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A numerically efficient configuration to simulate turbulent flows is to use triply periodic domains,
with numerical forcing techniques to sustain turbulence. Previous homogeneous shear turbulence
simulations considered only idealized homogeneous shear flows, and not the statistically stationary
shear turbulence observed in practical free shear flows. In contrast, the current study mathemati-
cally derives the complete forcing technique from the large scales of the turbulent free shear flows.
Different statistically stationary free shear flows are considered in this study, namely a nearly homo-
geneous shear turbulent flow, turbulent mixing layer, a turbulent planar jet, and a turbulent round
jet. The simulations are performed on triply periodic, statistically homogeneous cubic domains in
the vicinity of the shear layer in the self-similar region. An a priori analysis is performed to cal-
culate the effects of the different forcing terms and to predict the expected turbulence quantities.
The forcing technique is then used to perform direct numerical simulations at different Reynolds
numbers. Numerical results for the different cases are discussed, and compared with results from
experiments and other simulations of free shear turbulent flows. Anisotropy is observed both in the
components of velocity and vorticity, with stronger Reynolds number dependence in the anisotropy
of vorticity. Energy spectra obtained from the present homogeneous shear turbulence agree well
with the spectra from temporally evolving shear layers. The results also highlight the effects of the
additional forcing terms that were neglected in previous studies and the role of shear convection
and the associated splitting errors in the unbounded evolution of previous numerical simulations.

I. INTRODUCTION

Turbulent free shear flows are found in a multitude of
industrial applications and in nature, and their analysis
gives a lot of insight into turbulence and its structure.
However, owing to the range of scales and the stochas-
tic and unsteady nature of turbulence, simulating such
flows has proven to be quite challenging. Various con-
figurations have been used to simulate turbulent flows
using direct numerical simulations (DNS), that are re-
solved down to the smallest turbulent lengths scales.

The most obvious configuration is to use the entire do-
main to solve the spatially evolving flow [1–3]. In this
configuration, the turbulence statistics reach a station-
ary state after a transient period, and hence the results
are ultimately independent from the initial conditions.
Unfortunately, the overall flow field depends strongly on
the boundary conditions. These simulations typically
include a near-field region where the turbulence is not
fully developed, and so this configuration is not compu-
tationally efficient. Since the entire flow field needs to be
solved, these simulations are usually performed at lower
Reynolds numbers to reduce the computational costs.

Another configuration is to consider temporally evolv-
ing turbulent flows. A perfect example is the mixing layer
simulation by Rogers and Moser [4], which introduces ho-
mogeneity in the streamwise direction. The extra peri-
odic direction increases the computational efficiency, but
at the expense of physics. It also aids in calculating the
energy spectra, which can be used to observe the dif-
ferent scales of turbulence. Unfortunately, the statistics
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never reach a stationary state, and hence the results still
depend heavily on the initial conditions.

The third configuration is that of a triply periodic do-
main where the turbulence statistics are homogeneous
and there are no boundary conditions to implement be-
cause of the triple periodicity. A good example is the
numerical simulation of isotropic turbulence by Orszag
and Patterson [5]. The computational efficiency is much
higher as the flow is fully turbulent throughout. How-
ever, in the absence of mean shear, the turbulent kinetic
energy in the domain decays over time due to viscous
dissipation [6]. Hence, to keep the turbulent kinetic en-
ergy stationary over time, the missing mean shear needs
to be emulated through a method of forcing the turbu-
lence. Turbulence in the past has been forced by different
techniques, including spectral forcing [7–10] and linear
forcing [11–13]. While these techniques are required to
generate turbulence in the domain, these numerical forc-
ing techniques have been mostly arbitrary, and do not
capture the physics of the large scale flows accurately.

Recently, Rah et al. [14] combined the numerical
tractability of the third configuration with the physical
accuracy of the first configuration. They used a triply pe-
riodic computational domain, with the forcing calculated
from the flow physics at a small region at the centerline of
a turbulent round jet, and forcing turbulence in a math-
ematically consistent way. The current study extends
this work by considering a small region in the self-similar
shear layer of multiple statistically stationary free-shear
flows and using a triply periodic computational domain
to simulate this shear-dominated flow.

Several homogeneous shear turbulence (HST) simula-
tions have been performed in the literature using simi-
lar techniques [15–21]. While a shear production term
was included in each study, considering an idealized ho-
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mogeneous shear flow, the forcing terms were not de-
rived for practical turbulent flows, and ultimately lacked
the mathematical background to be compared to realis-
tic turbulent flows. Most of these simulations use shear
periodic boundary conditions, but simulate idealized ho-
mogeneous shear flow and the turbulence statistics are
not stationary [16–20]. Some simulations include a wall
boundary in the cross-stream direction, and are not ho-
mogeneous [21].

By simulating only the velocity fluctuations, the sim-
ulations of the current study aim to obtain the elusive
combination of homogeneity and statistical stationarity
in homogeneous shear turbulence calculations.

In section II, the forcing technique will be mathemati-
cally derived, and then calculated, from locations in the
shear layers of four different turbulent flows shown in
Fig. 1. An a priori analysis will be performed for the forc-
ing technique in section III to observe the effects of the
different forcing terms. Section IV describes the simula-
tions, and contains a discussion of the numerical results
and comparison with experiments and other simulations.
Section V includes additional simulations including lin-
ear diagonal terms, non-linear terms, and mean advection
terms. Section VI makes concluding remarks about the
observations from the study.

II. MATHEMATICAL DERIVATION

We start by reviewing Lundgren’s mathematical ap-
proach, which uses a Reynolds decomposition to iden-
tify the effects of the large turbulent scales on the small
scales. Then, four canonical flows are considered (see
Fig. 1), and the forcing matrix is calculated for each of
them. A forcing technique, common to the self-similar
shear layer of these four
flows, is discussed after.

A. Methodology : Review of Lundgren’s approach

First, we consider the Navier-Stokes (NS) equations for
the velocity field u for a fluid flow with constant density
ρ, where p is the pressure and ν is the kinematic viscosity,

∂u

∂t
+ u · ∇u = −1

ρ
∇p+ ν∇2u. (1)

For any turbulent flow phenomenon, the instantaneous
velocity field can be decomposed into mean and fluc-
tuating velocity fields (i.e., Reynolds decomposition),
u = u + u′, where · represents the ensemble average.
Transport equations for the fluctuations are obtained by
calculating the difference between the NS equations for
the full velocity field and the transport equations for the
mean velocity field, namely

NS (u + u′)−NS (u + u′). (2)

This leads to

∂u′

∂t
+(u + u′)·∇u′ = −1

ρ
∇p′+ν∇2u′+∇·u′u′−u′ ·∇u.

(3)
The extra terms in the transport equations for the fluc-

tuating velocity, when compared with Eq. (1), are the
mean-flow advection term (u · ∇u′), the divergence of
the Reynolds stress term (∇ · u′u′), and the production
term (−u′ · ∇u). Lundgren focused on the production
term as the only contributor to turbulent kinetic energy
production [11], but this is not the case as will be seen
later in section C. The major contribution to the tur-
bulent kinetic energy comes from the production term,
which is rewritten as a forcing term A · u′,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ + A · u′, (4)

where A is the forcing matrix, given by A = −∇u. The
source term is linear in u′, forces velocity along all scales,
and keeps the turbulent kinetic energy from decaying due
to viscous dissipation.

Lundgren [11] further assumed that the forcing matrix,
A is a diagonal matrix that generates isotropic turbu-
lence,

ALundgren =


A 0 0

0 A 0

0 0 A

 . (5)

This isotropic forcing term was implemented as Au′,
where A is an arbitrary forcing constant, calculated based
on the required turbulent Reynolds number [13]. In prac-
tice, the forcing matrix depends on the gradients of the
mean velocity.

B. Mean velocity gradients

Different free shear flows are considered in this study,
namely a nearly homogeneous shear turbulence (NHST)
flow, a turbulent mixing layer (ML), a turbulent planar
jet (PJ), and a turbulent round jet (RJ). The mean ve-
locity gradients can be calculated from the mean velocity
profiles obtained from experiments, for each free shear
flow. Once again, the intent is to perform simulations on
triply periodic, statistically homogeneous cubic domains
in the vicinity of the shear layer in their respective self-
similar region as shown in Fig. 1.

1. Nearly Homogeneous Shear Turbulence

For a homogeneous shear turbulence flow, the mean
flow is in the streamwise direction (x). The freestream
velocity is constant along x and varies linearly in y,
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(a) NHST (b) ML

(c) PJ (d) RJ

FIG. 1: Different turbulent free shear flows considered
for the current study with the computational domain

chosen (red cube): a) nearly homogeneous shear
turbulence (NHST) b) mixing layer (ML) c) planar jet

(PJ) d) round jet (RJ).

away from the walls located at y = −h/2 and y = h/2.
The mean streamwise velocity at the center of the wind
tunnel, y = 0 is UC . Far downstream, the quantities
are self-similar and are homogeneous in the y direction
away from the walls. However, the integral length scale
` increases linearly with x [22], and consequently, the
Reynolds stresses and the velocity fluctuation magni-
tudes increase with x, hence the name “nearly” homo-
geneous shear turbulence. Equation (3) for the HST flow
in the center of the wind tunnel becomes,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ − ∂ux

∂y
u′yex

− ux
∂u′

∂x
+
∂u′xu

′
x

∂x
ex +

∂u′xu
′
y

∂x
ey. (6)

Most simulations of homogeneous shear turbulence use
periodic boundary conditions in the x direction without
rescaling the velocity, and choose to neglect the diver-
gence of the Reynolds stress terms. The forcing matrix
for NHST at y = 0 is

ANHST = −


0 ∂ux

∂y 0

0 0 0

0 0 0

 = BNHST


0 1 0

0 0 0

0 0 0

 . (7)

The only element of the forcing matrix is due to the shear
strain rate ∂ux

∂y , and the matrix is normalized by that
quantity.

2. Mixing Layer

For a spatial mixing layer, the mean flow is primarily
in the streamwise direction (x). The freestream velocity
is constant along x, and is 0 for y → +∞ and US for
y → −∞. The center of the shear layer is at y1/2, where
the mean streamwise velocity is US/2. Far downstream,
the mixing layer quantities are self-similar and are only a
function of the similarity variable, η ≡ (y−y1/2(x))/δ(x).
The mixing layer thickness δ increases linearly with x,
and y1/2 is linear in x [23]. There is no mean flow in the
spanwise direction (uz = 0) and the flow is statistically
homogeneous in the spanwise direction (∂ux

∂z = 0 and
∂uy

∂z = 0).
Equation (3) at the center of the mixing layer becomes,

∂u′

∂t
+ u′ · ∇u′ = −1

ρ
∇p′ + ν∇2u′ − ∂ux

∂x
u′xex

− ∂ux
∂y

u′yex −
∂uy
∂x

u′xey −
∂uy
∂y

u′yey − ux
∂u′

∂x
− uy

∂u′

∂y

+
∂u′xu

′
x

∂x
ex +

∂u′xu
′
y

∂x
ey. (8)

The forcing matrix for the spatial mixing layer at y =
y1/2 is

AML = −


∂ux

∂x
∂ux

∂y 0

∂uy

∂x
∂uy

∂y 0

0 0 0

 = BML


−0.035 1 0

−0.001 0.035 0

0 0 0

 ,
(9)

calculated from the mean velocity profile given by Lum-
ley [24]. The largest element of the forcing matrix is due
to the shear strain rate ∂ux

∂y , and the matrix is normalized

by BML = −∂ux

∂y (y1/2) = 1.022US

δ .

3. Planar Jet

In a planar jet, the mean flow is primarily in the
streamwise direction (x), and the centerline mean veloc-
ity at the jet axis, Uo(x), decays along x as 1/

√
x [1, 25–

27]. The mean velocities are self-similar far from the
jet exit, and when normalized by the centerline veloc-
ity, are only functions of the similarity variable, η ≡
y/y1/2(x), where y1/2 is the half-width of the jet defined
by ux(x, y1/2(x)) = Uo(x)/2.

The jet has no mean flow in the spanwise coordinate
(z), and no mean gradients along z. The forcing matrix
for the planar jet in the middle of the shear layer at
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y = y1/2 is calculated from mean velocity profiles given
by Bradbury [25],

APJ = −


∂ux

∂x
∂ux

∂y 0

∂uy

∂x
∂uy

∂y 0

0 0 0

 = BPJ


−0.071 1 0

−0.007 0.071 0

0 0 0

 ,
(10)

where BPJ = 0.730 Uo

y1/2
. Once again, the largest contri-

bution to the forcing matrix comes from the off-diagonal
shear strain term. The forcing matrix is comparable to
the mixing layer forcing matrix in Eq. (9).

4. Round Jet

For a round jet, Eq. (3) is rewritten in cylindrical coor-
dinates for simplicity. The mean flow is primarily in the
streamwise direction (x), and the mean centerline veloc-
ity Uo(x) has a 1/x dependence [2, 28–31]. We recall
the flow is self-similar and the jet quantities, when nor-
malized by the centerline velocity, are only functions of
the similarity variable η ≡ r/r1/2(x), where r1/2 is the
half-width of the jet.

There is no mean flow in the azimuthal direction (θ),
and no mean gradients along θ. Hence, the forcing matrix
for the round jet in the middle of the shear layer at r =
r1/2 as shown in Fig. 1d is calculated from mean velocity
profiles taken from Schlichting [32],

ARJ = −


∂ux

∂x
∂ux

∂r 0

∂ur

∂x
∂ur

∂r 0

0 0 ur

r

 = BRJ


−0.014 1 0

−0.001 0.037 0

0 0 −0.023

 ,
(11)

where BRJ = 0.586 Uo

ro
1/2

. Once again, the largest element

in the matrix is the off-diagonal shear strain ∂ux

∂r . The
matrix is comparable to the velocity gradient matrix for
planar jets from Eq. (10).

C. Additional source terms

In addition to the mean velocity gradients, there are
source terms that arise from enforcing periodic boundary
conditions in the simulation domain [14]. The velocity
fluctuations are appropriately normalized to ensure that
their second order statistics are homogeneous, so periodic
boundary conditions can be used, and these normaliza-
tions result in additional source terms. Although these
source terms can be calculated for any of the canonical
flows mentioned before, the turbulent round jet case is
considered for the following calculations, as it has been
researched in literature in greater detail.

1. Periodicity in x

As mentioned earlier, in a round jet, the centerline ve-
locity Uo(x) decreases with x as 1/x. Since the velocity
fluctuations are proportional to the centerline velocity,
they also decay along x as 1/x. Under these conditions,
the flow is not statistically homogeneous in the x direc-
tion, and it would be inappropriate to assume periodic
boundaries. To lift this limitation, the velocity fluctua-
tions are rescaled by the 1/x dependence as

u′x = u(x)x

xo
x

u′y = u(x)y

xo
x

u′z = u(x)z

xo
x
,

(12)

where u(x) is the velocity fluctuation that is statistically
homogeneous along x in the vicinity of x = xo. This
rescaling produces extra elements in the forcing matrix
from the u ·∇u′ term. At x = xo, the forcing matrix due
to the periodicity correction in x is given by

Ax =


ux

xo
0 0

0 ux

xo
0

0 0 ux

xo

 . (13)

2. Periodicity in r

The simulation assumes periodicity along r as well, but
the velocity fluctuations depend on the radial distance.
In order to maintain statistical homogeneity along r, the
velocity fluctuations are rescaled by their individual r
dependences.

u(x)x = u(r)x f(η)

u(x)r = u(r)r g(η)

u
(x)
θ = u

(r)
θ h(η),

(14)

where u(r) is the velocity fluctuation that is statisti-
cally homogeneous along r in the vicinity of r = ro1/2 =

r1/2(xo). The forcing matrix due to u · ∇u′ applied on
Eq. (14) is then

Ar =
ur − Sux
ro1/2


C1 0 0

0 C2 0

0 0 C3

 , (15)

where S = dr1/2/dx is the spreading rate, C1 = − df
dη (1),

C2 = − dgdη (1) and C3 = −dhdη (1). From the velocity
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fluctuations profiles from Hussein et al. [31], we have at
r = r1/2,

ux = 0.5Uo

ur = 0.014Uo

S = 0.0935

C1 = 0.517

C2 = 0.398

C3 = 0.345.

(16)

3. Continuity

The original continuity equation for u′ is

∂u′x
∂x

+
1

r

∂ (ru′r)

∂r
+

1

r

∂u′θ
∂θ

= 0. (17)

After the normalization in x and r for periodicity
(Eqs. (12) and (14)), the continuity equation for u(r) be-
comes:

∂u
(r)
x

∂x
+

1

r

∂(ru
(r)
r )

∂r
+

1

r

∂u
(r)
θ

∂θ
= (1− C1)

u
(r)
x

xo
+ C2

u
(r)
r

r1/2
.

(18)
The continuity equation for u(r) has two extra terms.
While it is possible to solve the NS equations with ad-
ditional terms in the continuity equation, it is preferable
to have no source terms. That is why u(r) is rewritten
in terms of u′′, under the conditions that u′′ = u(r) at
{xo, r1/2} and u′′ is divergence free:

u(r)x = u′′x exp [(1− C1)(x/xo − 1)]

u(r)r = u′′r exp [C2(r/ro1/2 − 1)]

u
(r)
θ = u′′θ .

(19)

The forcing matrix due to the continuity correction is

AC =


−ux

xo
(1− C1) 0 0

0 Sux−ur

ro
1/2

C2 0

0 0 0

 . (20)

The complete transformation from the original ve-
locity fluctuation u′ to the statistically homogeneous,
divergence-free velocity fluctuation u′′ is given by

u′x = u′′x
xo
x
f(η) exp [(1− C1)(x/xo − 1)]

u′r = u′′r
xo
x
g(η) exp [C2(r/ro1/2 − 1)]

u′θ = u′′θ
xo
x
h(η),

(21)

and the transport equation for u′′ at {xo, r1/2} is calcu-
lated as

∂u′′

∂t
+u′′ ·∇u′′ = −1

ρ
∇p′+ν∇2u′′+ARJ ·u′′−u·∇u′′

+∇ · u′′u′′ +

[
C1ur
ro1/2

u′′x +
C1

ro1/2

(
u′′xu

′′
r − u′′xu′′r

)]
ex

+

[
ux
xo
u′′x +

1

xo

(
u′′xu

′′
r − u′′xu′′r

)]
er

+

[
ux(1− C3)

xo
u′′x +

1− C3

xo

(
u′′xu

′′
θ − u′′xu′′θ

)]
eθ

+

[
ur
ro1/2

u′′x +
C3

ro1/2

(
u′′ru

′′
θ − u′′ru′′θ

)]
eθ + visc, (22)

with the gradients of the normal stress in ∇·u′′u′′ being
exactly zero, as u′′ is homogeneous in magnitude. Theo-
retically, the gradient of the Reynolds shear stress would
still exist. However, at r = r1/2, the correlation coeffe-

cient, ρxr = u′xu
′
r/
(
u′xu

′
x u
′
ru
′
r

)1/2
is near constant [33],

and its gradient is near zero. The additional viscous
terms are negligibly small for highly turbulent flows.

The final forcing matrix is calculated as a sum of all
of the contributions from Eqs. (11), (13), (15) and (20),
and is given by

AF = ARJ+Ax+Ar+AC ' BRJ


−0.039 1 0

−0.001 0.117 0

0 0 0.038

 .
(23)

It is clear that the final forcing matrix is very close
to the matrix from Eq. (11), with less than 6% differ-
ence compared to the largest element. The periodicity in
x and r, and the continuity correction do not have sig-
nificant contributions in the shear layer of a round jet,
whereas it had significant effects at the jet axis [14].

4. Non-linear terms

All the source terms in Eq. (23) are linear in u′′; but
the transformation from u′ to the statistically homoge-
neous and divergence-free u′′ in Eq. (21) gives rise to
some non-linear source terms owing to the term u′ ·∇u′,
as seen in Eq. (22). These non-linear source terms can
be written as ANL · u′′ − ANL · u′′, where ANL is given
by

ANL =


C1

ro
1/2
u′′r 0 0

0 1−C2

x0
u′′x 0

0 0 1−C3

x0
u′′x + C3

ro
1/2
u′′r

 . (24)
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These terms have similar magnitudes to the linear source

terms from Eqs. (13) and (15), as
√
u′′x

2/ux ' 0.48 and√
u′′r

2/ux ' 0.36.

D. Summary

The simulation considers the forcing matrix calculated
at {x, r, θ} = {xo, ro1/2, 0}, and hence the r-θ direction

in the jet coordinates can be replaced by y and z in
the cartesian coordinate system of the DNS. The ve-
locity solved for in the simulation correspond to values
at the half-width of the jet, {u′x, u′r, u′θ}(xo, ro1/2, θ) =

{u′′x, u′′y , u′′z}. For simplicity, u′′ would be represented as
u′ henceforth.

Some key aspects of this derived forcing must be em-
phasized. First, the forcing is a direct result of the
physics of the free shear turbulent flows considered; the
forcing term is not arbitrary, and is derived mathemat-
ically from the large scales of the mean flow. Sec-
ond, the forcing is not isotropic, which is consistent
with results from experiments of free shear flows, where
〈u′2x 〉 > 〈u′2y 〉 [25, 31]. Third, the forcing in this case is
not purely from the diagonal terms as suggested by Lund-
gren’s isotropic turbulence, but rather dominated by an
off-diagonal shear term.

Comparing with other Homogeneous Shear Turbulence
(HST) simulations, where the only production term is
Bu′yêx, there are additional linear forcing terms on the
diagonal due to mean velocity gradients, renormaliza-
tions in order to maintain periodicity in the x and y/r
directions, and continuity corrections. In addition to the
linear diagonal forcing terms, there are also additional
forcing terms that are non-linear in u′. Finally, the mean

advection term is calculated as −u ·∇u′ = By ∂u
′

∂x , which
has been included in past simulations. To avoid confu-
sion with the shear strain (i.e. energy production) term,
this term is referred to as shear convection.

III. A PRIORI ANALYSIS

Multiple source terms have been computed in the pre-
vious section. Their effect on the turbulence quantities
can be estimated using an a priori analysis. Once the
most dominant source terms have been selected, the re-
lationship between the source terms and other turbulence
quantities can be established.

A. Contribution of source terms

The effect of all the source terms on the turbulence
can be observed from the effects on the turbulent kinetic
energy, k = 1

2 〈u
′2
x + u′2y + u′2z 〉 (〈 · 〉 represents ensem-

ble average). The transport equation for the turbulent

kinetic energy can be obtained from the velocity fluctu-
ations transport equation as

dk

dt
=

〈
u′i
∂u′i
∂t

〉
. (25)

The turbulent kinetic energy equation for the simulation
including all the additional linear and non-linear terms
and mean advection terms, is given by

dk

dt
= −ε+ P + Pdiag + PNL + Pconv, (26)

where ε = 2ν〈sijsij〉 is the energy dissipation rate. All
other terms vanish under statistical homogeneity. The
contribution by each of the terms to turbulent kinetic
energy production can be calculated and compared with
the most dominant shear term P = B〈u′xu′y〉. The con-
tribution from the diagonal terms is calculated as,

Pdiag
P

=
−0.039B〈u′xu′x〉+ 0.089B〈u′yu′y〉+ 0.038B〈u′zu′z〉

B〈u′xu′y〉
.

(27)
Using Reynolds stress values from the round jet results

from Hussein et al. [31],
Pdiag

P = 0.117. The contribution
from the non-linear terms can also be calculated as,

PNL
P

=
0.82B〈u′xu′xu′y〉+ 0.10B〈u′xu′yu′y〉

B〈u′xu′y〉Uo

+
0.10B〈u′xu′zu′z〉+ 0.59B〈u′yu′zu′z〉

B〈u′xu′y〉Uo
. (28)

Using velocity triple correlation values from the round
jet results from Hussein et al. [31], PNL

P = 0.209. The
contribution from the shear convection term is computed
as

Pconv
P

=
B
〈
y
∂u′

x

∂x u
′
x + y

∂u′
y

∂x u
′
y + y

∂u′
z

∂x u
′
z

〉
B〈u′xu′y〉

=
By ∂k∂x
B〈u′xu′y〉

.

(29)
Because of statistical homogeneity in the x direction,
Pconv

P = 0. In other words, the advection by the mean
term does not contribute to kinetic energy production, as
mentioned earlier. Hence, the shear convection terms are
not included in the current simulation. Further analyses
and justifications are provided in sections III C and V B.

In summary, the shear strain is the most dominant
term, contributing to 75% of the production of turbu-
lent kinetic energy. The linear terms in the diagonal of
the forcing matrix and the non-linear terms contribute to
9% and 16% of the production, respectively. Similar re-
sults are obtained for mixing layers and planar jets. The
off-diagonal shear strain element is at least one order of
magnitude larger than the other elements in the matrix
and is the major driving force for turbulence production
in these aptly named free shear flows, accounting for at
least 75% of the turbulent kinetic energy production.

In the current study, for a triply periodic simulation of
HST, it is a good approximation to use the off-diagonal
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shear strain, B, as the only forcing term, with the forcing
matrix given by

AHST =


0 B 0

0 0 0

0 0 0

 , (30)

where B can be chosen based on the simulation parame-
ters and the desired turbulent Reynolds number. While
this term does not inject any external energy, it repre-
sents the injection of energy into the velocity fluctua-
tions by the mean flow, hence it is an “effective forcing
term” in the spirit of Lundgren’s approach, and is hence-
forth referred to as a forcing term for simplicity. This
is similar to conventional simulations of HST, where the
off-diagonal shear strain term is the only mechanism for
turbulence production [18, 20]. Those studies do not in-
clude any of the linear diagonal and non-linear forcing
terms; but they include the shear convection term that
does not contribute to turbulent kinetic energy.

B. Stationary state analysis

The entire mathematical framework presented in the
previous section relies on the assumption that the veloc-
ity field can be decomposed into mean and fluctuating
quantities. Then, the simulations in the current study
solve for the velocity fluctuations. By construction, these
velocity fluctuations represent the fluctuations of the flow
field in a small region of a statistically stationary turbu-
lent flow. Hence, the fluctuating quantities and their re-
lated statistics must reach a statistically stationary state.
This applies to turbulent kinetic energy, dissipation rate,
Reynolds stress, and so on.

Before performing the HST simulations, the target
Reynolds number of the simulation needs to be decided,
so that the required grid resolution can be evaluated
in order to fully resolve down to the smallest turbulent
scales. The relationship between the forcing constant
B and the Reynolds number needs to be established, in
order to calculate the required shear strain, B. The ex-
pected eddy turnover time is also calculated from the
turbulent kinetic energy and the energy dissipation rate,
in order to determine the total simulation time. These
expected turbulence quantities are estimated from the
stationary state of these simulations.

The turbulent kinetic energy equation for this HST
forcing, assuming spatial homogeneity, is

dk

dt
= −ε+B〈u′xu′y〉. (31)

At statistically stationary state, the energy dissipation
rate is

ε = B〈u′xu′y〉. (32)

This should be compared to the stationary state with the
isotropic forcing [13],

ε = 2Ak (33)

The cross correlation in Eq. (32) can be written in
terms of the turbulent kinetic energy, 〈u′xu′y〉 = βk, where
β is a non-dimensional parameter.

The integral length scale, `, is defined as,

` =
u3rms
ε

=
2urms
3βB

, (34)

with

urms =

√
2k

3
=

3

2
βB`. (35)

The Taylor micro-scale, λ, is calculated as

λ =

√
15
ν

ε
urms. (36)

The expected Taylor micro-scale Reynolds number for
HST is calculated as

Reoλ =

√
45βB`2

2ν
. (37)

For isotropic turbulence simulations, it was given by Car-
roll and Blanquart [13],

Reoλ =

√
45A`2

ν
'
√

9AL2

5ν
, (38)

as `/L ' 0.2 for isotropic turbulence in a triply periodic
box domain [12, 13], where L is the domain width. As
will be shown from numerical results in Fig. 2a and 2b,
β ' 0.4 and `/L ' 0.28 for HST. So, given the same
domain width and viscosity, DNS of HST can be per-
formed with the same Reynolds number as DNS of homo-
geneous isotropic turbulence, using the forcing constant
B ' 3.2A.

The expected values for turbulent kinetic energy, ko,
and energy dissipation rate, εo, can be calculated as

ko =
3

2
u2rms =

27

8
β2B2`2, (39)

and

εo =
u3rms
`

=
27

8
β3B3`2. (40)

The expected eddy turnover time τo is given by

τo =
ko
εo

=
1

βB
' 25

32A
, (41)

which is slightly higher than for the isotropic case, where
τo = 1

2A [13].



8

0 10 20 30 40 50
0

0.5

1

1.5

t/τo

ℓ/
L

 

 

Reλ = 32

Reλ = 52

Reλ = 80

Reλ = 135

(a) Integral length scale

0 10 20 30 40 50
0

0.2

0.4

0.6

0.8

1

t/τo

〈u
′ x
u
′ y
〉/
k

 

 

Reλ = 32

Reλ = 52

Reλ = 80

Reλ = 135

(b) Reynolds shear stress

50 100 300 1000
0

0.2

0.4

0.6

0.8

1

Reλ

〈u
′ x
u
′ y
〉/
k

Mixing layer

Planar jet

Round jet

filled : exp.

open : DNS

(c) Reλ dependence

FIG. 2: a) Integral length scale normalized by the domain width, b) Reynolds shear stress 〈u′xu′y〉 normalized by
turbulent kinetic energy, for the four DNS, and c) comparison of Reynolds number dependence of Reynolds shear

stress 〈u′xu′y〉 with other studies. Dashed lines corresponds to the averaged value obtained from all simulations in the
current study.

C. Shear convection

The proposed HST simulation has a key difference from
most simulations of shear turbulence [17–20]; it does not

include the shear convection term By ∂u
′

∂x . The shear con-
vection term requires either a remeshing scheme after
every few iterations [34] or implementing shear periodic-
ity along the y direction to avoid boundary discontinu-
ities [18–20]. It is often accomplished by using operator
splitting [16, 20], which may introduce further errors in
the computational solution.

As mentioned earlier, the shear convection term does
not contribute to turbulent kinetic energy production

(see section III A), as Pconv = 〈By ∂u
′

∂x · u
′〉 = 0 due to

spatial homogeneity. That being said, it may still impact
the turbulent flow. To quantify this impact, we evalu-
ate the shear strain produced by the advection term and
compare it to the existing shear strain due to the tur-
bulence. The shear strain due to the convection term
can be calculated as ∂ux

∂y = B and compared against the

existing shear strain due to the turbulence,
∂u′

x

∂y . Since〈
∂u′

x

∂y

〉
= 0, the second order statistics are compared as,

B2〈(
∂u′

x

∂y

)2〉 =
15ν
2 B2

15ν
2

〈(
∂u′

x

∂y

)2〉 ' 15νB2

2ε
=

50

β2Re2λ
,

(42)

with the isotropic assumption that ε ' 15ν
2

〈(
∂u′

x

∂y

)2〉
.

For Reλ = 100, the ratio is 0.031. Hence, the impact of
the shear convection term is small, and decreases with
increasing Reynolds number. Thus, the shear convection
term is omitted for true spatial homogeneity and numeri-
cal efficiency. Its impact will be discussed in Section V B.

IV. NUMERICAL RESULTS

A. Simulation

Direct numerical simulations of homogeneous shear
turbulence are performed in a triply periodic box do-
main that is statistically homogeneous in all three direc-
tions. Simulations are performed with a domain width
of L = 2π, and various Reynolds numbers Reλ.

The simulations are performed using NGA [35], a semi-
implicit velocity solver with an energy-conserving finite
difference scheme on a standard staggered grid. The
code solves the Navier-Stokes equations with the derived
source term from Eq. (30) for constant density, temper-
ature, and viscosity.

The initial velocity fields are generated randomly, us-
ing the method suggested by Eswaran and Pope [7].
These velocity fields conform to a specified Passot-
Pouquet energy spectrum [36] and are divergence free,
as is required for constant density flows.

Multiple simulations are performed at different ex-
pected values of Reλ. The simulation parameters for the
four different cases are tabulated in Table I. Cases 1 and
2 were performed to investigate low Reynolds number ef-
fects, if any. Cases 3 and 4 are chosen so the Reynolds
number is comparable to simulations and experiments,
published in literature (See Table II for a full list of exper-
imental and full domain DNS studies). More precisely,
case 3 has a similar Reynolds number to cases 1 [4], 4 [1]
and 8 [2] from Table II; case 4 has a Reynolds number
close to cases 5 [26] and 9 [3] in Table II.

The simulations were performed for a total of 50 eddy
turnover times, during which the simulations were sta-
ble. The average values for the numerical results were
calculated in the range, 10τo to 50τo.
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TABLE I: Simulation parameters of the different cases

No Reoλ N3 L ν B Forcing Matrix Reλ u′x/urms u′y/urms u′z/urms 〈u′xu′y〉/k

1 36 643 2π 0.159 7.33 AHST 32± 6 1.26 0.90 0.77 0.42
2 54 1283 2π 0.159 16.5 AHST 52± 9 1.23 0.93 0.78 0.41
3 80 1923 2π 0.159 37.1 AHST 80± 13 1.23 0.92 0.78 0.39
3a 80 1923 2π 0.159 37.1 AF 80± 15 1.21 0.94 0.79 0.39
3b 80 1923 2π 0.159 37.1 AF +ANL 80± 13 1.20 0.95 0.80 0.38

3c 80 1923 2π
1) 0.159

2) -0.0159
37.1 AHST 121± 20 1.23 0.93 0.79 0.37

3d 80 1923 2π 0.1431 37.1 AHST 85± 10 1.23 0.94 0.78 0.39
4 128 3843 0.126 1.5e-5 2.77 AHST 135± 23 1.22 0.93 0.80 0.38
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FIG. 3: a) Turbulent kinetic energy normalized by its expected value (Eq. 39). b) Energy dissipation rate
normalized by its expected value (Eq. 40). c) Taylor microscale Reynolds number, Reλ, for DNS 3. Dashed line

corresponds to Reoλ = 80.

B. Temporal Evolution

Since the configuration is periodic in all three direc-
tions, and spatially homogeneous, ensemble averaged
mean quantities are calculated as spatial averages (〈 · 〉).
These spatial averages are plotted as a function of time.

The time evolution of the integral length scale is plot-
ted in Fig. 2a, and after an initial transient period of
at most 10τo gives a mean value of about 0.28L, which
is slightly higher than the 0.2L for isotropic turbulence
observed by Rosales and Meneveau [12]. The integral
length scale reaching a statistically stationary value of
the order of the domain width is consistent with past
simulations of statistically stationary homogeneous shear
turbulence [42].

Since the largest gradient of the mean flow is the shear
strain ∂ux

∂y , the only significant Reynolds stress term is

〈u′xu′y〉. This is reflected by the simulation, as the forc-
ing term is in the equation for the axial velocity (u′x),
proportional to the cross-stream velocity (u′y). So, it is
expected that u′x and u′y have a significant positive corre-
lation. This is one of the major differences between HIT
and HST, as there is no correlation among the veloci-
ties in different directions for the isotropic case. Figure
2b shows the 〈u′xu′y〉 values normalized by k at different

Reλ. It can be seen that after 5τo, the values fluctuate
around 0.4 for all cases, in good agreement with each
other.

The average value of Reynolds shear stress from all
simulations of the current study is also plotted in Fig. 2c
and compared with values from various simulations and
experiments plotted as a function of Reynolds number.
The current study overpredicts the Reynolds shear stress,
by about 1.5σ compared to values from other studies,
and there seems to be no clear dependence on Reλ.

The turbulent kinetic energy and energy dissipation
rate, normalized by their respective expected values cal-
culated from Eq. (39) and (40), are plotted versus time
for the different cases in Fig. 3. The values fluctu-
ate around the expected values, so the estimation of ko
and εo are accurate. The fluctuations increase in mag-
nitude with increasing Reynolds number. This is ex-
pected, as linear forcing becomes more unstable with
higher Reynolds number, as observed by Carroll and
Blanquart [13], who used a modification to the linear
forcing term to improve stability. In contrast, the cur-
rent forcing term uses constant mean shear, as opposed
to the constant production forcing used by Carroll and
Blanquart [13].

Figure 3c shows the Reynolds number, based on Taylor
micro-scale, versus time for case 3, and it can be observed
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FIG. 4: a) Rms velocity components along x, y, and z, normalized by urms, for DNS 3. (Reoλ = 80) b) Mean values
for velocity fluctuations normalized by urms from other studies plotted versus Reλ. Dashed lines correspond to the
averaged values from the current simulations (1.24, 0.92, and 0.78 respectively). c) Average values of rms vorticity
components along different directions normalized by ωrms plotted versus Reλ. Dashed line corresponds to isotropic

turbulence.

TABLE II: Anisotropy results from various experiments and simulations of different free shear turbulent flows.
Average values of u′i/urms and 〈u′xu′y〉/k in the middle of shear layers of ML, PJ, and RJ.

No Case Authors Reλ u′x/urms u′y/urms u′z/urms 〈u′xu′y〉/k

1 Mixing layer simulations Rogers & Moser [4] 60–69 1.10 0.88 1.01 0.33

2 Mixing layer experiments Oster & Wygnanski [37] 155 1.15 0.93 0.91 0.32

3 Mixing layer experiments Wygnanski & Fiedler [38] 186 1.13 0.88 0.97 0.25

4 Planar jet simulations Stanley et al. [1] 89–92 1.05 1.02 0.92 0.26

5 Planar jet experiments Gutmark & Wygnanski [26] 122 1.33 0.75 0.81 0.28

6 Planar jet experiments Bradbury [25] 148–154 1.15 0.93 0.90 0.34

7 Planar jet calculations Pope [27] −1 1.28 0.85 0.81 0.42

8 Round jet simulations Boersma et al. [2] 80 1.21 0.84 0.92 0.29

9 Round jet simulations Wang et al. [3] 113 1.21 0.90 0.85 0.27

10 Round jet experiments Panchapakesan & Lumley [29] 172 1.23 0.86 0.86 0.33

11 Round jet experiments Falchi & Romano [39] 232 1.21 0.88 0.88 −

12 Round jet experiments Burattini et al. [40] 309 1.29 0.82 0.82 0.33

13 Round jet experiments Hussein et al. [31] LDA 508 1.17 0.88 0.92 0.28
Hussein et al. [31] HWA 1.20 0.84 0.92 0.37

14 Round jet experiments Wygnanski & Fiedler [41] 520 1.22 0.86 0.88 0.23

1 Planar jet calculations were performed by Pope using a Monte Carlo method to solve the joint pdf equation. These results
correspond to the high Reynolds number limit, and are plotted at Reλ = 1000 in Fig. 2c and 4b. These values agree very well

with results from the current study.

that Reλ fluctuates around the expected value (80, in this
case) after a transient period of about 5τo.

C. Anisotropy

Second-order statistics can be analyzed to gather infor-
mation about the velocity fluctuations and consequently

about the turbulence. The magnitudes of the velocity
fluctuation components (|u′x|, |u′y|, and |u′z|) are calcu-
lated from the root mean square (rms) of the fluctuating

velocity components (e.g., |u′i| =
√
〈u′2i 〉). Because of

the anisotropic nature of free shear flows, it is expected
that the velocity fluctuations will be larger in magnitude
along the axial direction. This is corroborated by other
simulations and experiments in Table II, and is reflected
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in the forcing. Although the forcing is only along the
axial direction, turbulence redistributes some of the fluc-
tuations to the other directions, while maintaining higher
fluctuations in the axial direction.

Figure 4a plots the velocity fluctuation components
along the x, y, and z directions normalized by urms for
Reoλ = 80. For isotropic turbulence, velocity fluctua-
tions are expected to be similar along all directions, and
hence |u′i|/urms ' 1. For HST, as expected, the ax-
ial direction has the largest fluctuations, and the cross-
stream direction and spanwise direction have smaller
fluctuations. The results follow the same trend for all
Reynolds numbers considered. The average values from
the four cases of our current study are |u′x|/urms ' 1.25,
|u′y|/urms ' 0.91 and |u′z|/urms ' 0.78.

The average values of rms velocity components are
plotted in Fig. 4b, along with data from multiple simula-
tions and experiments of mixing layers, planar jets, and
round jets, plotted versus Reynolds number. The current
simulation solves for u′′, and from Eq. (21), u′′ = u′

at xo, r
o
1/2. Therefore, the spatially-averaged results of

the current study can be compared against temporally-
averaged values in the middle of shear layers. All of
the free shear flows seem to agree well with each other.
The results from the current study agree reasonably well
with the values from literature within 1σ, except for
|u′z|/urms, where the current study underpredicts the val-
ues, by 2σ. Also, there seem to be no Reynolds number
effects on the velocity fluctuation magnitudes, as the val-
ues remain constant across a large range of Reλ.

The anisotropy in the smallest turbulent length scales
can be observed using the root mean square of the vor-
ticity components (|ωx| =

√
〈ω2
x〉, etc), normalized by

the rms vorticity, ωrms =
√
〈ω · ω〉/3. Kolmogorov sug-

gested that at very high Reynolds number, the turbu-
lence is isotropic at the smallest turbulent length scales
and hence, the vorticity would be statistically isotropic
with |ωi| ' ωrms. As shown in Fig. 4c and as expected,
the averaged vorticity magnitudes reach isotropic values
with increasing Reynolds numbers.

D. Energy Spectrum

The one dimensional energy spectra for the velocity
are calculated from the simulation results of DNS 1-4.
Leveraging the flow homogeneity, energy spectra are cal-
culated using one-dimensional Fourier transforms in the
x direction, (F1(u)) in space at different times during
the simulations, E(κ1) = F1(u) · (F1(u))

∗
versus the

wavenumber in the x direction, κ1, where ·∗ represents
the complex conjugate. The final spectrum plotted in
Fig. 6a is calculated as the mean of the spectra from all
data files from 10τo to 50τo, at time intervals of 0.5τo for
data independence. Figure 6a shows the energy spectra
of all the four simulations. The spectra are normalized
by the Kolmogorov length and velocity scales and show
a collapse at all wavenumbers. The four spectra follow

well the κ
−5/3
1 spectrum expected from turbulence simu-

lations.
As mentioned earlier, the conditions of DNS 4 were se-

lected to match the DNS of Rogers and Moser [4]. Rogers
and Moser performed a simulation of a temporally-
evolving mixing layer using a Galerkin spectral method
with 512× 210× 192 Fourier modes. They reported one-
dimensional energy spectra in x1 (streamwise) and x3
(spanwise) calculated at a Reynolds number of Rem '
2000. The one-dimensional spectra, E(κ1) and E(κ3),
are calculated for DNS 4 and plotted in Fig. 5, where
E(κ3) = F3(u) · (F3(u))

∗
, where F3(u) is the one di-

mensional Fourier transform of the velocity in the z di-
rection. The one-dimensional spectra, E(κ1) and E(κ3),
follow that

∫
E(κi)dκi = 〈u′2x + u′2y + u′2z 〉 = 2k, i = 1, 3

and are plotted versus wavenumber in the two directions
κ1 and κ3. It is seen that E(κ1) and E(κ3) are nearly in-
distinguishable, and these plots agree well with the spec-
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FIG. 5: Comparison of one-dimensional energy spectra
along x and z directions. R & M refers to the energy

spectra published by Rogers and Moser [4].

tra from Rogers and Moser [4]. Note that the ranges of
wavenumbers are different between the two simulations,
because of different domain sizes and resolutions. This
spectral analysis shows that the simulations reproduce
shear-driven turbulence in the spectral sense as well.

E. Production Spectrum

Finally, the one-dimensional spectra for the
turbulent kinetic energy production are calcu-
lated from the shear stress spectra. The shear
stress spectrum, E12(κ1) is calculated from the
same data files as the energy spectrum, as
E12(κ1) = 0.5

[
F1(ux) · (F1(uy))

∗
+ F1(uy) · (F1(ux))

∗]
such that

∫
E12(κ1)dκ1 = 〈u′xu′y〉. The production

spectra are plotted versus wavenumber in Fig. 6b. The
wavenumber and the spectra are normalized with B and
Kolmogorov length and velocity scales, uη = (νε)1/4,
and the spectra show a collapse at all wavenumbers.
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FIG. 6: a) Energy spectra normalized by ε and ν. b) Shear stress spectra normalized by ε and ν. The dashed line
corresponds to turbulence scaling from literature, κ−5/3 in a) and κ−7/3 in b).

It is seen that the production spectra scale as κ
−7/3
1

as suggested by Lumley [24]. The production spectra
decay faster than the energy spectra, which scale like

κ
−5/3
1 . Hence the production to energy ratio is higher in

the large scales, and gets smaller approaching the small
scales. In contrast, linear isotropic turbulence forces ve-
locity proportional to the energy among all scales [11, 13]
and most spectral techniques only force velocity over a
low wavenumber bandwidth [7–10].

V. ADDITIONAL CONSIDERATIONS

As mentioned earlier, all of these simulations were per-
formed with a single off-diagonal forcing term. However,
the additional diagonal terms from the velocity gradients
and the diagonal and non-linear terms from the period-
icity and continuity corrections can also be included in
the simulation as forcing terms. The impact of these
additional forcing terms are analyzed by comparing the
simulations with and without them.

A. Linear diagonal and Non-linear source terms

Simulation 3 was repeated as DNS 3a with all the linear
diagonal terms from Eq. (23) and as DNS 3b with all
linear and non-linear terms from Eq. (24). This second
simulation is the closest representation to the half-width
of the turbulent round jet.

1. Anisotropy and energy production

DNS 3a gives an average value of 〈u′xu′y〉 = 0.39 and
DNS 3b gives an average value of 〈u′xu′y〉 = 0.38, which
are both very close to the results from DNS 3. The diag-
onal terms only contribute to about 7% of the turbulent
kinetic energy production, and the non-linear terms are
responsible for 12% of it in DNS 3b. These results are
slightly less than our a priori estimate of the contribu-
tions (see section III A). The off-diagonal term is the
major contributor to the production, accounting for 93%
and 81% of the kinetic energy production in DNS 3a and
3b respectively.

2. Turbulent kinetic energy budget

The various terms in the budget of the turbulent ki-
netic energy, namely the production, advection, turbu-
lent diffusion, and the dissipation, are calculated and
compared against the turbulent kinetic energy budget for
the turbulent round jet. The current simulations corre-
spond to the location of the half-width of the round jet,
and should be compared against the experimental values
at r = r1/2.

The budget values are plotted in Fig. 7 and compared
with the experiment results of Panchapakesan and Lum-
ley [29]. The forcing matrix from the velocity gradients
corresponds to production, Prod = 〈u′ · ∇u · u′〉 = 〈u′ ·
AG ·u′〉; the diagonal elements of the forcing matrix from
the renormalization matrices Ax and Ar correspond to
advection, Adv = u·∇k = 〈u′ ·Ax ·u′〉+〈u′ ·Ar ·u′〉; and
the turbulent diffusion can be calculated from the triple
correlation, Diff = ∇ · 〈u′k〉 = 〈ku′y〉/r1/2 + 3〈ku′x〉/xo.
The dissipation rate is calculated as Diss = −ε. These
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quantities are calculated from the three simulations, re-
gardless of what the forcing matrix is. All the values
are normalized by U3

o /r1/2, where Uo is calculated as

Uo =
√
k/0.062 [31] and r1/2 is calculated as r1/2 =

0.586Uo/B [32].
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FIG. 7: Normalized turbulent kinetic energy budget.
The lines correspond to experimental results from

Panchapakesan and Lumley [29]. Symbols correspond
to different simulations: DNS3 - circles, DNS 3a -

triangles, DNS 3b - squares.

As expected, the major contributions to the budget are
from production and dissipation, and the advection and
diffusion are closer to zero. The advection by the mean
is accurately represented by the simulation, whereas the
production and dissipation are slightly over-predicted.
This result is consistent with the over-prediction of the
shear Reynolds stress 〈u′xu′y〉 (see Fig. 2c), and the dis-
sipation increasing to match the turbulent kinetic en-
ergy production. The diffusion value of case 3b matches
fairly well with the experimental results, as they include
non-linear source terms which appear as diffusion terms
(triple correlations) in the kinetic energy budget, while
case 3 and 3a show zero diffusion. Apart from this, there
are very small differences between the simulations with-
out the diagonal terms (case 3), with the diagonal terms
(case 3a), and with the non-linear terms (case 3b). In
fact, the dissipation values from DNS 3 are closer to
the experimental results. Hence, adding the additional
source terms do not make any improvement in the tur-
bulent kinetic energy budget, except in the turbulent dif-
fusion.

The simulations involve a balance between the two ma-
jor contributors, production and dissipation. As seen in
Fig. 8, the ratio of production to dissipation of kinetic
energy fluctuates around a value of 1.0 (for our DNS),
after an initial increase. The current simulation method
focuses only on the velocity fluctuations and by defini-
tion has to be statistically stationary in the long term.
This is in fact true as the simulation is stable in the long

term, and reaches a stationary state where production
and dissipation balance each other. The simulations by
Kasbaoui et al. however had to be stopped at Bt = 20,
because of the exponential growth of the kinetic energy,
where P/ε ratio is much higher than 1 for all the simula-
tions [20]. While being higher than 1, the ratio of P/ε in
all three cases have the general same evolution and seem
to tend towards unity.
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FIG. 8: Ratio of production to dissipation of kinetic
energy. The blue line corresponds to simulations in the
current study and the three lines correspond to three
simulations by Kasbaoui et al., with different initial

conditions.

3. Velocity correlations

The velocity correlation between u′x and u′y is analyzed
by plotting their joint pdf. Contour plots of the prob-
ability density function at different velocity fluctuation
values are shown in Fig. 9. High probability is found
near small values of the velocity fluctuations, and a pos-
itive correlation is observed from the positive tilt of the
contours. There seems to be few discernible differences
between the simulations with only the off-diagonal term
(case 3), and with additional diagonal and non-linear
terms (case 3b). The key difference is in the skewness
of the velocity component towards the negative values,
and the maximum being away from the origin for case
3b.

The marginal pdf of the velocity fluctuations in the
x and y directions are plotted in Fig. 10. It was veri-
fied that the mean of the velocity fluctuations are zero,
despite the high skewness observed in the results of
DNS 3b. The velocity fluctuations in the x direction
(u′x) show larger differences between the two simulations.
The normalized skewness and flatness for DNS 3 are
〈u′′3〉/〈u′′2〉1.5 = −0.03 and 〈u′′4〉/〈u′′2〉2 = 2.83 respec-
tively, while for DNS 3b gives 0.41 and 3.06 respectively.
The differences are less prominent in velocity fluctuations



14

a) DNS 3

u′

x/urms

u
′ y
/
u
rm

s

 

 

−2 0 2

−2

0

2

−2 0 2

−2

0

2

b) DNS 3b

u′

x/urms

u
′ y
/
u
rm

s

0

0.05

0.1

0.15

0.2

FIG. 9: Joint pdf of the normalized velocity fluctuations
in the x and y directions from simulation with a) just

the off-diagonal term, and b) linear and non-linear
terms.

in the y direction (u′y). The skewness and flatness val-
ues are −0.01 and 3.02 for DNS 3 and 0.26 and 3.14 for
DNS 3b respectively. The skewness values from DNS 3b
are comparable to those calculated from the experiments
of Hussein et al [31], 0.37 for u′x and 0.45 for u′y, and
Panchapakesan and Lumley [29], 0.44 for u′x and 0.39 for
u′y. The flatness values for both simulations are near 3.0,
which is the flatness for normal distributions.
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FIG. 10: Marginal pdf of the normalized velocity
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simulation with just the off-diagonal term, and linear
and non-linear terms.

B. Advection by the mean

As mentioned in section III, homogeneous shear tur-
bulence has been simulated in the past using the off-
diagonal production term (Bu′y), and the advection by

the mean term (By ∂u
′

∂x ). The production term has been
included in all the simulations in the current study. The
mean advection is represented by the renormalization
matrices, Ax and Ar as forcing terms, and captured cor-
rectly in the turbulent kinetic energy budget (see section
V A 2). The only effect missing is the straining induced
by the mean flow [17–20].

Multiple studies have performed sheared turbulence
simulations by including the shear convection term, but
do not reach long term stability and as a result, usually
run only until Bt = 28 or lower [17–20, 43]. Kasbaouiet
al.’s [20] study represents one of the best cases of the

past studies, reaching Bt = 20, which corresponds to
t/τo = 8 in our case. Their simulations of sheared turbu-
lence also include the shear convection term, which was
implemented using operator splitting. Only a brief de-
scription of the multi-step procedure is given here. The
reader is referred to Ref. [20] for more details. Step 1
starts with the velocity vector un, and the momentum
equation is solved with the production term included, re-
sulting in u, referred to as u1 henceforth. Then, step 2 is
to apply the shear-remapping, by ǔ(x) = u1(x−By∆t)
and apply a pressure correction, to get un+1 which is
divergence free, referred to as u2. The boundary con-
ditions in the y direction are shear periodic, such that
f(x, Ly, z) = f(x−BtLy, 0, z).

The simulations in our current study solve for the mo-
mentum equation with the production term, hence the
velocity field corresponds to u1. To quantify the effect
of step 2, the shear convection term is applied a poste-
riori. Specifically, the velocity field is convected in the
x direction proportional to the distance in the y direc-
tion from the bottom of the domain. The time step
∆T is chosen such that the difference in displacement
at y = 0 and y = Ly is exactly one grid point, that is
BLy∆T = ∆x. This time step was of similar magni-
tude and slightly higher than the time step per iteration,
∆t, in the current study. The pressure correction is then
applied to obtain the divergence-free velocity field, u2.

TABLE III: Turbulence quantities before and after
shear remapping.

Reoλ k/ko

u1

〈u′xu′y〉/k ε/εo k/ko

u2

〈u′xu′y〉/k ε/εo

Drop
in ε

36 0.842 0.430 1.018 0.842 0.432 0.876 13.9%
54 0.972 0.415 1.139 0.972 0.415 0.984 13.5%
80 0.918 0.394 0.955 0.918 0.394 0.865 9.4%
128 1.019 0.381 0.997 1.019 0.381 0.910 8.7%

The turbulence quantities are calculated from the orig-
inal data files (corresponding to the velocity field af-
ter step 1, u1) and from the shifted data files (corre-
sponding to the velocity field after step 2, u2 using ap-
propriate boundary conditions). The average quantities
are summarized in Table III. As expected (see section
III A), the turbulent kinetic energy and the Reynolds
shear stress are not affected at all. The only change ob-
served is a reduction in the viscous dissipation rate, ε, by
about 8− 14%. The drop in ε decreases with increase in
Reynolds number, which is consistent with the a priori
analysis of shear convection (see Section III C).

The effect of shear convection on the turbulent kinetic
energy can be emulated by decreasing the viscous dissi-
pation rate in two different ways. First and to be consis-
tent with the splitting procedure of Kasbaoui et al. [20],
a new simulation DNS 3c is performed, where step 1 is to
solve the momentum equation with the production term
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(ν1 = ν) and step 2 is to solve the equation,

∂u′′

∂t
= ν2∇2u′′, (43)

with ν2 = −0.10ν. This emulates the shear convection
term with the operator splitting aspect, where solving
the momentum equation and the shear convection are
executed as different steps. While these methods likely
do not capture all the physical effects of the shear con-
vection, it aims to emulate the biggest effect of shear
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FIG. 11: Evolution of turbulent kinetic energy
normalized by the expected value (Eq. 39) for different

treatment of the shear convection term.

convection on the turbulence statistics.
Alternatively, if there were no operator splitting and

all the operations were to be performed in one step, it
would correspond to solving the momentum equation
with the production term, and an effective viscosity,
νeff = ν1 + ν2 = 0.90ν. DNS 3d is performed under
these conditions, which correspond to the same parame-
ters as DNS 3 with ν = 0.1431 instead of 0.159. Figure 11
shows the evolution of kinetic energy from the three sim-
ulations, DNS 3, DNS 3c, and DNS 3d. Unsurprisingly,
DNS 3 and 3d are very similar. Effectively, DNS 3d is a
simulation with the pure shear and only a different vis-
cosity, i.e. a different Reynolds number. However, when
shear convection is emulated with operator splitting, the
evolution of the turbulent kinetic energy is completely
different. It is striking that such a small reduction in ε
(about 10%) has such a large effect on k (about 500%).
From this comparison, proper care must be taken while
using operator splitting, considering the numerical impli-
cations and errors associated with it.

In the current simulations, the time step per iteration,
∆t is approximately equal to ∆T , the time taken for a
shift by one grid point. As the actual time step, ∆t is
reduced, the shear convection term would be applied only
every Ns = ∆T/∆t iterations, and its contribution would
decrease linearly with decrease in ∆t. This first order
error (in ∆t) is consistent with Godunov-style splitting
schemes.

VI. CONCLUSION

To provide a physical and mathematical foundation to
realistic turbulent flows, the turbulence forcing technique
for shear flows is directly computed from the large scales
of these flows. Different statistically stationary free shear
flows were considered for the calculations of the forcing
matrix. The forcing terms did not just arise from the
shear strain or the velocity gradients, but also from peri-
odicity corrections in x, y/r, and continuity corrections,
which generated both linear and non-linear forcing terms.
The additional source terms were calculated by leverag-
ing the self-similarity of velocity fluctuations and their
moments.

An a priori analysis was performed in order to estimate
the effect of the multiple source terms to the turbulence,
including the linear diagonal forcing terms, non-linear
forcing terms, and the mean advection term. The rela-
tion between the forcing constant and the Taylor micro-
scale Reynolds number was established, so that turbu-
lence quantities can be predicted prior to selecting the
grid resolution for any simulation.

The turbulence generated is anisotropic in nature, con-
sistent with that observed in the middle of shear lay-
ers. The Reynolds shear stress values are over predicted
within statistical uncertainty, compared to experimen-
tal and simulation results. For the same Reynolds num-
ber, the anisotropic turbulence has higher integral length
scale, lower turbulent kinetic energy and dissipation rate,
and higher eddy turnover time than isotropic turbulence.

Anisotropy is observed both in the components of
velocity and vorticity. The anisotropy in the fluctu-
ating velocity agrees reasonably well with results from
simulations and experiments of free shear flows. The
anisotropy in the fluctuating velocity shows no clear Reλ
dependence, while the vorticity components become more
isotropic with increasing Reynolds number. The spectra
for the energy and production agree with the scalings
suggested by turbulence theory and past simulations.

Simulations were performed with the additional linear
and non-linear source terms, and compared with the pure
shear simulations, with a special attention to Reynolds
shear stress, turbulent kinetic energy budget, and ve-
locity correlations. There was no significant difference
between the two simulations with linear source terms.
The simulation with all the linear and non-linear terms
showed non-zero turbulent diffusion and skewness in ve-
locity fluctuation distributions, which were not present in
the simulation with just the linear terms. In either case,
the additional forcing terms did not significantly improve
upon the simulation results.

The shear convection due to the mean advection term
was applied a posteriori, and simulations were performed
emulating its effect. It was observed that the effect of this
term is not significant and would be negligible especially
at high Reynolds number. The results also pointed out
the potential role of splitting errors in previously pub-
lished unbounded numerical simulations.
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