t)〉
=

trace
(
DgΦD∗g

)
trace (W )

, (12)

which determines the ratio of the energy of velocity fluctuations within the boundary layer to the energy of the forcing.
Here, Dg := g(x, y)I, where the function g(x, y) is a top-hat filter that extracts velocity fluctuations within the δ0.99

boundary layer thickness. In parallel flows, the function g is invariant with respect to the streamwise direction.
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TABLE I. Cases of stochastic excitation entering at various wall-normal regions

case number wall-normal region of excitation; [ y1, y2 ] in Eq. (11)

1 (near-wall) [ 0, 5 ]

2 [ 5, 10 ]

3 [ 10, 15 ]

4 (outer-layer) [ 15, 20 ]

FIG. 2. The shape of the filter function f(y) for y1 = 5, y2 = 10 with a = 1 (−) and a = 10 (−−).

III. RECEPTIVITY ANALYSIS OF LOCALLY PARALLEL FLOW

We first examine the dynamics of the stochastically forced Blasius boundary layer under the locally parallel flow
assumption. In this case, the base flow only depends on the wall-normal coordinate y and evolution model (3) is param-
eterized by horizontal wavenumbers (kx, kz), which significantly reduces the computational complexity. We perform an
input-output analysis to quantify the energy amplification of velocity fluctuations subject to free-stream turbulence.

We compute the energy spectrum of stochastically excited parallel Blasius boundary layer flow with Re0 = 232 (the
Blasius length-scale is δ0 = 1). Here, we consider a wall-normal region with Ly = 35 and discretize the differential
operators in Eqs. (2) using Ny = 100 Chebyshev collocation points in y. In the wall-normal direction, homogenous
Dirichlet boundary conditions are imposed on wall-normal vorticity, η(0) = η(Ly) = 0 and Dirichlet/Neumann
boundary conditions are imposed on wall-normal velocity, v(0) = v(Ly) = 0, vy(0) = vy(Ly) = 0, where vy denotes
the derivative of v with respect to y. In the horizontal directions, we use 50× 51 logarithmically spaced wavenumbers
with kx ∈ [10−4, 1] and kz ∈ [5 × 10−3, 10] to parameterize the linearized model (3). Thus, for each pair (kx, kz),
the state ψ = [ vT ηT ]T is a complex-valued vector with 2Ny components. Grid convergence has been verified by
doubling the number of points used in the discretization of the differential operators in the wall-normal coordinate.

We first consider a streamwise invariant (h(x) = 1) solenoidal white-in-time excitation d with covariance W = I
in the immediate vicinity of the wall (case 1 in Table I). Figure 3(a) shows largest receptivity at low streamwise
wavenumbers (kx ≈ 0) with a global peak at kz ≈ 0.25. This indicates that streamwise elongated streaks are the
dominant flow structures that result from persistent stochastic excitation of the boundary layer flow. Such streamwise
elongated structures are reminiscent of energetically dominant streaks with spanwise wavenumbers kz ≈ 0.26 (in
Blasius length-scale) that were identified in analyses of optimal disturbances [70, 71]. Slightly smaller spanwise
wavenumbers have been recorded from hot-wire signal correlations in the boundary layer subject to free-stream
turbulence [14]. In addition to streaks, Fig. 3(a) also predicts the emergence of TS waves at kx ≈ 0.19. For outer-layer
forcing, the amplification of streamwise elongated structures persists while the amplification of the TS waves weakens;
see Fig. 3(b). It is also observed that as the region of excitation moves away from the wall, energy amplification becomes
weaker and the peak of the receptivity coefficient shifts to lower values of kz. As we demonstrate in Section IV, these
observations are in agreement with the global receptivity analysis of stochastically excited boundary layer flow.
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(a) (b)

FIG. 3. Plots of log10(CR(kx, kz)) in the parallel Blasius boundary layer flow with Re0 = 232 subject to (a) near-wall, and (b)
outer-layer white-in-time stochastic excitation. The dot and crosses respectively mark the wavenumber pairs associated with
TS waves and streaks that are closely examined in this paper.

FIG. 4. Time evolution of the receptivity coefficient CR for twenty realizations of near-wall stochastic forcing to linearized
dynamics (3) with (kx, kz) = (0.19, 0.005) and Re0 = 232. The receptivity coefficient averaged over all simulations is marked
by the thick black line.

As noted in Section II B, the solution X to Lyapunov equation (6) represents the steady-state (i.e., long-time
average) covariance matrix of the state ψ of stochastically forced linearized evolution model (3) , which can be used
to compute the energy spectrum in Eq. (7) or the receptivity coefficient in Eq. (12) in a simulation-free manner. To
verify the values of CR reported in Fig. 3, we conduct stochastic simulations of the forced linearized flow equations
at the wavenumber pair (kx, kz) = (0.19, 0.005), which is marked by the red dot in Fig. 3(a). This wavenumber pair
allows us to examine the amplification of TS waves identified in Fig. 3(a). Since proper comparison with the result
of the Lyapunov equation requires ensemble-averaging, rather than comparison at the level of individual stochastic
simulations, we have conducted twenty simulations of system (3). The total simulation time was set to 1.6 × 104

dimensionless time units. Figure 4 shows the time evolution of CR for twenty realizations of white-in-time forcing d
to system (3). The receptivity coefficient averaged over all simulations is marked by the thick black line. The results
indicate that the average of the sample sets asymptotically approaches the correct steady-state value of CR.

The one-dimensional energy spectrum shown in Fig. 5(a) quantifies the energy amplification E over various spanwise
wavenumbers when forcing enters at different distances from the wall. This quantity can be computed by integrating
the energy spectrum E(kx, kz) (cf. Eq. (7)) over streamwise wavenumbers. In Fig. 5, the locations at which the energy
spectrum peaks correspond to the spanwise scale associated with streamwise elongated streaks. When the forcing
region shifts away from the wall, the energy amplification decreases, indicating that the flow region in the immediate
vicinity of the wall is more susceptible to external excitation. As mentioned earlier, we also observe that, when the
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(a) (b)

FIG. 5. (a) The one-dimensional energy spectrum, and (b) the receptivity coefficient for the parallel Blasius boundary layer
flow with Re0 = 232 subject to white stochastic excitation entering in the wall-normal regions covered in Table I; case 1 (black),
case 2 (blue), case 3 (red), and case 4 (green). The forcing region moves away from the wall in the direction of the arrows.

forcing region shifts upward, the boundary layer streaks become wider in the spanwise direction. Figure 5(b) shows
similar trends in the receptivity coefficient as a function of spanwise wavenumber kz, which is computed by integrating
CR presented in Fig. 3 over streamwise wavenumbers.

The eigenvalue decomposition of the velocity covariance matrix Φ can be used to identify the energetically dominant
flow structures resulting from stochastic excitation. In particular, symmetries in the wall-parallel directions can be
used to express velocity components as

uj(x, z, t) = 4 cos(kzz) Re
(
ũj(kx, kz) eikxx

)
,

vj(x, z, t) = 4 cos(kzz) Re
(
ṽj(kx, kz) eikxx

)
,

wj(x, z, t) = −4 sin(kzz) Im
(
w̃j(kx, kz) eikxx

)
,

(13)

Here, Re and Im denote real and imaginary parts, and ũj , ṽj , and w̃j correspond to the streamwise, wall-normal, and
spanwise components of the jth eigenvector of the matrix Φ in Eq. (4). While all amplitudes have been normalized,
the phase of these components have been modulated to ensure the compactness of vj(x, y, z) around z = 0 [69]; see [38,
Appendix F] for additional details.

(a) (b)

FIG. 6. Contribution of the first 8 eigenvalues of the velocity covariance matrix Φ of the Blasius boundary layer flow with
Re0 = 232 subject to (a) near-wall, and (b) outer-layer white-in-time stochastic forcing.

While the sum of all eigenvalues of the matrix Φ determines the overall energy amplification reported in Fig. 5(a), it
is also useful to examine the spatial structure of modes with dominant contribution to the energy of the flow. Figure 6
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(a) (b) (c)

FIG. 7. Principal modes with (kx, kz) = (7×10−3, 0.32), resulting from excitation of the boundary layer flow with Re0 = 232 in
the vicinity of the wall. (a) Streamwise velocity component where red and blue colors denote regions of high and low velocity.
(b) Streamwise velocity at z = 0. (c) y-z slice of streamwise velocity (color plots) and vorticity (contour lines) at x = 500,
which corresponds to the cross-plane slice indicated by the black dashed lines in (b).

(a) (b) (c)

FIG. 8. Principal modes with (kx, kz) = (7 × 10−3, 0.15), resulting from outer-layer excitation of the boundary layer flow
with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote regions of high and low velocity. (b)
Streamwise velocity at z = 0. (c) y-z slice of streamwise velocity (color plots) and vorticity (contour lines) at x = 500, which
corresponds to the cross-plane slice indicated by the black dashed lines in (b).

shows the contribution of the first 8 eigenvalues of Φ to the energy amplification, λj/
∑

i λi when the boundary layer
flow is subject to stochastic forcing. For fluctuations with (kx, kz) = (7× 10−3, 0.32) and near-wall excitation (cross
in Fig. 3(a)) the principal mode which corresponds to the largest eigenvalue, contains approximately 93% of the
total energy. On the other hand, for fluctuations with (kx, kz) = (7 × 10−3, 0.15) and outer-layer excitation (cross
in Fig. 3(b)) the principal mode contains approximately 52% of the total energy. Figures 7 and 8 show the flow
structures associated with the streamwise component of these most significant modes. From Figs. 7(b) and 8(b) it is
evident that the core of streamwise elongated structures moves away from the wall with the shift of the stochastically
excited region. These streamwise elongated structures are situated between counter-rotating vortical motions in the
cross-stream plane (cf. Figs. 7(c) and 8(c)) and contain alternating regions of fast- and slow-moving fluid, which are
slightly inclined (and detached) relative to the wall. Even though these structures do not capture the full complexity
of transitional flow, as we show in Section IV, they contain information about energetic streamwise elongated flow
structures that are amplified by external excitation of the boundary layer flow. In particular, such alignment of
counter-rotating vortices and streaks is closely related to the lift-up mechanism and the generation of streamwise
elongated streaks [70–72].

IV. GLOBAL ANALYSIS OF STOCHASTICALLY FORCED LINEARIZED NS EQUATIONS

The parallel flow assumption applied in Section III allows for the efficient parameterization of the governing equa-
tions over all wall-parallel wavenumbers kx and kz. While this significantly reduces computational complexity, it
excludes the effect of the spatially evolving base flow on the dynamics of velocity fluctuations. In global stability
analysis, the NS equations are linearized around a spatially evolving Blasius boundary layer profile and the finite di-
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mensional approximation is obtained by discretizing all inhomogeneous spatial directions. In this section, we employ
global receptivity analysis to quantify the influence of stochastic excitation on the velocity fluctuations around the
spatially evolving Blasius boundary layer base flow.

At any spanwise wavenumber kz, the state ψ = [ vT ηT ]T of linearized evolution model (3) is a complex vector
with 2NxNy components, where Nx and Ny denote the number of collocation points used to discretize the differential
operators in the streamwise and wall-normal directions, respectively. While this choice of state variables is not
commonly used in conventional global stability analysis of boundary layer flows, in Appendix C we demonstrate that
it yields consistent results with the descriptor form in which the state is determined by all velocity and pressure
fluctuations. We consider a Reynolds number Re0 = 232 and a computational domain with Lx = 900 and Ly = 35,
where the differential operators are discretized using Nx = 101 and Ny = 50 Chebyshev collocation points in x and
y, respectively. Similar to locally parallel analysis, we verify convergence by doubling the number of grid points.

As in Section III, in the wall-normal direction we enforce homogenous Dirichlet boundary conditions on η and
homogeneous Dirichlet/Neumann boundary conditions on v. At the inflow, we impose homogeneous Dirichlet bound-
ary conditions on η, i.e., η(0, y) = 0, and homogeneous Dirichlet/Neumann boundary conditions on v, i.e., v(0, y) =
vy(0, y) = 0. At the outflow, we apply linear extrapolation conditions on both state variables (v, η) and the wall-normal
derivative of the first component [73],

v(x(Nx), y) = α v(x(Nx − 1), y) + β v(x(Nx − 2), y),

η(x(Nx), y) = αη(x(Nx − 1), y) + β η(x(Nx − 2), y),

vy(x(Nx), y) = α vy(x(Nx − 1), y) + β vy(x(Nx − 2), y),

α =
x(Nx) − x(Nx − 2)

x(Nx − 1) − x(Nx − 2)
, β =

x(Nx − 1) − x(Nx)

x(Nx − 1) − x(Nx − 2)
.

We also introduce sponge layers at the inflow and outflow to mitigate the influence of boundary conditions on the
fluctuation dynamics within the computational domain [52, 74]; see [75] for an in-depth study on the effect of sponge
layer strength in the global stability analysis of boundary layer flow. The results presented in this section are obtained
after adjusting the sponge layer parameters to match the energy amplification obtained via the descriptor form of the
linearized dynamics; see Appendix C for details.

For boundary layer flows, the global operator in Eqs. (3) has no exponentially growing eigenmodes [40]; see Remark 1.
Thus, the steady-state covariance of the fluctuating velocity field can be obtained from the solution to Lyapunov
equation (6) and the energy amplification can be computed using Eq. (7). As in Section III, we examine the influence
of streamwise-invariant (h(x) = 1) white-in-time stochastic forcing with covariance W = I which enters at various
wall-normal regions; this is achieved by filtering the forcing using the function f(y) in (11). Figure 9 shows the kz-
dependence of energy amplification and receptivity coefficient for stochastic excitation entering at various wall-normal
regions. Our computations show that the energy amplification increases as the region of influence for the external
forcing approaches the wall, which qualitatively matches the result of the locally parallel analysis in Section III. In
particular, for Re0 = 232, the energy amplification reduces from 2.0× 106 (for stochastic excitation that enters in the
vicinity of the wall (case 1 in Table I) with kz = 0.32) to 9.6×104 (for stochastic excitation that enters away from the
wall (case 4 in Table I) with kz = 0.21). Moreover, the structures that correspond to the largest energy amplification
or receptivity coefficient become slightly wider in the spanwise direction, but this shift to smaller values of kz is not as
pronounced as in parallel flows (cf. Fig. 5). The largest energy amplification and receptivity are observed for structures
with kz ∈ [0.21, 0.32], which is in close agreement with previous experimental [14] and theoretical studies [70, 71].

For kz = 0.32, Fig. 10 shows the contribution of the first 50 eigenvalues of the velocity covariance matrix Φ resulting
from near-wall and outer-layer stochastic excitation. In contrast to locally parallel analysis (cf. Fig. 6), we observe
that other eigenvalues play a more prominent role. The implication is that in global analysis the principal eigenmode
of Φ cannot capture the full complexity of the spatially evolving flow. Nevertheless, we examine the shape of such flow
structures to gain insight into the effect of stochastic excitation on the eigenmodes of the covariance matrix Φ that
comprise the fluctuation field. Figures 11(a) and 12(a) show the spatial structure of the streamwise component of
the principal response to white-in-time stochastic forcing that enters in the vicinity of the wall and in the outer-layer,
respectively. The streamwise growth of the streaks can be observed. Figures 11(b) and 12(b) display the cross-section
of these streamwise elongated structures at z = 0. As the forcing region gets detached from the wall, the cores of the
streaky structures also move away from it. As shown in Figs. 11(c) and 12(c), these streaky structures are situated
between counter-rotating vortical motions in the cross-stream plane and they contain alternating regions of fast- and
slow-moving fluid that are slightly inclined to the wall.

We next examine the spatial structure of less energetic eigenmodes of Φ. As illustrated in Fig. 10(a), for near-wall
stochastic forcing the first six eigenmodes respectively contribute 8.9%, 7.3%, 6.1%, 5.3%, 4.6%, and 4.0% to the
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(a) (b)

FIG. 9. (a) Energy amplification and (b) receptivity coefficient resulting from stochastic excitation of the linearized NS
equations around a spatially varying Blasius profile with Re0 = 232. Stochastic forcing enters at the wall-normal regions
covered in Table I; case 1 (black), case 2 (blue), case 3 (red), and case 4 (green). The forcing region moves away from the wall
in the direction of the arrows.

(a) (b)

FIG. 10. Contribution of the first 50 eigenvalues of the velocity covariance matrix Φ of the Blasius boundary layer flow with
Re0 = 232 subject to white-in-time stochastic forcing (a) in the vicinity of the wall with spanwise wavenumber kz = 0.32; and
(b) away from the wall with spanwise wavenumber kz = 0.21.

total energy amplification. We again use the streamwise velocity component to study the spatial structure of the
corresponding eigenmodes. As shown in Fig. 13(b), while the principal mode consists of a single streamwise-elongated
streak, the second mode is comprised of two shorter high- and low-speed streaks. Similarly, the third and fourth
modes respectively contain three and four streaks. These streaks become shorter in the streamwise direction and their
energy content reduces; see Figs. 13(c) and 13(d). As the mode number increases, the streamwise extent of these
structures further reduces, they appear at an earlier streamwise location, and their peak value moves closer to the
leading edge. This breakup into shorter streaks for higher modes can be related to the dominant modes identified
in locally parallel analysis for increasingly larger streamwise wavenumbers and at various streamwise locations (or
Reynolds numbers).

As shown in Fig. 13, spatial visualization of various eigenmodes of Φ resulting from global receptivity analysis
uncovers approximately periodic flow structures in the streamwise direction. The fundamental spatial frequency
extracted from the streamwise variation of the principal eigenmode of Φ provides information about the streamwise
length-scales associated with the dominant flow structures. Figure 14(a) shows the dominant TS wave-like spatial
structure that results from near-wall stochastic excitation of the boundary layer flow with Re0 = 232 and kz = 0.01.
The Fourier transform in the streamwise direction can be used to extract the fundamental value of kx associated with
this spatial structure. As illustrated in Fig. 14(b), the Fourier coefficient peaks at kx ≈ 0.1, which corresponds to the
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(a) (b) (c)

FIG. 11. Principal modes with kz = 0.32, resulting from near-wall excitation of the boundary layer flow (case 1 in Table I)
with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote regions of high and low velocity. (b)
Streamwise velocity at z = 0. (c) y-z slice of streamwise velocity (color plots) and vorticity (contour lines) at x = 750, which
corresponds to the cross-plane slice indicated by the black dashed lines in (b).

(a) (b) (c)

FIG. 12. Principal modes with kz = 0.21, resulting from outer-layer excitation of the boundary layer flow (case 4 in Table I)
with Re0 = 232. (a) Streamwise velocity component where red and blue colors denote regions of high and low velocity. (b)
Streamwise velocity at z = 0. (c) y-z slice of streamwise velocity (color plots) and vorticity (contour lines) at x = 800, which
corresponds to the cross-plane slice indicated by the black dashed lines in (b).

most significant streamwise flow structures (cf. Fig. 14(a)). The identified fundamental wavenumber is representative
of the streamwise variation of this flow structure and it provides a good approximation of the dominant value of
kx that is excited by the near-wall forcing. For different values of kz, the filled black dots in Fig. 14(c) denote the
streamwise wavenumbers extracted from the principal eigenmodes of the covariance matrix Φ, which contribute most
to the energy amplification. The circles represent the tail of streamwise wavenumbers extracted from other eigenmodes
of the matrix Φ. As shown in Fig. 13, for any kz, less significant eigenmodes are associated with flow structures that
are shorter in the streamwise direction. The observed trends are in close agreement with the results obtained using
locally parallel analysis (cf. Fig. 3(a)). In particular, streamwise elongated structures are most amplified for kz ≈ 0.3.
On the other hand, for low spanwise wavenumbers, the TS wave-like structures are most amplified for kx & 0.1 (cf.
kx ≈ 0.19 from locally parallel analysis).

A. Modeling the effect of homogeneous isotropic turbulence

So far, we have studied the energy amplification of the boundary layer flow subject to persistent white-in-time
stochastic excitation with a trivial covariance matrix (W = I). It is also of interest to model the effect of free-stream
turbulence on the boundary layer flow using Homogeneous Isotropic Turbulence (HIT) [18]. The spectrum of HIT has
been previously used as an initial condition to study transient growth in boundary layer flows based on the temporal
evolution of the solution to the differential Lyapunov equation [76]. Herein, we consider the persistent stochastic
forcing d in system (3) to be of the form defined in Eq. (10). The filter function h(x) := 10−rx/Lx is used to model
the streamwise decay of turbulence intensity (cf. [18, Fig. 2]) and the spatial covariance matrix W of the forcing term
ds is selected to match the spectrum of HIT; see Appendix D for additional details. We utilize such forcing model
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(a) (b)

(c) (d)

(e) (f)

FIG. 13. Streamwise velocity at z = 0 corresponding to the first six eigenmodes of the steady-state covariance matrix Φ
resulting from near-wall excitation of the boundary layer flow with Re0 = 232 and at kz = 0.32; (a) j = 1, (b) j = 2, (c) j = 3,
(d) j = 4, (e) j = 5, and (f) j = 6 where j corresponds to ordering in Fig. 10(a).

(a) (b) (c)

FIG. 14. Blasius boundary layer flow with initial Reynolds number Re0 = 232 subject to white-in-time stochastic excitation
of the near-wall region (case 1 in Table I). (a) The TS wave-like spatial structure of the streamwise velocity component of
the principal eigenmode of the matrix Φ at kz = 0.01; (b) Fourier transform in streamwise dimension; and (c) the distribution
of streamwise length-scales obtained from various eigenmodes of the covariance matrix Φ for various values of the spanwise
wavenumber kz. Filled dots represent the dominant streamwise wavenumber associated with the principal eigenmode of Φ, the
red dot corresponds to the fundamental wavenumber extracted from (b), and circles are the streamwise wavenumbers resulting
from less significant eigenmodes.

as well as the input matrix B in the infinite-horizon Lyapunov equation (6) to compute the steady-state covariance
matrix X and determine the corresponding energy spectrum via Eq. (7).

We first study the receptivity of the linearized NS equations to HIT-based stochastic forcing. The receptivity coef-
ficient as a function of spanwise wavenumber kz is shown in Fig. 15(a). As shown in this figure, the streamwise decay
of forcing using the filter function h(x) = 10−rx/Lx has a minimal damping effect on the receptivity coefficient. Fig-
ure 15(b) illustrates a similar trend in the receptivity coefficient obtained from both types of white-in-time stochastic
forcing, which suggests that stochastic forcing with covariance W = I provides a reasonable approximation of the
effect of HIT. However, it is clear that the boundary layer flow is more receptive to the scale-dependent distribution
of energy (von Kármán spectrum) realized by the HIT-based forcing.

Figure 16 shows the streamwise component of the principal eigenmodes of the velocity covariance matrix Φ resulting
from near-wall HIT-based excitation of the boundary layer flow with kz = 0.26. The flow structures closely resemble
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(a) (b)

FIG. 15. (a) Receptivity coefficient resulting from HIT-based stochastic excitation of system (3) with Re0 = 232 in the near-
wall (black) and outer-layer (blue) regions. The solid lines correspond to streamwise-invariant forcing (r = 0 in h(x)) and
the dashed lines correspond to streamwise decaying forcing with a decay rate of r = 1.5 in h(x). (b) Receptivity coefficient
corresponding to the streamwise-invariant (r = 0 in h(x)) HIT-based forcing (solid) and white-in-time forcing with covariance
W = I (dotted) entering in the near-wall region.

the streamwise elongated streaks presented in Fig. 11(b). From Fig. 16(b) we conclude that an exponentially decaying
excitation further elongates the streaks in the streamwise direction. We note that the amplification of streaks and their
prominence in the downstream regions persists, even if the streamwise-decaying forcing completely vanishes towards
the end of the domain. Figure 17 shows the dominant flow structure that results from near-wall HIT-based forcing of
the boundary layer flow with kz = 0.01. This figure demonstrates that our stochastic analysis is able to predict the
amplification of TS wave-like structures arising from persistent excitation that matches the spectrum of HIT, which
is in agreement with the global stability analysis of [51]. In contrast, similar stochastic analysis of the parallel flow
dynamics fails to capture such structures; see [77] for the predictions resulting from locally parallel analysis.

(a) (b)

FIG. 16. The x-y slice of the streamwise component of the principal eigenmode from the covariance matrix Φ at kz = 0.26
resulting from near-wall HIT-based excitation of the boundary layer flow with Re0 = 232. (a) Streamwise-invariant forcing
(r = 0 in h(x)); and (b) streamwise-decaying forcing (r = 1.5 in h(x)).

FIG. 17. The TS wave-like spatial structure of the streamwise component of the principal eigenmode of matrix Φ at kz = 0.01
resulting from global analysis of the boundary layer flow subject to near-wall streamwise-invariant (r = 0 in h(x)) HIT-based
stochastic forcing.

Figure 18 illustrates the growth of the root-mean-square (rms) amplitude of the streamwise velocity resulting from
HIT-based stochastic forcing with various streamwise decay rates; r = 0, 0.5, 1, and 1.5. This figure is obtained by
integrating the steady-state response (diag(Φ)) over 50 logarithmically spaced spanwise wavenumbers with 0.01 <
kz < 10. When the forcing is not damped (r = 0), the growth is linear and proportional to the Reynolds number for
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FIG. 18. The rms amplitude of the streamwise velocity resulting from stochastic excitation that corresponds to the spectrum
of HIT entering in the near-wall region (case 1 in Table I). The decay rate for the intensity of stochastic forcing, r, increases
in the direction of the arrow as r = 0, 0.5, 1, and 1.5.

Re < 400, which is in agreement with previous studies based on linear stability theory [70, 78]. We observe that this
linear trend is no longer present for stochastic forcing with large streamwise decay rates r.

V. DISCUSSION

In this section, we provide connections between the spatial flow structures obtained via locally parallel and global
analyses and examine frequency responses of the boundary layer flow subject to near-wall stochastic excitation.

A. Relations between locally parallel and global analyses

The eigenmodes resulting from locally parallel and global stability analysis are closely related [40, 51]. As shown in
the previous sections, both locally parallel and global receptivity analyses predict largest amplification of streamwise
elongated structures and the appearance of TS waves. However, the size of flow structures and their wall-normal extent
can vary with the streamwise location (Reynolds number). For a proper comparison between the streamwise/wall-
normal extent of flow structures, herein, we adjust the Reynolds number used in locally parallel analysis to capture
the dominant flow structures toward the end of the global streamwise domain. Moreover, a shorter global domain
length Lx should be considered to accommodate subcritical Reynolds numbers (Re . 360) beyond which the local
dynamics are unstable. To ensure stability of the global dynamics, we extend the streamwise domain in the upstream
direction to Re0 = 133, but for consistency, display results for Re ≥ 232 after appropriate scaling based on the Blasius
length-scale at Re = 232.

For near-wall stochastic excitation (case 1 in Table I), both locally parallel and global receptivity analyses predict
the dominant amplification of streamwise elongated structures with kz ≈ 0.3; see Figs. 5 and 9. For near-wall
excitations with kz = 0.32, Fig. 19 shows that locally parallel analysis of the flow with Re = 300 subject to near-wall
excitation yieds similar flow structures (with kx = 0.11) to those appearing at Re ≈ 300 in the 6th eigenmode of the
covariance matrix Φ resulting from global analysis. Here, kx = 0.11 is the wavenumber extracted from spatial Fourier
transform of the 6th eigenmode of Φ. Moreover, for long spanwise wavelengths, both models predict the amplification
of similar TS wave-like structures in the presence of near-wall excitation (see Fig. 20). These observations can also be
explained by evaluating the source terms in the energy balance equation. The intrinsic source terms are dominated
by production terms that account for interactions between the fluctuation field and the mean rate of strain, i.e.,
〈u, u ∂xU〉, 〈u, v ∂yU〉, 〈v, u ∂xV 〉, and 〈v, v ∂yV 〉; e.g., see [58, Section 4.2]. In transitional boundary layer flow,
since ∂xU , ∂yV ∼ O(1/Re), and ∂xV ∼ O(1/Re2), energy production is dominated by the term 〈u, v ∂yU〉 and it is
well-captured by a locally parallel analysis.

In certain scenarios, locally parallel analysis can extract information about streamwise scales that may be hidden in
global analysis. This feature of locally parallel analysis can be attributed to the parameterization of the velocity field
over streamwise wavenumbers, which enables the separate study of various streamwise length-scales. For example,
for wavenumbers at which the global receptivity analysis of the flow subject to outer-layer excitation is dominated
by near-wall streaks, locally parallel analysis can uncover the trace of weakly growing outer-layer oscillations at TS
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(a) (b)

FIG. 19. Streamwise velocity fluctuations resulting from near-wall stochastic excitation of the boundary layer flow. (a) Principal
eigenmode of Φ obtained in locally parallel analysis with Re = 300 and (kx, kz) = (0.11, 0.32); and (b) 6th eigenmode of Φ
resulting from global analysis with kz = 0.32. In the global computations Lx = 200 and the dominant flow structures appear
at Re ≈ 300.

(a) (b)

FIG. 20. The TS wave-like spatial structure of the streamwise velocity component of the principal eigenmode of the matrix
Φ resulting from near-wall stochastic excitation of the boundary layer flow. (a) Locally parallel analysis with Re = 300 and
(kx, kz) = (0.13, 0.01); and (b) global flow analysis with kz = 0.01. The wavenumber pair for the locally parallel analysis
corresponds to the TS wave branch in the energy spectrum of velocity fluctuations. In the global computations Lx = 200 and
the dominant flow structures appear at Re ≈ 300.

frequencies. This is in agreement with experiments [79] which observe outer-layer oscillations of comparable length to
width (kx ≈ kz) that travel at the phase speed of free-stream velocity with similar temporal frequency as TS waves.

To further investigate this observation, we re-examine the flow structures that can be extracted from locally parallel
and global flow analyses of the boundary layer flow at Re ≈ 300 subject to stochastic excitation covering the entire
free stream region. In particular, the parameters in Eq. (11) are set to y1 = 7, y2 = 33, and a = 10 for locally parallel
analysis, and y1 = δ0.99 + 2, y2 = 33, and a = 10 for global flow analysis. Note that δ0.99 in the global analysis
is a function of x. By comparing the phase speed of the outer-layer oscillations to that of TS waves (c ≈ 0.4U∞
obtained from local temporal stability analysis with Re0 = 232 and kx ≈ 0.19) we obtain ω ≈ 0.076. Finally, Taylor’s
hypothesis (c ≈ U∞) can be used to obtain kx ≈ 0.076 for outer-layer oscillations.

Figures 21(a) and 21(b) show the streamwise component of the steady-state response of the boundary layer flow with
Re = 300 and kz = 0.076 resulting from locally parallel and global flow analyses, respectively. As aforementioned,
locally parallel analysis considers kx = kz = 0.076, which is in concert with the experimentally observed outer-
layer oscillations. These flow structures represent the aggregate contribution of all eigenmodes of Φ and they have
been obtained from diag (CuXC

∗
u), where Cu is the streamwise component of the output matrix C. Note that the
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(a) (b)

(c) (d)

FIG. 21. The rms amplitude of the streamwise velocity component of the response (diag (CuXC∗u)) obtained from receptivity
analysis of boundary layer flow with Re = 300 subject to full outer-layer stochastic excitation: (a) locally parallel analysis with
kx = kz = 0.076; (b) global flow analysis with kz = 0.076. (c) Contribution of the first 7 eigenvalues of the velocity covariance
matrix Φ obtained via global receptivity analysis and the flow structures corresponding to the first and 7th eigenmodes. (d)
The streamwise velocity profile at y = 20 from the 7th eigenmode of Φ illustrated in (c). In the global computations, we set
Lx = 200 and the outer-layer oscillating structures appear at Re ≈ 300.

spatial structure shown in Fig. 21(a) is obtained by enforcing streamwise periodicity with kx = 0.076. While locally
parallel analysis of the stochastically forced flow predicts the amplification of structures that reside in the outer-layer,
the response obtained in global analysis is dominated by inner-layer streaks and a weaker amplification of outer-layer
fluctuations is observed in the presence of stochastic forcing. As shown in Fig. 21(c), such weak outer-layer oscillations
can be observed in the 7th mode of the covariance matrix Φ resulting from global analysis. Figure 21(d) shows the
streamwise variation of these flow structures at y = 20, which corresponds to the wall-normal location where the
largest amplitude occurs. The streamwise wavelength of this signal is approximately the same as the parallel flow
estimate (λx = 81 vs λx = 82.7). Such flow structures may be dominated by higher amplitude streaks as their
contribution to the total energy amplification is much smaller than the contribution of the principal mode (0.15% vs
1.9%). Nonetheless, similar to the cascade shown in Fig. 13(f), their presence in the eigenmodes of the covariance
matrix points to the physical relevance of flow structures that are identified via locally parallel analysis.

B. Frequency response analysis

The receptivity analysis conducted in this paper quantifies the energy amplification of stochastically-forced linearized
NS equations and identifies the dominant flow structures in statistical steady-state. We utilize the solution X to the
algebraic Lyapunov equation (6) to avoid the need for performing either costly stochastic simulations or integration
over all temporal frequencies. This approach facilitates efficient computations by aggregating the impact of different
frequencies on energy amplification. In what follows, we illustrate how additional insight into temporal aspects of the
linearized dynamics can be obtained by examining the spectral density associated with velocity fluctuations (8).
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Application of the temporal Fourier transform on system (3) in combination with a coordinate transformation

d(t) = W 1/2 d̃(t),

where d(t) and d̃(t) are white-in-time forcings with the spatial covariance matrices W and I, respectively, yields

v(k, ω) = Tvd(k, ω)d(k, ω) = Tvd̃(k, ω) d̃(k, ω). (14)

Here, k denotes the spatial wavenumbers, ω is the temporal frequency, Tvd(k, ω) is the frequency response of system (3)
given in Eq. (15), and

Tvd̃(k, ω) := Tvd(k, ω)W 1/2 = C (iωI − A)
−1
BW 1/2. (15)

Singular value decomposition of Tvd̃(k, ω) brings the input-output representation (14) into the following form:

v(k, ω) = Tvd̃(k, ω) d̃(k, ω) =
∑
i

σi(k, ω)ui(k, ω)
〈
wi(k, ω), d̃(k, ω)

〉
,

where σi is the ith singular values of Tvd̃(k, ω), ui(k, ω) is the associated left singular vector, and wi(k, ω) is the
corresponding right singular vector. The power spectral density (PSD) quantifies the energy of velocity fluctuations
v(k, ω) across temporal frequencies ω and spatial wavenumbers k,

Πv(k, ω) = trace
(
Tvd̃(k, ω)T ∗

vd̃
(k, ω)

)
= trace (Tvd(k, ω)W T ∗vd(k, ω)) = trace (Sv(k, ω)) ,

and is determined by the sum of squares of the singular values of the frequency response Tvd̃(k, ω),

Πv(k, ω) =
∑
i

σ2
i (k, ω).

As described in Section II B, the energy spectrum E in Eq. (7) can be obtained by the integration of Πv(k, ω) over
temporal frequency [35],

E(k) =
1

2π

∫ ∞
−∞

Πv(k, ω) dω =
1

2π

∫ ∞
−∞

∑
i

σ2
i (k, ω) dω.

This approach extends standard resolvent analysis [62–64] to stochastically-forced flows and it allows the spatial
covariance matrix W of the white-in-time stochastic forcing d to be embedded into the analysis. A recent reference [80]
also establishes relation between spectral decomposition of Sv(k, ω) and dynamic mode decomposition [81].

The PSD of the boundary layer flow with Re0 = 232 subject to near-wall stochastic excitation is shown in Fig. 22.
While locally parallel analysis reveals isolated frequencies at which the PSD peaks, much broader frequency range
is important in global analysis. In particular, locally parallel analysis for a flow with (i) (kx, kz) = (7 × 10−3, 0.32)
identifies nearly-steady streaks as dominant flow structures (the PSD peaks at ω = 0.0063); and (ii) (kx, kz) =
(0.19, 0.01) identifies two peaks at ω = 0.08 and ω = 0.19 which correspond to the TS waves and flow structures in
the outer-layer, respectively. On the other hand, the peaks are much less pronounced in the analysis of the spatially-
evolving base flow. This suggests that the focus on isolated frequencies in global analysis may not capture the full
complexity of the underlying flow structures. In fact, the shapes of spatial profiles associated with principal singular
vectors of the frequency response Tvd̃(k, ω) change for different values of ω. As shown in Fig. 23, even though the
principal singular values of Tvd̃(k, ω) for ω = 10−5, 0.01, and 0.02 are comparable (5464, 4732, and 3565, respectively),
the corresponding response directions change from streamwise streaks (for steady perturbations) to oblique modes (at
larger frequencies). This trend is reminiscent of the various flow structures resulting from the eigenvalue decomposition
of the steady-state covariance matrix (cf. Section IV) and has been also recently observed in spatio-temporal analysis
of hypersonic boundary layer flows [61].

VI. CONCLUDING REMARKS

In the present study, we have utilized the linearized NS equations to study energy amplification in the Blasius
boundary layer flow subject to white-in-time stochastic forcing entering at various wall-normal locations. The evolu-
tion of flow fluctuations is captured by two models that arise from locally parallel and global perspectives, and the
amplification of persistent stochastic disturbances is studied using the algebraic Lyapunov equation. Both parallel
and global flow analyses predict largest amplification of streamwise elongated streaks with similar spanwise wave-
length. Moreover, TS wave-like flow structures arise from persistent near-wall stochastic excitation at long spanwise
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(a) (b)

FIG. 22. Power spectral density Πv(k, ω) as a function of temporal frequency ω for a boundary layer flow with Re0 = 232
subject to near-wall white stochastic excitation. (a) Locally parallel analysis with (kx, kz) = (7 × 10−3, 0.32) (blue) and
(kx, kz) = (0.19, 0.01) (red) corresponding to streaks and TS waves, respectively. (b) Global flow analysis with kz = 0.32 (blue)
and kz = 0.01 (red). Black dots correspond to the temporal frequencies of the Fourier modes plotted in Fig. 23.

(a) (b) (c)

FIG. 23. Fourier modes corresponding to the principal response directions of Tvd(k, ω) for a spatially evolving Blasius boundary
layer flow with Re0 = 232 and kz = 0.32 subject to near-wall stochastic excitation. (a) ω = 10−5, (b) ω = 0.01, and (c) ω = 0.02.

wavelengths. We have shown that as the region of excitation moves away from the wall, energy amplification reduces,
which suggests that the near wall region is more sensitive to external disturbances. We have also examined the spatial
structure of characteristic eddies that result from stochastic excitation of the boundary layer flow. Our computational
experiments demonstrate good agreement between the results obtained from parallel and global flow models and
identify the importance of suboptimal flow structures in global analysis. This agreement highlights the efficacy of
using parallel flow assumptions in the receptivity analysis of boundary layer flows, especially when it is desired to
evaluate the energetic contribution of individual streamwise scales.

In contrast to resolvent-mode analysis which quantifies the energy amplification from monochromatic forcing, our
stochastic approach incorporates a broad-band forcing model with known spatial correlations that captures the aggre-
gate effect of all time scales. Our Lyapunov-based framework generalizes the concept of receptivity to the amplification
of velocity fluctuations from any external source of persistent excitation with known statistical properties. We note
that the ability of the method to capture relevant flow physics relies on the spectral properties of the stochastic
forcing that can be used to model the effect of, e.g., free-stream turbulence. In addition to white-in-time stochastic
forcing with trivial (identity) spatial covariance operator, we have also investigated energy amplification arising from
the streamwise-decaying forcing that corresponds to the spectrum of HIT. Our computations demonstrate close cor-
respondence between these two case studies. The spatio-temporal spectrum of stochastic excitation sources can be
further determined in order to provide statistical consistency with the results of numerical simulations or experimen-
tal measurements of the boundary layer flow [39, 82]. Implementation of such ideas to leverage statistical data and
improve physics-based analysis is a topic for future research.
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Appendix A: Operator valued matrices in Eqs. (2)

Equation (2) is of the following form:

[
vt

ηt

]
=

[
A11 A12

A21 A22

]
︸ ︷︷ ︸

A

[
v

η

]
+

[
B11 B12 B13

B21 0 B23

]
︸ ︷︷ ︸

B

 du

dv

dw


 u

v

w

 =

 C11 C12

I 0

C31 C32


︸ ︷︷ ︸

C

[
v

η

]

with operators defined as

A11 = ∆−1

[
1

Re
∆2 − U ∆ ∂x − V ∆ ∂y − ∂y V ∆ − 2 ∂x U ∂xx − ∂yy V ∂y + ∂yy U ∂x

− ∂yyy V − 2 (∂xy U ∂x + ∂x U ∂xy)
(
∂xx − k2

z

)−1
∂xy

]
− σ(x),

A12 = 2 ikz ∆−1
[
(∂xy U ∂x + ∂x U ∂xy)

(
∂xx − k2

z

)−1
]
,

A21 = − ikz ∂y U, A22 =
1

Re
∆ − U ∂x − V ∂y − ∂x U − σ(x),

B11 = − ∆−1 (f ∂xy + ∂y f ∂x) , B12 = ∆−1
(
f ∂xx − k2

z f
)
, ∆ = ∂xx + ∂yy − k2

z ,

B13 = − ikz ∆−1 (∂y f + f ∂y) , B21 = − ikz f, B23 = − f ∂x,

C11 = −
(
∂xx − k2

z

)−1
∂xy, C12 = ikz

(
∂xx − k2

z

)−1
,

C31 = − ikz
(
∂xx − k2

z

)−1
∂y, C32 = −

(
∂xx − k2

z

)−1
∂x.

Here, σ(x) determines the strength of sponge layers as a function of x; see [75] for additional details. For parallel
flows, Fourier transform in x can be used to further parameterize the operators over streamwise wavenumbers; see [35]
for the expressions of A, B, and C in such instances.

Appendix B: Change of variables

The kinetic energy of velocity fluctuations in the linearized NS equations (2) is defined using the energy norm

E = 〈ϕ,ϕ〉e =
1

2

∫
Ω

ϕ∗Qϕ dy =: 〈ϕ,Qϕ〉

where Ω is the computational domain, 〈·, ·〉 is the L2 inner product and Q is the operator which determines kinetic
energy of the state ϕ = [ v η ]T on the appropriate state-space [35, 83]. With proper discretization of the inhomo-
geneous directions, the kinetic energy is given by E = ϕ∗Qϕ. Here, Q is the discrete representation of operator
Q and is a positive definite matrix. The coordinate transformation ψ = Q1/2ϕ can thus be employed to obtain the
kinetic energy via the standard Euclidean norm: E = ψ∗ψ in the new coordinate space. Equation (3) results from
the application of this change of variables on the discretized state-space matrices Ā, B̄, and C̄

A = Q1/2 ĀQ−1/2, B = Q1/2 B̄ I
−1/2
W , C = I

1/2
W C̄ Q−1/2,

and the discretized input d̄ and velocity v̄ vectors

d = I
1/2
W d̄, v = I

1/2
W v̄.
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Here, IW is a diagonal matrix of integration weights on the set of Chebyshev collocation points.
The operator Q in the global model is of the form:

Q =

[
∂†
xy Θ† Θ ∂xy + I + k2

z ∂
†
y Θ† Θ ∂y 0

0 k2
z Θ† Θ + ∂†

x Θ† Θ ∂x

]

where Θ = (∂2
x − k2

z)−1, I is the identity operator and † represents the adjoint of an operator. The representation of
Q for parallel flows can be found in [35, Appendix A].

Appendix C: Global analysis using the descriptor form

The descriptor form of the linearized NS equations around the Blasius boundary layer profile is given by

F ψ̇(t) = Aψ(t) + Bd(t),

v(t) = Cψ(t),
(C1)

where ψ = [u v w p ]T and

F =


I 0 0 0

0 I 0 0

0 0 I 0

0 0 0 0

 , A =


K + ∂y V −∂y U 0 −∂x

0 K − ∂yV 0 −∂y
0 0 K −ikz

∂x ∂y ikz 0

 , B =


I 0 0

0 I 0

0 0 I

0 0 0

 , C = BT

where I is the identity operator and

K =
1

Re

(
∂2
x + ∂2

y − k2
z

)
− U∂x − V ∂y − σ(x).

Here, σ(x) determines the strength of sponge layers as a function of x. The width and strength of the sponge layers
are selected to guarantee the stability of the generalized dynamics (C1) in their discretized form, while having minimal
influence on velocity fluctuation field. The energy of velocity fluctuations in Eqs. (C1) can be determined by

E = trace
(
C (Gc + Gnc)C

†) ,
which is analogous to expression (7) for the evolution model with ψ = [ v η ]T . Here, † represents the adjoint of an
operator and Gc and Gnc are the causal and non-causal reachability Gramians that satisfy the following generalized
Lyapunov equations:

FGc A
† + AGc F

† = −Pl BB†P†
l

FGnc F
† − AGnc A

† = Ql BB†Q†
l ,

(C2)

where Pl and Ql are the projection operators that project the state-space into causal and non-causal subspaces;
see [84, Appendix.E] for additional details.

After proper spatial discretization of the state-space, the procedure for solving the generalized Lyapunov equa-
tions (C2) consists of the following steps: (i) compute the generalized Schur form of the discretized pair (A,F ); (ii)
computing the solution to a system of generalized Sylvester equations; and (iii) solving the generalized Lyapunov
equations (C2) for Gramian matrices Gc and Gnc. The Schur decomposition and the solution to the Sylvester equa-
tions are required to split the state into slow (causal) and fast (non-causal) parts and to form projection matrices
Pl and Ql. For a spatial discretization that involves n = 4NxNy states, the overall computational complexity of
this procedure is O(n3), which is significantly higher than the computational complexity of solving the Lyapunov
equation (6) with n = 2NxNy. Moreover, since the state-space of the descriptor form has twice the number of states
as the evolution model (3), computations based on this representation require more memory. We refer the interested
reader to [84, Appendix.E] for additional details on computing energy amplification using the descriptor form.

In order to demonstrate the close agreement between the outcome of receptivity analysis based on the evolution
model of Section II and the descriptor form (C1), we focus on the energy amplification of flow structures with kz = 0.32.
Similar to Section II, we discretize system (C1) by applying Fourier transform in z and using a Chebyshev collocation
scheme in the wall-normal and streamwise directions. In the wall-normal direction, we enforce homogenous Dirichlet
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boundary conditions on all velocity components. In the streamwise direction, we use homogeneous Dirichlet boundary
conditions at the inflow and spatial extrapolation at the outflow for all velocity components. Moreover, sponge layers
are applied at the inflow and outflow to mitigate the influence of boundary conditions on the fluctuation dynamics.
As shown in Fig. 24, the dominant flow structures that result from near-wall excitation closely resemble the results
presented in Fig. 11.

(a) (b) (c)

FIG. 24. (a) The streamwise component of the principle eigenmode of output covariance matrix Φ resulting from near-wall
stochastic excitation (case 1 in Table I) of the linearized model (C1) with kz = 0.32 and Re0 = 232. (b) Streamwise velocity
at z = 0. (c) Slice of streamwise velocity (color plots) and vorticity (contour lines) at x = 750, which corresponds to the
cross-plane slice indicated by the black dashed lines in (b).

Appendix D: Matching the HIT spectrum with stochastically forced linearized NS equations

We briefly describe how the spectrum of HIT can be matched using stochastically forced linearized NS equations;
see [84, Appendix C] for additional details. The dynamics of velocity fluctuations v around a uniform base flow
ū = [ 1 0 0 ]T subject to the solenoidal forcing ds = [ du dv dw ] (∇ · ds = 0) are governed by the linearized NS
equations

vt(k, t) = A(k)v(k, t) + ds(k, t),

where k = [ kx ky kz ]T is the spatial wavenumber vector and

A(k) = −
(

ikx +
k2

Re

)
I3×3,

is the linearized operator. Here, k2 = k2
x + k2

y + k2
z and I3×3 is the identity operator. The steady-state covariance

of velocity fluctuations Φ(k) = lim
t→∞

〈v(k, t)v∗(k, t)〉 satisfies the following Lyapunov equation

A(k)Φ(k) + Φ(k)A∗(k) = −M(k), (D1)

where M(k) denotes the covariance of white-in-time stochastic forcing. The steady-state covariance matrix Φ corre-
sponding to HIT is given by [85]

Φ(k) =
E(k)

4πk2

(
I3×3 +

kkT

k2

)
.

where E(k) is the energy spectrum of the HIT based on the von Kármán spectrum [26],

E(k) = LCvk
(k L)4

(1 + k2L2)17/6
.

Here, Cvk =
Γ(17/6)

Γ(5/2)Γ(1/3)
= 0.48 is a normalization constant in which Γ(·) is the gamma function and the integral

length-scale L = 1.5 corresponds to numerical simulations of HIT [86]. The input forcing covariance can be derived
by substituting Φ(k) into Eq. (D1), which yields

M(k) =
E(k)

2πRe

(
I3×3 +

kkT

k2

)
.
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After finite dimensional approximation of all operators, the covariance of forcing ds, parameterized by kz, is obtained
via inverse Fourier transform in x and y. The resulting covariance matrix M(kz) includes two-point correlations of
the white stochastic forcing in the streamwise and wall-normal directions and it replaces W in Eq. (6).
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