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Abstract13

Relating incipient motion of sediments to properties of turbulent flows continues to draw signif-14

icant research attention given its relevance to a plethora of applications in ecology, sedimentary15

geology, geomorphology, and civil engineering. Upon combining several data sources, an empirical16

diagram between a densimetric Froude number Fdc = Uc/
√
gh∆ and relative roughness N = d/h17

was recently reported over some 6 decades of N , where d is the grain diameter, h is the overlying18

boundary-layer depth, Uc is the bulk velocity at which sediment motion is initiated, g is the gravi-19

tational acceleration, ∆ = s−1, and s is the specific gravity of sediments. This diagram featured 320

approximate scaling laws of the form Fdc ∼ N−α with α = 1/2 at small N , α = 1/6 at intermediate21

N and α = 0 at large N . The individual α values were piece-wisely recovered using a combination22

of (i) scaling arguments linking bulk to local flow variables above the sediment bed and (ii) assumed23

exponents σ for the turbulent kinetic energy spectrum Etke(k) ∼ k−σ, where k is the wavenumber24

or inverse eddy size. To explain the α = 1/2, the aforementioned derivation further assumed the25

presence of an inverse cascade in Etke(k) at large wavenumber (i.e. σ = 3). It is shown here that a26

single Fdc−N curve can be derived using a cospectral budget (CSB) model formulated just above27

the sediment bed. For any k, the proposed CSB model includes two primary mechanisms (i) a28

turbulent stress generation formed by the mean velocity gradient and the spectrum of the vertical29

velocity Eww(k) and (ii) a destruction term formed by pressure-velocity interactions. Hence, a30

departure from prior work is that the proposed CSB model is driven by a multi-scaled Eww(k)31

instead of Etke(k) characterized by a single exponent. Also, the CSB model does not require the32

presence of an inverse cascade to recover an α = 1/2. Last, the CSB approach makes it clear that33

the scaling parameters linking local to bulk flow variables used in prior determinations of α at34

various N must be revised to account for bed roughness effects.35
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FIG. 1. Sketch of a wide rough channel whose bed is covered by spherical grain particles of uniform

diameter d. The grains are entrained into the overlying turbulent flow when the surface shear stress

τtb exceeds a threshold. The green arrow depicts turbulent eddies that have multiple sizes while the

grains are represented by brown circles. The co-spectral budget (CSB) model is formulated in the

roughness sublayer (black dashed line) above the grains but below the region characterized by a

logarithmic mean velocity profile (purple dashed line). The forces acting on an individual particle

are defined as follows: Fd is the drag force, Ff is the frictional force, FG is the gravitational force

related to particle weight, and FL is the lift force.

I. INTRODUCTION36

Incipient motion of grains by turbulent flows over a loose boundary continues to draw37

research attention in erosion studies, river bank stability, ecosystem sciences and eolian38

processes [1–3]. Over the course of some 100 years, such incipient motion has been described39

using a balance between hydrodynamic forces exerted on particles and a stabilizing force40

represented by the submerged particle weight as shown in Figure 1. This force-balance has41

been developed at the single particle scale [4] but extrapolated in space to account for multi-42

particle interactions using probabilistic approaches [5]. Extensions to both have also been43

proposed and used in a number of applications [6–8].44

Operationally, incipient motion is described by the Shields Diagram [9] that empirically45

relates a dimensionless bed shear stress θ (labeled as the critical Shields number)46

θ =
u2∗

∆gd
(1)47

to a roughness Reynolds number Re∗ using [10–12]. It is to be noted that when the shear or48
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FIG. 2. Modified Shields Diagram fitted to the original data of Shields [9], where θc ≈ 0.06 is

independent of Re∗ when Re∗ > 400 and θc ∝ Re−1∗ for Re∗ < 3. An intermediate region defined

by Re∗ ∈ [3, 400] exists where θ ∈ [0.02, 0.06] varies weakly and non-monotonically with Re∗.

friction velocity u∗ reaches the critical shear velocity u∗c and the sediment particle is about49

to move, the Shields number becomes the critical Shields number θc. Here, the roughness50

Reynolds number is defined as Re∗ = u∗d/ν, where ∆ = s− 1 > 0, s = ρp/ρf is the specific51

gravity of the particles, ρp and ρf are the particle and water densities respectively, g is52

the gravitational acceleration, ν is the kinematic viscosity, u∗ = (τb/ρf )
1/2 is the friction53

velocity, τb is the bed shear stress, and d is the grain diameter. Figure 2 repeats such a5455

diagram summarizing a large corpus of experiments. This diagram shows that at low Re∗,56

θc decreases with increasing Re∗, whereas θc becomes a constant independent of Re∗ for57

large Re∗. While the limitations of the Shields diagram have been recognized for some58

time now [1, 13], the data presentation inspired by the Shields diagram remains popular in59

numerous fields. Its simplicity and reasonable empirical support [14, 15] even in situations60

that fall well outside the original domain of applicability [16–21] continue to make θc −Re∗61

representation attractive and a test-bed for other detailed models [22]. A case in point is62

the use of a Shields diagram to reconstruct a number of surface features on Mars [23, 24]63

and Titan [25].64

An even more ’naive’ but preferable approach in large-scale hydrodynamic models is to65

use a critical bulk velocity Uc formed by a flow rate per unit cross-sectional area instead of66

the critical shear velocity to scale particle incipient motion. This approach gained attention67
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FIG. 3. The Fdc − N diagram with data reported by Ali and Dey [3, 26] along with the three

scaling laws expressed as Fdc ∼ N−α with α = 1/2, 1/6, and 0 (in dashed lines). The original

data sources are described in a number of studies that include Lischtvan and Lebediev [27], Neill

[28], Ashida and Bayazit [29], Olivero [30], Aguirre-Pe and Fuentes [31], Bathurst et al. [32, 33].

after Ali and Dey [3, 26] reported a remarkable link between a densimetric Froude number68

Fdc = Uc/
√

∆gd and relative roughness N = d/h shown in Figure 3, where h is the boundary69

layer depth (or water level in wide channels). The reported relation appears to be valid over70

6 decades of N with Fdc exhibiting at least 1.5 decades of variations. Another outcome7172

in Figure 3 is the presence of 3 regimes featuring approximate scaling laws of the form73

Fdc ∼ N−α: An α = 1/2 for the so-called mini-roughness regime N ∈ [10−6, 10−4], an74

α = 1/6 for the small-roughness regime N ∈ [10−4, 0.1], and α = 0 for the large-roughness75

regime N ∈ [0.1, 1].76

Instead of using separate arguments to explain each α value, it is shown here that a77

single Fdc − N curve can be recovered from a co-spectral budget (CSB) model that tracks78

the effects of all eddies on τb. The proposed model is driven by the shape of the vertical79

velocity spectrum Eww(k) instead of the turbulent kinetic energy spectrum Etke(k). That80

Eww(k) explains the Fdc−N is to be expected in vertical momentum transfer studies of wall-81

stress. Moreover, the work here shows that the presence of an inverse cascade is not necessary82

provided some steepening of the Eww(k) above and beyond its inertial scaling occurs at small83
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scales. However, links between local variables in the roughness sublayer above the bed and84

bulk variables must be revised to account for roughness effects as discussed elsewhere [34].85

The main theoretical novelties offered here are new perspectives about the curve featured86

in Figure 3, the transition zones between the various roughness scaling regimes, and the87

links between exponents α and the entire shape of Eww(k) that is characterized by multiple88

exponents. It also offers a pragmatic approach (i.e. a single expression) to modeling incipient89

motion within large-scale hydrodynamic models of sediment motion when Uc is to be used.90

II. THEORY91

A. Review of the Analysis by Ali-Dey92

The insightful analysis by Ali and Dey [3, 26] to explain the three piece-wise scaling laws93

in Figure 3 is reviewed. At the point of incipient sediment motion (i.e. U = Uc) and from94

the aforementioned definitions, it directly follows that Fdc can be linked to θc using95

Fdc =
Uc√
∆gd

=
u∗√
∆gd

Uc
u∗

=
√
θc
Uc
u∗
. (2)96

When Re∗ > 400 (i.e. fully rough flow regime), the Shields diagram in Figure 2 suggests97

that θc approaches a constant value independent of Re∗ and Fdc is determined entirely from98

Uc/u∗. The aforementioned studies by Ali and Dey [3, 26] assumed that the flow is fully99

rough and θc is constant for differing N ranges. It was further assumed that u2∗ = vlUc, where100

vl is a characteristic turbulent vertical velocity [35] whereas horizontal velocity turbulent101

excursions scale with Uc. To determine vl, a phenomenological model was then used given102

as [3, 26, 36]103

vl ∼
(∫ ∞

l−1

Etke(k)dk

)1/2

, (3)104

where l is a characteristic length scale of the eddy near the roughness bed assumed propor-105

tional to d [3, 26]. The Etke(k) is modeled with a single exponent so that Etke(k) ∝ kσ.106

Based on dimensional analysis alone, Ali and Dey [3, 26] argued that Etke(k) must be related107

to bulk variables (Uc, h) only, and k so that108

Etke(k)

U2
c h

= Ae(kh)σ. (4)109

In principle, Etke(k) must be formulated in the same plane (i.e. roughness sublayer) where110

τc is acting (see Figure 1). This co-location means that the scaling in equation 4 may be111
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plausible when local variables in this plane are linked to bulk variables without any roughness112

modifications. Inclusion of roughness effects may be possible if the similarity constant Ae in113

equation 4 is made to vary with a roughness length that depends on d. However, the work of114

Ali and Dey was focused on links between σ and α and ignored this revision. Accepting their115

arguments leading to equation 4, substituting equation 4 into equation 3, and integrating116

leads to117

vl
Uc
∼
(
d

h

)−(1+σ)/2
. (5)118

With this estimate of vl, the turbulent shear shear stress τc can be computed from119

τc = ρu2∗ ∼ ρvlUc ∼ ρU2
c

(
d

h

)−(1+σ)/2
. (6)120

Inserting equation 6 into equation 2, the densimetric Froude number can now be derived as121

[3],122

Fdc ∼
√
θc

(
d

h

)(1+σ)/4

=
√
θc (N)(1+σ)/4 . (7)123

That is, α = −(1 + σ)/4. This completes the sought link between the scaling laws in124

the Fdc − N curve shown in Figure 3 and exponents describing the decay of Etke(k) with125

decreasing eddy sizes. The three scaling regimes in the Fdc −N diagram can be piece-wise126

recovered when assuming differing energy transfer mechanisms dominate the Etke(k).127

1. When σ = −5/3, which is the scaling law expected for the inertial subrange for locally128

homogeneous and isotropic turbulence, an α = 1/6 is recovered.129

2. When σ = −1, which is the scaling law linked to attached eddies impinging on the130

surface [37–40], α = 0 is recovered.131

3. When σ = −3, an α = 1/2 is recovered. Ali and Dey argued that such a scaling132

law in Etke(k) may be associated with a quasi-2D turbulence occurring over a smooth133

surface (i.e. small N) experiencing an inverse cascade in energy (or forward cascade in134

enstrophy). While not explicitly discussed by Ali and Dey, it has been shown elsewhere135

that the energy spectrum due to the presence of the enstrophy cascade leads to a new136

prediction for the so-called friction factor f ∝ (u∗/Uc)
2 in rough pipes. This scaling137

law is f ∼ N+1 at very high Reynolds number [41]. Naturally, such a friction factor138

prediction results in Fdc ∼ N−1/2. For 3-D turbulence at very high Reynolds number,139

f ∼ N1/3 (Strickler scaling) again consistent with α = −1/6.140
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To recap, the analysis by Ali and Dey makes use of two assumptions: (i) a scaling argu-141

ment between bulk and local flow variables just above the sediment bed that is independent142

of the roughness elements (e.g. Ae in equation 4) and (ii) a turbulent vertical velocity trans-143

porting momentum to the bed with its energy linked to its size by the turbulent kinetic144

energy spectrum Etke(k) ∝ kσ. Last, to recover the α = 1/2, the flow above the surface145

covered with sediments was assumed to be 2-D with an inverse cascade. It is to be pointed146

out that turbulent flows even above smooth-walls are inherently three-dimensional and are147

dominated by a forward energy cascade thereby prompting interest in alternative explana-148

tions to the reported Fdc−N scaling relations, especially at small N . The co-spectral budget149

(CSB) model is now used to explore such alternative.150

B. The Co-spectral Budget Model151

Accepting the experimental results in Figure 3, we ask whether a single equation can152

be derived that recovers the entire Fdc − N relations across all N assuming a constant θc153

and a generic shape for the energy spectrum. To answer this question, a phenomenological154

approach is to be followed that is based on the co-spectral budget (CSB) model. The CSB has155

been used to describe flow statistics in wide-ranging applications in stratified atmospheric156

flows, pipe-flow, and open channel flows [34, 37, 42–47]. In the CSB model, the turbulent157

shear stress within the roughness sublayer above the bed is linked to the co-spectrum using158

τt = τb = ρfu′w′ = ρf

∫ ∞
0

Fuw(k)dk, (8)159

where τt is the turbulent shear stress or the momentum flux, u′ and w′ are the turbulent160

velocity fluctuations in longitudinal (along x) and vertical (along z) directions, respectively,161

the over-line indicates averaging over coordinates of statistical homogeneity, and Fuw(k)162

is the co-spectrum. The co-spectral budget model must be formulated in the roughness163

sublayer at some z = r shown in Figure 1 and is given by,164

∂Fuw(k)

∂t
= Puw(k) + Tuw(k) + π(k)−Duw(k), (9)165

with166

Puw(k) = Γ(z)Eww(k);Duw(k) = 2νk2Fuw(k), (10)167

where r is the thickness of the roughness sublayer assumed to be proportional to d, Puw(k) is168

a production term responsible for generating correlations between u′ and w′ at wavenumber k169
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due to the presence of a finite mean velocity gradient Γ(z) = du/dz at height z = r where the170

CSB is being formulated, Eww(k) is the vertical velocity energy spectrum at z = r, Tuw(k) is171

the momentum flux transfer term across scales, π(k) is a pressure-velocity decorrelation term172

often modeled using return to isotropy principles thereby reducing the correlation strength173

between u′ and w′ at scale k, Duw(k) is a viscous destruction term also responsible for174

decorrelating w′ from u′. The Duw(k) is only significant at scales where the action of fluid175

viscosity is appreciable, which is determined by the Kolmogorov microscale η = (ν3/ε)1/4,176

where ε is the mean turbulent kinetic energy dissipation rate at z = r. Adopting the Rotta177

closure model for the return-to-isotropy but modified to include the isotropization of the178

production term [34, 42, 43, 47] yields179

π(k) = −CR
1

tr(k)
Fuw(k)− CIΓ(z)Eww(k), (11)180

where CR ≈ 1.8, CI = 3/5 are the Rotta and isotropization of production constants [48, 49],181

and tr(k) is a wavenumber dependent relaxation time scale reflecting the time it takes for182

local isotropy to be attained for eddies of size 1/k. When ignoring Duw(k) with respect183

to π(k) for steady state conditions at high Reynolds number, this CSB model reduces to184

Puw(k) = π(k) allowing the determination of the co-spectrum at k185

Fuw(k) =
1− CI
CR

Γ(z)Eww(k)tr(k), (12)186

where a plausible model for tr(k) = (k3Eww(k))−1/2 [50, 51] is used. This tr(k) model recovers187

ε−1/3k−2/3 in the so-called inertial subrange when Eww(k) ∝ k−5/3. The co-spectrum can be188

integrated across all turbulent scales k to yield the shear stress acting on the bed given by189

u2∗ =
τt
ρf

=
1− CI
CR

Γ(z)

∫ ∞
0

[Eww(k)]1/2

k3/2
dk. (13)190

To evaluate the turbulent stress, only the Eww(k) shape above the roughness elements within191

the roughness sublayer is now required. A schematic of Eww(k) consistent in shape with lab-192

oratory and field studies [52–54] is employed and summarized in Figure 4. Figure 4 presents193194

the main regimes governing the shape of Eww(k): (i) A flat-portion presumably due to the195

randomizing effects of the boundary on the large-eddies, (ii) an inertial subrange regime196

characterized by a ’-5/3’ scaling, and (iii) a wall-damping regime labeled for convenience197

as the ’p-scale’. In prior studies where the CSB budget was formulated far from a bound-198

ary, a simplified flat to ’-5/3’ spectrum appeared sufficient at a given height z [37, 43, 44].199
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FIG. 4. Schematic of the vertical velocity energy spectrum Eww(k) as a function of wavenumber k

in double-log representation. The right-tail effect is represented with a generic power-law exponent

p. The Ke, Kf and Kr are characteristic wavenumbers delineating different energy production and

transfer regimes in the vertical velocity. To solve the CSB model without depth-integration, the

Ke, Kf and Kr must be linked to boundary conditions on the flow (i.e. h, and d).

However, for the large-roughness case where the CSB model is formulated in the rough-200

ness sublayer with respect to bulk variables, the tail-effects or ’p-scale’ become significant201

and offer a link to d. This tail-effect has been reported in both field and laboratory ex-202

periments [53, 55, 56] near porous boundaries, where a slope (p > 5/3) has been observed203

above forests and gravel beds alike and even within rod canopies [56]. The aforementioned204

spectral regimes describing Eww(k) are associated with the following sizes: The flat portion205

applies to scales larger than c1h(= 1/Ke), where c1 = 0.8 is adopted based on pipe-flow ex-206

periments discussed elsewhere [43], the inertial scaling or ’-5/3’ applies to a range of scales207

bounded by [Ke, Kf ], where Kf < Kr, c2r(= 1/Kr) and r is, as before, the thickness of208

the roughness sublayer assumed to be proportional to d with a proportionality constant of209

order unity. Many laboratory and field experiments on the roughness height [57, 58] show210

that the value of c2 ∈ [2, 5]. Here, an intermediate value of c2 = 3.5 is employed. The211

p scaling applies in the range of eddy sizes bounded by [Kf , Kr]. Since there is no clear212

formula available to specify Kf , an ad-hoc geometric averaging between h and r is adopted,213

i.e. Kf = 1/(c3h
ar1−a) where a and c3 are proportionality coefficients to be determined.214

Geometric averaging has been proposed for the atmospheric boundary layer when the need215

arises to determine an intermediate length scale bounded by very large and very small val-216
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ues impacting the flow [54]. For the inertial subrange spectrum, Ekol(k) = Ckε
2/3k−5/3 is217

assumed, where Ck = (24/55)C1
k is the Kolmogorov constant for the vertical velocity and218

C1
k = 1.5 [49]. Energy is cascaded from the energy containing range to inertial subrange219

and is finally released as heat in the dissipation region not explicitly modeled here as the220

d is assumed to be larger than the Kolmogorov microscale. The Eww(k) drops off rapidly221

in the viscous dissipation regime so that the overall distortions to the turbulent stress is222

rather minor when ignored as discussed elsewhere [34]. This assumption is valid only when223

expressing the CSB model sufficiently high above the roughness elements while maintaining224

a high Reynolds number so that r/η >> 1, where η is, as before, the Kolmogorov length225

scale. In the regime where eddies are commensurate in size to r, the continuity of Eww(k)226

across scales requires that the p-regime varies as Ep(k) = Cpε
2/3K

p−5/3
e k−p, where Cp is a227

proportionality coefficient dependent on p determined as Cp = c7Ckc
5/3−p
3 c

p−5/3
1 . Here, c7 is228

a similarity coefficient that is connected to p as discussed elsewhere [56]. For an arbitrary p,229

there is no clear theoretical basis to determine a priori c7. Hence, to constrain the resulting230

equation and minimize the degrees of freedom in the derivation here, one set of data from231

Lischtvan and Lebediev was selected and used to compute an optimal c7(= 8). This c7 value232

is used for the remaining data sets and sensitivity analyses on p. Moreover, this regime is233

expected to be significant when the roughness size r is large or the flow is shallow implying234

the magnitude of Kr is close to Ke. To summarize, the Eww(k) proposed here is allowed235

to vary with both h and d and experience multiple scaling exponents for differing k. This236

marks a point-of-departure from the Etke(k) in equation 4 assumed in the derivation of Ali237

and Dey.238

With these eddy-size limits and their connections to the boundary conditions on the flow239

(h and d),240

u2∗ =
τt
ρf

=
1− CI
CR

Γ(z)

∫ Kr

Ke

E1/2
ww (k)k−

3
2dk. (14)241

Adopting the spectral shape in Figure 4 for Eww(k) results in242

u2∗ = ζ

[
C1/2
p K

3p−5
6

e

∫ Kr

Kf

k−
p+3
2 dk + C

1/2
k

∫ Kf

Ke

k−7/3dk

]
;243

ζ =
1− CI
CR

Γ(z)ε(z)1/3. (15)244

In principle, equation 15 requires a depth-integration to arrive at an expression linking U245

to u∗. As discussed in Bonetti et al. [34], analytical tractability becomes difficult and only a246
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numerical solution is possible. However, an intermediate approach may be taken if ζ, which247

is defined by local variables (Γ, ε) at z = r, can be related to bulk variables (U, h) using naive248

scaling arguments. Such intermediate approach bypasses the need for numerical integration249

and maintains the desired tractability here. It was argued by Gioia and Bombardelli [35]250

that at z = r251

Γ =
du

dz
= c4

U

r
; ε =

(c5U)3

h
. (16)252

These relations are hereafter labeled as GB02 and they have been used by Ali and Dey [3]253

when connecting the α in Figure 3 to σ through the dimensionless Etke(k). Both c4 and254

c5 were originally assumed constants independent of r in GB02, which cannot be realistic.255

To illustrate why, consider two pipes with identical diameters carrying the same flow rates256

(or U) but different surface roughness - one pipe is smooth while the other is fully rough.257

A scaling of the form ε = (c5U)3/D would yield the same bulk or local ε for these two258

pipes unless c5 includes the roughness effects. To account for such effects, it was assumed259

elsewhere [34] that the product c4c5 = c6(r/h)β. When β = 0, the arguments by GB02 can260

be recovered and this limit may be expected for the range covered by the Strickler scaling261

(N > 0.01). We set β to be unity and c6 = 0.01 for N < 0.01 and gradually transition to262

β = 0 as N > 0.01 guided by numerical results from the CSB model reported elsewhere263

[34] for rough surfaces where the ’virtual Nikuradse’ equation holds. However, a separate264

sensitivity to the choice of β is also presented. Inserting these amended GB02 arguments265

into the CSB model for β = 1, equation 14 can be simplified to:266

τt
ρfU2

= D1 −D2N
4
3
(1−a) +D3N

p+1
2

(1−a) −D4N
p+1
2 , (17)267

where Di are coefficients given as:268

D1 =
3(1− CI)C1/2

k

4CR
c6c

4/3
1 ; D2 =

3(1− CI)C1/2
k

4CR
c6c

4/3
3269

D3 =
2(1− CI)

CR

C
1/2
p

p+ 1
c6c

5−3p
6

1 c
p+1
2

3 ; D4 =
2(1− CI)

CR

C
1/2
p

p+ 1
c6c

5−3p
6

1 c
p+1
2

2 . (18)270

The c3 is a coefficient determined by a and r/h, and Cp is determined by the ’p-scale’ regime,271

D1 and D4 are determined according to empirical coefficients in prior discussion. Hence,272

only two degrees of freedom (a and c3) are required to estimate D2 and D3 for a preset p.273

At the critical state when the sediment particles are entrained and upon assuming r ≈ d,274
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FIG. 5. Fitting the Fdc −N derived from the CSB model to the data in Figure 3. The inset is an

enlarged frame associated with the large-roughness regime (N > 0.1).

equations 2 and 17 can now be combined to yield a single curve given as275

1

F 2
dc

= Dc1 −Dc2N
4
3
(1−a) +Dc3N

p+1
2

(1−a) −Dc4N
p+1
2 , (19)276

where Dci = Di/θc are coefficients involving the Shields number and are assumed to be277

constant (θc = 0.06) at high Re∗ as shown in Figure 2. This is the sought result as it shows278

how the regimes in the Fc−N are directly linked to the assumed shape of the vertical velocity279

spectrum. The links between the vertical velocity spectrum and the bulk flow variables are280

explicitly derived from GB02 subject to some amendments to include roughness effects.281

III. RESULTS282

For comparison, different values for p are set including the p = 3 employed by Dey and283

Ali [12]. Also, intermediate values (larger than the ’-5/3’ scaling) of p =2, 7/3 and 8/3 are284

also shown to illustrate the dependence of α on p. For each p value, the CSB model is fitted285

to the measurements using nonlinear regression and the agreement is shown in Figure 5.286

The corresponding coefficients arising from the data fitting (for each p) are listed in Table287

III.288289

Figure 5 suggests that the CSB model can describe the reported measurements by Ali290

and Dey [3] reasonably. When p = 3, which is the value associated with the inverse cascade291

(or wakes generated by von Karman streets as discussed elsewhere [59]), a ’rebound’ zone292
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TABLE I. Values of the relevant coefficients obtained by fitting the CSB model to the Fdc − N

data in Figure 3 assuming c1 = 0.8, c2 = 3.5, c6 = 0.01, and c7 = 8.

β p Dc1 1− a c3 Cp Dc2 Dc3 Dc4

1 2 0.02 0.21 18.81 0.68 1.35 2.07 0.17

1 7/3 0.02 0.20 10.06 0.96 0.59 1.32 0.23

1 8/3 0.02 0.19 6.76 1.45 0.34 1.08 0.32

1 3 0.02 0.11 8.58 0.22 0.47 0.90 0.15

1 3 0.02 0.11 8.53 0.22 0.47 0.89 none

0 3 0.02 0.37 7.60 0.25 0.40 0.74 0.15

is identified for N ∈ [0.1, 1]. Similarly, when p > 5/3, similar rebounds are also predicted293

by the CSB model. In fact, any value (e.g. 5/3 to 3) for p will generate a rebound in this294

zone. This rebound implies that when k is closed to Kr, any deviations from the classic295

5/3 scaling in the vertical velocity spectrum influences the link between N and densimetric296

Froude number. However, the shape of the Fdc − N curve for N ∈ [10−6, 0.1] appears297

insensitive to the precise choice of p. For this reason, a sensitivity analysis is conducted by298

reporting the Pearson linear correlation coefficients for a, c3, Cp and p as shown in Figure 6.299

The Pearson coefficient measures the strength of linear association between two variables and300

is bounded between -1 and +1. The analysis shows that the fitted coefficient a is sensitive301

to the choice of p as expected, since the Pearson correlation between a and p is close to 1.302

The magnitude of the correlation between c3 and p is also large according to Figure 6. This303

finding implies that the length scale 1/Kf is closely related to the choice of ’p-scale’, which304

is expected. As p increases, the spectrum decays faster indicating the ’p-scale’ influences305

the amount of energy in the vertical velocity spectrum above 1/Kf . The formulation here306

suggests that the area under the spectrum governed by the −5/3 inertial scaling shrinks307

with Kf shifting closer to Ke and a becomes larger.308

Table III shows that Ke contributes more to the intermediate wavenumber Kf than Kr309

since a is larger than (1−a). The analysis here identifies Dc3 to be the dominant term, which310

suggests that the tail-effects cannot be entirely neglected when linking Fdc to N . However,311

the Fdc in the range of N ∈ [10−6, 0.1] appears robust to p variations when all terms are312

considered. Moreover, when Kr is extended to +∞, which is shown in the black dashed313
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FIG. 6. Pearson correlation coefficients among a, c3 and Cp corresponding to a given p. For

example. the Pearson coefficient of two random variables (X,Y ) is calculated as the covari-

ance, cov(X,Y ) normalized by the standard deviations of the individual variables (=σX , σY ), i.e.,

cov(X,Y )/(σXσY ). The figure shows strong correlations between p and a, and between p and c3.

line, the rebound is no longer observed. This finding indicates that the spectral distortion314

in the vicinity of 5/3-law play an important role in large-scale roughness (i.e. N > 0.1),315

but not across all N values. According to GB02, β approaches zero for N ∈ [10−2, 1] to be316

consistent with the Stickler scaling for this range of N . If such scaling is adopted and β = 0317

in equation 19 throughout, then318

1

F 2
dc

= Dc1N
−1 −Dc2N

1
3
(1−4a) +Dc3N

p
2
(1−a)− 1

2
(1+a) −Dc4N

p−1
2 (20)319

By setting p = 3, the modeled result from equation 20 is also shown in Figure 5. For320

N ∈ [10−2, 1], equation 20 also captures the data reported by Ali and Dey [3] where a321

rebound does not appear. However, for N ∈ [10−6, 10−2], equation 20 fails to reproduce the322

entire Fdc −N relation, which confirms that GB02 scaling arguments cannot be applied in323

the range N ∈ [10−6, 10−2] without modifications.324

IV. CAUTIONARY COMMENTS AND MODEL LIMITATIONS325

The CSB model proposed here by no means offers finality to explaining the Fdc − N326

diagram reported by Ali and Dey [3], and its limitations are briefly reviewed. Before delving327

into the model limitations, a number of cautionary comments are warranted about the328
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processes being represented by the data in Ali and Dey [3]. To begin with, the connection329

between Uc and sediment incipient motion across many experiments may not be as universal330

as implied by Figure 3. For example, other data sources and studies [60] contradict the entire331

concept of critical velocity used by Ali and Dey [3]. A number of laboratory measurements332

also suggest no unique threshold velocity appears to be linked to sediment movement [61].333

The Reynolds number range over which θc is experimentally independent of Re∗ must be334

viewed with caution. In flume experiments with water (ν = 1×10−6 m2 s−1), u∗ = (ghSo)
1/2,335

typical h = 1m and So = 0.01 lead to an estimate of u∗ = 0.3ms−1 as a typical friction336

velocity. To maintain Re∗ > 400 requires a minimum d = 400ν/u∗ ≈ 1 × 10−3m. Hence, a337

minimum N = d/h = 1×10−3 can be experimentally maintained without θc being dependent338

on Re∗. This estimate is orders of magnitude larger than the N ∈ [10−6, 10−4] reported in339

Ali and Dey [3] describing the scaling relation Fdc ∝ N−1/2. The finding here implies that340

the Fdc−N scaling at the finest N ∈ [10−6, 10−4] cannot be experimentally accessed for a θc341

strictly independent of Re∗ using water (or air) as fluids in typical flumes (or wind tunnels).342

A θc that varies linearly with Re−1∗ (expected for Re∗ << 1) may lead to an adjustment of343

the Fdc −N relation by a factor that scales as d−3/4N1/4 both in the Ali-Dey and the CSB344

analysis. For Re∗ ∈ [3, 400], the situation may be subtler. The θc varies from a minimum of345

0.02 to a maximum of 0.06, but the variations in (θc)
1/2 are between 0.14 and 0.24, which is346

much smaller than the factor of 10 variations in Fdc for N ∈ [10−6, 10−4]. So pragmatically,347

a near constant (θc)
1/2 may still be acceptable even in the range of N ∈ [10−6, 10−4], perhaps348

explaining the robustness of the α = 1/2 for this range of N in typical flume experiments.349

From a theoretical perspective, the space-time distribution of eddies on and within the350

bed are needed and formal double-averaging must be used to obtain upscaled approximations351

starting from single-particle equations and its interaction with neighboring particles. The352

CSB model proposed here makes no such attempt and it must be viewed only as a comple-353

mentary explanation to the insightful but piece-wise analysis offered by Ali and Dey [3]. The354

CSB model only accounted for two-terms: a stress production and pressure-decorrelation.355

Transfer of stresses across scales as well as molecular effects are ignored (though they can be356

incorporated in principle). Moreover, the CSB model assumed that the time for the return357

to isotropy at any scale can be inferred from the vertical velocity energy content, which may358

not be a valid approximation (relaxation time and time to isotropy can differ for differing k359

regimes). Perhaps among the most ad-hoc assumptions made in the CSB model derivation360
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are links between local and bulk variables. While the links employed here accommodate361

expected deviations from those proposed by GB02 and used by Ali and Dey [3], they remain362

questionable across the entire range of roughness values. Another ad-hoc assumption are the363

links between the transition zones across scales in the assumed vertical velocity spectrum364

and the variables h and d. To assess how robust the findings here are to these assumed links,365

a sensitivity analysis was conducted. This analysis identified the zones where assumptions366

about the p-scale impacted the entire Fdc −N curve.367

Despite all the aforementioned criticisms, it is safe to state that the work here provides368

a single expression that summarizes the data featured by Ali and Dey [3]. The theoretical369

argument leading to this single expression may be viewed as naive but pragmatic. Thus,370

the expression derived here may be imminently used in models aimed at describing sedi-371

ment transport across large spatial domains, a topic that is gaining prominence given the372

advancement in remote sensing platforms.373

V. CONCLUSION374

The multi-scaling regimes of sediment entrainment encoded in the Fdc−N curve reported375

by Ali and Dey [3] have been considered using a co-spectral budget model where integration376

across all turbulent scales and z are needed. A new single expression that links Fdc to N377

was proposed using the CSB model that recovers all 6 decades of N variations. The CSB378

model shows that the vertical velocity spectrum Eww(k) can explain the entire Fdc−N curve,379

not just piece-wise scaling. Moreover, the k−3 scaling used by Ali and Dey, a signature of380

an enstrophy cascade dominating the spectrum, is not necessary per se. The CSB model381

highlights another issue rarely considered when linking spectral exponents to scaling laws382

in the Fdc − N curve: Inferring local variables from bulk variables. This inference is by383

no means straight-forward, especially for N values that fall outside the original Strickler384

N regime. Studies using the so-called virtual Nikuradse [34, 62] as well as studies dealing385

with intermittency corrections to turbulent spectra [63, 64] all point to deviations from the386

Strickler scaling for N ∈ [10−6, 10−2.5]. These effects were partly accommodated for through387

a non-zero β here.388

While the CSB model can describe quantitatively the measured Fdc −N curve, its 3 key389

parameters a, c3, and Cp cannot be predicted on theoretical grounds. To be able to predict390
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these coefficients requires models that describe the shape of the vertical velocity spectrum391

(including any transition zones) only as a function of d, h, and U , a topic that is better kept392

for future research.393
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