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Recent discoveries have allowed a mathematical and computational foundation for understanding
the rheology of particles suspended in viscoelastic fluids – we employ these new tools to understand
the extensional rheology of such suspensions. We accomplish this by first calculating the renormal-
ized particle contribution to the extensional viscosity in such a suspension in the dilute particle limit
over a wide range of extensional Weissenberg number and Hencky strain. The models we use for the
suspending fluids are the simplest dumbbell models – The Oldroyd-B, FENE-P and Giesekus models
– such that our results are general for polymer solutions which exhibit strong strain hardening at
values of the Weissenberg number above those which engender the coil-stretch transition, Wi ≥ 0.5.
We demonstrate that the effect of particles on the “extra elongational viscosity” relative to the fluid
is non-monotonic in strain (increasing for small strain and then decreasing for large strain). Thus at
a fixed strain, the particle “extra viscosity” relative to the fluid may increase or decrease with Wi.
We demonstrate that this interesting behavior is due to the interplay between the two contributions
of the “particle induced fluid stress” (PIFS) and the “stresslet” to the extra viscosity. The contri-
bution of the “particle induced fluid stress” to the suspension viscosity increases at small strain but
plateaus and then decreases at higher values of the strain. Thus, at small strain the local velocity
gradients near a particle increase the polymer stretch, while for greater strain, polymers which have
undergone the coil-stretch transition collapse in the neighborhood of a given particle. On the other
hand, the “stresslet” contribution to the viscosity relative to the fluid decreases monotonically as
the polymer stretch surrounding a given particle “shields” the particle and thus reduces the local
surface tractions. Beyond Hencky strain of approximately 2 the decreasing value of the stresslet
coupled to the plateauing of the PIFS, causes the overall reduction in the particle-induced extra
viscosity relative to that of the fluid.

PACS numbers: May be entered using the \pacs{#1} command.

I. INTRODUCTION

The presence of strong strain-hardening in polymer so-
lutions is one of their most important rheological charac-
teristics [1–4]. Thus the extensional viscosity of a poly-
mer solution, at sufficiently large strain rates and Hencky
strain, can be orders of magnitude larger than the solvent
alone. The control of processing flows of these materi-
als is essentially dictated by this strain hardening [1–4],
which has historically been associated with the famous
coil-stretch transition of the individual polymer chains
[5–7]. In the last 20 years, this connection has been made
unambiguous by the simultaneous measurement of the
extensional viscosity of DNA solutions and microscopy
of the molecular configuration [8–13]. Strain harden-
ing and the coil-stretch transition is still a very active
area of research with a number of groups seeking to un-
derstand the effect of intermolecular interactions on the
coil-stretch transition. The direct application of these
rheological studies ranges from extrusion molding to fiber
spinning. However a great many of the associated practi-
cal materials contain particle additives – they are hence
a suspension in a viscoelastic fluid. These suspensions
play key roles in many energy applications (e.g. fracking
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fluids)[14], materials design applications (e.g. injected
composite materials, pastes and paints) [15], and con-
sumer product applications (liquid medicines and drugs).

Recently, there have been very significant advances
in understanding the shear rheology of particle suspen-
sions in highly elastic solutions [16–21]. Indeed the most
salient experimental feature in this regard is the strong
shear thickening of the suspensions (both in the viscos-
ity and the primary normal stress coefficient), which is
entirely absent in the fluids alone [18, 19, 22–24].These
advances include (a) methods for renormalization of the
long range interactions in these suspensions, such that
dilute suspension theory could be applied[18–20, 25] (b)
the first calculation of the dilute limiting shear viscosity
for a suspension of spheres for “weak flow” using these
renormalizations, (c) accurate large scale computations
of the renormalized shear flow rheological quantities be-
yond the weak flow limit [19–21] and (d) qualitative re-
production of the experiments [21]. It is the purpose of
this manuscript to, for the first time, apply these ad-
vances to an understanding of the extensional rheology
of particle suspensions in a viscoelastic polymer solution.
Previous studies [26–28] focus on 2D inertialess
particle suspensions in Newtonian or viscoelas-
tic fluids under planar elongational flows. In this
study, we present 3D numerical results for a di-
lute viscoelastic suspension of spherical particles
in uniaxial extension. We perform 3D simulations
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to ensure elastic instabilities do not develop dur-
ing evolution of polymeric flow with time.

II. PROBLEM FORMULATION

A. Bulk Stress in a viscoelastic suspension

The general averaging procedure to obtain the macro-
scopic stress in a suspension of rigid particles has been
discussed in [16, 19, 20, 29, 30]. Here, we give a very
brief recapitulation of the method. The bulk stress in
a suspension can be obtained by averaging over a suffi-
ciently large volume with the volume averaged velocity
field matching the ensemble averaged velocity field and
this is equivalent to the ensemble average [29] for a statis-
tically homogenous suspension. Thus the “bulk” stress
defined in terms of the volume average is

σij =
1

V

∫
V

σijdV, (1)

where the overbar denotes volume average and V is the
total suspension (particles and fluid) volume. If the stress
contributions from the particle phase σpij and the fluid

phase σfij are separated and furthermore, if the stress
contributions due to suspending fluid without any parti-

cles σf0ij and the stress contributions due to particles are

made distinct then, as shown in [18–20], Eq.(1) becomes

σij = σf0ij + n

(∫
V1

(
σfij − σ

f0
ij

)
dV +

∫
A1

xjσ
f
iknkdA

)
,

(2)
where diluteness has been assumed and the total par-

ticle contribution to the stress is obtained by multiplying
the number density of particles n in suspension with the
per particle contribution. In the above equation, V1 is
the domain volume that contains a single particle and is
large enough such that any disturbance due to the parti-
cle decays far from the particle and at the boundaries of
domain. The symbol A1 represents a single particle sur-
face and nk is the unit normal vector pointing out of the
particle surface. The number density n is related to par-
ticle volume fraction φ as n = φ

Vp
where Vp is the volume

of a single particle. The per particle contribution to the
extension viscosity ηpE is then the sum of contributions
from the particle induced fluid stress (PIFS) Σij and the
stresslet Sij , viz.

Σij =
1

Vp

∫
V1

(
σfij − σ

f0
ij

)
dV ; Sij =

1

Vp

∫
A1

xjσ
f
iknkdA

(3)
Assuming that the flow is homogeneous, steady uni-
axial extensional flow, where the rate of strain tensor,
Eij = ε̇

[
δi1δj1 − 1

2 (δi2δj2 + δi3δj3)
]
, we can define a per

particle contribution to the extensional viscosity of the

suspension ηφE through the relation :

ηpE ε̇ =

(
Σ11 −

Σ22 + Σ33

2

)
+

(
S11 −

S22 + S33

2

)
. (4)

The total suspension viscosity for any dilute volume frac-
tion φ follows directly from Eq.(2) after the definition of
particle viscosity is substituted and the particle number
density is replaced by the volume fraction,

ηφE = ηφ=0
E + φηpE (5)

where ηφ=0
E ε̇ = σf011 − 1

2

(
σf022 + σf033

)
and therefore ηφ=0

E

is the extensional viscosity of the suspending fluid. Af-
ter rearranging, we obtain an equation for the relative
difference between suspension and suspending fluid ex-
tensional viscosity,

ηφE
ηφ=0
E

− 1 = φ
ηpE
ηφ=0
E

, (6)

which can be calculated in dilute simulations by comput-
ing the ratio of particle viscosity to fluid viscosity.

B. Governing equations

We consider a neutrally buoyant sphere placed
at the centre of a rectangular computation domain
(±L1/2,±L2/2,±L3/2) in a mean flow field ui =
(ε̇x,−ε̇y/2,−ε̇z/2) where ε̇ is the extension rate. The
mean flow is imposed on the walls of the domain far
from the particle. There is no net force or torque on
the sphere due to the symmetric nature of imposed flow.
The dimensionless governing equations are

∂u′i
∂x′i

= 0; Re

(
∂u′i
∂t′

+ u′j
∂u′i
∂x′j

)
= − ∂p

′

∂x′i
+
∂σf

′

ij

∂x′j
(7)

where prime denotes a nondimensional variable.
Length is made dimensionless by particle radius a, time
by inverse extension rate ε̇, velocity by ε̇a and stress by
η0ε̇ where η0 is the zero shear viscosity of the suspend-
ing fluid. The fluid stress is the sum of Newtonian and
polymer stress:

σf
′

ij = β

(
∂u′i
∂x′j

+
∂u′j
∂x′i

)
+ τp

′

ij (8)

where β is the ratio of Newtonian solvent viscosity to

the zero shear viscosity and τp
′

ij is the nondimensional
polymer stress. The FENE-P equation describing the
evolution of the polymer conformation tensor Cij is

∂Cij
∂t′

+ u′k
∂Cij
∂x′k

− Cik
∂u′j
∂x′k
− Cjk

∂u′i
∂x′k

=

− 1

Wi

(
Cij

1− Ckk

L2

− δij

)
(9)

where the conformation tensor components Cij and the
finite polymer extensibility L are non-dimensionlized by
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the polymer radius of gyration. There are two dimen-
sionless groups: the particle Reynolds number defined
as Re = ρε̇a2/η0 and the Weissenberg number Wi = λε̇
where λ is the longest polymer relaxation time. The poly-
mer stress is related to conformation tensor through,

τp
′

ij =
1− β
Wi

(
Cij

1− Ckk

L2

− δij

)
. (10)

When L→∞, the FENE-P equation is equivalent to the
Oldroyd-B model. The Giesekus equation, in the same
notation, is:

∂Cij
∂t′

+ u′k
∂Cij
∂x′k

− Cik
∂u′j
∂x′k
− Cjk

∂u′i
∂x′k

=

− 1

Wi
(Cij − δij)−

α

Wi
(Cik − δik)(Ckj − δkj) (11)

where α is the mobility parameter. When α = 0, the
equation is again equivalent to the Oldroyd-B model. To
complete a calculation of the full time dependent prob-
lem, for any of these constitutive equations, we require
initial conditions for the velocity and conformation ten-
sor. For the initial velocity we choose the Newtonian
creeping flow solution for flow past a sphere in uniaxial
extensional flow and for the initial conformation tensor
we choose the identity tensor (the dimensionless, equi-
librium configuration thus producing no polymer stress).
We also impose the boundary condition on conformation
tensor such that the polymer conformation tensor at the
walls of domain takes values corresponding to suspend-
ing fluid at different strains and Wi. This is allowed
because the simulation domain is taken to be big enough
such that there is no disturbance due to particle at the
walls of domain. We drop primes in rest of the paper
for convenience and all the variables are assumed to be
non-dimensional.

C. Numerical Simulations

The simulations are run using a massively parallel fi-
nite volume solver developed at Stanford and the details
of the solver can be found in [19] and the references
therein. The domain grid conforms to the body of a sin-
gle sphere and is meshed using tetrahedral elements of
size a/60 near the particle surface and bigger elements of
size a/40 far from the particle. The simulations are run
in the limit Re << 1. The domain convergence is tested
for all simulations and the results are found to vary by
less than 5% between two domain sizes (40a, 40a, 40a)
and (80a, 40a, 40a) where the longest dimension of the
box is in direction of principal extension of the flow i.e.
the “1” direction.

III. RESULTS AND DISCUSSION

We numerically compute the ratio of the per particle
extensional viscosity to the fluid extensional viscosity as

a function of strain for a range of Wi to study the ef-
fect of particles on the suspension viscosity. The ratio
can be thought as the “Einstein coefficient” [31, 32] for
the startup of uniaxial extensional flow of spheres in a
viscoelastic fluid.

A. Small Strain Results

To gain a physical understanding and test the accu-
racy of our numerical solutions, we first use perturba-
tion theory at small strains to calculate the PIFS and
stresslet analytically for the Oldroyd-B model. The poly-
mer conformation tensor, fluid velocity and pressure are
expanded in the small strain ε in the usual manner:

Cij = δij + εC
(1)
ij + ε2C

(2)
ij + ... (12)

ui = u
(0)
i + εu

(1)
i + ε2u

(2)
i + ... (13)

p = p(0) + εp(1) + ε2p(2) + ... (14)

The leading order O(1) flow field is the Newtonian field
and the conformation tensor is equal to the identity ten-
sor. Thus, there is no PIFS at O(1) and the stresslet is

given by S
(0)
ij = 5Eij where Eij is the average rate of

strain tensor in the fluid domain – this is in accord with
the famous Einstein result [31, 32]. At O(ε) the confor-
mation tensor is proportional to the rate-of-strain of the
Newtonian field. Thus, again at this order the devia-
toric stress is proportional to the deviatoric Newtonian
stress at O(1) and thus there is an associated pressure
correction but no additional velocity correction, viz.

u
(1)
i = 0 (15)

p(1) =
1− β
Wi

p(0) (16)

C
(1)
ij = 2e

(0)
ij (17)

The fluid stress, at this order, is given by,

σ
(1)
ij =

1− β
Wi

(
−p(0)δij + 2e

(0)
ij

)
(18)

and the stresslet correction then simply reflects the
change in the viscosity:

S
(1)
ij =

1− β
Wi

5Eij (19)

and there is no correction to the PIFS. Continuing, then
the conformation tensor at O(ε2) is given by

C
(2)
ij = −

e
(0)
ij

Wi
− u(0)m

∂e
(0)
ij

∂xm
+ γ̇

(0)
ik e

(0)
jk + γ̇

(0)
jk e

(0)
ik (20)



4

where e
(0)
ij is the local strain rate tensor and γ̇

(0)
jk is the

local velocity gradient in the Newtonian flow. The flow
field is now non-Newtonian at O(ε2) and rather than
determine the correct flow field, one can determine the
stresslet correction using the reciprocal theorem [25]:

S
(2)
ij =

1− β
Wi

3

14
EikEkj −

1− β
Wi2

5Eij . (21)

The O(ε2) correction to the PIFS is calculated using the
renormalized averaging procedure of [25],

Σ
(2)
ij =

1− β
Wi

25

7
EikEkj . (22)

We show the comparison of the small strain theory to our
transient numerical simulation results for the stresslet
and the PIFS in Figure (1). The theory and simulations
agree well at small strains but the theoretical prediction
for the stresslet departs from the numerical simulations
at strains ε ≈ 10−1 and the small strain theory no longer
holds. Moreover, in the inset to each Figure, we see that
the stresslet ratioed to the fluid stress decreases mono-
tonically with strain, while the PIFS monotonically in-
creases. This will be important in the physical descrip-
tion of our numerical results below.

B. Numerical Results at Finite Strain and
Weissenberg Number

We performed the full 3D simulations to calculate the
per particle extra viscosity compared to the fluid at finite
strains and Wi. We modeled the suspending fluid using
the FENE-P equation with parameters β = 0.68, L = 100
and also using the Oldroyd-B equation with the same
value of β = 0.68. The parameters of the Giesekus model
used are α = 10−3, β = 0.68. We used the value of
viscosity ratio β = 0.68 in our simulations because
the Giesekus model parameters β = 0.68, α = .0039
fit the steady shear rheology of the Boger fluid
used by Dai et al. [23] as shown in [19]. Each
simulation is run for a total strain, ε̇t, of 7. Figure (2)
shows the viscosity ratio with increasing Hencky strain
for different models at a range of Wi. We also explore
the effect of smaller β = 0.4 value on the ratio of
particle viscosity to suspending fluid viscosity for
the Oldroyd-B model at different Wi. The inset
shows the viscosity ratio for the Oldroyd-B model
and Wi = 1 at two different β values. The dot-
ted line is for β = 0.68 and the dashed line is for
β = 0.4. We see that the value of ratio (or Einstein’s
coefficient) is close to 2.5 for Wi = 0.1 at all values of
strain for all models studied. Thus, we predict that the
viscoelastic suspensions behave like Newtonian suspen-
sions in the limit of small strain and Wi. However, the
viscosity ratio is non-monotonic in strain for other values
of Wi considered in the study. The non-monotonicity oc-
curs for all model parameters studied i.e. different values

of L, α and viscosity ratio β and more importantly for all
polymer constitutive models. The inset in Figure (2)
shows that the value of the viscosity ratio for Wi
= 1 is unaffected by the value of β and we have
also seen very little effect of varying β at other
values of Wi. We believe that this behavior is universal
for spherical particles in dilute polymer solutions subject
to (uniaxial) extensional flow. Furthermore, the viscos-
ity ratio computed for both FENE-P and Oldroyd-B is
identical until strains ≈ 6 after which the value of the
finite extensibility parameter L makes a difference. The
Giesekus model demonstrates lower values of the ratio of
the particle viscosity to the fluid viscosity compared to
the other two models starting from strains of about 2, but
essentially demonstrates the same qualitative behavior.

The non-monotonicity in particle viscosity relative to
fluid can be attributed to the PIFS and stresslet con-
tributions to the particle viscosity. Figure (3) shows the
ratio of the PIFS and stresslet to suspending fluid viscos-
ity as a function of strain for different Wi. We see that
the ratio of the stresslet to the fluid viscosity decreases
monotonically with strain (as it did in the small strain
theory) but the ratio of PIFS to fluid viscosity is non-
monotonic with strain for all the Wi > 0.1 studied. The
ratio of total particle viscosity to fluid viscosity increases
at small strains (Figure (2)) because the increase in ratio
of PIFS to fluid viscosity is stronger and offsets the de-
crease in the equivalent ratio of the stresslet. But as the
Hencky strain increases, the ratio of the PIFS to the fluid
viscosity plateaus and eventually starts to decrease with
strain. This, combined with the monotonic decrease of
the stresslet ratio, causes the total particle viscosity to
decrease relative to the fluid at higher strains. Similar
behavior was found for the particle first normal stress
coefficient relative to the fluid (including the particle in-
duced fluid stress and stresslet) in steady shear flow past
an isolated sphere [19]. Thus, this nonmonotonicity in
a material function is likely to be observed in other lin-
ear flows and it is important to understand the physical
reasons for its origin.

We develop insight into the PIFS behavior by exam-

ining Eulerian contour plots of Ckk −Cf0kk , the difference
between polymer conformation trace, at each point in the
x1 − x2 plane and the polymer conformation trace at a
far field point (i.e. with negligible particle effect). Figure

(4) shows the contour plots of Ckk−Cf0kk for the FENE-P
model at two different values of strain ε = 2, and ε = 4
and Wi = 0.8. We see that there are regions of large poly-
mer stretch relative to the fluid, along the principal axis
of extension near the particle surface at both the strains
considered. However at larger strains, we also observe the
presence of blue regions around the particle where the
polymer is significantly less stretched compared to the
polymer stretch in the fluid alone. The stresslet contribu-
tion to the suspension viscosity decreases monotonically
relative to the fluid as the polymer stretch surrounding a
given particle “shields” the particle and thus reduces the
local surface tractions. The origin of these regions can be
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FIG. 1. Comparison of small strain theory with transient simulations as a function of strain for (a) stresslet and (b) particle
induced fluid stress. The parameter β = 0.68 for Oldroyd-B model used in simulations.
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FIG. 2. Ratio of particle viscosity to suspending fluid viscosity
with strain for a range of Weissenberg numbers for FENE-P,
Oldroyd-B and Giesekus models. The parameters of FENE-
P model are β = 0.68, L = 100, of Oldroyd-B model are
β = 0.68 and of Giesekus model are α = 10−3, β = 0.68.
The inset also shows ratio of particle viscosity to fluid
viscosity for Oldroyd-B model and Wi = 1. The two
curves correspond to two different β values. The β
value for dotted curve is equal to 0.68 and the β value
for dashed curve is equal to 0.4. We see that β does
not have a significant effect on the ratio.

better understood by examining the β → 1 limit because,
in this limit, the flow is approximately Newtonian at all
strains and we can thus analyze a known flow field as
it effects the polymer evolution [18]. This simplification
allows us to characterize the local velocity gradient using
a Q-R decomposition [33] and determine the effect of ex-
tension or rotation dominated regions near the particle
surface.
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FIG. 3. Ratio of PIFS and stresslet to suspending fluid viscos-
ity with strain for different Wi for FENE-P model. The pa-
rameters of FENE-P model used in simulations are β = 0.68,
L = 100.
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FIG. 4. Eulerian contours of Ckk − Cf0
kk in x1 − x2 plane for

FENE-P model parameters L = 100, β = 0.68,Wi = 0.8 and
strain ε = 2 in panel (a) and ε = 4 in panel (b).
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C. Method of characteristics for small polymer
concentration β = 1

We use the method of characteristics [18] to study the
polymer response to the local flow field along different
streamlines. There is only “one way coupling” from flow
to polymer in the β = 1 limit (meaning the given fixed
flow affects the polymer configuration). We solve the set
of ordinary differential equations shown below to obtain
the polymer conformation along streamlines:

dxi
ds

= uNi ;
dt

ds
= 1 (23)

dCij
ds

= Cik
∂uNj
∂xk

+ Cjk
∂uNi
∂xk

− 1

Wi
(Cij − δij) (24)

where uNi is the Newtonian creeping flow solution for
flow past a sphere in uniaxial extensional flow and s is
the integration parameter along the streamline.

We show a streamline trajectory in inset of Figure (5)
that starts far from the particle and the initial confor-
mation tensor on the streamline is the same as the con-
formation in the fluid alone at the starting time. We
study the evolution of polymer conformation along the
same streamline at different dimensionless starting times
denoted by εs for Wi = 0.8. The polymers in the far field
get increasingly stretched as time increases and the initial
condition for Equation(24) is different for different start-
ing times The polymers convected towards the particle
get stretched by extension dominated regions (character-
ized by D < 0) around the particle as shown by points 1
and 2 in Figure (5). As the polymers enter the vorticity
dominated regions around the particle (characterized by
D > 0), they lose their alignment with the principal axis

of extension and collapse compared to far field flow. This
is shown by points 3 and 4 in Figure (5). Note that the
reduction in polymer stretch (stress) during the collapse
(point 4) is far larger than the increase in stretch (stress)
through the extension dominated region. At large dis-
tances from particle denoted by point 5 in the figure, the
polymers attain the same configuration as the suspend-
ing fluid. The magnitude of polymer stretch and collapse
increases as starting times increase because the polymers
undergo the coil-stretch transition [5–7] in the far field as
time increases. Nearly fully stretched polymers collapse
dramatically in rotation regions around the particle [34]
as shown in Figure (5). These regions where polymers
have significantly smaller stretch compared to the the
far field contribute negatively to the PIFS and the size of
these regions grows around the particle as dimensionless
time/strain in the experiment increases. This eventually
arrests the growth of the PIFS relative to the fluid, thus
it plateaus and decreases at higher strains. From nu-
merical analysis of our flow fields, we claim that
these microstructural origins of polymer stretch
relative to the suspending fluid for β = 1 also hold
for other β values where the flow field is not New-
tonian and the polymer conformation has to be
tracked along different time dependent particle
paths for different Wi. The extension and rota-
tion dominated regions (characterized by D) also
change with time as the flow evolves for β 6= 1
and it is not easy or necessarily correct to corre-
late the polymer conformation with the local ex-
tension or rotation experienced by the polymer.
Therefore, we present the results only for β = 1.

IV. CONCLUSION

We performed 3D transient simulations of the bulk
extensional rheology of dilute particle suspensions for a
range of Wi and finite strains and calculated the renor-
malized per particle extra viscosity of the suspension.
We also calculated the particle induced fluid stress and
stresslet contributions analytically for small strain and
these calculations agree well with numerical simulations
at small strains. We found that the ratio of the per
particle extra viscosity to suspending fluid viscosity is
non-monotonic in strain for all constitutive models and
for all values of Wi > 0.5 studied. Thus, at a fixed
strain, the particle viscosity relative to the fluid may
increase or decrease with Wi. The conformation con-
tours show large polymer stretch near the particle in the
principal extension direction at modest strains and re-
gions around the particle where the polymers are signif-
icantly less stretched compared to the far field at high
strains when polymers have undergone coil-stretch tran-
sition. These regions grow with strain and thus arrest the
PIFS increase relative to the fluid. We believe the non-
monotonicity in ratio of particle viscosity to fluid viscos-
ity is universal for spherical particles in dilute polymer
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solutions subject to (uniaxial) extensional flow. We look
forward to experimental examination of our theoretical
predictions in future work.
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