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Abstract
The closure of a human lung airway is modeled as an instability of a two-phase flow in a pipe

coated internally with a Newtonian liquid. For a thick enough coating, the Plateau–Rayleigh

instability creates a liquid plug which blocks the airway, halting distal gas exchange. Owing to

a bi-frontal plug growth, this airway closure flow induces high stress levels on the wall, which

is the location of airway epithelial cells. A parametric numerical study is carried out simulating

relevant conditions for human lungs, either in ordinary or pathological situations. Our simulations

can represent the physical process from pre- to post-coalescence phases. Previous studies have

been limited to pre-coalescence only. The topological change during coalescence induces a high

level of stress and stress gradients on the epithelial cells, which are large enough to damage them,

causing sub-lethal or lethal responses. We find that post-coalescence wall stresses can be in the

range of 300% to 600% greater than pre-coalescence values, so introduce a new important source

of mechanical perturbation to the cells.
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FIG. 1. Schematic of the airway closure process. The air–liquid interface is depicted at four instants

of time: for t = t1 the interface is slightly deformed, for t = t2 the deformation has increased because

of the Plateau–Rayleigh instability, for t = tc it coalesces while undergoing a topological change,

and for t = t4 the newly formed liquid plug undergoes a bi-frontal growth.

I. INTRODUCTION

Respiratory airways are a branching network of tubular structures coated internally with

a liquid film. As shown in fig. 1, an infinitesimally small varicose perturbation induces a

Plateau–Rayleigh instability driven by the surface tension at the air–liquid interface. Under

certain conditions, the minimum radial distance from the tube centerline to the interface,

Rmin(t), decreases toward zero during the instability. We refer to this as the pre-coalescence

phase shown in fig. 1 for t = t1, t2 with Rmin(t2) being indicated. If the thickness of the

undisturbed liquid film, h, scaled by the airway radius, a, exceeds a critical value of hc/a,

Rmin can reach zero at t = tc, i.e. coalescence. The coalescence leads to a topological change,

as shown. This is quickly followed by the post-coalescence phase forming a liquid plug by

means of a bi-frontal growth, t4. Because of the topological change, now the minimum

distance to the interface is measured in the axial direction, Zmin(t), as shown in fig. 1 for

Zmin(t4). This phenomenon is known as airway closure, and a plugged airway prevents gas

exchange for regions of the lung distal to it. Due to flexibility of the airways [1, 2], a direct

consequence of the airway closure may be the collapse of the airway, which contributes to

heterogeneous ventilation [3].

Airway closure is usually associated with surfactant deficiency or dysfunction, accumula-
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tion of liquid from infections or edema, or mucus hypersecretion along the airway. Typical

lung diseases involved include: asthma [4], pneumonia [5], bronchiolitis [6], cystic fibrosis

[7], chronic obstructive pulmonary disease (COPD [8]), and acute respiratory distress syn-

drome (ARDS [9]), just to name a few. It generally occurs in small airways near the end of

expiration. The lung volume at which closure initiates is called the closing volume, a routine

pulmonary function test which varies with disease, age, and gender [10, 11]. For an upright

lung in gravity, the lower regions have compressed airway diameters from the weight of the

lung above, so closure tends to occur there initially. It is therefore expected that, under

microgravity conditions, airway closure occurs more homogeneously posing a potential risk,

see [12–14].

For a clean interface in a rigid pipe, the critical film thickness is hc/a ≈ 0.12 [15]. This

is the minimum film thickness, normalized with the airway radius, such that the interfacial

instability induces the airway closure within one breathing cycle. Several studies have in-

vestigated models of the pre-coalescence closure instability under additional circumstances,

including the effects of surfactant, viscoelasticity, non-axisymmetry, and wall flexibility. The

effects of surfactants have been experimentally studied in capillary tubes by [16] and [17], who

pointed out that surfactant can increase hc/a and decrease the growth rate, which increases

the closure time, tc. Theoretical and computational models based on lubrication theory

[17, 18] and full Navier–Stokes equations [19] also confirm these findings. The Marangoni

stresses induced by uneven distribution of interfacial surfactant concentration oppose the

closure flow. Halpern et al. [20], using lubrication theory, showed that viscoelasticity does

not strongly affect the critical film thickness hc/a, and for hc/a < 0.119 airway closure does

not occur within a breathing cycle. On the other hand, if 14% ≤ h/a ≤ 18%, increasing

the Weissenberg number speeds up the growth rate when the viscoelastic fluid exhibits a

shear-thinning behavior. The effect of wall compliance has been studied by [18, 21]. They

showed that the airway wall deforms to narrow the tube and reduce the radius of curvature

for the air–liquid interface, thereby enhancing the instability. Heil et al. [22] demonstrated

how non-axisymmetric mechanical and hydrodynamic instabilities may lead to the formation

of a plug at lower hc/a than predicted by the axisymmetric models. Prevention of closure

by oscillating the core fluid axially was explored in [23], where non-linear saturation of the

instability is reached with growth during the turnaround phase balanced by decay during

the stroke phase when fluid is deposited back onto the wall, a “reversing butter knife”. These
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previous studies form a basis and motivate the present work which does not only cover the

pre-coalescence, but also extends to coalescence and post-coalescence phases.

Similar topological changes have been extensively studied for liquid bridges, snapping

liquid columns, and liquid jets [24–26]. Even if much attention has been paid to understand

the capillary instability for freely suspended liquids, remarkably less effort has been spent

on interfacial instabilities of liquid-lined pipes [27–30], where the tube boundaries play a

major role. The pioneering work of Newhouse and Pozrikidis [31] investigated the liquid

plug formation in a liquid lined pipe, when the two fluids involved have the same viscosity.

The focus of their study was on the liquid thread which forms right before coalescence, and

undergoes capillary instability giving rise to formation of satellite droplets after the closure

event. A thorough investigation about liquid-lined pipes has recently been conducted by

Dietze and Ruyer-Quil [32]. However, the relevance of the topological change on the wall

stresses has almost been ignored, so far. Our study focuses on this aspect, advancing the

understanding of liquid plug formation in coated pipes and paying special attention to the

stresses on the pipe wall during the whole plug formation phenomenon.

Reviews of respiratory airway closure, liquid plug propagation and rupture appear in

[14, 33–35], and a recent paper of Grotberg [36] points out how mechanical stresses and

strains can cause lung disease or injury. While cell injury and its correlation to fluid stresses

have been explored for plug propagation and rupture, less attention has been paid to similar

issues for airway closure flows, see the epithelial cells in fig. 1. Our previous experimental

and numerical investigations [37, 38] have shown that the stress levels due to the capillary

instability are also important. The numerical results [38], limited to pre-coalescence, agree

well with the experimental data of Bian et al. [37] who also provided measurements for the

post-coalescence phases. In this work, we present a computational study for the entire closure

process, from pre- to post-coalescence. Moreover, the effects of the viscosity of the liquid

layer and of surface tension between liquid and gas have not been thoroughly considered in

the previous airway closure models, even though the viscosity of mucus can range over three

orders of magnitude. In this paper we investigate the effects of liquid viscosity and surface

tension for various values of the liquid layer thicknesses, considering the range of parameters

of physiological relevance in the human respiratory system. We simulate the whole process of

plug formation and validate our results using the experimental data of [37]. The remainder

of the paper is organized as follows: In Sec. 2 the formulation of the mathematical model
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FIG. 2. Schematic of the geometry of the airway model: the rigid tube has radius a, length L,

is coated by a liquid film (light blue) of average thickness h and surrounded by a gas core. The

interface is initially located at a distance RI from the axis of the pipe.

is discussed, in Sec. 3 we briefly describe the numerical approach used in the present study.

The results are presented and discussed in Sec. 4 and finally conclusions are drawn in Sec.

5.

II. PROBLEM FORMULATION

The airway closure model employed in this study consists of a cylindrical rigid tube of

radius a and length L, internally coated with a Newtonian liquid film of average thickness

h, constant dynamic viscosity µL, and density ρL. The liquid film is surrounded by a gas

of constant dynamic viscosity µG and density ρG at the core of the pipe as shown in fig. 2.

The surface tension, σ, between liquid and gas is assumed to be constant.

The interface between the two immiscible phases is assumed to be perturbed from its

average thickness such that its radial location is initially located at

r = RI = a− h[1− 0.1× cos(2πz/L)], (1)

where z and r denote the axial and radial coordinate, respectively.

Making use of a capillary scaling, i.e. non-dimensionalizing length, time, pressure and

velocity with a, µLa/σ, σ/a, σ/µL, respectively, the non-dimensional equations for a two-
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phase flow can be written in the single-field formulation as [39, 40]

∂t%̃+ u · ∇%̃ = 0, (2a)

∇ · u = 0, (2b)

La%̃ (∂tu + u · ∇u) = −∇p+∇ ·
[
µ̃
(
∇u +∇Tu

)]
+ χnδs, (2c)

where u = (ur, uφ, uz) and p denote the velocity and pressure field, respectively, χ = ∇·n is

the total local curvature of the interface, n the outward unit normal at the interface, δs is the

surface Dirac δ-function, which is non-zero only along the two-phase interface, %̃ and µ̃ are

the variable density and dynamic viscosity field in the single-field approach, which include

the effect of the gas-to-liquid density and dynamic viscosity ratio (% and µ, respectively), i.e.

in the liquid phase (%̃, µ̃) = (1, 1) whereas in the gas phase (%̃, µ̃) = (%, µ). Hence, the non-

dimensional numbers resulting from the momentum equation are: the Laplace number La,

the gas-to-liquid density ratio % and the gas-to-liquid dynamic viscosity ratio µ. Moreover,

two additional non-dimensional groups are introduced to characterize the geometry of our

configuration: the length-to-radius aspect ratio λ and the rescaled average film thickness ε.

The relevant non-dimensional parameters can be summarized as

La =
ρLσa

µ2
L
, % =

ρG

ρL
, µ =

µG

µL
, λ =

L

a
, ε =

h

a
. (3)

To close the mathematical problem, periodic boundary conditions are used in axial direction,

while no-slip and no-penetration are enforced at the tube wall

u (z = 0) = u (z = λ) , u (r = 1) = 0. (4)

III. NUMERICAL SIMULATIONS

The mathematical problem defined in the previous section is tackled assuming that the

film closure can be modeled as an axisymmetric phenomenon, i.e. ∂φ = 0, uφ = 0. Simula-

tions are performed using a volume-of-fluid (VOF) method implemented in the open-source

code basilisk [41]. In this method, a second-order finite volume discretization is adopted in

space, and the time integration is carried out by means of a second-order pressure-correction

projection method. A semi-implicit approach is used, which discretizes the viscous terms

implicitly and the convective terms explicitly using the Bell–Collela–Glaz advection scheme
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[42]. The single-field model is the natural setting for applying the volume-of-fluid (VOF)

method. VOF belongs to the front-capturing methodologies and employs a fraction field

f(r, z, t) which equals 1 in the liquid, 0 in the gas and ranges between these two values

across the liquid-gas interface. Hence, the fraction field is here intended as the volume frac-

tion of liquid in a given computational cell and it is used to define the variable material

properties in the single-field approach [43, 44]

%̃ [f (r, z, t)] = f + (1− f)%, (5a)

µ̃ [f (r, z, t)] = f + (1− f)µ. (5b)

The fraction field is simply advected by the flow velocity

∂tf +∇ · (fu) = 0. (6)

A piecewise-linear geometrical VOF method [45] is used to solve (6), where the interface

is represented as a piece-wise linear function within each computational cell. A staggered

approach is employed to achieve a second-order accuracy in time, as described in [44]. Once

it is advected, the local unit vector is computed using the mixed Youngs-centered method

[46] and the material properties are set in each phase according to (5). Finally, the surface-

tension term, which appears in the momentum equation of a single-field model, has to be

discretized. Inaccurate discretization of surface tension term typically results in parasitic

currents (see [40, 47]), a common problem for all one-field approaches including the front-

tracking and front-capturing methods (e.g. phase-field and level sets methods). In the

following, the approach of Popinet [44] is employed, combining a height-function estimator

for the interface curvature and a balanced-force surface-tension discretization. It has been

shown that such a combination reduces the parasitic currents significantly, and yields a

second-order spatial accuracy for challenging benchmark cases (see [44]).

The solution is computed on a staggered grid, where the pressure and the velocity fields

are located at the cell centers and at the cell faces, respectively. The other scalar fields such

as volume fraction and material properties are also located at the cell centers. The com-

putational mesh is a Cartesian grid designed for capturing the quantities of major interest

in our study including the pressure (pw) and the shear stress (τw) on the tube wall. A grid

convergence study is first performed and the results are reported in table I, where Nr and

Nz denote the number of grid cells in the radial and axial directions, respectively. In table
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Nr Nz maxt (∆pw) maxt (∆τw)

11 64 1.2766 0.3627

21 128 1.3887 0.4608

43 256 1.3571 0.5163

86 512 1.3488 0.5204

TABLE I. Grid convergence for La = 100, µ = 0.0015, % = 0.001, λ = 6, ε = 0.25. The simulations

are carried out for a final time t = 1000.

I, ∆pw = max(pw) − min(pw) and ∆τw = max(τw) − min(τw) are the maximum difference

in the pressure and the shear stress on the wall, respectively. All the following simulations

are computed considering the finest grid, which consists of 512 cells in z- and 86 cells in

r-direction.

IV. RESULTS AND DISCUSSION

In this study we investigate the effect of three non-dimensional groups: the Laplace

number La, the relative film thickness, ε, and the gas-to-liquid dynamic viscosity ratio, µ.

The parameters are chosen to characterize the physical phenomenon for airway closures

occurring at the 9th-to-10th branching generations in the adult human lungs. Both, normal

and pathological conditions are considered. Simulations are performed to examine the time

evolution of the instability and determine the associated velocities and the wall stresses.

The latter are of major relevance for the epithelial cells in the modeled biological system.

A. Validation

The airway model we numerically simulate is first validated comparing the computational

results with the experimental measurements of Bian et al. [37], who report an experimental

study of a two-liquid closure instability in a pipe, whose inner radius equals 0.058 cm, lined

with 96% glycerol film (µL = 5.498 poise and ρL = 1.251 g cm−3) of initial average thickness

ε = 0.23. The core fluid is silicone oil yielding µ = 0.01 and % ≈ 0.95.
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The surface tension between the two fluids is σ = 30 dyn cm−1. The non-dimensional

parameters of interest are: La = 0.072, µ = 0.01, % = 0.95, λ = 9.2. As pointed out by [38],

the closure time is an unreliable validation criterion for numerical models, since it is strongly

influenced by the initial amplitude of the perturbation which cannot be experimentally

measured with the required accuracy. Hence, following Tai et al. [38], we set the initial

disturbance amplitude to 5%ε (10%ε is used in all the other simulations, see (1)) and carry

out our comparison with the bench-top experiments of Bian et al. [37]. The experimental

results are shifted in time to match the experimental tc with the numerical tc.

In fig. 3, the numerical results are compared with the experimental visualizations for

the evolution of the interface during the plug formation process including pre- and post-

coalescence phase. Reconstructing the interface shape by the piecewise-linear geometrical

VOF method [45], and comparing the pre- and post-coalescence instants, we observe very

good agreement between the numerical and experimental results demonstrating the pre-

dictive capability of our numerical model. Due to the experimental limitations, the data

comparison is reported only for −1.6 ≤ z ≤ 1.6 where z = 0 refers to the symmetry plane. It

is remarkable to observe that the numerical technique we use captures the whole closure and

plug-formation process, handling the topological change leading to the liquid plug forma-

tion. This aspect constitutes the limitations of lubrication approaches, which were capable

of modeling the closure up to Rmin = min (RI) = 0.4, or sharp-interface methods such as

the one employed by Tai et al. [38] which were only able to extend the limit to Rmin = 0.1.

We anticipate that a reliable computation of the phases after closure will provide important

insights of the physics of the phenomenon, and will demonstrate the physiological relevance

of injuries due to airway closure. However, it is beyond the scope of this paper to investigate

the formation of the liquid plug in the very proximity of the coalescence event. The main

focus of our investigation is on the pre- and post-coalescence phase for |t − tc| > 0.01tc. A

further proof that our numerical approach is well suitable to our study is provided in Sec. C,

where the asymptotic power law predicted by Tai et al. [38] as Rmin ∝ (tc− t)γ is confirmed

by our numerical results.

An additional validation is provided in fig. 4, where the flow velocity fields and the

streamlines in the glycerol-oil system are reported. The numerical predictions compare

very well, qualitatively and quantitatively, with the experimental measurements obtained

by micro-PIV. Four instantaneous conditions are experimentally available, for which velocity
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FIG. 3. Comparison of the two-phase distribution at different times: first (a–c) and third (g–i) rows

from the top are the experimental visualizations reported in [37] using fluorescent particles, whereas

second (d–f) and fourth (j–l) rows from the top are our numerical results for the corresponding time

relative to the coalescence event. The annular film is in red while the core fluid is in black. The

non-dimensional parameters of interest are ε = 0.23, La = 0.072, µ = 0.01, % = 0.95, λ = 9.2

and the closure event is depicted in the axial range −1.6 ≤ z ≤ 1.6. Time is scaled as in [37] by

µLa/ε
3σ. Figures (a–f) depict the pre-coalescence phase due to the interfacial instability, while figs.

(g–l) show the post-coalescence phase, where a bi-frontal plug growth is observed.
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vectors and streamlines are reported in [37], two for the pre-coalscence (fig. 4(a–b)) and two

for the post-coalscence (fig. 4(e–f)) phase. Corresponding numerical results are depicted

in figs. 4(c–d) and 4(g–h). The same scale for the color bar is employed in all the cases

to facilitate a direct comparison. Before coalescence, the pressure gradient induced by a

capillary instability drains the fluid from the thin film near the pipe wall to the bulge (see

e.g. green arrows in fig. 4c) driving the coated liquid layer to closure. The maximum velocity

is located at the bulge tip and it is directed in radial direction. Another local maximum

of the velocity magnitude is observed in the thin film right at the connection between the

thin film and the bulge, where the liquid draining produces a strong axial velocity towards

the bulge. A strong radial acceleration is observed between the first two snapshots. The

radially-dominated flow field pre-coalescence turns into an axially-dominated flow field post-

coalescence, when the core fluid is pinched-off by the annular liquid bulge and the plug is

formed. The largest velocities are observed after the coalescence and further drain the liquid

film lining the pipe wall to supply the newly formed plug with additional liquid. At the same

time the plug advances axially, in a symmetric fashion, compressing the two-fluid interface

and leading to formation of a capillary wave, which is responsible for high stress levels along

the pipe wall as will be discussed in detail later. This process is here addressed as bi-frontal

plug growth.

The last comparison between experiments and numerics is dedicated to the shear stress

along the pipe wall, τw = −µ̃∂ruz|r=1, where, for the current scaling, µ̃ = 1 in the coating

fluid. Figure 5 depicts the comparison between our simulations (lines) and the experimental

measurements (markers) at five axial locations along the wall between −0.8 ≤ z ≤ 0.8. As

seen, the numerical results are in good quantitative agreement with the experimental data,

which completes the validation of our numerical model.

Beside the demonstrated accuracy of our simulations, it is important to stress the peculiar

feature of the wall shear stress during the closure process. As it can be seen from fig. 5, the

rapid growth of the shear stress in time, which is associated with the capillary instability,

does not experience a maximum at the closure time, but keeps growing even after coalescence,

and reaches the maximum value at t = tm > tc and then relaxes toward the final equilibrium

value. The bi-frontal plug growth actually appears to be the most relevant and critical phase

for the wall shear stresses regarding the epithelial cell damage. This feature can be inferred

also by the experimental measurements and further implies the importance for numerical
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FIG. 4. Velocity vectors (arrows) and streamlines for ε = 0.23, La = 0.072, µ = 0.01, % = 0.95,

λ = 9.2: first (a–b) and third (e–f) rows from the top are the micro-PIV measurements of Bian

et al.[37], whereas second (c–d) and fourth (g–h) rows from the top are numerical results. Time is

scaled by µLa/ε
3σ.
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FIG. 5. Temporal evolution of the wall shear stress between −0.8 ≤ z ≤ 0.8: the solid black lines

denote the numerical results for z = ±0.8, the dashed black lines for z = ±0.4, while the dashed-

dotted line refers to z = 0; markers refer to the experimental results of Bian et al. [37] as indicated

in the legend. The two colored dashed lines denote the closure time (tc) and the numerical limit

(ts) of the previous investigation of Tai et al. [38]. In these results the numerical closing time tc is

used as the reference time, and the experimental results are thus shifted in time to match with it,

considering the scaling employed in (2).

simulations to be able to handle a topological change of the liquid film. It is emphasized

here that the previous computational predictions were restricted up to an instant before the

closure (t ≤ ts), and thus missed the most important phase of the physiological significance

and could only conservatively estimate the maximum shear stress at the walls. Moreover,

even though the coalescence process was well captured by the experimental measurements,

the limited time resolution prevented the experimental measurements to capture the sharpest

peak of τw, which is well resolved by the numerical simulations as shown in fig. 5. As a result,

the experiments also tend to underestimate the maximum wall shear stress and the stress-

induced cell damage, as well as all the quantities which experience a very sharp growth. In

this case, the maximum shear stress measured in the experiments is 25% smaller than the

numerical peak.
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B. Airway Closure: Relevant lung airway parameters

After the validation of the numerical method, simulations are performed to examine the

airway closure in the physiological conditions. The radius of an adult lung airway at 10th

generation is approximately a = 0.065 cm (see e.g. [48]) and typical length-to-diameter

ratios for an airway are of the order of 3, i.e. λ = 6. Aiming at modeling airway closure in

the 9th to 10th branching generation, these parameters will be assumed throughout our study.

We stress that it is physiologically relevant to define the parameter range in terms of the

dimensional quantities (i.e. ρL, ρG, µL, µG, σ, R and L) and then derive the corresponding

non-dimensional groups. In particular, varying µL, in fact, makes physiological sense since

a change of mucus viscosity can be due to a pathology or to aging, and it has an impact on

both, the Laplace number (La) and the liquid-to-gas viscosity ratio (µ), whereas varying µ

and keeping La constant does not have any physiological correspondence.

Following Tai et al. [38], we additionally assume that the lining liquid can be modeled

as a Newtonian fluid with the properties resulting from a mixture between mucus and

serous layers. The density of the two fluids is not far from that of water and excursions

in ρL are normally negligible. The density ratio between air and water at 37◦C is % =

1.14 × 10−3, so % = 10−3 is representative of the gas-to-liquid density ratio characterizing

the mucus-serous mixture in the liquid film and the core fluid made out of air. Therefore,

% = 10−3 is employed in all the simulations presented in this paper. Proceeding with our

conceptual homogenization adopted to deal with the mixture of mucus and serous layer, we

must consider that the liquid film is more viscous than water. Following Tai et al. [38], we

assume that µL = 0.13 poise and take the dynamic viscosity of air at 37◦C as µG = 1.89×10−4

poise, which yields the gas-to-liquid dynamic viscosity ratio of µ = 1.45× 10−3. The serous

layer is very watery (µS ≈ µH = 0.01 poise, where the subscripts S and H denote serous

liquid and water, respectively) and the dynamic viscosity of mucus (see e.g. [49]) is reported

to range over several orders of magnitude, passing from 10 to 10000 times the reference value

for water depending on age, physiological function and eventual pathological conditions (i.e.

10µH ≤ µM ≤ 10000µH, which corresponds to 0.1 poise ≤ µM ≤ 100 poise, where M refers

to mucus). Hence, the dynamic viscosity ratio (and the Laplace number) is varied in our

study taking µL in the range 0.126 ≤ µL ≤ 1.26 which yields to 1.5×10−4 ≤ µ ≤ 1.5×10−3.

The last assumption in our airway closure model is related to the surface tension σ
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λ % µ La ε

6 10−3 1.5× 10−3 100 0.2, 0.25, 0.3

200

3× 10−4 4

8

1.5× 10−4 1

2

TABLE II. Summary of the 18 cases simulated, with the corresponding non-dimensional groups.

between the liquid film and the air core fluid. During the normal operating conditions, the

surfactants released in the lungs tend to decrease the interfacial surface tension to values

much lower than the surface tension σH = 70 dyn cm−1 at the clean water-air interface,

penalizing the Plateau–Rayleigh instability. Hereinafter we assume that the surface tension

is constant and the value σ = 26 dyn cm−1 is chosen to represent normal conditions, whereas

σ = 52 dyn cm−1 is used to mimicking surfactant-deficient pathological conditions, which

are typically associated to the airway closure phenomenon. This leads to 1 ≤ La ≤ 200.

Therefore, simulations are performed for a total of six combinations of µ and La values, as

summarized in table II, together with the three initial film thicknesses, i.e. ε = 0.2, 0.25 and

0.3.

C. Analysis of a typical airway closure scenario

A typical scenario observed during an airway closure is depicted in fig. 6 characterizing

the coalescence process for La = 200, µ = 1.5 × 10−3, % = 10−3, λ = 6, ε = 0.25 in terms

of pressure field (color field), streamlines (yellow lines), interface location (turquoise line)

and axial velocity in the liquid (arrows). In the initial growth phase of the instability, the

cross-sectional curvature of the interface 1/RI expands the flow in the liquid film at the

location where the bulge is. This curvature effect dominates over the in-plane compression

due to a thicker liquid film at the bulge, the lowest relative pressure is observed at the axial

location of the bulge tip (see fig. 6(a)). Since the selected initial thickness of the film is
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greater than the critical thickness ε = 0.12, the airway closure occurs within a breathing

cycle. As observed in the previous subsection, this capillary instability drains the liquid

from the film (see arrows) to supply the bulge up to the liquid plug formation.

Compared to the early stage in fig. 6(a), the snapshot taken just prior to coalescence

(fig. 6(b)) exibits a qualitative difference in the pressure profile, i.e. the pressure has a

minimum at the bulge tip with a sharp gradient in the radial direction. The increase of

maximum shear stress in this phase is evidently seen in the velocity field (arrows) as the

radial derivative of uz experiences a significant increase between t = 600 (fig. 6(a)) and

t = 736 (fig. 6(b)). Consistent with the predictions of Tai et al. [38], the streamlines (yellow

lines) become more and more elongated in the radial direction as the perturbation grows.

After the coalescence (see fig. 6(c)), the pressure field has its minimum at the liquid-gas

interface near the centerline of the tube (blue area). The flow is then pushed away from

the plane of symmetry and drains even more liquid from the thin coating film to form the

liquid plug closing the airway. This phase corresponds to the formation of a liquid plug in

which the air–liquid interface advances with its two fronts in opposite directions (bi-frontal

plug growth, see e.g. [50]). The process occurs in a very short time and is characterized by

high axial accelerations. Such a quick post-coalescence phase is comparable to the receding

of two air fingers, whose fronts are moving in opposite directions. We anticipate that during

closure and also shortly afterwards, the pressure and the shear stress experience a sharp

increase which is comparable to the one observed during propagation of liquid plugs and

receding of air fingers. Few instants after closure, the stresses relax in magnitude down to

a stationary state (almost reached at t = 800, fig. 6(d)), which is achieved when the plug

stops growing and the pressure field is solely determined by the equilibrium Laplace pressure

across the interface.

One of the main focuses of our study is to determine the mechanical stress level on the pipe

wall and, consequently, on the epithelial cells. Figure 7 correlates these quantities with the

time evolution of the liquid-gas interface shown in the bottom panel. The minimum of the

interface radial location RI is depicted as a solid black line in the top-left panel and it is used

to accurately identify the closure event and correlate it with the stresses and their gradients

at the pipe wall (red lines). The dashed black lines denote the powerlaw fits Rmin ∝ (tc−t)1/2

and Rmin ∝ (tc−t)7/40, which are valid near and far from the coalescence time tc, respectively

[38], confirming the expected asymptotic behavior. These same asymptotic trends hold true
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(a) t = 600 (b) t = 736

(c) t = 737 (d) t = 800

FIG. 6. Pressure field (colors), streamlines (yellow lines) and axial velocity in the liquid phase

(arrows) at two pre-coalescence (a: t = 600 and b: t = 736) and two post-coalescence instants (c:

t = 737 and d: t = 800). The turquoise line denotes the interface location. The phenomenon is

symmetric in z.

throughout the parameter space considered in our study; moreover, also the stress excursions

seem to follow the 7/40-power-law far from the coalescence event. According to [51] and [52],

severe injuries for the epithelial cells are caused by the presence of high pressure gradients, a

high level of shear stress and of shear stress gradient at the airway walls. For these reasons,

in fig. 7 (top-left panel) the excursions of wall pressure ∆pw = max (pw)−min (pw) and shear

stress ∆τw = max (τw)−min (τw) are depicted together with the maximum absolute values

of wall pressure and shear stress gradients denoted by |∂zpw|max and |∂zτw|max, respectively.

The axial distribution of wall shear stress and wall pressure gradient are also plotted in the

top-right panel of fig. 7 to show the areas which are more dangerous for the epithelial cells.

It is noteworthy to observe that the very sharp peaks in all the relevant wall stress

quantities are correlated with the bi-frontal plug growth. To the best of our knowledge,

this feature of airway closure has been overlooked, so far, in all the previous investigations
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FIG. 7. Bottom panel: Location of the liquid-gas interface at significant instants in time. Top-right

panel: wall shear stress τw and wall pressure gradient ∂zpw depicted with the same color coding of

the time legend. Top-left panel: minimum of the interface radial location Rmin = min (RI) (solid

black line), asymptotic powerlaws predicted by Tai et al. [38] (dashed black line), excursions of wall

pressure ∆pw = max (pw)−min (pw) and shear stress ∆τw = max (τw)−min (τw) depicted as solid

and dashed lines without markers, maximum absolute values of wall pressure and wall shear stress

gradients, |∂zpw|max and |∂zτw|max, respectively, depicted in solid and dashed red lines marked with

bullets. The non-dimensional groups are La = 200, µ = 1.5× 10−3, % = 10−3, λ = 6, ε = 0.25.

which focused only the on plug rupture process for addressing the epithelial cell damage

in human lungs. Here we demonstrate that the shear stress may reach maxt,z(|τw|) ≈ 0.28

just after the coalescence, which, in dimensional quantities, corresponds to 224 dyn cm−2,

almost three times larger than the estimate of Tai et al. [38] who stopped the simulations

right before the coalescence. Very similar trends are also observed for the pressure excursion

∆pw which provides a good estimate of the average normal stress gradient over the pipe wall
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when it is divided by the pipe aspect ratio λ. As depicted in fig. 7, ∆pw has a peak value

of maxt(∆pw) ≈ 1.3, which corresponds to the dimensional value 1040 dyn cm−2, with an

average maximum wall pressure gradient of maxt(∆pw)/λ ≈ 0.216̄, i.e. 2.6̄× 103 dyn cm−3.

The estimate becomes much more dramatic for cells injury if we consider the maximum

local pressure gradient maxt,z(|∂zpw|) ≈ 2.2, which corresponds to 2.7 × 104 dyn cm−3 (a

factor 10 bigger than maxt(∆pw)/λ). Very severe wall shear stress gradients are also seen

in fig. 7, where maxt,z(|∂zτw|) ≈ 0.65, i.e. 8× 103 dyn cm−3. As mentioned in the previous

remarks, the highest peaks of damaging stress levels for the epithelial cells occur during

the post-coalescence phase and an estimate of them using the pre-coalescence measurements

can only be very conservative. This is well depicted in the top-left panel of fig. 7. As seen,

|∂zpw|max and ∆pw at closure are at about half of their peak values, and |∂zτw|max and ∆τw do

not even make it to one third of their peak values during the pre-coalescence phase including

the closure time.

An interesting qualitative feature characterizing the wall stresses during the closure pro-

cess is the change of shape of the distributions of the pre- and post-coalescence stresses and

their gradients. Tai et al. [38] noticed a certain self-similarity between the shear stresses

prior to the closure: This self-similarity is lost after closure and the smooth s-shape function

which well fits τw and ∂zpw before the coalescence turns into a two-hump function with a

point-symmetry (see fig. 7, top-right panel).

A fine detail of the interface dynamics is that a satellite bubble is trapped inside the

liquid plug, as previously reported by [31]. A varicose fluid thread is observed before plug

coalescence (not shown). The major differences with the results of [31] is the thread in our

study is very short in longitudinal length. This quantitative difference is mainly caused by

the viscosity ratio µ̃ = 1 employed in [31], which strongly differs from µ̃ ∈ [1.5× 10−4, 1.5×

10−3 used in ours. For a detailed analysis about the viscous-blocking mechanism in liquid

lined pipes, we refer the reader to [32].

The last remark is related to the location of the two humps in ∂zpw and τw after the

closure. Their maximum absolute values are located at the minimum film thickness along

the pipe wall, which recedes from the symmetry plane following the motion in the liquid

menisci, compressed by the plug formation.
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D. Effect of surface tension σ

The Laplace number is linearly proportional to the surface tension. Thus simulations

are performed for La = 200 and La = 100 to investigate the effects of the surface tension

while keeping the other parameters constant at µ = 1.5 × 10−3, % = 10−3, λ = 6, ε = 0.25.

Qualitatively, the evolution of the interface, the distribution of the wall pressure gradient,

and of the wall shear stress for La = 100 are very similar to the results plotted for La = 200

in fig. 7. Hence, the results for La = 100 are not depicted hereinafter.

Considering the creeping-flow limit, i.e. La→ 0, the convective terms in the momentum

equation are negligible and the solution of the non-dimensional mathematical model only

depends on %̃, µ̃, ε and λ. Hence, after selecting the two fluids and fixing the geometry and

the initial film thickness, the solution of the Stokesian flow is unique. This implies that,

with the current capillary scaling, the non-dimensional closure time is independent of σ,

and therefore the dimensional closure time is inversely proportional to σ: i.e. doubling σ

halves tcµLa/σ. Figure 8 depicts Rmin, the wall stresses and their gradients against time

for La = 100. The closure event, quantified by means of Rmin is slightly delayed, in non-

dimensional time units, by increasing the surface tension σ. Indeed, for La = 200 the

airway closure occurs between t = 736 and t = 737, whereas for La = 100 the minimum

radial coordinate of the interface reaches zero between t = 727 and t = 728. The longer

non-dimensional closure time tc produced by an increase of σ is due to an increased inertia

which the flow acquire upon an increase of La. We anticipate that this effect is however

negligible when it is compared to the sensitivity of tc to the perturbation amplitude (see [38])

or to the initial film thickness ε, as discussed in the following subsections. The increasing

inertia due to a higher Laplace number only delays the non-dimensional closure time tc.

Still, increasing σ decreases the dimensional closure time tcµLa/σ. In fact, 736 ≤ tc ≤ 737

obtained for σ = 52 dyn cm−1, i.e. La = 200, corresponds to a dimensional closure time

tcµLa/σ ≈ 0.116 s, whereas 727 ≤ tc ≤ 728, referred to La = 100 and σ = 26 dyn cm−1,

corresponds to tcµLa/σ ≈ 0.229 s. This consideration makes clear the subtle counterintuitive

closure delay (in non-dimensional time units only) due to an increase of La, i.e., the delay

is induced by the fact that σ is used in scaling t.

Extending this analysis to the stress-related quantities, the peak values observed for ∆pw,

∆τw and |∂zτw|max are quantitatively very similar: As the Laplace number decreases from
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FIG. 8. Minimum of the interface radial location Rmin = min (RI) (solid black line), excursions of

wall pressure ∆pw = max (pw) − min (pw) and shear stress ∆τw = max (τw) − min (τw) depicted

as solid and dashed lines without markers, maximum absolute values of wall pressure and wall

shear stress gradients, |∂zpw|max and |∂zτw|max, respectively, depicted in solid and dashed red lines

marked with bullets. The non-dimensional groups are La = 100, µ = 1.5× 10−3, % = 10−3, λ = 6,

ε = 0.25.

La = 200 to La = 100, the peak values of ∆pw,∆τw and |∂zτw|max decrease about 0.5%,

5% and 20%, respectively. In addition, this weak dependence of ∆pw,∆τw and |∂zτw|max
translates into a nearly linear growth of their corresponding dimensional values with the

surface tension. For instance, if maxt,z(|τw|) ≈ 0.28 for La = 200 (and σ = 52 dyn cm−1)

corresponds to 224 dyn cm−2, maxt,z(|τw|) ≈ 0.27 for La = 100 (and σ = 26 dyn cm−1)

corresponds to 108 dyn cm−2. This same trend is also observed in all other cases investigated

in this study (see table III).

The main qualitative and quantitative difference between La = 100 and La = 200 is seen

in the time evolution of the maximum absolute value of the wall pressure gradient. For

La = 200 a pronounced peak is observed (see fig. 7). This is correlated to the airway closure

and quickly fades out from |∂zp|max ≈ 2.2 to |∂zp|max ≈ 1.8 for then experiencing a relatively

slow increase. As shown in fig. 7, the bi-frontal plug growth induces the propagation of a

capillary wave. For La = 100, the stresses due to the capillary wave overshadow the spike-
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like contribution induced by the plug formation and the compression of the liquid menisci

induces a rapid increase in |∂zpw|max during the plug formation and the maximum pressure

gradient keeps growing monotonically in time during the post-coalescence phase, but with

a much slower rate (see fig. 8). As a result, decreasing the Laplace number brings to a

higher post-coalescence |∂zpw|max, by more than 35%. The monotonically growing trend of

|∂zpw|max is discussed in more detail in Sec. IVG.

E. Effect of liquid film dynamic viscosity µL

The dynamic viscosity of the liquid phase has a twofold effect on the non-dimensional

groups: (a) it affects the Laplace number in a quadratically inverse manner, i.e. La ∝ µ−2
L

and (b) it is inversely proportional to the gas-to-liquid dynamic viscosity ratio, i.e. µ ∝ µ−1
L .

Increasing the liquid dynamic viscosity, for instance upon an increase of the mucus vis-

cosity, decreases the Laplace number and the relative importance of viscous forces exerted

by the air core flow on the liquid film, slowing down the airway closure in dimensional

time. This phenomenon is demonstrated in fig. 9, where the parameters % = 10−3, λ = 6,

ε = 0.25 are kept constant and three combinations of La and µ are considered, i.e. La = 1,

µ = 1.5 × 10−4 (solid line), La = 4, µ = 3 × 10−4 (dashed line), La = 100, µ = 1.5 × 10−3

(dashed-dotted line), which correspond to µL = 0.126, 0.252 and 1.26 poise in our airway

closure model, respectively. The reduction of flow inertia and relative viscous resistance of

air, have a dramatic impact on Rmin, especially due to the Laplace number, which increases

by two orders of magnitude if µL decreases by one order. For removing the dynamic viscosity

of the liquid from the time axis, the non-dimensional time is scaled as t/
√
La in fig. 9. In

dimensional quantities, upon an increase of µL, the dimensional closure time increases from

tc = 0.229 s for µL = 0.126 poise to tc = 1.934 s for µL = 1.26 poise. As a result, increasing

the dynamic viscosity of the liquid phase slows down the airway closure process, as also

reported for the Stokes-flow limit by [31, 53].

The effect of the liquid film dynamic viscosity on the excursion of wall stresses is shown

in fig. 10. As seen, a decrease of µL tends to decrease the excursion in normal stress ∆pw

and to increase and sharpen the one in shear stress ∆τw at the wall. The same trend is

observed for |∂zpw|max and |∂zτw|max, which slightly grow upon a decrease of µL (not shown).

The wiggles observed in the results are of numerical origin. They are due to the very
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FIG. 9. The effects of the liquid viscosity. The time evolution of the minimum radius of the

interface, RI, Rmin, is plotted for % = 10−3, λ = 6, ε = 0.25 and La = 1, µ = 1.5× 10−4 (solid line),

La = 4, µ = 3× 10−4 (dashed line), La = 100, µ = 1.5× 10−3 (dashed-dotted line).

FIG. 10. The effects of the liquid viscosity on the time evolution of the excursion of wall stresses

∆pw (higher-amplitude curves) and ∆τw (lower-amplitude curves) for % = 10−3, λ = 6, ε = 0.25

and La = 1, µ = 1.5×10−4 (solid line), La = 4, µ = 3×10−4 (dashed line), La = 100, µ = 1.5×10−3

(dashed-dotted line).

quick dynamics of the pre- and post-coalescence phases, to the presence of a pressure jump

across the interface and to the challenging viscosity ratios tackled in this study. Analo-
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FIG. 11. The effects of the initial liquid film thickness on the minimum radius of the interface

Rmin (solid black line), excursions of wall pressure ∆p = max (pw) − min (pw) and shear stress

∆τ = max (τw)−min (τw) depicted as solid and dashed lines without markers, and the maximum

absolute values of wall pressure and shear stress gradients, |∂zpw|max and |∂zτw|max, respectively,

depicted in solid and dashed red lines marked with bullets. The non-dimensional groups in common

are La = 1, µ = 1.5× 10−3, % = 10−3, λ = 6; the three sets of curves refer to ε = 0.2, 0.25 and 0.3.

gous computational features are also reported by other numerical studies when similar flow

configurations are considered, see e.g. [54, 55].

F. Effect of the film thickness ε

The initial thickness of the liquid film has a major impact on the airway closure time.

This has been demonstrated by [38] and [37] in previous investigations and is confirmed here

for ε = 0.2, 0.25 and 0.3, as shown in fig. 11 (black lines). Our main focus is, however, on

the effects of ε on the stress level at the airway wall.

Figure 11 reports (in red lines) the excursions of wall pressure ∆pw and shear stress ∆τw

as well as the maximum absolute values of wall pressure and shear stress gradients, |∂zpw|max

and |∂zτw|max, as a function of time for three initial film thicknesses: ε = 0.2, 0.25 and 0.3.
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The other parameters are kept constant at La = 1, µ = 1.5× 10−3, % = 10−3, λ = 6.

The peak value and the trend of ∆pw, ∆τw and |∂zτw|max remain almost unchanged when

the film thickness changes, however the maximum absolute value of the wall pressure gradient

|∂zpw|max experiences a remarkable increase when the initial film thickness ε decreases. This

is observed in all our simulations. The wall pressure gradient |∂zpw|max is related to the local

variation of film thickness, which is produced by the compression of the liquid menisci due

to the bi-frontal plug growth. A lower initial film thickness ε produces thinner menisci right

beyond the plug, which explains why |∂zpw|max increases when ε decreases.

G. Effect of the post-coalescence dynamics on the wall pressure gradient

Figure 8 has shown that the maximum wall pressure gradient |∂zpw|max can experience a

monotonically growing trend in time, qualitatively different from the one reported in fig. 7.

The formation of the liquid plug, its bi-frontal growth, the consequent compression of the

liquid film on the pipe wall and the propagation of the capillary wave are responsible for

this effect. Figure 12 depicts the time evolution of minimum radial (Rmin, black solid line)

and axial coordinate of the interface (Zmin, black solid line with bullets), the minimum film

thickness (1−max(RI), turquoise solid line) and its axial location for z < 3 (Zmt, turquoise

solid line with bullets), and the maximum wall pressure gradient for La = 1, µ = 1.5×10−3,

% = 10−3, λ = 6, ε = 0.25. After the closure event, the bi-frontal plug growth, shown by the

growing trend of Zmin, forms a capillary wave on the shoulder of each of the two interface

fronts. These waves compress the liquid film against the airway wall (see 1 − max (RI))

and slowly propagate symmetrically in axial direction (see the negative trend of Zmt in the

post-coalescence phase). The correlation between the monotonic growing trend of |∂zpw|max,

the liquid plug and the thin film dynamics is evident from fig. 12.

H. Comparison of maximum wall stresses and closure times

The maximum of the wall stress excursions maxt(∆pw) and maxt(∆τw), and the maximum

wall shear stress gradient maxt(|∂zτw|max) are reported in table III, together with the closure

time tc for all the parameters investigated in this study. The qualitative trends reported

in the previous sections for the wall stresses and their gradients are found to persist in
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FIG. 12. The time evolutions of the minimum radius of the interface, Rmin (black line), the

minimum axial distance between the fronts, Zmin (black line with bullets), the minimum film

thickness, 1−max (RI) (turquoise solid line), its axial location for z < 3, Zmt (turquoise solid line

with bullets), and the maximum wall pressure gradient |∂zpw|max. The non-dimensional groups are

La = 1, µ = 1.5× 10−3, % = 10−3, λ = 6, ε = 0.25.

all the simulations. The non-dimensional closure time is remarkably affected by the initial

film thickness and experiences significant variations upon a change of µL. The maximum of

the wall pressure excursion is almost insensitive to all the parameters investigated in this

study, being always within 1.3 ≤ maxt(∆pw) ≤ 1.48. A more relevant effect of ε, µL and

σ is reported in tab. III for maxt(∆τw) and maxt(|∂zτw|max), which are characterized by a

monotonic trend in ε when the Laplace number is high enough.

V. CONCLUSIONS

The capillary instability of a liquid-lined tube has been studied to model the airway

closure in human lungs. When the size of the airway diameter becomes very small, e.g. at

9th or 10th branching generation, the dynamics of the thin liquid film lining the airway is
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µ La ε tc maxt(∆pw) maxt(∆τw) maxt(|∂zτw|max)

1.5× 10−3 100 0.2 2831 1.369 0.495 0.637

0.25 727 1.297 0.534 0.551

0.3 265 1.339 0.572 0.538

200 0.2 2839 1.357 0.525 0.773

0.25 737 1.303 0.571 0.678

0.3 275 1.341 0.607 0.648

3× 10−4 4 0.2 2215 1.404 0.385 0.392

0.25 617 1.441 0.425 0.424

0.3 227 1.455 0.426 0.464

8 0.2 2215 1.411 0.380 0.393

0.25 616 1.418 0.438 0.423

0.3 228 1.432 0.408 0.468

1.5× 10−4 1 0.2 2209 1.371 0.378 0.392

0.25 615 1.449 0.420 0.452

0.3 226 1.471 0.463 0.478

2 0.2 2211 1.297 0.380 0.392

0.25 736 1.347 0.570 0.679

0.3 227 1.463 0.461 0.466

TABLE III. Summary of the closure time, the maximum wall stress excursions and the maximum

tangential wall stress gradients for all the 18 cases simulated in our study.

dominated by surface tension forces and, when the initial liquid film thickness exceeds a

critical value, it may undergo a Plateau–Rayleigh instability which closes the airway within

28



one breathing cycle. This gives rise to a liquid plug.

In our study we are able to address the entire closure process, expanding beyond the

limitations of the previous investigations. We carry out a numerical study based on the

discretization of the Navier–Stokes system by means of finite volume method (FVM) coupled

with a volume of fluid (VOF) method to simulate both liquid and gaseous phases.

Following the conceptual approach of Tai et al. [38], the annular film which coats the

pipe walls is modeled as a Newtonian fluid whose properties are derived by a homogenization

process which involves the multilayer liquid formed by mucus and serous. A validation of our

simulations has demonstrated excellent agreement with the experimental results of Bian et

al. [37], in terms of wall stresses, flow velocities and tracking of the liquid-gas interface. Both,

the pre- and the post-coalescence phase have been well reproduced. The radial velocities at

the bulge tip dominate before closure, whereas the axial velocity components overshadow

the radial motion after coalescence, leading to a quick plug formation and a very quick

compression of the menisci on the pipe wall. This is what we termed bi-frontal plug growth.

Indeed, the post-coalescence phase is conceptually similar to the receding of two air fingers,

but even though the receding of an air finger has been extensively studied in literature,

the significance of our study results from being able to simulate the entire closure process

including the sharp topological change observed after the coalescence. In fact, the shear

stresses experiences a post-coalescence peak directly correlated to the bi-frontal plug growth.

Being confident of the rigorous validation of our simulations against the experimental

data, our investigation sheds significant light on the process, with a major focus on the effect

of surface tension, liquid flow viscosity and film thickness on the stresses and their gradients

over the airway wall. A batch of 18 simulations is performed to investigate typical conditions

of airway closure occurring at the 9th or 10th generation in adult human lungs. Epithelial

cells cover the airway wall and they normally have a characteristic length of 40 µm. Their

injury is therefore induced primarily by shear stress and gradients of normal and tangential

stresses along the pipe wall. Quantifying the stress level over the airway wall is the main

concern of our study, which proved that the high stress level resulting from the closure of the

airway induces serious deformations of the epithelial cells with a consequent damage which

has, most likely, lethal effect for the cells. This scenario has been speculated by Tai et al.

[38] for a single set of parameters and three initial film thicknesses, but the quantification of

the actual stress level on cells during the whole pre- and post-coalescence process has never

29



been reported before. With our study we demonstrate that wall normal and tangential

stresses on the cells, together with their gradients reach values of maxt,z(|τw|) ≈ 250 dyn

cm−2 (300 to 600% of the pre-coalescence values), maxt,z(|∂zpw|) ≈ 4.50×104 dyn cm−3 and

maxt,z(|∂zτw|) ≈ 8 × 103 dyn cm−3 for parameters of typical interest in airways for adult

lungs, i.e. La = 200, µ = 1.5 × 10−3, % = 10−3, λ = 6, ε = 0.20. These levels of stress are

much higher than what required for severely damaging the epithelial cells; indeed, according

to the experimental results of Bilek et al. [51], the cell damage occurs if maxt,z(|τw|) > 12.9

dyn cm−2, maxt,z(|∂zτw|) > 2.1 × 103 dyn cm−3, and maxt,z(|∂zpw|) > 3.21 × 104 dyn

cm−3. Moreover, an additional confirmation of the lethal effect that wall stresses might

have on epithelial cells is reported in Huh et al. [52], where it is stated that a dangerous

condition for the cells occurs when the shear stress crosses the values of maxt,z(|τw|) > 98.58

dyn cm−2. This dangerous threshold is less than half of the peak value of the tangential

stresses predicted in our airway closure model. Comparing with the experimentally estimated

damaging conditions, Tai et al. [38] concluded that the level of shear stress in the pre-

coalescence process might be large enough to damage the cells, but pressure and gradients

are smaller than the experimentally determined threshold values. With our simulations we

proved that the peaks in wall stresses and their gradients occur in the post-coalescence phase

and they are far beyond the damaging thresholds experimentally established. In table III it

is reported a detailed quantification of the level of stress in all the 18 cases we simulated.

The effect of surface tension, liquid dynamic viscosity and initial thickness of the liquid

film has been investigated for the parameters listed in table II. Under the creeping flow limit,

a change in surface tension is inversely proportional to the dimensional closure time and,

in our scaling, has no influence on the non-dimensional closure time since we employ σ to

scale t. However, when inertial terms are taken into account in the momentum equation,

increasing the surface tension linearly increases the Laplace number and, consequently, the

inertia of the flow. Still, in dimensional quantities, an increase of σ implies a quicker closure.

However, in non-dimensional time units, the closure of the airway is postponed, proving that

the dependence of tc on σ is slightly sublinear. The major effect of σ is observed for the

non-dimensional wall pressure gradient, which may experience a qualitative change and, in

general, tends to monotonically grow if the Laplace number is small enough.

If instead of changing the surface tension, one considers a different dynamic viscosity

of the lining liquid, the effect on the non-dimensional groups which control the flow is
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quadratically observed in La and linearly in the gas-to-liquid viscosity ratio µ. The decrease

of one order of magnitude in µL produces a strong increase of inertia and of relative viscous

forces from the air phase. In non-dimensional terms, a delay of the closure event is then

observed, associated with an increase of wall shear stresses and stress gradients, whereas the

excursion of the normal stresses along the walls ∆pw tends to decrease. Still, in dimensional

terms, increasing the liquid viscosity postpones the airway closure.

Finally, an increase of the initial film thickness ε, speeds up the formation of a liquid

plug, as predicted by Tai et al. [38] and Bian et al.[37]. Moreover, even if tangential and

normal wall stresses, as well as shear stress gradients, are more or less insensitive to ε, the

initial film thickness has a strong influence on the wall pressure gradient which increases

dramatically when ε decreases. This is a feature of the bi-frontal plug growth reported in

our study for the first time.
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APPENDIX

Beside the comparison with the experimental measurements, two additional validation

tests are carried out. We first validate our solver comparing its results with the ones reported

in [38]. Figure 13 depicts the normalized wall shear stress τ̃w = τw/max (τw) right before

closure at t = ts against the normalized coordinate η = z/zτw,max . The dashed line refers to

the results of fig. 9(b) by Tai et al. [38], whereas the solid line depicts our results. The two

curves compare very well.

To further validate the numerical solver, we compare it with the finite-difference/front-

tracking code employed in [55] using the same computational grid. Figure 14 compares their

results in terms of Rmin, ∆pw and ∆τw for La = 100, λ = 6, ε = 0.25. The closure time

predicted by basilisk is tFV/VOF
c = 727, whereas the solver of [55] computes tFD/FT

c = 745,

resulting in a relative deviation of about 2%. This deviation is well explained by the different

viscosity and density ratio employed when simulating the airway closure with the code of
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FIG. 13. Normalized wall shear stress τ̃w = τw/max (τw) at t = ts against the normalized

coordinate η = z/zτw,max . The present results (solid line) are compared to the results by Tai et al.

[38] (dashed line).

[55]. Owing to numerical limitations, µ = 1/50 and % = 1/100 are employed in the finite-

difference/front-tracking code, which led to a slightly slower airway closure. Hence, to ease

the comparison for Rmin, ∆pw and ∆τw, the results of the finite-difference/front-tracking

method are shifted in time of ∆t = t
FV/VOF
c − tFD/FT

c = −18. The agreement between the

two sets of results is very good. Since basilisk (lines) employs a finite-volume/volume-of-fluid

method, whereas the code of Muradoglu et al. [55] (markers) uses a finite-difference/front-

tracking method, we conclude that the results discussed in our study can be considered

independent of the numerical methodology used to compute them.
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