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We analyze a large-eddy simulation dataset of wakes of a towed sphere of diameter D at speed
U in a uniformly stratified Boussinesq fluid with buoyancy frequency N and kinematic viscosity
ν. These temporally evolving wakes are simulated using a spectral-multidomain-penalty-method-
based incompressible Navier–Stokes solver for Fr ≡ 2U/(ND) ∈ {4, 16, 64} and Re ≡ UD/ν ∈
{5×103, 105, 4×105}, enabling the first systematic examination of stratified wakes at three different
values of Re sufficiently separated in magnitude. As such, particular attention is paid to the effects
of varying Re on the evolution of large-scale characteristics of stratified wake turbulence. We
examine the evolution of horizontal and vertical integral lengthscales (ℓh and ℓv), horizontal and
vertical fluctuation velocities (U and W), local vertical shear, as well as the resulting dimensionless
parameters based on the above quantities. In particular, the vertical turbulent Froude number,
Fr⋆v ≡ 2πU/(Nℓv), is found to be of order unity, a signature of the dynamics in the strongly stratified
regime where shear instabilities develop between anisotropic flow layers. The horizontal turbulent
Reynolds number, Reh ≡ Uℓh/ν, stays approximately constant in time, and the horizontal turbulent
Froude number, Frh ≡ U/(Nℓh), decays in time as (Nt)−1, consistent with scaling analysis of freely
decaying turbulence. We then characterize the transitions between distinct stratified flow regimes
and examine the effects of body-based parameters, Re and Fr , on these transitions. The transition
from the weakly to the strongly stratified regime, which is marked by Fr⋆

v decaying to unity, occurs
when Frh ≃ O(0.01). We further show that the initial value of Reh at which the flow completes

the above transition scales as ReFr−2/3, which provides a way to predict the possibility of accessing
the strongly stratified regime for a wake of given Re and Fr . The analysis reported here constitutes
a first attempt to obtain a predictive capability of stratified wake turbulence in terms of Reynolds
number, Re, applying select elements of strongly stratified turbulence theory, so far typically utilized
for homogeneous turbulence, to a canonical inhomogeneous turbulent free-shear flow.



2

I. INTRODUCTION

The stratified turbulent wake is a frequently occurring free-shear flow in a number of geophysical and ocean engi-
neering configurations [50]. The wake of a towed sphere is a canonical configuration which has been used to investigate
stratified wakes in numerous laboratory [e.g. 8, 12, 30, 48, 49, 52] and numerical [e.g. 10, 17, 19, 20, 24, 36, 37, 41]
studies. A stratified turbulent towed-sphere wake is, by design, spatially inhomogeneous in the span-vertical plane
and temporally nonstationary in a fixed laboratory reference frame where the flow follows a distinct ‘life cycle’.
Motivated by the evolution of centerline mean axial velocity U0 with respect to the dimensionless time Nt, where
N ≡

√
(−g/ρ0)(dρ/ dz) is the buoyancy frequency, Spedding [48] divided the wake life cycle into 3 regimes: (i) a

three-dimensional (3D) regime for Nt ∈ [0, 2] where U0 ∝ t−2/3; (ii) a non-equilibrium (NEQ) regime for Nt ∈ [2, 50]
where U0 ∝ t−1/4; and (iii) a quasi-two-dimensional (Q2D) regime for Nt ∈ [50,∞) where U0 ∝ t−0.76. Such a flow
regime classification focuses primarily on mean-flow metrics, and it is not clear if a regime classification can be drawn
based upon the characteristics of wake turbulence, a question that motivates the present study.
Another significant aspect of Spedding’s wake regime classification is, on account of the inherent physical space

limitations of the laboratory, the absence of any systematic investigation of the dependence of wake physics on the
wake’s body-based Reynolds number, Re ≡ UD/ν, where D is the sphere diameter, U is the tow speed, and ν is the
kinematic viscosity. Instead, Spedding focused on the effects of Fr ≡ 2U/(ND), the body-based Froude number. In
contrast to the experiments of Spedding [48], numerical simulations by Diamessis et al. [19] at Re = 105, a value that
is one order of magnitude larger than those obtained in the laboratory, did show qualitative differences in the flow
evolution, such as a significant prolongation of the duration of the NEQ regime in higher-Re wakes, due primarily to
the emergence of secondary shear instabilities within the large-scale ‘pancake vortices’. The effects of varying Re in
wakes have also been seen in terms of the internal waves emitted by the wake turbulence [1, 46, 66] and the properties of
the turbulent/non-turbulent interface [63]. A recent numerical dataset [64] brings into play an additional, sufficiently
removed data point for Reynolds number at Re = 4 × 105. As such it enables, for the first time, a systematic
investigation of the effects of Re on stratified wake turbulence which is presented in this paper, potentially providing
insights on the structural and dynamical aspects of this canonical turbulent shear flow at geophysically relevant Re
values [50].
Motivated by the scaling argument originally developed by Riley, Metcalfe & Weissman [45] and Lilly [29] and later

improved by Billant & Chomaz [7], Brethouwer et al. [9] proposed a regime classification for stratified flows, based
entirely on the characteristics of turbulence (rather than mean flows as in Spedding’s wake classification), a theory
we briefly review in § II. Presumably due to the ease of numerical implementation, most pioneering computational
studies of the various regimes have been conducted in a triply periodic, homogeneous turbulence configuration [e.g.
31, 42, 61], constituting a remarkable series of investigations which laid the foundation for a robust theoretical
framework for classifying stratified flows into various flow regimes based upon the relevance of stratification and/or
viscosity to the flow dynamics. Stratified wakes, which are representative of a canonical type of localized free-shear
flows, provide a unique platform to extend the above theoretical framework which is so far typically utilized to interpret
homogeneous turbulence, to an inhomogeneous turbulent flow configuration.
In this paper, we investigate the stratified turbulence characteristics in wakes of a towed sphere. Specifically, we

focus on the effects of Reynolds number on the characteristics of the large scales the wake turbulence, e.g. how
the structure of the coherent ‘pancake vortices’ can be altered at larger Re, as the energy-containing scales become
less affected by viscosity, as well as how the self-selection of vertical integral scale vary with Re and the associated
implication for the longevity of turbulence [19]. As will be shown, a distinct strongly stratified regime can exist in
wakes for a specific range of body-based wake parameters, and accessing this specific regime can in fact have some
significant impact on the evolution of wake turbulence. The main objectives of the paper are thus:

1. To examine the flow structure and temporal evolution of the large-scale turbulent characteristics, such as integral
lengths and velocity scales, and in particular, how they may vary with Re; and

2. To investigate the dynamics and predict the accessibility of the strongly stratified regime in the specific context
of stratified turbulent wakes, i.e. in terms of a wake’s body-based Reynolds and Froude numbers, i.e. Re and
Fr .

To address these questions, we organize the remainder of the paper as follows. In § II we first provide a brief review
of the relevant scaling arguments and apply it specifically to the context of stratified wake turbulence. In § III the wake
configuration under investigation is described, and the numerical dataset is introduced. In § IV we present qualitative
features of the wake turbulence, highlighting the Reynolds number effects on coherent vortical structures. In § V we
describe the time evolution of various characteristics of turbulence, such as lengthscales, fluctuation velocities, and
local vertical shear, followed by § VI where the relevant dimensionless parameters are discussed, with a focus on the
trajectories followed by stratified wake turbulence in an appropriately defined phase space which sheds light on the
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FIG. 1: The parameter space [9] based on turbulent horizontal Reynolds and Froude numbers, Reh and Frh
respectively, and the proposed regime classification for stratified flows. Grey dashed lines delineate the proposed

transitional boundaries between adjacent regimes.

flow regime progression. We continue to discuss in § VI the accessibility of the strongly stratified regime, quantifying
the implications of varying Re, before we conclude the paper in § VII with a summary of our findings and open
questions.

II. SCALING ARGUMENTS FOR STRATIFIED TURBULENCE

A. The strongly stratified regime

Scaling arguments [7, 9, 29, 43, 45] based on the governing equations of motion have led to the prediction of a
distinct flow regime in a strongly stratified fluid. In this regime, which is often referred to as “strongly stratified
turbulence” (SST), the effect of stratification is strong, driving highly anisotropic turbulent structures with a larger
horizontal integral scale than the vertical, and viscous effects are weak, allowing for a broad dynamic range between
the energy-containing and the viscous/dissipative scales to support turbulence. Such a regime is also referred to as
“layered anisotropic stratified turbulence” (LAST) in recent literature [see e.g. § II of 54]. An instructive way to
identify the potential presence of the SST (or LAST) regime in any given flow is through a diagram plotted on the
(Reh,Fr

−1
h ) phase space proposed in Brethouwer et al. [9] (see their Fig. 18 and Fig. 1 in this paper), where Reh and

Frh are appropriately defined Reynolds and Froude numbers to describe horizontal turbulent motions:

Reh ≡
Uℓh
ν

and Frh ≡
U

Nℓh
. (1)

Here we interpret U as the horizontal component of characteristic fluctuation velocity, and ℓh is a horizontal lengthscale
representative of the large, energy-containing turbulent motions, e.g. an integral scale. It is then possible to combine
Reh and Frh to define a ‘buoyancy Reynolds number’,

R ≡ RehFr
2
h =

U3

ℓh

1

νN2
. (2)

Riley & de Bruyn Kops [42] showed that R can be used to predict the potential for secondary shear instabilities to
emerge in a strongly stratified flow. Brethouwer et al. [9] suggested that R measures the ratio of the vertical advection
and diffusion terms in the horizontal momentum equation, if the vertical scale ℓv is set by U/N . By examining the
vorticity equation, Davidson [15] (see page 442) showed that R characterizes the ratio of inertial and viscous forces
at the integral scale in a strongly anisotropic flow, and R ≫ 1 is required to “ensure that viscous effects are confined
to the small scales”.
The SST regime occurs in the asymptotic limit where the stratification is strong, i.e.

Frh ≪ 1. (3)
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Furthermore, SST requires that the layered structures at the vertical scale U/N are not affected by viscosity, i.e.

R ≡ RehFr
2
h ≫ 1. (4)

A classical scaling estimate for the dissipation rate, ε, exists for nonstratified fluids [55], i.e.

ε ∼
U3

ℓh
, (5)

which has also been applied in the context stratified flows [see e.g. 25, 31] and is revisited in the remainder of this
paper (appendix B). If Eq. (5) holds, R scales with the ε/(νN2) parameter which is widely used in the literature
[see e.g. 25]. However, the numerical methodology (see more details in § III and appendix B) used to generate the
dataset examined here, lacking an explicit subgrid-scale model, does not allow for direct estimates for ε; quantitative
discussion of ε is therefore outside the scope of this paper.
It is hypothesized by Billant & Chomaz [7] that, in the asymptotic limits of Frh → 0, the flow structure may

reorganize in a self-similar way under strong buoyancy effects, such that the vertical lengthscale ℓv becomes comparable
to U/N , i.e.

ℓv ∼
U

N
. (6)

In this case ℓv is independent of viscosity as the lengthscale follows the inviscid scaling. Such a self-adjustment of ℓv
has been observed in numerous simulations of homogeneous turbulence in the SST regime, both forced [e.g. 9] and
unforced [e.g. 34]. Billant & Chomaz [7] showed that the potential and kinetic energies of the flow are of the same
order if Eq. (6) holds. Lindborg [31] suggested that a balance of inertia and buoyancy forces would be reached if ℓv
adjusts to match the scaling in Eq. (6), and thus hypothesized that a forward cascade of energy can exist in a highly
anisotropic, strongly stratified flows. Brethouwer et al. [9] (see their § 2.3) formally defined the SST regime as R ≫ 1
and Frh ≪ 1, a regime for which Eq. (6) is expected to hold such that the vertical advection term in the horizontal
momentum equation is of the same order as the horizontal advection terms, and thus the ‘leading dynamics’ are
‘three-dimensional but strongly anisotropic’.
On the other hand, when the large-scale motions are strongly affected by viscosity [23], the vertical lengthscale ℓv

would adjust in a way such that

ℓv
ℓh

∼ Re
−1/2
h , (7)

which is instead a viscous scaling that is reminiscent of a laminar boundary layer [see e.g. § 10 of ref. 26]. This viscous
scaling applies to flows with R values much smaller than order unity, i.e. the ‘viscosity-affected stratified flow’ (or
‘viscous’) regime (the triangular region in the upper left of the diagram shown in Fig. 1). The two distinct scalings for
ℓv, i.e. Eqs. (6) and (7) respectively, provide an informative tool to distinguish between the strongly stratified regime
and the viscous regime for a given flow. Both scalings will be applied in § VA towards interpreting our stratified
wake data.
As scaling arguments only predict that the SST dynamics are operative in the asymptotic limit of R ≫ 1, there

objectively exists some degree of uncertainty in the threshold value Rc above which the flow regime can indeed be
interpreted as SST. In the context of homogeneous decaying turbulence, Maffioli & Davidson [34] argued that the
transition between the SST and the viscous regimes exists forR of order unity, i.e. Rc ∼ O(1), which is consistent with
the empirical observation of Rc ≈ 4 from numerical simulation of the secondary instabilities of the zigzag instability
[2]. More recently, de Bruyn Kops & Riley [11] observed that the value of Rc ≈ 15 in order to sustain shear instability
within the buoyancy-driven shear layers.
In order to stay focused on our primary objective in this paper, i.e. to understand the effect of wake Reynolds

number on the regime progression of stratified wake turbulence, and avoid the potential confusion caused by the
ambiguity in the threshold Rc associated with the strictly defined SST terminology, we will instead pursue a more
broadly oriented discussion, namely one considering the regime where R > 1 and Frh ≪ 1 , i.e. what will be referred
to as the strongly stratified regime. Note that for the Re = 4 × 105 cases examined here, at earlier times, after the
establishment of a buoyancy-dominated flow, R can assume values as high as approximately 40. As such, viscosity
does not significantly impact the dynamics of the vertical integral scale, at least until R drops to values closer to
unity in these simulations.
In the context of the broader discussion proposed above, the strongly stratified regime is interpreted as a dynamical

state in which the stratification effects are strong as felt by the horizontal integral scale (Frh ≪ 1) and the viscous
effects have started to influence but not yet to dominate the dynamics of the anisotropic flow layers (R > 1) – the
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latter requirement is in contrast to the strictly defined SST which requires R ≫ 1, i.e. viscous effects are completely
negligible at the vertical scale U/N characteristic of the layered structure. As indicated above, the Re = 4×105 wakes
considered here may potentially reside in the SST regime, a question which, nevertheless, is outside of the scope of
this paper. Additionally, as will be shown, some vigorous turbulence can still exist in stratified wakes when R ∼ O(1),
albeit in a spatially intermittent fashion, even though aforementioned scaling arguments suggest that viscosity may
have some leading-order effects on the dynamics at the vertical integral scale.

B. Regime transitions in stratified turbulence

As will be shown, as the wake evolves in time, the stratified flow within the wake may or may not decay through
the strongly stratified regime, depending on the externally specified body-based Reynolds and Froude numbers of the
wake. To elucidate the flow regime progression in different wakes and examine the Reynolds-number dependence, we
are to first define these regime transitions quantitatively, i.e. the entrance into the strongly stratified regime, as well
as the exit from it, both in the specific context of stratified wakes. In the remainder of the paper, a superscript † will
be used for quantities associated with the entrance to strongly stratified regime, and ‡ for the exit from this regime:

1. Transition †. As first proposed by ref. [7], the perhaps most significant feature of a flow within the strongly
stratified regime is the self-selection of a vertical lengthscale according to Eq. (6), i.e. when the vertical turbulent
Froude number,

Frv ≡
U

Nℓv
, (8)

becomes order unity [see e.g. § 14.2 of ref. 15]. The simulations of decaying homogeneous stratified turbulence
by Maffioli & Davidson [34], for instance, observe that the value of Frv asymptotes at approximately 0.34–0.37,
and it is argued that Frv ∼ O(1) can be interpreted as a balance between baroclinic generation and advection
terms in the budget for horizontal vorticity (analogous to ωy in the context of stratified wakes visualized in Fig.
4). The exact value of Frv characteristic of the strongly stratified regime, however, should be dependent on the
specific definition of quantities such as ℓv and U . For example, in a flow where mean velocity components are
present, whether to include the mean flows in the calculation of U could obviously affect the numerical values
of Frv (and, for that matter, Reh or R).

An alternative interpretation of the vertical Froude number can be made [4, 28, 45] in terms of competing
timescales, i.e. the advective timescale of horizontal vortices, ℓh/U , and an internal gravity wave timescale
(i.e. period), ℓh/(N

⋆ℓv), for a flow structure of characteristic horizontal and vertical lengthscales ℓh and ℓv
respectively. The latter timescale, ℓh/(N

⋆ℓv), can be deduced from the linear dispersion relation of internal
waves, and it is perhaps more appropriate to use the cyclical frequency N∗ ≡ N/(2π), instead of the radial
frequency N , in defining such a wave period. Motivated by the above timescale arguments, we will define the
entrance to the strongly stratified regime as the time at which the cyclical vertical Froude number, Fr⋆v ≡
U/(N⋆ℓv) = 2πFrv, assumes the value of unity, i.e.

Fr⋆,†v ≡ 1 = 2πFr†v. (9)

At this particular time, the advective timescale equals the internal wave period, implying a strong influence of
buoyancy on the large-scale motions. Similar definitions of turbulent Froude number which include a factor 2π
can be found in several studies of homogeneous stratified turbulence [11, 42, 45].

2. Transition ‡. When no form of forcing is applied to re-energize the flow, as is the case for stratified wakes,
turbulence will inevitably decay due to viscous dissipation, unlike forced simulations where the turbulent kinetic
energy is maintained at an approximately constant level [e.g. 27, 58, 59]. As is discussed in § II B, we will
define the exit time from the strongly stratified regime to be when buoyancy Reynolds number, R ≡ RehFr

2
h,

assumes the value of unity, i.e.

R‡ ≡ 1. (10)

At this particular time, viscous effects start to have significant impact on the layered structure, marking an
end to the strongly stratified regime as there is insufficient dynamic range to support any sufficiently energetic
turbulence over the entire volume of the flow. Nevertheless, as shown in Fig. 3c and discussed in § IV, the time
when R ≈ 1 in a stratified wake flow does not signify the time when all turbulent motions across the entire
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FIG. 2: Computational domain for implicit large-eddy simulation of a temporally evolving, stratified towed-sphere
wake [1, 17, 19, 63, 66]. The centerline of the wake is at (y, z) = (0, 0). The effect of the towed sphere is not
computed explicitly by the Navier–Stokes solver but rather introduced as a complex two-stage turbulent wake
initialization procedure [19]. The sphere is assumed to be towed along the x axis which is the only statistically

homogeneous direction in these simulations. The dimensions of the computational domain in this schematic are not
drawn to scale.

wake core are completely controlled by viscosity, as spatially intermittent turbulent events might still be present
within the wake. The latter transition into a viscously controlled flow, with full suppression of any turbulent

fine-structure, occurs later in the wake evolution when (ℓv/ℓh)Re
1/2
h ≈ 1, as indicated by Eq. (7), in the limit of

R ≪ 1.

In the remainder of the paper, the above definitions will be used to approximate the points at which the regime
transitions occur. Due to the nature of scaling arguments upon which these regimes are defined, the cut-off values for
the regime transitions given in Eqs. (9) and (10) are chosen, inevitably, on a somewhat ad hoc basis. The readers are
thus advised to focus on how these transitions vary with the control parameters (Re and Fr) across different wakes,
rather than focus on the exact points at which the transitions occur; the latter delineation may simply depend on the
specific definitions of these transitions.

III. SUMMARY OF NUMERICAL SIMULATIONS

In this paper, we investigate stably stratified towed-sphere wakes (Fig. 2) which are characterized by the body-based
Reynolds number Re ≡ UD/ν and Froude number Fr ≡ 2U/(ND). The angular buoyancy frequency N is expressed
in terms of radians per unit time, a convention that is followed in this paper. The Prandtl number considered in our
simulations is equal to unity, i.e. the molecular diffusivity of the active scalar equals the kinematic viscosity.
The numerical dataset analyzed in this paper is generated through implicit large-eddy simulations (ILES) using

an incompressible Navier–Stokes solver based on a spectral multidomain penalty method developed by Diamessis
et al. [17] invoking the Boussinesq approximation. This solver employs Fourier discretizations in both horizontal
directions, x (streamwise) and y (spanwise), and a Legendre-polynomial-based spectral multidomain scheme in the
vertical direction z. Spectral filtering and a penalty scheme ensure the numerical stability of the simulations without
resolving the full spectrum of turbulent motions. Details on the configuration of the numerical scheme can be found
in Diamessis, Spedding & Domaradzki [19] (hereinafter referred to as DSD). These towed-sphere wake simulations
do not explicitly compute the flow around the sphere. Instead, the temporally evolving wakes are initialized using
a nontrivial scheme of two stages of auxiliary simulations (see DSD for a full discussion) to obtain a self-similar
approximation of the near-wake flow field at a downstream distance of 2D from the sphere. The readers can also find
a summary of the initialization scheme in § 2.3 of ref. [66].
Full information regarding the wake dataset is documented in detail by Zhou [64]. Three values of Re are considered

here: 5 × 103, 105 and 4 × 105. For the lower two Re values, simulations are conducted for Fr = 4, 16 and 64



7

TABLE I: Summary of implicit large-eddy simulations (ILES) at various wake Reynolds and Froude numbers. Lx,

Ly and Lz are the domain dimensions, and Nx ×Ny × N̂z is the number of grid points. N̂z corresponds to the
number of grid points allocated to the interval z/D ∈ [−6, 6], which corresponds to the full vertical extent of the

computational domain for the R400 simulations.

Index Re Fr Lx × Ly × Lz Nx ×Ny × N̂z

R5F4 5× 103 4 (80/3)D × 40D × 15D 256 × 384 × 248

R5F16 5× 103 16 (80/3)D × 40D × 15D 256 × 384 × 248

R5F64 5× 103 64 (80/3)D × (160/3)D × 17D 256 × 512 × 248

R100F4 105 4 (80/3)D × 40D × 15D 512 × 768 × 695

R100F16 105 16 (80/3)D × 40D × 15D 512 × 768 × 695

R100F64 105 64 (80/3)D × (160/3)D × 17D 512× 1024 × 695

R400F4 4× 105 4 (80/3)D × (40/3)D × 12D 1024 × 512 × 1106

R400F16 4× 105 16 (80/3)D × (40/3)D × 12D 1024 × 512 × 1106

respectively; these simulations have been reported in Zhou & Diamessis [66] with a focus on the far-field evolution
of turbulence-generated internal gravity waves. For the largest Re considered by Zhou [64], i.e. Re = 4 × 105, the
same set of Fr values were initially used to carry out the simulations. It was unfortunately discovered later that an
input error in configuring the wave-absorbing sponge layer was committed at the initialization stage of the simulation
for (Re,Fr) = (4 × 105, 64), a simulation that is thus excluded from the discussions in this paper. Specifications of
the remaining 8 simulations are summarized in Table I. Hereinafter, each simulation will be labeled as RaFb, where
a = Re/103 and b = Fr .
As tabulated in Table I which summarizes the implicit large-eddy simulations (ILES) performed, the R5 and R100

simulations were performed in wider and taller domains than the R400 simulations to allow for an investigation of
wake-emitted internal waves in the wake’s far-field [66]. The domains for R400 simulations are made narrower (in y)
and shorter (in z) to curb computational cost, as our focus is primarily on the localized wake turbulence near the
wake centerline at (y, z) = (0, 0) (Fig. 2). To facilitate a direct comparison in terms of the grid resolution across

Reynolds numbers, we report in Table I the number of vertical grid points (N̂z) allocated, in each simulation, within
an interval of z/D ∈ [−6, 6], which corresponds to the full vertical extent of the computational domain for the R400
simulations. The Ly values reported are the initial domain widths in the spanwise direction at the beginning of each
wake simulation. In response to the growing wake width in time, the y direction is subject to regridding to provide
adequate domain width for the wake to evolve freely without significant interference with the wake’s periodic images
(see implementation details in DSD). The vertical subdomain distributions (Fig. 13) are adjusted according to Re

to ensure adequate resolution of relevant lengthscales in the vertical direction. Specifically, the vertical resolution
of the R100 and R400 simulations is comparable to the direct numerical simulations (DNS) reported by Watanabe
et al. [63] who obtained fully resolved flow fields by initializing their simulations by select flow fields taken from the
ILES dataset reported here; according to the same DNS dataset [63], the horizontal grid spacing in our ILES is no
more than 20 times the Kolmogorov scale. The readers are referred to appendix A for further details regarding a
detailed description of the numerical configuration with regard to the adequacy of resolution as Reynolds number is
varied in these simulations. To the best of our knowledge, this is the first time that a stratified towed-sphere wake is
investigated numerically at a Re value up to 4 × 105 to examine the wake’s full life cycle. The computational costs
(in terms of CPU hours) associated with these simulations are O(103) for each R5 simulation, O(104 to 105) for each
R100 simulation, approximately 2.0 million for R400F4, and 5.0 million for R400F16. Due to the considerably large
computational costs, simulation at even higher Re is presently beyond our capacity.

IV. BASIC PHENOMENOLOGY

A first appreciation of the qualitative effects of varying Re on the characteristics of wake turbulence can be obtained
by examining the vortical structures shown in Fig. 3 at a same time (Nt = 120) for a same Froude number (Fr = 4) but
varying Reynolds numbers from Re = 5×103 to 4×105. At this time instance shown, turbulence in all three cases has
self-adjusted under the effects of buoyancy into a highly anisotropic state, i.e. the horizontal turbulence lengthscale,
ℓh, is much larger than its vertical counterpart, ℓv (quantitative information on these lengthscales is reported in §
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FIG. 3: Colormaps of vertical vorticity ωz(x, y) fields at Nt = 120 sampled at the Oxy horizontal mid-plane (z = 0)
for simulations R5F4, R100F4 and R400F4 respectively (from left to right) as shown in panels (a), (b) & (c).

Spanwise vorticity ωy(x, z) fields for the same instances sampled at the Oxz vertical mid-plane (y = 0) as shown in
panels (d), (e) & (f). Sphere travels from left to right. The length of the visualization window is (80/3)D in x and

20D in y for the upper panels, and is (40/3)D in x and 4D in z for the lower panels. The colorbar limits are
±0.09(U/D) for panels (a), (b) & (c), ±0.15(U/D) for panel (d), and ±0.6(U/D) for panels (e) & (f).

VC). As can be seen from the vertical vorticity ωz field shown in panel (a), the R5F4 wake has progressed well into
the quasi-two-dimensional (Q2D) regime [48], where the highly coherent, quasi-horizontal ‘pancake vortices’ dominate
the flow and presumably grow in size through vortex pairing and viscous diffusion [49]. The vertical transect of ωy

for R5F4 in panel (d) shows rather diffused layers of spanwise vorticity ωy (dominated by the vertical gradient of u
velocity) without visible disturbances.
In contrast, for the two higher-Re wakes (Figs. 3e & f), the thickness of the shear layers is markedly reduced,

and the magnitude of the vertical shear is enhanced (note that the colorbar limits are quadrupled in panels (e) &
(f) from those in panel (a) to avoid over-saturation of colors). What appear to be local shear instabilities within
the vorticity layers are clearly visible in panels (e) & (f), in the form of localized patches of disturbances strongly
reminiscent of the observations by Riley & de Bruyn Kops [42] and DSD. These secondary disturbances within shear
layers appear to be more space-filling for the R400F4 case (panel f) than for R100F4 (panel e). Consistent with the
observations drawn from ωy field, the degree of coherence and smoothness exhibited by the ωz field (panels a, b & c)
is significantly reduced as Re increases, to a degree that only a hint of the coherent pancake vortices can be discernible
in the R400F4 wake (panel c). Instead, the vortical structures are dominated by small-scale turbulent patches that
are presumably driven by the local shear instabilities between the highly anisotropic vorticity layers (panel f). Note
that these intermittently distributed turbulent patches occur at a time when R ∼ O(1), as discussed in the next
subsection.
Fig. 4 shows representative vertical transects of spanwise vorticity ωy at Fr = 16 for all three Re values, highlighting

the evolution of such structures in time. Similar to the visualizations for Fr = 4 (see Fig. 3), the vorticity layers
in the R5F16 wake (panel a of Fig. 4) are free from secondary disturbances, and the magnitude of shear is reduced
significantly with time (presumably due to viscous diffusion), as can be seen from the fading of color contrast with
time (same colorbar limits are used for all times shown in the same panel). The R100F16 and R400F16 wakes exhibit
larger values of local shear than R5F16 (again, the colorbar limits in panels (b) & (c) are quadrupled with respect to
that in panel a). The magnitude of spanwise vorticity has been reduced by Nt = 120 for all Re values, but not as
significantly for R100F16 and R400F16 as for R5F16. The secondary disturbances become increasingly sparse for later
times, a trend that is accompanied by increasing values of local gradient Richardson number Rig,loc (see quantitative
discussions in § V). Here Rig,loc can be interpreted as an indicator of the tendency for shear instabilities to form
within the buoyancy-driven vorticity layers (e.g. as used by Riley & de Bruyn Kops [42]). The secondary disturbances
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FIG. 4: Colormaps of spanwise vorticity ωy(x, z) fields at Nt = 40, 80 and 120 respectively (from left to right)
sampled at the Oxz vertical mid-plane (y = 0) for simulations (a) R5F16, (b) R100F16, and (c) R400F16
respectively. The length of the visualization window is (40/3)D in x and 4D in z. The colorbar limits are

±0.09(U/D) for panel (a), and ±0.36(U/D) for panels (b) & (c). The median value of the local gradient Richardson
number Rig,loc at each time instance is marked in the bottom right corner of each subpanel.

are still visible in the R400F16 wake at a time as late as Nt = 120, i.e. approximately 20 buoyancy periods since the
passage of the sphere, whereas the disturbances have almost completely vanished in the R100F16 wake at the same
time. (The readers are referred to § 7.2 of Zhou [64] where more details on the evolution of the vortical structures are
reported).

V. STRATIFIED TURBULENCE CHARACTERISTICS

A. Turbulent integral lengthscales

We first discuss the time evolution of the turbulent lengthscales since they follow distinct scalings as the the
wake turbulence progresses through various flow regimes (see a review in § II). Fig. 5 shows the time series of the
integral lengthscales in the vertical and horizontal directions, i.e. ℓv and ℓh respectively, both normalized by the
sphere diameter, D. These lengthscales can be interpreted as an integral scale characteristic of the energy-containing
motions, and the estimation procedure for these lengthscales from the turbulence spectra is described in appendix
C. The lengths ℓv and ℓh are not to be confused with the wake’s half-height and half-width, computed through the
mean flow profiles and denoted by LV and LH respectively (see appendix C), which are not the focus of the present
discussion.
In examining Fig. 5, it is first to note that the vertical lengthscale ℓv is typically much smaller than the horizontal

lengthscale ℓh, corresponding to turbulent structures of very small aspect ratio ℓv/ℓh. The vertical lengthscale ℓv
(panels a & c) varies very weakly with time, a key observation for our further analysis. The wakes of larger Fr values
typically correspond to larger values of ℓv/D. As the wake’s Reynolds number, Re, is increased from 5× 103 (R5) to
105 (R100), the ℓv/D values decrease significantly (as can be seen by comparing panels a & c), whereas when Re is
increased from 105 (R100) to 4× 105 (R400), the reduction in ℓv is not as significant (panel c). As will be shown, the
R100 and R400 wakes do access the strongly stratified regime after residing in the weakly stratified turbulence regime
(Fig. 1), whereas the R5 wakes progresses from weakly stratified turbulence regime directly into the viscous regime.
Fig. 5d shows that the ℓh/D values are relatively insensitive to Re or Fr for the R100 and R400 wakes, in contrast

to Fig. 5b where some dependence on Fr is observed for the R5 wakes. As shown in panel (d), the ℓh/D values
for the R100 and R400 wakes, remain constant at early times, potentially in response to the wake initialization
procedure. Similar early-time behaviour of horizontal lengthscales, i.e. ℓh ∝ t0, is observed in DNS of decaying
stratified homogeneous turbulence and could be interpreted as an initialization-linked transient (S. M. de Bruyn
Kops, pers. comm.). The ℓh/D values for the R100 and R400 wakes start to grow after Nt ≃ 10. For these wakes
(Fig. 5d), the power-law growth rate is close to the theoretical prediction of t0.5, i.e. Eq. (B7), which is detailed
in appendix B. The curve corresponding to R100F64 notably deviates from the prediction. This is perhaps due to
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FIG. 5: Time evolution of (a, c) vertical turbulence lengthscale, ℓv, and (b, d) horizontal turbulence lengthscale, ℓh,
both normalized by the sphere diameter, D. Panels (a) & (b) show the Re = 5× 103 (R5) results, and panels (c) &
(d) show the Re = 105 and 4× 105 (R100 and R400 respectively) results. The line legends are shown in panels (a) &

(c). The line types and colours distinguish various Fr values, and increasing thickness of lines corresponds to a
larger value of Re, a scheme that is followed throughout this paper.

the fact that the R100F64 wake enters the viscous regime at an early time, i.e. Nt . 15, and the lengthscales are
influenced by vortex merging events (similar to those in the later-times of R5 wakes; see also [48]) which are not the
focus of this study. Perhaps for the same reason, the R5 wakes (Fig. 5b), for which the viscous dynamics dominate
after Nt & 10 (see Fig. 6b), do not appear to match the t0.5 growth very closely.
Fig. 6 examines the competing buoyancy and viscous scalings of the vertical lengthscale, i.e. Eqs. (6) and (7)

respectively. In panels (a) & (c), the inverse cyclical vertical Froude number, Fr⋆−1
v , is plotted against the dimensionless

time, Nt. On each of the curves (except for R5F4), the instance at which the value of Fr⋆v crosses unity is marked
with a circle. As discussed in § II B, Fr⋆v = 1 marks what we define as the entrance into the strongly stratified regime.
The R100 and R400 curves (panel c) cross unity within a narrow range of Nt from 6 to 16, and the Fr⋆−1

v values are
observed to grow weakly with time within the shaded range of 1 < Fr⋆−1

v < 2. Within this shaded region, the value
of Fr⋆v is O(1), which is a dynamical signature of the strongly stratified regime where the inviscid buoyancy scaling of
vertical lengthscale, i.e. Eq. (6), is expected to prevail. Indeed, for these wakes of Fr⋆v values of O(1), buoyancy-driven
shear layers are observed to dominate the flow (see the R100 and R400 visualizations shown in Figs. 3 and 4). The
slow growth of Fr⋆−1

v suggests a possible early stage of the strongly stratified regime, i.e. 10 . Nt . 40, where the
flow gradually adapts to the strongly stratified dynamics. Moreover, particularly for the Fr = 4 wakes, Fr⋆v remains
within the considerably narrow range of 0.61–0.79 during the interval 10 . Nt . 40. The R5 wakes (panel a), on
the contrary, continue to grow in Fr⋆−1

v beyond the unity crossing points (the R5F4 values stay above unity for all
times), suggesting a different type of dynamics in the R5 wakes from the R100 and R400 wakes.

In Figs. 6b & d, the viscous scaling Eq. (7) for the aspect ratio ℓv/ℓh ∼ Re
−1/2
h is examined. Consistent with the

viscous scaling, (ℓv/ℓh)Re
1/2
h in the R5 wakes (panel b) quickly attains O(1) values by the time Nt ∼ O(10); the

smooth and diffused vortical structures dominate the flow thereafter (see the R5 visualizations shown in Figs. 3 and
4). It, however, takes a significantly longer time for the larger-Re wakes (panel d) to approach the viscous regime, i.e.
the cross marks (R = 1) appear at larger values of Nt in panel (d) than in panel b for a given value of Fr . This is due
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FIG. 6: Panels (a) & (c) show the inverse cyclical vertical Froude number Fr⋆−1
v ≡ ℓvN

⋆/U as a function of time.

Panels (b) & (d) test the viscous scaling for the lengthscales, ℓv/ℓh ∼ Re
−1/2
h . The circles in panels (a) & (c) mark

the unity crossing time of Fr∗v, and the crosses in panels (b) & (d) mark the unity crossing time of buoyancy
Reynolds number R (Fig. 10). The lightly shaded region in panel (c) corresponds to 1 < Fr⋆−1

v < 2, a characteristic
dynamical signature of the strongly stratified regime.

to the fact that for the R100 and R400 wakes, (ℓv/ℓh)Re
1/2
h decreases from much larger initial values in early wakes.

The time evolution of the lengthscales is suggestive of a gradual transition between two distinct (inviscid vs. viscous)
scalings (for the R100 and R400 wakes specifically) for ℓv and a strong dependence on the wake’s Reynolds number, a
recurring theme in the remainder of the paper as we analyze various other turbulence diagnostics. No circle or cross
marks could be drawn for the R5F4 case, because Fr∗v < 1 (Fig. 8a) and R < 1 (Fig. 10) for the entire period of time
simulated for this particular wake.

Finally, as discussed in § II B, in Fig. 6d, (ℓv/ℓh)Re
1/2
h ≈ 1 is not yet attained over the times shown for all higher-Re

(R100 and R400) simulations, suggesting that the flows are still transitioning into, and have not fully entered, the
viscously dominated regime at these late times. As such, despite values of R ≈ 1, one still observes the presence of
patchy turbulent fine-structure in Fig. 3c. The full relaminarization of the flow is thus expected at a later time than
when R ≈ 1.

B. Turbulent velocities

The characteristic turbulent velocities in the stratified wakes are examined in Fig. 7. The velocity scale U represents
the root-mean-square horizontal fluctuation velocity

√
〈u′2 + v′2〉2V , where 〈.〉V denotes a volume average within the

wake’s turbulent core as defined by Eq. (C3), and W ≡
√
〈w′2〉2V is the vertical fluctuation velocity. In panel (a), U

is normalized by the tow-speed U and shown as a function of Nt. Wakes of larger Fr typically correspond to a larger
value of U/U at a given value of Nt and Re. For a fixed Fr , the differences between R100F4 and R400F4 are barely
visible. Again, similar to previous figures, the circle (◦) sign on each curve marks the unity crossing time of Fr∗v,
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FIG. 7: Time series of (a) U/U and (b1, b2, b3) W/U , where U and W are the horizontal and vertical fluctuation
velocities respectively, and U is the tow-speed. In (c1, c2) the ratio W/U is plotted against the lengthscale ratio

ℓv/ℓh. Again, the circle on each curve marks the unity crossing time of Fr∗v, and the cross marks the unity crossing
time of buoyancy Reynolds number R, a convention that is followed in all subsequent figures. Line legends of panel

(a) are identical to those used in other panels.

i.e. the entrance time into the strongly stratified for R100 and R400 wakes, and the cross (×) sign marks the unity
crossing time of R, i.e. the entrance into the viscous regime. The time interval of each curve between ◦ and × for
the R100 and R400 wakes corresponds, approximately, to the expected time of residence of the flow in the strongly
stratified regime.

The dashed line in Figs. 7a represents the theoretical prediction Eq. (B7), i.e. U ∝ t−0.5, which is described in
appendix B. The R100 and R400 wakes at Fr = 4 and 16 do not assume the theoretical prediction immediately after
the wakes enter the strongly stratified regime. The U/U values rather decay at a significantly slower rate than t−0.5

during this regime, i.e. Nt . 40, which is responsible for the slow growth of Fr⋆−1
v during the same time interval, as

observed in Fig. 6c. Per the associated discussion in § VA, for this subset of simulations (R100 and R400 specifically),
it is not unreasonable to regard U/U as actually assuming a constant value within the window 10 . Nt . 40. Such
temporal evolution of U/U is perhaps not entirely surprising. As discussed in appendix B, the theoretical analysis
underlying the predictive scalings used in this study assumes only the viscous dissipation as the only driver of the
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kinetic energy budget, i.e. Eq. (B2). In contrast, wakes at such earlier times are expected to have non-negligible
shear production [41] which may cause the turbulence to decay at a slower rate. Moreover, power lost to internal
wave radiation [46], particularly at Re higher than those considered here, is likely to also play an important role in
this context.
As the wakes continue to evolve in the strongly stratified regime, the vertical shear weakens (see § VC), and

the decay rate of U does seem to approach the predicted decay rate t−0.5 for Nt & 40 in these wakes (R100 and
R400). Incidentally, the decay rate of the R100F64 wake (largest Fr simulated in the present study) in the period
of 1 . Nt . 20, is close to the scaling law (dotted line) of U ∝ t−2/3 proposed by Spedding et al. [52] based on
arguments for non-stratified (Fr = ∞) axisymmetric wakes.
As an aside, it is worth comparing the wake results shown in Fig. 7a to the equivalent ones for decaying stratified

homogeneous turbulence, a flow configuration that has attracted extensive research efforts [e.g. 4, 14, 21, 22, 34,
40, 47, 53]. For instance, the grid-turbulence experiments of Praud et al. [40] reported a decay rate of t−1.3 for
the turbulent kinetic energy (dominated by horizontal velocities) which is equivalent to U ∝ t−0.65. The numerical
simulation of Staquet & Godeferd [53] did observe a decay rate U ∝ t−0.5 after the initial flow adjustment to buoyancy
(see their Fig. 7), which is identical to the dashed line shown in Fig. 7a. Very recent simulations of decaying stratified
homogeneous turbulence at very high buoyancy Reynolds numbers [11] report decay rates of U of approximately
t−0.56.
Panels (b1), (b2) and (b3) of Fig. 7 examine the ratio between W and U , a first measure of the ‘anisotropy’ of the

turbulence. As is expected for a stably stratified flow, the ratio W/U in general decreases with time, indicating a
faster decay rate for W than for U . As the R100 and R400 wakes enter the strongly stratified regime, i.e. for Nt & 10,
wakes of larger Re typically correspond to a larger value of W/U at a given value of Nt, similar to the evolution of
U/U shown in Fig. 7a. The strongly stratified turbulence theory [e.g. 15, 44] postulates that by scaling the continuity
equation, one is to expect

W

U
∼

ℓv
ℓh

. (11)

This suggests that the anisotropy of the flow is determined by the aspect ratio of turbulent flow structure, i.e. ℓv/ℓh,
in order to maintain continuity. The scaling in Eq. (11) for ℓv/ℓh relies on continuity argument for the integral scales,
which is distinct from the viscous scaling according to Eq. (7). The R100 and R400 wake data appear to be consistent
with the above scaling in Eq. (11) when the flow indeed resides in the strongly stratified regime, i.e. the W/U values
between the circle and the cross marks (Fig. 7c2) vary approximately linearly with the aspect ratio ℓv/ℓh. In contrast,
the values of W/U drop off much more quickly beyond the cross mark on these curves, indicating a faster decay rate
for W in the viscous regime.

C. Local vertical shear

Central to the dynamics of strongly stratified turbulence is the decoupling of the coherent horizontal motions in
the vertical direction causing vertical shearing between layers to trigger shear instabilities that lead to small-scale
turbulence, e.g. as first discussed by Lilly [29]. To characterize the tendency of forming local shear instabilities, we
examine the local gradient Richardson number, Rig,loc, as defined by

Rig,loc ≡
− g

ρ0

∂ρT

∂z(
∂u
∂z

)2

+
(

∂v
∂z

)2
, (12)

where the total density ρT (x, y, z, t) = ρ(z) + ρ′(x, y, z, t). Such a local Richardson number is commonly used in
the stratified turbulence literature [e.g. 3, 42]. In the context of stratified wakes, the Rig,loc values are first sampled
locally within the turbulent wake core, i.e. as defined by Eq. (C3), and the median value of all local samples at each
time is examined in Fig. 8. The squared local vertical shear in Eq. (12) is expected to scale as

S2 ≡

(
∂u

∂z

)2

+

(
∂v

∂z

)2

∼

(
U

ℓv

)2

, (13)

and the total buoyancy gradient in Eq. (12) is expected to scale as N2. Therefore,

Rig,loc ∼

(
ℓvN

U

)2

= Fr−2
v . (14)
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FIG. 8: Time series of (a) the cyclical vertical Froude number, Fr⋆v, and (b) the median local gradient Richardson
number, Rig,loc.

It should be noted that the above scaling is a generic one that is expected to hold for a wide range of stratified flows,
not limited to the strongly stratified regime. Noting that U ∝ t−0.5 and ℓv ∝ t0 (see appendix B), one expects the
following time dependence for Frv and Rig,loc respectively:

Frv ∝ t−0.5 and Rig,loc ∝ t. (15)

The latter scaling implies that the buoyancy-driven shear layers are expected to become stabilized in time as the local
gradient Richardson number increases. This stabilization is due to the fact that the turbulent velocity U decays in
time while the vertical lengthscale ℓv stays approximately constant, which together cause the local vertical shear S
to weaken.

The time series of Fr⋆v ≡ 2πFrv and the median Rig,loc values are shown respectively in panels (a) and (b) of Fig. 8
for all wakes simulated. Apart from the potential existence, earlier in the strongly stratified regime, of the transitional,
short-duration interval of slowly decaying Fr⋆v ≈ O(1), discussed in § VA, the time series do approach the expected
power-law slopes in Eq. (15) by Nt ≃ 50 for the R100 and R400 wakes. We reiterate here that any power-law scaling
involving time discussed in this paper is not rooted within the fundamental underlying assumptions associated with
strongly stratified turbulence, but rather in the theory of homogeneous decaying stratified turbulence as reviewed in
appendix B. The applicability of these power-laws is strictly for the wake flow under consideration only, not for any
stratified turbulence in general. The F16 wakes start to follow the predicted scaling at an earlier time, which is likely
an artifact of the wake initialization scheme (see DSD). The median value of Rig,loc lies between 0.30 and 0.65 as the
wakes enter the strongly stratified regime, and exit values (marked by crosses) vary with the wake Reynolds number,
i.e. higher-Re wakes leave the strongly stratified regime at a larger median Rig,loc than the lower-Re wakes. The R5
wakes do exhibit significantly larger values of Rig,loc than those in the R100 and R400 wakes throughout the wake’s
life cycle, which is consistent with the absence of disturbances within the shear layers in R5 wakes (Fig. 4a).

Such a difference in the stability of the shear layers is fundamentally linked to the selection mechanism for the
vertical scale ℓv in the strongly stratified regime and in the viscous regime respectively, as discussed in § II and in
§ VA: Within the wakes (R100 and R400) which enter the strongly stratified regime after the initial adjustment
to buoyancy, ℓv spontaneously adjusts to match the U/N scaling such that Fr∗v ∼ O(1), and hence Rig,loc remains
O(1) as well, continuing to support instabilities to develop within the shear layers (Figs. 4b & 4c); for the wakes (R5)

transitioning directly into the viscous regime, ℓv adjusts to match the viscous scaling instead, i.e. (ℓh/ℓv)Re
1/2
h ∼ O(1)

(Fig. 6b), resulting in larger ℓv/D (Fig. 5a), smaller Fr∗v (Fig. 8a), and larger Rig,loc (Fig. 8b), as compared to their
R100 and R400 counterparts. In these R5 wakes which do not access the strongly stratified regime, stable shear layers
dominate the flow by Nt ≃ 10 and quickly laminarize (see e.g. Fig. 4a). The particular scaling that Fr∗v ∼ O(1),
which holds for a prolonged period of time in the R100 and R400 wakes and allows for shear instability to occur
within the layered flow structure, is a defining feature of the strongly stratified regime [see e.g. 9, 15, 34, 44].
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FIG. 9: Variation of horizontal turbulence Reynolds and Froude numbers, Reh and Frh respectively, with the
dimensionless time, Nt. The shaded region is panel (b) corresponds to 0.021 < Frh < 0.035, the range of Frh values

at which the wakes enter the strongly stratified regime.

VI. STRATIFIED FLOW REGIMES AND TRANSITIONS

A. Turbulent Reynolds/Froude-number phase space

With the evolution of individual turbulence quantities now examined in § V, we move forward in this section with
investigating some relevant dimensionless parameters and the trajectories these parameters form in the corresponding
phase spaces. In Fig. 9, the time series of the horizontal turbulent Reynolds and Froude numbers, Reh and Frh,
respectively, defined in Eq. (1), are shown. The time series of Reh in Fig. 9a show an initial decrease with time in
early wakes up to Nt ≃ 10. For the R5 wakes which do not access the strongly stratified regime (with R > 1 and
Frh ≪ 1), the decreasing trend appears to carry on. However, for the R100 and R400 wakes which indeed access the
strongly stratified regime, Reh becomes relatively constant in time during the strongly stratified regime (between the
circle and the cross marks on each curve), an observation that motivates our scaling predictions in Eq. (B7). That the
wakes accessing the strongly stratified regime appear to maintain a constant (or at least same order of magnitude)
value of Reh is a result of the decay of fluctuation velocity U (Fig. 7a) being compensated by the growth of lengthscale
ℓh (Fig. 5d). The R100F64 wake exhibits some significant fluctuations in Reh upon exiting from the strongly stratified
regime, which is likely associated with vortex merging events during the viscous regime which are not the focus of
this study.
As an aside, Spedding et al. [51] reported a scaling of t−1/3 for a ‘local Reynolds number’ computed for laboratory

stratified wakes of Re up to 104. A direct comparison of this Reynolds number with the data reported in Fig. 10a is
perhaps not informative, because the mean-flow component was included in calculating the velocity scale considered
by Spedding et al. [52], while the velocity scale U considered here only includes the fluctuation turbulent velocities,
so that the resulting Reh and Frh estimates are analogous to their counterparts defined for homogeneous turbulence
without mean flows.
Fig. 9b shows the evolution of Frh in time. The initial values of Frh in early wakes are strongly dependent on

the body-based Froude number, Fr , but such a dependence largely vanishes by Nt ∼ O(10). The Frh values at
which the R100 and F400 wakes enter the strongly stratified regime (marked by circles) fall in a considerably narrow
range of 0.021–0.035 (highlighted in grey). The power-law decay rate of Frh approaches t−1 (grey dashed line) as
the wakes evolve into the strongly stratified regime (Nt & 40), consistent with the prediction of Eq. (B6). This
suggests that the assumptions behind this particular scaling, i.e. Taylor’s estimate as in Eq. (B1) and the dominance
of viscous dissipation in the turbulent kinetic energy budget as in Eq. (B2), might indeed be valid in stratified wakes
for Nt & 40 (see the discussion in appendix B). That Frh decays as t−1 is also consistent with the evolution of ‘local
Froude number’ in experiments of Spedding et al. [52], even though their definition of velocity scale is different from
the present study.
Fig. 10 shows the trajectories followed by each of the 8 wake simulations in the parameter space formed by Reh
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FIG. 10: The trajectories followed by stratified wakes in the parameter space formed by Reh and Fr−1
h [9]. Circles

mark the times at which the vertical Froude number Fr⋆v becomes unity, i.e. Fr⋆†v ≡ 1, and crosses mark when
buoyancy Reynolds number R becomes unity, i.e. R‡ ≡ 1. The shaded region corresponds to 29 < Fr−1

h < 48, the

range of Fr−1
h values at which the wakes enter the strongly stratified regime.

and Fr−1
h [9]. The 5 simulations for the larger two Re values do access the strongly stratified regime. The transition

boundary from the weakly stratified to strongly stratified regime is represented by the horizontal dashed line corre-
sponding to Frh = 0.02, the threshold value predicted by Lindborg [31]. The entrance into the strongly stratified
regime for wakes, based on the very definition of Eq. (9), occurs at Frh values fairly close to (slightly larger than) 0.02
(see shaded region in Fig. 9b or in Fig. 10) as indicated above. However, this resemblance may simply be fortuitous
as the numerical values of Frh could change considerably depending on the specific definitions of lengthscales and
velocity scales, and the threshold value may well be dependent on the chosen definition of this transition, i.e. Eq. (9).

As shown in Fig. 10, the R5 wakes transition directly from the weakly stratified turbulence regime to the viscous
regime, i.e. the Frh value is never sufficiently small before the flow becomes viscously dominated. For R100 and
R400 wakes which do access the strongly stratified regime, the trajectory shifts to the right (along the Reh axis)
with either larger Re or smaller Fr . As it shifts to the right, a longer fraction of the trajectory resides within the
strongly stratified regime (the portion between the circle and the cross), accessing smaller value of Frh before leaving
the strongly stratified regime to enter the viscous regime. Such quantitative effects of Re and Fr on these trajectories
are discussed further in § VIB.

B. Dependence on stratified wake parameters

The strongly stratified regime requires R ≡ RehFr
2
h > 1 and Frh ≪ 1 concurrently. Here we attempt to develop

a predictive capability for whether the wake turbulence can access the strongly stratified regime, given the wake’s
externally specified body-based parameters, Re and Fr . As is shown in Fig. 10, Re and Fr have a significant impact on

the Reh value at which a stratified wake enters the strongly stratified regime, i.e. Re†h. On the other hand, the initial
values of the horizontal Froude number upon the entry into the strongly stratified regime fall within the relatively

narrow range of 0.021 < Fr
†
h < 0.035. We will further assume that the value of Fr†h is a generic property of stratified

turbulence and does not vary with body-based Re and Fr ; specifically, we will set

Fr
†
h = const ≃ 0.02, (16)
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FIG. 11: Transitional horizontal turbulent Reynolds number, Re†h, as the flow enters the strongly stratified regime,
and its dependence on the wake’s body-based parameters, Re and Fr . The horizontal line corresponds to the lower

bound of Re†h in order for the wake to access the strongly stratified regime, according to Eq. (17). The vertical line

corresponds to the threshold value of ReFr−2/3 for wakes accessing the strongly stratified regime, according to
Eq. (22).

following the estimate of Lindborg [31] [see his Eq. (21)] which seems to provide a lower (more conservative) bound

for the observed Fr
†
h values shown in Fig. 10. For a wake to access the strongly stratified regime, the requirement

is that the value of R is still above order unity at the point when Frh becomes small enough, i.e. R† > 1 when

Frh = Fr
†
h, or equivalently,

Re
†
h >

1

Fr
†2
h

≃ 2.5× 103, (17)

which provides a threshold value for Re†h in order for a wake to enter the strongly stratified regime. In order to express

Re
†
h as a function of Re and Fr , we employ the mean-flow-based wake scalings reported by Spedding [48]. Re

†
h can

be rewritten as

Re
†
h ≡

U†ℓ†h
ν

=
U†

U

ℓ†h
D

Re, (18)

where U† ≡ U(t = t†) and ℓ†h ≡ ℓh(t = t†). It is observed in our simulations that Nt† falls in a relatively narrow range

6 < Nt† < 16 (see e.g. Fig. 9), a sub-window within the NEQ regime (2 < Nt < 50) where the wake’s centerline
velocity U0 varies relatively slowly with t (see e.g. Fig. 7a of DSD). In order to proceed, we further approximate Nt†

to be a constant across all values of Re and Fr . Given that the turbulent velocity U follows the same Fr -scaling as
U0 [see e.g. 48, 52], we obtain

U†

U
∼

U0(t = t†)

U
∝ Fr−2/3, (19)

where the latter proportionality between U0/U and Fr has been reported by numerous experimental [e.g. 50] and

numerical [e.g. DSD; 64] studies. It is also observed that the ℓ†h/D value has little dependence on Re or Fr as shown
in Fig. 5d. Therefore, one can deduce from Eqs. (18) and (19) that

Re
†
h ∝ ReFr−2/3. (20)

In Fig. 11 we test the scaling of Eq. (20) between Re
†
h and ReFr−2/3. Our numerical data match this scaling prediction

reasonably well for larger values of ReFr−2/3. In particular, we find empirically (via a least-squares fit) that

Re
†
h ≃ (0.49)(ReFr−2/3) (21)
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for simulations which actually access the strongly stratified regime (see Fig. 11). Substituting Eq. (21) into Eq. (17),

one can find a (minimum) threshold value for ReFr−2/3 which is required for a wake to access the strongly stratified
regime, i.e.

ReFr−2/3 & 5× 103. (22)

This effectively provides a quantitative tool to predict the relevance of the strongly stratified regime for a geophysi-
cal/naval wake [50] of given Re and Fr .

VII. CONCLUDING REMARKS

We have examined the structural and dynamical characteristics of the turbulence in stratified towed-sphere wakes,
a canonical turbulent free-shear flow, using the framework of the strongly stratified turbulence theory (as reviewed in
§ II) and a recent large-eddy simulation dataset (§ III). With further theoretical considerations made in the context of
wakes (§ II B and appendix B) and the basic phenomenology presented (§ IV), we examine the large-scale turbulence
characteristics, such as length and velocity scales and the associated non-dimensional parameters (§ V), focusing
on their time evolution as the wake progresses through various regimes (Fig. 10). Our simulations have revealed
significant effects of the wake’s body-based Reynolds number, Re, on the evolution of wake turbulence. In particular,
we have gained the capability of predicting whether a wake at a particular value of body-based Re and Fr could access
the strongly stratified regime (§ VIB) in which the dynamics are dominated by anisotropic layerwise structures in the

vertical which are prone to shear instability (§ VC). Specifically, for a given wake, the value of ReFr−2/3 is required
to exceed a threshold value of approximately 5× 103 (Fig. 11) in order for the wake turbulence to access the strongly
stratified regime. This result provides a criterion for assessing the relevance of the strongly stratified dynamics for
geophysical and naval wakes [see e.g. 50] which typically have large Reynolds numbers, Re ∼ O(108) to O(109), and
a wide range of large Froude numbers, Fr ∼ O(10−1) to O(103). It is, to our best knowledge, the first time that the
effects of Re are quantitatively and systematically discussed in the context of the towed-sphere stratified wake, an
inhomogeneous, freely evolving (i.e. unforced), localized turbulent shear flow, with a focus on the associated dynamics
of strongly stratified turbulence.
This study constitutes the first systematic examination of stratified wake turbulence at three distinct Re values

sufficiently separated in magnitude. As is shown in Fig. 10, the wakes of Re = 5× 103 (lowest value examined here)
never access the strongly stratified regime, rapidly entering the viscously dominated flow regime from the weakly
stratified regime. Wakes at Re = 105 and 4×105 do access the strongly stratified regime, e.g. as evidenced in Fig. 10.
While it is observed that the R100 and R400 wakes may exhibit similar statistics, e.g. the R100 and R400 curves
seem to collapse for the vertical integral scale ℓv in Fig. 5c and for horizontal fluctuation velocity U in Fig. 7a, it
might still be premature to claim that an asymptote in Re has been reached in terms of those statistics, given the
perhaps still limited quadruple increase in Re from R100 to R400 that is computationally feasible in the present
study. Simulations at even higher Re, which effectively allow one to access higher R and lower Frh simultaneously,
are needed to further assess the sensitivity of strongly stratified dynamics to Reynolds number in the geophysically
relevant range [50, 54]. In terms of the turbulent energetics, we observe an early-stage transitional period of the
strongly stratified regime, i.e. 10 . Nt . 40, for which we anticipate that shear production and internal waves
radiation are also relevant contributors to the energy budget, other than viscous dissipation which indeed dominates
the budget for Nt & 40. These additional dynamics, such as internal wave radiation, have been found to be sensitive
to Re [46, 63, 66]. Consequently, potential adaptations to the energetics considerations (appendix B) to account
for additional energy sources and sinks could be relevant at even higher Re values which are currently limited by
computational resources to investigate.
Another intriguing aspect of even higher Re are its potential modifications to the turbulent flow structures, which

is critically linked to the competing selection mechanisms for the vertical integral scale ℓv (§ VA) and the implications
for the stability properties of the buoyancy-driven shear layers (§ VC). The results presented here (Figs. 3 and 4)
have revealed some qualitative effects of Re on the space-fillingness and the longevity of shear instabilities between
buoyancy-driven layered structures [7]. Per the scaling in terms of Re developed in § VIB for stratified wakes, and
recent observations in DNS of stratified homogeneous turbulence [e.g. ref. 11] at sufficiently low values of Frh and
higher values of buoyancy Reynolds number than those attained for wakes in the present study, it is reasonable to
expect that in higher-Re stratified wakes, highly anisotropic energetic turbulence can be present in an even larger
spatial fraction of wake core, at a time that is well into a further prolonged strongly stratified regime, i.e. Nt ∼ O(100)
or even higher. Spatially localized and temporally intermittent turbulent bursts, originating from buoyancy-driven
shear instabilities, are expected to sustain at even later times.
Several other avenues of future research arise from the present study. From the turbulence modelling perspective,

it is imperative to incorporate high-Re strongly stratified dynamics into the self-similarity modelling paradigm for
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stratified wakes established by Spedding [48]. In the analysis presented in this paper, we have focused on volume-
averaged statistics within the wake core assuming that the statistics are almost quasi-homogeneous; the inhomogeneous
aspects of the wake flow await further study. For instance, given the degree of inhomogeneity [see e.g. 63] of turbulence
within the wake, the uniform-eddy-diffusivity assumption made in the self-similarity model of Meunier et al. [35] might
not be appropriate for geophysically relevant parameter ranges and thus needs to be adapted accordingly. Moreover,
particularly for Re values higher than those considered here, this eddy diffusivity is likely to have a non-negligible
vertical component well into the strongly stratified regime, in contrast to the assumption made by ref. [35] that all
vertical momentum transport ceases after Nt ≈ 2.
From a dynamical perspective, it is intriguing to explore how the coherent ‘pancake vortices’ (Fig. 3) are modified

by further increasing Re: Do these structures ever form and remain robust at geophysically relevant values of Re, at
least over timescales of practical interest? What is the exact dynamical pathway [e.g. 60] for the turbulence to evolve,
spatially or temporally, from the near-wake three-dimensional turbulent state within the weakly stratified turbulence
regime, to the highly anisotropic layered state within the strongly stratified regime? Is the ‘zig-zag’ instability
mechanism associated with vortex pairs and/or horizontal shear [3, 5, 6, 16, 32, 49, 62] operative in wakes of larger
Re where the horizontal motions are becoming much less coherent (Fig. 3)? From an oceanographic perspective, it
is interesting to examine the irreversible mixing characteristics in strongly stratified turbulence, taking into account
the potential effects of the formation of layered density structures which requires large values of buoyancy Reynolds
number and gradient Richardson number concurrently [56, 67]. Finally, the numerical dataset used in this paper has
also served as a platform to explore the energetics of turbulence-driven internal wave radiation by high-Re wakes, the
subject of a separate study [46].
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Appendix A: Additional information on numerical configuration

In this appendix, we review some numerical aspects of the stratified wake simulations reported in this paper. In
particular, we examine the specific choices of grid resolution and spectral filters aimed to ensure adequate resolution
of the flow physics while maintaining numerical stability. As discussed in § III of this paper and § 2.5 of DSD,
the implicit large-eddy simulation (ILES) solver [17] does not explicitly implement a particular subgrid-scale model.
Instead, spectral filtering is applied directly to the flow field to drive the downscale energy flux in the unresolved scales
and prevent spectral blockage at the smallest resolved scales. Spectral filtering is applied to both Fourier-discretized
horizontal directions and to the Legendre-multidomain-discretized vertical direction. For the ease of discussion, we
will focus on the horizontal directions, as the relation between a Fourier mode and the corresponding lengthscale can
be more directly established. Moreover, the discussion will be restricted to a one-dimensional filter in the periodic
x-direction. The main conclusions of this discussion may then be translated to the actual isotropic two-dimensional
filter used on the Fourier-discretized horizontal plane in this study (see § 2.4 of DSD).

The particular filter function used in this study consists to a transfer function Ĝ [38] of an exponential form. In
the case of the periodic x-direction, where Nx grid points correspond to Nx/2 complex Fourier modes, the spectral
filter may be written as:

Ĝ(k) = exp[−α(
k̃

Ñ
)p], (A1)
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FIG. 12: Transfer function Ĝ as a function of (a) kxD and (b) kxh for simulations at Re ∈ {5× 103, 105, 4× 105}

respectively. The dimensionless cut-off wavenumber kcD (as measured by the wavenumber at which Ĝ drops to
0.99) is 19.8, 26.2 and 53.0 for the three Re values respectively, corresponding to ∆/D ratios of 0.16, 0.12 and 0.059.
The values of kch is 2.06, 1.38, and 1.38 for the three Re values, corresponding to ∆/h ratios of 1.5, 2.3 and 2.3.

where k̃ = 0, 1, ..., Ñ is the mode number or modal index and Ñ = Nx/2 is the largest modal index corresponding to
the grid resolution. In addition, α = − ln ǫM (ǫM is the machine epsilon), and p is the filter order (typically an even
integer). It is of interest to define a cut-off wavenumber, kc, e.g. after (13.14) of Pope [38],

kc ≡
π

∆
, (A2)

a wavenumber above which the transfer function drops below 0.99, i.e.

Ĝ(k ≥ kc) ≤ 0.99. (A3)

In other words, ∆ is the cut-off (or transitional) lengthscale between scales that are not significantly impacted by

the filter (Ĝ > 0.99) and scales that are under stronger impact of the filter (Ĝ < 0.99). ∆ is also referred to as the
turbulence-resolution lengthscale [39].
Two additional lengthscales may then be defined: L, the characteristic length of the flow geometry (for this

particular study, L ∼ D, where D is the sphere diameter), and h, the grid spacing. The selection of an appropriate a
cut-off lengthscale, ∆, requires that one optimizes two lengthscale ratios: ∆/D and ∆/h. According to § 13 of ref. [38],
it is desirable to minimize ∆/D to retain most of the energy within the non-filtered component of the resolved scales
in the flow field. At the same time, one aims to maximize ∆/h such that the subfilter component of the flow field,
i.e. the filtered component of the resolved scales, be adequately resolved to ensure a numerically accurate and stable
simulation. Specifically, a sufficiently large value of ∆/h is required for the solution to be independent of the choice
of h [see e.g. ref. 39].
The aforementioned guidelines are taken into account when the spectral filter functions are prescribed for the

simulations of Re ∈ {5× 103, 105, 4× 105} respectively. The spectral transfer functions, Ĝ, used at each of these three
Re, are plotted as a function of kxD in Fig. 12a, and as a function of kxh in Fig. 12b. By adjusting, as needed, the
values of Ñ and p in Eq. (A1), one sets the cut-off wavenumber kc and, consequently, sets the ratios ∆/D and ∆/h.

On one hand, added resolution (larger Ñ and smaller h) for increasing Re (Table I) ensures a sufficiently small ∆/D
ratio value, i.e. {0.16, 0.12, 0.059} for R5, R100, R400 respectively. As a result, a significant fraction of the inertial
subrange lies above the filter scale (Fig. 14) with this subrange supported by increasing wavenumber coverage as Re is
increased, particularly when moving from R100 to R400. On the other hand, for the purpose of securing a sufficiently
large ∆/h ratio for numerical accuracy and stability, a stronger filter, corresponding to lower values of p in Eq. (A1),
is used for the two larger values of Re (Fig. 14); in both of these runs the degree of under-resolution is expected to
be higher than the lowest Re considered in this study. It is recommended by Pope [39] that ∆/h ≥ 4 for a scheme
with second-order spatial accuracy and ∆/h ≥ 2 for a sixth-order scheme, in order to remove the dependence of the
solution on h [13, 57]. For the wake simulations considered here, a ∆/h ratio of 1.5 is used for R5, and 2.3 is used
for both R100 and R400 (Fig. 12b). These values are expected to be sufficient, given the spectral accuracy brought
to the specific numerical scheme by the Fourier and Legendre discretizations [17].
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FIG. 13: Subdomain distributions for all three Reynolds numbers on the z/D ∈ [−6, 6] interval. The black
horizontal lines delineate subdomain interfaces with the local Gauss–Lobatto–Legendre grid points omitted for

clarity. The total number of grid points for z/D ∈ [−6, 6] is given by N̂z = M(N̂ +1)+ 1, i.e. as reported in Table I.

Spectral filtering is also applied to the Legendre modal expansions of order N̂ within each subdomain in the
vertical direction. Two measures are taken to ensure adequate resolution in the vertical: First, smaller subdomains
are allocated around the wake centerline at z = 0 (see Fig. 13), leveraging the flexibility brought by the multidomain
approach. Second, the number of grid points is adjusted through the number of subdomains M and the order
of polynomial approximation N̂ (see Fig. 13) to provide better resolution at increasing values of Re. For Re ∈
{5 × 103, 105}, no fewer grid points in the vertical are used in the present study than in DSD’s simulations for
the same wake parameters. For Re = 4 × 105, the vertical resolution is doubled from the Re = 105 case, after the

anticipated Re−1/2 scaling of the vertical scale of turbulence proposed by Riley & de Bruyn Kops [42]. This increase in
vertical resolution is adhered to even if simulation results suggest that the vertical turbulence lengthscale ℓv becomes
rather insensitive to Re for Re ≥ 105, as shown in Fig. 5c.

In configuring these simulations, particular efforts are made to ensure that sufficient numerical resolution is provided
to adequately capture the dependence of wake physics on Re. The vertical resolution of the wake core is comparable
to that used in the direct numerical simulations (DNS) of Watanabe et al. [63] (S. M. de Bruyn Kops, pers. comm.).
Specifically, at Fr = 4 where buoyancy most strongly focuses the shear layers acting as the primary drivers of
turbulence in the the strongly stratified regime, 26, 60 and 140 points are used to resolve across a vertical integral
scale ℓv at R5, R100 and R400 respectively. In the horizontal direction, limitations of computational resources and
the uniform grid associated with a Fourier discretization, prevent attaining DNS-like resolution, i.e. capturing scales
comparable to the Kolmogorov scale. Nevertheless, a significant fraction of the turbulent scales of motion is captured,
particularly during the strongly stratified regime (if it exists). As shown in the analysis of Diamessis et al. [18],
and summarized in § 2.5 of DSD, over the resolved scales not directly impacted by the spectral filter, the molecular
viscosity ν is considerably larger than the numerical viscosity associated with spectral filtering. The numerical viscosity
gradually becomes the dominant source of damping only over scales where the spectral filter function drops to values
less than unity (Fig. 12).

Further support towards the negligible role of the numerical viscosity over the majority of the resolved scales of the
ILES is provided by the comparison of ILES spectra with the corresponding DNS spectra of Watanabe et al. [63] at
specific times in the strongly stratified regime for the R400F4 case [see appendix D of ref. 64]: Up to the wavenumber
where the filter transfer function drops below unity, DNS and ILES are in excellent agreement, and it is indeed over
these unfiltered scales that the relevant large-scale characteristics reported in this paper are based upon. In summary,
as Re is increased in the simulations, vertical resolution is adjusted to be comparable to that of an equivalent DNS,
and horizontal resolution and spectral filter are adjusted to allow for a broader dynamic range of the turbulence over
the resolved scales. Consequently, one has confidence in reliably capturing, as a function of Re, the transition into
the strongly stratified regime and the subsequent evolution of the large scales of the turbulence therein.
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Appendix B: Time dependence of turbulence characteristics

In the investigation of the wake turbulence, it is of interest to understand how various turbulent diagnostics, such
as lengthscales and turbulent kinetic energy etc., evolve with time. In this appendix, we first review the theory of
decaying homogeneous stratified turbulence and then perform the necessary adaptations in the context of stratified
wakes. It is important to note that the end results of the analysis are used as only a reference when interpreting the
numerical results presented in § V concerning stratified wakes; these results are by no means to be interpreted as
generic results which are universal across all stratified flow configurations.
The theory for decaying homogeneous stratified turbulence [14, 43–45] typically involves the following assumptions:

1. Taylor’s estimate for dissipation, i.e. Eq. (5), is valid, which leads to that

ℓh ∼
U3

ε
. (B1)

While the above relation is largely acceptable as a scaling argument, caution should be exercised when Taylor’s
estimate is used as an equality, i.e. ε = AkU

3/ℓh, for stratified flows. Recent investigations [11, 34] have revealed
that the dimensionless number Ak may in fact vary as a function of time (e.g. Fig. 8 of ref. [34] and Fig. 12 of
ref. [11]) when homogeneous turbulence decays from an initially energetic state.

2. Viscous dissipation dominates the turbulent kinetic energy (which is dominated by horizontal velocity U) budget,
i.e.

1

2

dU2

dt
∼ −ε; (B2)

3. The time-dependence of turbulent quantities, such as U , ℓh and ε, can be expressed in terms of power-laws, e.g.

U ∝ t−n, (B3)

where n is a positive (as the turbulence is decaying) constant which needs to be determined. Squaring Eq. (B3)
and substituting into Eq. (B2), one obtains

ε ∝ t−2n−1. (B4)

Combining Eqs. (B1), (B3) & (B4), we obtain the time dependence of ℓh,

ℓh ∝ t−n+1. (B5)

While the value of n is still yet to be determined, one can already predict the time dependence of Frh following
Eqs. (B3) & (B5):

Frh ≡
U

Nℓh
∝ t−1. (B6)

Such a scaling for Frh is a a direct consequence of Taylor’s estimate, i.e. Eq. (B1), and the assumption that viscous
dissipation dominates the energy budget, i.e. Eq. (B2).
Further scaling predictions would require additional assumptions about the dynamics of turbulence. In order to

proceed with making predictions for the time evolution of various quantities for wakes, we are motivated by the
directly computed results shown in Fig. 9a to set the horizontal turbulent Reynolds number, Reh ≡ Uℓh/ν, to be a
constant with time, i.e. Uℓh ∝ t0. It is then straightforward to deduce from Eqs. (B3)–(B5) that n = 0.5, and thus

U ∝ t−0.5 and ℓh ∝ t0.5, (B7)

under our stated assumptions. As will be shown in § V, these scalings agree reasonably well with numerical data for
a subset of the wakes simulated.
At this juncture, it is worth reiterating that the power laws of Eq. (B7) are founded on requiring i) Taylor’s estimate

to hold, ii) the viscous dissipation to be the dominant mechanism in the turbulent kinetic energy budget and iii) the
horizontal turbulent Reynolds number, Reh, to be constant in time (which itself is based on our observation). As
such, these three requirements on which the predictions of Eq. (B7) rely do not necessarily coincide with the set of
assumptions defining the strongly stratified regime, i.e. Eqs. (3), (4) and (6). Therefore, it is not expected that the
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validity of Eq. (B7) would be limited to the strongly stratified regime, or that any flow in the strongly stratified
regime would automatically follow Eq. (B7).
In the context of the evolution of a stratified wake past the initially active turbulent regime, the second requirement

discussed previously, i.e. Eq. (B2), is most likely to hold in late wakes where shear production and internal wave radi-
ation are expected to be weak. Recent studies [41, 63], however, have shown that both shear production and internal
wave radiation could be comparable in magnitude with the viscous dissipation as the wake turbulence undergoes or
completes the adjustment to buoyancy. For example, internal wave radiation has been independently found to be a
leading order term in the energy budget in the R400F4 case during the interval 10 . Nt . 40 [46]. These additional
considerations are addressed whenever relevant in the main text.

Appendix C: Estimation of stratified turbulence characteristics

The stratified wake is a flow configuration that is geometrically distinct from triply periodic, box-filling turbulence
in the sense that wake turbulence is localized in both y and z directions. Nevertheless, various diagnostics of stratified
turbulence are computed for the wake under the assumption that the turbulent wake core may be approximated
as homogeneous over a sufficiently large window in the wake cross-section. Care should be taken in regards to the
implications of such as assumption for the averaging procedures and vertical Fourier transforms used to compute
spectra, both of which are essential for the estimation of the diagnostics of interest. This appendix provides further
details on the calculation of turbulent diagnostics from the spectra.
A first step towards computing the diagnostics of interest, is to define the wake’s turbulent core region (whose width

and height may vary with time) over which turbulence statistics are first sampled locally and then averaged. We first
apply the Reynolds decomposition to the velocity field, e.g. the streamwise velocity u can be decomposed into the
mean and the fluctuating components:

u(x, y, z, t) = 〈u〉x(y, z, t) + u′(x, y, z, t), (C1)

where 〈.〉x denotes an average in the statistically homogeneous x direction. The 〈u〉x(y, z) profile for a given time
becomes immediately useful for defining the dimensions of the wake core. Specifically, one assumes a self-similar
two-dimensional Gaussian profile for 〈u〉x(y, z) as commonly used in experimental [e.g. 48] and numerical (e.g. DSD)
studies of stratified wakes, i.e.

〈u〉x(y, z, t) = U0(t) exp

[
−
1

2

(
y

LH(t)

)2

−
1

2

(
z

LV (t)

)2
]
, (C2)

for a wake centred at (y, z) = (0, 0). For each snapshot of a simulation, a nonlinear least-squares fit is applied to the
〈u〉x(y, z) profile to determine the mean centerline velocity U0, and the mean (half) wake width LH and height LV

[see more details on their time evolution in Fig. 7.12 of ref. 64]. The turbulence statistics reported in the main text
are averaged over a volume encompassed by an elliptic cylinder, as defined by

y2

(2LH)2
+

z2

(2LV )2
≤ 1, (C3)

a region which is regarded as the turbulent wake core. This relatively simplistic definition of the wake core is adopted in
this study for the ease of implementation, and we refer the readers to ref. [63] (whose focus was on the dynamics at the
turbulent/non-turbulent interface) for a more sophisticated criterion for separating the turbulent and non-turbulent
regions by thresholding local potential enstrophy values.
Making the assumption of homogeneity in a sufficiently large sub-area of the cross-section of the wake core, we

employ turbulence spectra as a platform which drives estimates of turbulence lengthscales. In this paper, the horizontal
and vertical turbulence lengthscales, ℓh and ℓv, are estimated through the wake-averaged turbulence spectra, such
as those shown in Fig. 14. Earlier analysis of the stratified wake data considered in this study [64, 65] relied on
alternative approaches which produced significant noise in the timeseries of these lengthscales, Instead, motivated
by the approach used to analyze stratified homogeneous turbulence data (S. M. de Bruyn Kops, pers. comm.), the
horizontal turbulence lengthscale, ℓh, is estimated via a weight-averaged inverse wavenumber, i.e.

ℓh ≡

∫ kx,nyq

kx,min

2πk−1
x Eu(kx) dkx/

∫ kx,nyq

kx,min

Eu(kx) dkx, (C4)

where Eu(kx) is the one-dimensional longitudinal spectrum of u velocity, which is spatially averaged over the wake
core as defined by Eq. (C3), kx,min is the minimum wavenumber 2π/Lx, and kx,nyq is the Nyquist frequency given the
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FIG. 14: Sample compensated energy spectrum of the streamwise velocity u for various Nt values from the R400F4
wake. Vertical dashed line indicates the cut-off wavenumber, kcD ≃ 53, beyond which the numerical solutions are
directly affected by the Fourier filter (Fig. 12). The spectrum is first sampled pointwise for (y, z) locations within
the wake core defined by Eq. (C3), and then averaged over all (y, z) locations sampled to yield the wake-averaged

spectrum.

available degrees of freedom in x. By not including kx = 0, mean streamwise velocity effects are effectively ignored.
Lengthscales so computed compare closely to those determined by zero-crossing of longitudinal autocorrelation func-
tions [34], although the latter lengthscale estimate still exhibit some spurious fluctuations in time for the wake data
and is thus not examined in detail.
Vertical spectra are also sampled for locations within the wake core, i.e. Eq. (C3). One-dimensional vertical profiles

of the perturbation component u′ [as defined in Eq. (C1)] of the streamwise velocity are obtained for (x, y) locations
with y ∈ [−2LH , 2LH ] and x ∈ [0, Lx]. They are then interpolated (using cubic splines) onto a uniform grid spanning
the vertical window of z ∈ [−2LV , 2LV ], i.e. inside the wake core. Such an internal in z is chosen so that at the end
points of the window, i.e. z = ±2LV , the signal u

′ is sufficiently small such that the non-periodicity introduced by the
discontinuity of u′ at the end points has a minimal impact on the spectra when periodicity is imposed by a Fourier
transform. The vertical profiles of u′ within the subwindow are Fourier-transformed and then averaged for all (x, y)
locations sampled to obtain the wake-averaged spectrum, i.e. Eu′(kz). Such as spectrum is then used to obtain an
estimate for the vertical turbulence lengthscale, ℓv, i.e.

ℓv ≡

∫ kz,nyq

kz,min

2πk−1
z Eu′(kz) dkz/

∫ kz,nyq

kz,min

Eu′(kz) dkz, (C5)

where kz,min is the minimum wavenumber 2π/(4LV ), and kz,nyq is the Nyquist frequency. It is perhaps worth noting
that the above definition of ℓv is based on the vertical spectrum of the perturbation velocity u′ as defined in Eq. (C1).
Including the mean component 〈u〉x, which is strongly sheared in the vertical direction z, would bias the estimate of ℓv
in Eq. (C5) towards small wavenumbers (larger scales) that are comparable to kz,min, rather than robustly describing
the scale representative of the smaller-scale buoyancy-driven shear layers (see Fig. 4 for an example). Our use of the
calculated vertical spectra is mainly to derive a characterisitic integral length ℓv, and a detailed investigation of the
vertical spectra [see e.g. 33] is outside the scope of this paper.
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