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We combine lubrication theory and solid linear elasticity to model the elastohydrodynamic deformation of 
a rigid, spherical particle impacting a stratified surface – a soft incompressible coating atop a rigid substrate. 
The model depends on three dimensionless parameters: Stokes number, elasticity parameter, and thickness 
parameter. These parameters collectively determine whether the particle will stick to or rebound against the 
stratified surface. We show that coating thickness moderates the degree to which elasticity affects the rebound 
criteria (and vice versa) in a fashion distinct from the effect of the elasticity or of the Stokes number. We also 
demonstrate the possibility of approximating a stratified surface as an elastic half-space with an elasticity 
between the rigid substrate and soft coating. This ‘effective elasticity’ of the half-space couples both the 
elasticity parameter and thickness parameter of the stratified surface condition while maintaining the same 
sticking criteria. Lastly, we discuss the limitations of this effective elasticity, such as in thin or more rigid 
coatings.  
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I. INTRODUCTION 

Wet particle-particle or particle-wall collisions play an important role in many natural and industrial 

phenomena, including particle deposition[1], erosion[2], and wet granular flows[3,4]. For processes with 

particulate and multiphase systems, a better understanding of particle-particle and particle-wall collisions is 

important for the modeling and optimization of fluid flow and particle transport, for example in riser 

reactors[5,6], impurity separators[7], and pipelines[8]. Beyond its industrial applications, colloidal and 

particle-wall interactions in biological microenvironments can lead to technical advances in pharmaceutical 

applications like drug delivery[9], blood substitutes[10], and biomimetics[11,12], as the microenvironment in 

vivo consists of a large variety of particles and boundaries (protein, cells, vessels, bones, and tissues) where 

drainage and wet collisions can occur.   

For particle-particle or particle-wall collisions mediated by a viscous fluid, the kinetic energy of the 

colliding particles is dissipated into the fluid through viscous forces. Simultaneously, viscous forces can cause 

elastic deformation of the interacting surfaces[13-15], thereby increasing the fluid gap width, decreasing the 

rate of fluid drainage, and decreasing the rate of viscous dissipation[16]. Therefore, the interplay between 

elastic deformation and viscous forces determines the ratio of energy conservation and dissipation during 

particle collision. For instance, in the case of a wet collision between perfectly rigid surfaces, the absence of a 

deformable boundary leads to completely inelastic collisions. On the other hand, compliant boundaries allow  

partially inelastic collisions, or elastohydrodynamic bouncing[17]. Therefore, understanding the role of elastic 

deformation in wet particle collisions is crucial in predicting the dynamics of soft particulate systems.  

The problem of elastohydrodynamic collisions has been thoroughly studied over the years. Davis, 

Serayssol, and Hinch[18] (DSH) developed a framework for elastohydrodynamic bouncing and showed that 

collisions were dependent on two dimensionless parameters: the Stokes number St and elasticity ε . 

Experiments wherein spheres of various elasticities were dropped onto liquid films atop glass[19,20] showed 

good agreement with DSH theory. In particular, bouncing was observed to occur only when the Stokes 

number exceeded a critical Stokes number, . Moreover, the wet coefficient of restitution wetCOR ,  defined 

as the ratio between particle’s velocities immediately after and before the collision, is an important required 

parameter in discrete elements method simulation of particulate flows[21,22]. The wetCOR  depends on the 

Stokes number and its critical value, cSt [17,23,24]. Following the seminal work of DSH, many variations and 

extensions of the original elastohydrodynamic bouncing problem have been studied. For example, oblique 

collisions and the effect of impact angle on  have been investigated using pendulums configurations[24-

26]. Muller & Huang[27] examined how the fluid film thickness atop the glass substrate would affect wetCOR

. Surface asperities have also been demonstrated to significantly impact cSt  and consequently, the wet 

coefficient of restitution[24]. Chastel et al.[28] further investigated the effect of asperities on bouncing by 
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analyzing the collision against a fabricated microtextured surface with various heights and surface fractions of 

micropillars and found the critical Stokes number to be significantly influenced by surface texture. 

A limit that remains in the description of elastic collisions is that particles are generally assumed to be 

homogenous. The elastohydrodynamic deformation during bouncing is, therefore, determined solely based on 

bulk material properties. Stratified particles, more specifically rigid particles with soft coatings, are 

ubiquitous[29,30]. Nevertheless, the role of stratification on elastohydrodynamic bouncing has yet to be 

investigated, especially that stratification influences elastohydrodynamic deformation for other configurations. 

For instance, Mahadevan et al. analyzed the sliding motion of particles past a stratified substrate and clarified 

the role played by the coating thickness[31]. Leroy & Charlaix[32] and Restagno et al.[33] modeled an 

immersed spherical probe oscillating some distance away from either a thin or a thick, substrate-bounded 

elastic film. They then showed through models and experiments how to use elastohydrodynamic to obtain the 

mechanical properties of a compliant layer from out-of-contact oscillations. Craster et al. presented the 

numerical results for the gravitational settling of a 2D object toward a plane wall with a soft coating in a 

viscous fluid[34]. Wang et al.[35,36] studied elastohydrodynamic deformation in the context of dynamic 

surface forces measurements. They observed that dynamic surface forces depend on the mechanical properties 

and coating thickness. They also showed that simple corrections for stratification employed to predict the 

deformation caused by a spherical indentor were not sufficient to account for the role of the coating thickness 

on the deformation during dynamic surface force measurements. These recent advances demonstrate the non-

interchangeable role played by coating elasticity and thickness on the elastohydrodynamic problem. However, 

due to the complex nature and non-linearity of the governing equations[37,38],  full numerical calculations are 

necessary to fully describe the variation in fluid gap thickness  and deformation profile of the soft layer during 

the process of approaching or bouncing, which consume intensive computational source and time. 

Here we analyze the bouncing of a rigid particle off a stratified coating in viscous fluid (see Figure 1). We 

model the full elastohydrodynamic bouncing process through the incorporation of three governing equations 

coupling the fluid drainage and infusion, the elastic deformation, and the particle motion, and solve the 

equations numerically. We show the transition from thick to thin coating thickness on the dynamics of the 

fluid gap profile and particle velocity for a fixed Stokes number and elasticity. From an energy analysis, we 

investigate the relationship between hydrodynamic force and the soft coating’s stored elastic energy. We 

compare the evolution of the particle’s kinetic energy and the soft coating’s elastic energy and show that, 

depending on the coating thickness, the energy transfer between the particle and the soft coating repeatedly 

transitions between a viscous-dominated and elastic-dominated regime. Lastly, we define an effective 

elasticity parameter that couples thickness and elasticity while maintaining the same rebound characteristics.  

We provide a close form correction for the cSt in terms of an effective elasticity that accounts for the 

effect of stratification. The correction can be employed along existing classic scaling of cSt with surface 

elasticity from Davis et al.[18,39] or empirical curves[40] developed for homogenous particles, without the 
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need of full numerical simulations. Aiming to further simplify the original problem, we couple the coating 

thickness and elasticity parameters into one single effective elasticity, and therefore reduce the dependency on 

three dimensionless parameters to only two ( St  and ε ). This effective elasticity is different from the one 

conceptualized by Wang et al.[35] since cSt is independent of time and space, unlike the deformation and 

fluid gap profile. Therefore, it is possible to use the effective elasticity to realign the cSt between 

configurations with different coating thicknesses. This method could contribute on improving the accuracy of 

large-scale multi-particle simulations, which are currently limited to the dichotomous “hard sphere” or “soft 

sphere” particles[21], with limited options for stratified materials. We also provide regime maps that can be 

employed to predict rebound or sticking after normal collisions, which are useful in understanding how 

clusters or aggregation initiate. Our work also has implications for the studies of some non-Newtonian 

behavior of highly concentrated particulate systems[41], including shear thickening, for which the detailed 

mechanism is still under debate[42-44].  

II. THEORETICAL DEVELOPMENT 

A. Description 

We pose the problem as follows: a spherical particle of radius a  and mass m  approaches a wall coated 

with compliant film of thickness  and elastic modulus E, as shown in Fig. 1. Cylindrical coordinates are 

chosen due to the radial symmetry of the problem. The origin is fixed at the point on the coating surface 

(undeformed) that is closest to the spherical particle. At time t = 0, the sphere and coating are separated by an 

undeformed gap of width 0x by a Newtonian fluid of dynamic viscosity η . Initially, the velocity of the sphere 

is 0v  and the momentum of the sphere is therefore 0mv , directed perpendicular towards the wall (see Fig.1).  

A force balance governs the overall motion of the spherical particle: 

 ( ) ( ) ( )2 2

2 20
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h t w t
F rp r dr m

t t
π
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Fig 1. Schematic diagram showing the (A) approach and (B) bouncing of a spherical particle against a coated 
substrate. Important variables include the fluid gap width (h), the undeformed separation (x), the deformation 
(w), particle velocity (v) and coating thickness ( δ ). The particle is immersed in a Newtonian fluid with 
viscosity (η ). In (A) as the particle approaches the soft coating, fluid is drained out of the gap. In (B) fluid is 
infused into the gap as the particle rebounds away from the coating. The figure is scaled such that the 
horizontal axis (radial direction) is compressed fifty times relative to the vertical axis (z-direction), which 
results in the non-spherical appearance of the particle.  

 

In Eqn. 1, p(r) is the pressure distribution within the fluid gap, h is the fluid gap thickness, w is the coating 

deformation, r is the radial coordinate, and t is time. The integral term is the hydrodynamic force that resists 

the motion of the spherical particle, while the derivative term is product of the mass and the instantaneous 

acceleration of the particle. If we assume the fluid gap is small relative to the sphere radius ( 0 / 1x a ), 

together with a no-slip condition on both surfaces and continuum fluid phase, the pressure within the thin fluid 

gap can be modeled with the lubrication equation: 

                    ( ) ( )
3

, ,1
12

h r t p r t
rh

t r r rη
∂ ⎛ ∂ ⎞∂= ⎜ ⎟∂ ∂ ∂⎝ ⎠
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The lubrication approximation is valid when the inertial terms of the fluid is relatively small compared to 

the viscous term. For the current geometry, this condition can be stated as 0/Re a x , in which Re is the 

Reynolds’ number defined as 0Re /f v aρ η=  with fρ  the fluid density. In the lubrication limit, the fluid 

pressure decreases radially in the r-direction but does not vary with z-direction.  

We can obtain the coating deformation using the fluid pressure from the lubrication equation. The pressure 

directly translates to a normal stress boundary condition on the compliant layer at 0z = . The other boundary 

of the compliant layer located at z δ= −  is attached to a rigid substrate under a sticky boundary assumption. 

With these boundary conditions, we calculate the deformation of the compliant coating using the equations 

from Charlaix et al.[32], where the linear elastic theory of soft coatings in contact mechanics developed by 

Gacoin et al.[45] was applied to the context of elastohydrodynamic oscillations. The deformation of the 

compliant coating at 0z =  is given by:  

                   ( ) ( ) ( ) ( ) * 2
0*0

2,  ;  / (1 )w r t X Z J r d E E
E

ξδ ξ ξ ξ ν
ξ

∞
= = −∫ ,    (3) 
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− −
= = −

+ + + +
,   (4) 

and 

                   ( ) ( ) ( )00
,Z rp r t J r drξ ξ ξ

∞
= ∫                                                      (5) 

 

In Eqns. 3-5, *E  is the reduced Young’s modulus, 0J  is the 0th-order Bessel function, ν  is the Poisson 

ratio of the coating, δ  is the coating thickness, ξ  is the Hankel transform variable, and ( )w r is the normal 

deformation profile of the coating at the surface. To determine if the strain in the coating remains within the 

linear elasticity regime, we estimate the strain as (0, ) /w t a [46], which does not exceed 00.6 /x a . The 

0.6 term is extracted from our simulation data, while the term within the radical stems from the scaling of 

coating deformation (see Eqns. 10-11 below). Given that the term within the radical is << 1, the strain does 

not exceed the linear elasticity limit, so deformation can be calculated using the biharmonic equation. With an 

expression for the coating deformation w(r,t), the fluid film thickness, h(r,t), can be now described as: 

( ) ( ) ( )
2

, 0, ,
2
rh r t x t w r t
a

= + + .                                                   (6) 

In Eqn. 6, (0, )x t  is the central undeformed position at time t, and r is the radial position from the center (see 
Fig. 1). We use a parabolic approximation to model the central gap between a sphere and a planar surface that 
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are near contact. With the equations for h(r,t) and w(r,t), we can complete the force balance on the sphere 
(Eqn.1).  

The configuration described above is one of the geometries relevant to elastohydrodynamic collisions. Our 

analysis focuses on the sphere-wall configuration, which is commonly employed in particle-rebound 

experiments[19,20,47]. In the configuration investigated here, only the rigid wall is coated with a compliant 

film, while the sphere’s surface is not. Note, however, that the analysis presented can be generalized to other 

configurations. The same equations can be used to model a sphere-sphere collision by replacing our sphere 

radius with a ‘reduced radius’ parameter that factors the radii of both spheres[18]. Alternatively, if it were the 

sphere instead of the rigid wall that was coated with compliant film, the equations and boundary conditions 

would remain unchanged, but if the coating was applied to both the sphere and the rigid wall, the deformation 

of each coating should be summed together for the force balance[48].  

B. Non-dimensionalization 

We rely on our previous non-dimensionalization to rescale Equations (1) – (6) and extract three key non-

dimensional parameters[35]. The normal characteristic separation is the initial undeformed gap width, 0x , and 

the radial characteristic length is set to be the hydrodynamic radius, 0ax . The characteristic timescale is set 

to be 0 0/x v , the time it takes the sphere to touch the planar surface if it travelled at its constant initial 

velocity.  We introduce these dimensionless parameters into Eqn. 2 and rearrange the equation. The resulting 

dimensionless form of the lubrication equation is:          

 
31
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h prh
t r r r

⎛ ⎞∂ ∂ ∂= ⎜ ⎟⎜ ⎟∂ ∂ ∂⎝ ⎠
 ,      (7) 

where the dimensionless variables are:  

                        0/h h x= ,     0

0
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= ,  

                            0/r r ax= ,     
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0

0
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= ,    
0

vv
v

= .     (8) 

From Equations (3)-(5), the scaling parameter for the Hankel transform variable ξ  is 01 / ax , since the 

multiplication of ξ and r in the Bessel function should be rendered dimensionless. The dimensionless coating 

thickness T is therefore 0/ axδ , since ξδ  appears as an exponential order in Eqn. 4. The scaling parameter 

for the deformation ( ),w r t  is also set to be 0x , the same as for h(r,t), since the deformation is subtracted 

directly from h(r,t). The corresponding dimensionless equation for the elastic deformation is then derived as: 

                         ( ) ( ) ( ) ( )00

2,w r t X T Z J r dε ξ ξ ξ ξ
ξ

∞
= ∫ ,                               (9) 
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with the dimensionless variables obtained are: 

                          0axξ ξ= ,     0/T axδ= ,      0/w w x= ,  

                        
1.5

0

0

1 xZ Z
v aη
⎛ ⎞= ⎜ ⎟
⎝ ⎠

,        
1.5

0
* 2.5

0

= v a
E x
ηε .     (10) 

Note that the elasticity parameter ε , which is derived directly from the non-dimensionalization of Eqn. 3, 

serve as a measure for the compliance of the coating material under current conditions (η , a , 0v , 0x ). Lastly, 

the dimensionless force balance on the sphere can be derived as:  

                          ( ) ( ) ( ) 0/2 2

2 2
0

0, 0, 1 ˆˆ ˆ ˆ ˆ( , )
3

a xh t w t
F t St p r t rdr

t t

⎛ ⎞∂ ∂
⎜ ⎟= − =⎜ ⎟⎜ ⎟∂ ∂⎝ ⎠

∫ ,     0
26

mvSt
aπη

= .   (11) 

In Eqn. (11) we neglect gravitational force. Gravitational forces can be neglected when the initial kinetic 

energy is greater than the initial gravitational energy, i.e. when 0
2
0

1
s

gx
v

ρ
ρ

Δ . Based on Equations (7)-(11), the 

change in the sphere velocity, coating deformation, separation and other variables during approach and 

rebound is determined by three dimensionless parameters – Stokes number St, elasticity ε  , and coating 

thickness T. For comparison, approach and rebound on a half-space coating are described with analogous 

dimensionless parameters St and ε [18]. The addition, here, of the third parameter T accounts for the 

constraints in the coating deformation due to finite thickness effects caused by stratification. In addition, the 

Poisson’s ratio is a fourth parameter, which cannot be decoupled from Equation 3 because of its non-linear 

dependence with ( )X ξδ . An alternative approach to disentangle ( )X ξδ and derive simpler formulation of 

Equation 9 would be using polynomial approximations for ( )X ξδ , which are only valid for either thin or 

thick coatings. To capture the role of the coating thickness, especially the transition between thin to thick 

films (which includes intermediate films thicknesses), we instead opted to use here a fixed Poisson’s ratio of 

0.5ν = , which encompasses many polymeric materials and rubbers[49]. Elastohydrodynamic deformation 

for compressible materials ( 0.5ν < ) has been investigated in Ref. [30]. Based on Ref. [30], we do not expect 

the choice of the Poisson’s ratio to affect the bouncing of a rigid sphere from a thick coating. For thinner 

coatings we expect that compressibility will increase the normal deformation and reduce the effect of the 

constraint imposed by the rigid substrate (for a given St and ε ). 

 To solve Equations 7, 9, and 11, we use a numerical algorithm that extrapolates changes in the fluid gap 

at small time increments. First, at ˆ 0t =  , we use 500 evenly spaced points to discretize the fluid gap in the 

central region ( 0ˆ 0 .1 /r a x<  ) of the sphere, where non-negligible deformation will occur. We then make 

an estimate of the fluid gap after a small time increment ( ˆ 0.02tΔ =  ) based on the instantaneous sphere 

velocity. The change in the fluid gap is used to calculate the fluid pressure based on the lubrication equation 
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(Eqn. 7). With the fluid gap pressure, we use the biharmonic equation of linear elasticity (Eqn. 9) to solve for 

the coating deformation. We also integrate the fluid gap pressure to get the hydrodynamic force (Eqn. 11). For

0 0ˆ0.1 / /a x r a x< <  we use an approximation for the pressure, 2 2ˆˆˆ ˆ ˆ ˆ ˆ( , ) 3 / ( / 2)p r t v h w rε= − +  [18] 

with the underlying assumption that the deformation is sufficiently small that it does not affect the pressure. 

With the updated deformation profile and hydrodynamic force, we can calculate the expected fluid gap profile 

from Eqn. 11. Next, we compare the calculated fluid gap profile to the estimated value. If the difference in 

fluid gap at all points throughout the mesh does not exceed 0.0001, we consider the fluid gap profile to satisfy 

the differential equations, and proceed to the next time increment. If not, we calculate the weighted arithmetic 

mean of the estimated ( 0 .9weight =  and calculated ( 0.1weight =  ) fluid gap profile. The mean value is 

used as the new estimated fluid gap for the next iteration, and this cycle continues until convergence. We do 

not consider surface forces, such as van der Waals interactions, in our algorithm because we are solely 

interested in the contribution of elastohydrodynamic deformation to the sticking behavior of the falling 

spheres. However, should the fluid gap become extremely narrow (< 50 nm), such surface forces will become 

important. In those cases, the van der Waals and electrostatic double layer interactions can be incorporated 

into the boundary stress condition of the elastic layer to modify the algorithm.  

III. RESULTS AND DISCUSSION 

In the following sections A-B we set St = 5 and =0.01ε  to analyze the effect of coating thickness T 

separately from the two other dimensionless parameters. The choice of Stokes number and elasticity is such 

that our results can be compared to those of Davis et al. (1986)[18]. Furthermore, under these conditions, 

changing the coating thickness will result in either bouncing or sticking behaviors, as opposed to a smaller 

elasticity parameter or Stokes number, where there might not be bouncing regardless of the thickness 

parameter. We investigate three different regimes for the thickness parameter: thin (T < 0.1), intermediate (0.1 

< T < 1) and thick (T > 1). We provide a supplemental animation[50] that compares the approach, deformation 

and rebound for the four particular thickness parameters: T = 0.05, 0.5, 5, and 50.  

A. Fluid drainage and infusion during approach and rebound 

To investigate the effect of coating thickness on the fluid drainage and infusion, we track three variables: 

the central fluid gap (0, )h t , the coating deformation at the center (0, )w t , and the sphere velocity ( )v t , see 

Fig 2A-C.  We evaluate the change in these three variables, during the sphere’s approach and rebound, for thin 

(  0.05T = ), intermediate (T = 0.5), and thick (T = 5, 50) coatings. In Fig. 2A, our results for the central fluid 

gap for the thinnest coatings (T = 0.05) closely match Reynolds’ lubrication theory where, as the central fluid 

gap decreases, the sphere decelerates to a stop and does not rebound. Due to the mechanical constraint of the 

rigid substrate supporting the very thin coating, the coating deformation at the center is negligible. On the 

other hand, for the thickest coating (T = 50), our results for the central fluid gap are also in close agreement 
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with DSH half-space results[18]. DSH also noted similar oscillatory motion in the sphere velocity of their 

half-space model, indicating alternating approach and rebound phases [18]. For the thick coating condition, 

the amplitude of the coating deformation at the center is large compared to that of the thin coating. 

Furthermore, the coating deformation also reverses sign. A comparison of the coatings with deformations of 

opposite signs during approach and rebound is illustrated in Fig. 1. Based on our sign convention, the Fig. 1A 

and 1B display positive and negative coating deformations, respectively.  

First, we explain the effect of T on the coating deformation shown in Fig. 2B. Coating compliance is the 

ratio of the coating displacement to the applied stress. Under the same applied stress compared the magnitude 

of the deformation will be larger if the coating is more compliant[51]. Coating compliance is dependent on 

both ε and T  parameters. The relationship between the elasticity parameter ε and compliance is 

straightforward since the elastic modulus of the coating is included within the parameter. Because the coating 

is bound to the substrate, the thickness parameter T  also similarly affects the compliance of the coating. The 

compliance of thin coatings decreases and can even become comparable to that of the underlying substrate, 

while compliance of thicker coatings is more dependent on the elastic properties of the coating itself. In our 

scenario, since we have a rigid underlying substrate, the compliance decreases as the coating thickness 

decreases. Another consequence of stratification is that the elastic properties of the coating (included in ε ) 

have less effect on the coating compliance as the thickness parameter decreases. Given the same pressure 

distribution, a thicker coating will deform more than a thinner coating, which corresponds to the higher 

amplitudes in Fig. 2B. The mechanical constraints from the underlying substrate also explain why the 

deformation at ˆ 0t =  varies even when all other initial conditions (ε   and St ), are identical.  

The changes in coating compliance caused by a decrease in the coating thickness also affect the central 

fluid gap ( (0, )h t , see Fig. 2A), which is indicative of the rate of fluid drainage and infusion. A downward 

slope corresponds to fluid drainage, while an upward slope corresponds to fluid infusion at the center. Note 

that the drainage or infusion at the center does not necessarily imply that the particle as a whole is 

approaching or rebounding (more details in Fig.3). We can distinguish between drainage and infusion by 

defining minĥt , the time wherein the central fluid gap is most narrow, indicated with the arrows in Fig. 2A. 

Fluid drainage and infusion occurs mostly before and after minĥt respectively. There are two notable trends in 

Fig. 2A: (1) the rate of central fluid drainage decreases as T increases, and (2) minĥt  increases with T . The 

reason behind (1) is that as the coating compliance increases with T , the increased deformation of the coating 

widens the fluid gap, which in turn reduces the necessity for fluid drainage. (2) is a consequence of the 

differences in velocity profiles in Fig. 2C discussed below. 

Deceleration of the spherical particle is dependent on the size of the fluid gap. As the fluid gap decreases, 

the lubrication pressure and hydrodynamic force increase within the interstitial gap. The hydrodynamic force 

opposes the motion of the sphere, resulting in the deceleration of the particle, as shown in Fig. 2C. As the 
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coating compliance increases with T , the magnitude of the coating deformation also increases, resulting in a 

wider fluid gap. Therefore, a wider fluid gap decreases the hydrodynamic force thereby reducing the rate of 

deceleration of the spherical particle. Consequently, the particle can move toward the coating for a longer 

period of time, which increases the time until the fluid gap is minimum minĥt .  

 

Fig. 2. From top to bottom: (A) Central fluid gap width (0, )h t , (B) central coating deformation (0, )w t  and 

(C) particle velocity ( )v t  during the collision of a spherical particle against a stratified, flat surface. Stokes 
number and elasticity of the film are held constant at St = 5 and =0.01ε . The four chosen thickness 
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parameters encompass the thin (T = 0.05), intermediate (T = 0.5) and thick (T = 5,50) regimes for coating 
thicknesses. The DSH and Reynolds’ limit for a half-space and foundation, respectively, are included as 
dashed lines. Arrows in (A) mark the first transition from fluid drainage to infusion at the center, while arrows 
in (C) mark the first transition from the particle’s approach to rebound. Inset in (A): Pathway for fluid infusion 
into the central gap for intermediate and thick coatings, T = 0.5 (left) and T = 50 (right) respectively. When 
the deformation of the coating adopts a curvature similar to that of the particle, the narrowness of the fluid gap 
at the sides determine the rate of fluid infusion into the gap. 

 

By aligning Figs. 2A-C vertically, we can compare features amongst the three sets of curves. For example, 

we define 0t̂ν =  as the first time point wherein the velocity is zero, which we mark with arrows in Fig. 2C. For 

intermediate and thick coatings, the peak of coating deformation in Fig. 2B closely corresponds to 0t̂ν = in Fig. 

2C. As the particle decelerates significantly and almost no longer moves toward the soft coatings, the 

lubrication pressure starts to drop (Eqn.1), therefore the coating will start to return to its uncompressed state, 

thereby decreasing the magnitude of the deformation. On the other hand, minĥt (arrows in Fig. 2A) marks the 

transition from central fluid drainage to infusion does not correspond with any immediately observable feature 

in Figs. 2B-C. Specifically, minĥt  does not occur at the same time as 0t̂ν = .  

Restricted fluid infusion into the gap leads to a time lag between the transition from approach to rebound (

0t̂ν = ) and the transition from central fluid drainage to infusion ( minĥt ). In the elastic half-space limit, for 

example, when T = 50, infusion begins at min
ˆ 4ht ∼ , but at that time, both the particle velocity and the coating 

deformation are already negative (Fig 2B, C). Therefore, the spherical particle is closest to the coating when 

the particle is moving away. During the approach, fluid drainage results in a narrow gap between the particle 

and coating that restricts infusion at a later time. When the particle is moving away, the narrowness of the 

fluid gap caused by the curvature of the deformation (Inset of Fig. 2A) limits the rate of fluid infusion, 

especially the narrow fluid entry at the edges. Since there is only a finite amount of fluid within the gap and 

limited fluid infusion into the gap, the particle has to ‘pull’ the soft coating along as it moves away, leading to 

an almost parallel movement of two surfaces, and ultimately a negative deformation of the soft coating (as 

illustrated in Fig. 1B). Here, since T affects the compliance of the coating, increasing the coating thickness 

thereby increases magnitude of the troughs in Fig. 2B (i.e. the maximum distance the particle can ‘pull’ the 

soft coating). For a less compliant coating, since the particle can no longer ‘pull’ the coating before the 

particle can move away, the fluid has to slowly infuse back into the center of the gap, which thereby limits the 

rebound velocity of the particle.  
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Fig. 3. (A) Comparison between the velocity of the sphere and the central gap for 5St = , =0.01ε  and T=50. 
The lag region (gray) is between 0t̂ν =  and minĥt . (Inset) 0t̂ν =  and minĥt  for 5St = , =0.01ε , and different 
thickness parameters. (B) Comparison between the velocity of the sphere, the central coating deformation, and 
the central undeformed gap for 5St = , 0.01ε =  and T=0.05. The undeformed gap is adjusted by subtracting 
ˆeqx  so that it oscillates around the x-axis. Intersections between the central coating deformation (blue) and the 

x-axis (black line) are marked with ir . (Inset) The first through sixth time t̂  each of the curves crossed the x-
axis.  
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The limited fluid infusion into the gap creates a lag between the particle rebound and fluid infusion at the 

center. For St = 5, =0.01ε , and T = 50 (half-space), the particle velocity ˆ / ov v v=   is plotted alongside the 

fluid gap width in Fig. 3. The gray region starts from 0t̂ν =  to minĥt , thereby spanning the entire time interval 

wherein central fluid infusion ‘lags’ behind the particle rebound. The inset shows 0t̂ν =  and minĥt  for different 

thickness parameters, and the ‘lag’ between the two, also highlighted in gray, increases with thickness. For 

small T, such as T = 0.05 in Fig. 3, there is no observable rebound behavior or fluid infusion. Then 

0 min
ˆ ˆ
v ht t= ≈   is the time wherein the sphere simply stops. For T ~ 0.1-10, the lag time difference increases, but 

eventually plateaus at around T ~ 10, as the coating thickness is sufficient to match the behavior of the half-

space system. Regardless of the thickness parameter, the time scale for elastic rebound is faster than that for 

fluid infusion. 

The dampened oscillations observed in Fig. 2B and 2C are similar to those observed by Mahadevan for a 

cylinder rolling down a ramp with elastic coating[52]. Aside from the central coating deformation (Fig. 2B) 

and velocity (Fig. 2C), the central undeformed gap ˆˆ(0, )x t also oscillates except unlike the prior two which 

tends towards zero as the oscillations dampen, the central undeformed gap approaches some nonzero 

equilibrium position ˆeqx . In Fig. 3B we superimpose the three oscillating curves, ˆˆ (0, )w t , ˆˆ( )v t  and 

ˆˆ ˆ(0, ) eqx t x− , for   5St = , 0.01ε =  and 0.05t = . The five arrows labeled ir  indicate the  point where 

the central deformation (blue curve) crosses the x-axis. If the central deformation curve were sinusoidal, the 

distance between two consecutive ir  would be half the period of the wave. The inset shows the times t̂ when 

each of the three curves crosses the x-axis from the first through sixth time. From the inset we note that the 

three curves share a similar period of oscillation. How the oscillations vary with Stokes number, elasticity 

parameter or thickness, or their quantitative predictions are not within the scope of our analysis but would be 

an interesting topic for future work.  

B. Energy Analysis 

In the previous section, we described the fluid gap and the elastic deformation of the coating at the line of 

symmetry of the spherical particle. This section focuses on the hydrodynamic forces and macroscopic energy 

balances during the approach and rebound. The objective is to understand how stratification affects energy 

dissipation during bouncing. 

The thickness parameter affects the scaling of hydrodynamic forces and elastic potential energy. Fig. 4 

compares the hydrodynamic force, calculated from Eqn. (11), for 5St = , 0.01ε =  , and different thickness 

parameters. The peak hydrodynamic force and the peak stored potential energy in the coating for different 

thickness parameters are shown in the inset. We calculate the stored elastic potential energy of the coating 

using Eqn. (12): 
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                             ( ) ( ) ( )00.1 /

0
ˆ2 , ,

a x
pE t p r t w r t rd rπ= ⋅∫ .     (12) 

The upper integration limit was based on our mesh boundaries. When we extend the integration limit from  

00.1 /a x to 0/a x  , the difference in pE is < 0.1% because the deformation term in the integral is 
negligible for large ̂ .  

For all thicknesses the hydrodynamic force reaches a maximum ( maxF̂  ) during the approach. As T  

increases the maximum in the hydrodynamic force occurs later and its magnitude decreases (see Fig.4).  The 

hydrodynamic force scales directly with the velocity of the spherical particle and inversely with the dimension 

of the fluid gap between the particle and the coating. As noted in the previous section, coatings with larger 

thickness parameters are more compliant. Thus, the lubrication pressure from the particle’s motion generates a 

larger deformation in the coating with larger thickness parameter. The larger deformation increases the gap 

size and decreases the hydrodynamic force. Consequently, the particle decelerates more slowly and takes 

longer to reach the peak hydrodynamic force, as we observe in Fig. 4. Additionally, the elastic potential 

energy stored in the coating, as shown in the inset, unsurprisingly increases with T as the magnitude of coating 

deformation ŵ  becomes larger for thicker film, especially at the center (Fig.2b).   

 
Fig. 4 Hydrodynamic forces during the sphere’s approach and rebound. Stokes number and film elasticity are 
held constant at St = 5 and 0.01ε =  while the thickness is changed. (Inset) The peak force and the peak 
stored elastic energy as a function of the coating thickness T.  
 

In the remainder of this section, we discuss the mathematical basis for elastohydrodynamic rebound. 

Initially, the spherical particle has a finite velocity and kinetic energy and both decrease during the approach 

toward the soft surface due to the hydrodynamic resistance originating from lubrication pressure. Fig.5A 

below shows the kinetic energy of the particle and the stored elastic potential energy of the coating for 5St =

, =0.01ε  and 50T = . The stored elastic potential energy is calculated using Eqn. 12 above, while the 

particle’s kinetic energy is calculated using Eqn. 13 below: 
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2

kE v= .       (13) 

The kinetic energy will reach zero at 0= vt t = , marked in Fig. 5A. At this time, although the kinetic energy 

is zero, there is elastic potential energy when the coating is deformed. Note that the elastic potential energy 

peaks before the kinetic energy reaches zero. This is because the relaxation of the coating drives further fluid 

drainage and generates a lubrication pressure. The hydrodynamic force from the lubrication pressure pushes 

the spherical particle away from the coating. The kinetic energy is zero when the sphere transitions between 

approach and rebound. However, as the fluid gap increases between the sphere and the coating, there is a 

transition from fluid drainage to infusion. From the lubrication equation, the lubrication pressure will be 

negative (relative to the surrounding fluid pressure). Consequently, the hydrodynamic force is directed 

downward, pushing the sphere towards the coated surface again, albeit with less momentum. The oscillations 

observed in Fig. 5A originate from the conversion of kinetic energy from the sphere into hydrodynamic force, 

then into elastic potential energy, and vice versa. The details of this energy conversion process as the basis for 

elastohydrodynamic bouncing are discussed by Davis et al. in greater detail (see Ref [18]). 

 

drainage
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Fig. 5. (A) The particle’s kinetic energy (blue), the coating’s stored elastic potential energy (red) and 
cumulative energy dissipated into the fluid (black) for T = 50. The grey and white areas denote the viscous- 
and elastic-dominated regime respectively. The Stokes number and elasticity are fixed at St = 5 and 0.01ε =
. (B) The rate of energy dissipation into the fluid as a function of fluid gap for different thickness parameters. 
Inset: the time evolution of dissipated energy for different coating thicknesses. 
 

Although the kinetic energy of the particle is converted into stored elastic potential energy of the soft 

coating and vice versa, we must also consider non-conservative forces that decrease the efficiency of transfer 

between these two forms of energy. Similar to a ‘dry’ collision where some energy is transformed into heat in 

the collision process, in an elastohydrodynamic collision, even without contact, the energy is lost through 

viscous dissipation during fluid drainage and infusion. The dampening of the oscillations in Fig. 5A reflects 

this energy loss through viscous dissipation. We can track the total amount of energy dissipated into the fluid, 

Ŵ through an energy balance: 

                               1 k pW E E= − − .      (14) 

The energy dissipated Ŵ  is also shown in Fig. 5A. Leroy & Charlaix[32] describes the 

elastohydrodynamic interactions of an oscillating, spherical indenter some distance away from an elastic 

surface using two different regimes: the viscous and elastic regimes. In a viscous-dominated regime, most of 

the kinetic energy is irreversibly lost through viscous dissipation. The elastic-dominated regime, in contrast, 

denotes an efficient transfer from kinetic energy to elastic potential energy, and vice versa, with minimal 

energy dissipation into the fluid. In Fig. 5A, the particle-soft coating interaction transitions from a viscous-

dominated regime (gray) to an elastic-dominated regime ( ˆ ~ 2 3t −  ) to an intermediate between the two. The 

viscous regime is characterized by rapid energy dissipation (Ŵ ) through viscous forces, while the elastic 

regime has little to no energy dissipation, as evidenced by the plateaus of the Ŵ curve in Fig. 5A. The width 

of the fluid gap is one of the factors that determine which regime dominates at a given time [32]. When the 

fluid gap is large, the resistance to fluid drainage is low. Consequently, the lubrication pressure is lower and 

the coating will deform less. In this regime, the kinetic energy primarily drives fluid drainage, and the 

interaction is viscous-dominated. As the fluid gap decreases, however, the resistance to fluid drainage is much 

higher, lubrication pressure increases, and the coating will deform more. As a result, the interaction becomes 

elastic-dominated, and most of the particle’s remaining kinetic energy is translated into elastic potential 

energy, similar to an out-of-contact indentation[36], which is what is observed in Fig.5A.  

Another factor that determines the relative importance of the elastic- or viscous-dominated regimes is the 

thickness parameter. Fig. 5B shows the rate of energy dissipation ( ˆ ˆ/dW dt ) at different fluid gap 

separations, while the particle is approaching the soft coating. As the particle approaches the surfaces, we see 

that the rate of viscous dissipation increases, and reaches a maximum and then decreases. The decrease after 

the maximum indicates the transition from viscous-dominated to elastic-dominated regimes also shown in Fig. 

5A for the limit of an elastic half-space. The curves in Fig. 5B clearly show that even at identical fluid gaps 



18 
 

the rate of viscous dissipation is higher as the coating thickness decreases. We also see that the transition from 

viscous-dominated to elastic-dominated regimes shifts to smaller fluid gap distance when the coating 

thickness decreases. Furthermore, for thin-coatings (T = 0.05, T = 0.1), the approach is only viscous-

dominated. In this case, ˆ ˆ/dW dt  will only approach zero when the particle has come to a complete stop. This 

can be verified by the inset, where the energy dissipation immediately increases from 0 to 1 without reaching 

a plateau at an intermediate value. The reason smaller thickness parameters increase the rate of energy 

dissipation is that thinner coatings are less compliant and thus cannot store as much potential energy through 

deformation, so the kinetic energy is lost through viscous dissipation during the approach.  

In summary, we observe that the decrease in compliance caused by stratification increases the viscous 

dissipation during the collision process (when compared to collisions with an elastic half-space of the same 

elasticity). 

C. Critical Stokes Number and Effective Elasticity 

We expand our investigation to the effect of coating thickness on the critical Stokes number cS t , defined 

as the minimum Stokes number for which the particle will rebound away from the coated surface after a 

collision. Previous theoretical and experimental work on particle rebound demonstrated that surface asperities 

on the spherical particle or on the substrate allows for physical contact during an elastohydrodynamic 

collision[24,53,54]. After physical contact is reached, the motion of the particle away from the contact point 

can be defined as rebound. In the absence of physical contact, as investigated here, scaling argument can be 

used to predict rebound. For example, in their work with particles impacting an elastic half-space, Davis et al. 

used the condition of (0, ) (0, )x t w t>  as their criterion for sticking to determine cS t [20]. If at any time, the 

undeformed gap at the center was smaller than the elastic deformation, their predicted outcome was defined as 

rebound. However, in our case, using a rebound criterion that depends only on the central deformation would 

lead to errors because the thickness parameter affects the morphology of the deformation profile beyond just 

the deformation at the centerpoint. See, for example, the inset of Fig. 6, where we compare the deformation 

profile of coatings for 5St =  , 0.01ε =  of varying thickness parameters at a selected time t . We select the 

time t  such that the magnitude of the deformation at the center is similar for all(to emphasize the effect of 

stratification on the deformation profile, ( , )w r t ), therefore the time t is different for different T. (Note that the 

undulations observed for T = 0.5 and T = 1.0 are not artifact of the simulations. In our prior work we directly 

measured the deformation profile through interferometry and showed the formation of “wimples” or double 

dimples as those shown in Fig. 6A[36].) As the thickness parameter increases, we find that the deformation 

profile is broader, so more elastic potential energy is available to transform back into kinetic energy for 

rebound, even if the central deformation is nearly identical. Thus, even after normalizing the central 

deformation, rebound is more likely to occur if the thickness parameter is larger. This variation is not 

encompassed by the criterion of Davis et al. for the elastic half-space. Instead, we propose an alternative 
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rebound criterion that encompasses different thickness parameters: ˆ 0 .05rv >  , where ˆrv  is the absolute 

value of the maximum velocity of the particle moving away from the coating.  

 

 

Fig. 6 (A) Comparison between the rebound criterion of Davis et al.[20] (horizontal dotted line) and our own 
(vertical dashed line). Data points are selected from simulation results with 1 7St = − , 0.0001 0.01ε = −   ,  

0.05 50T = −  close to the rebound criteria and plotted against the ratio of central undeformed gap ( x̂ ) to 
deformation ( ŵ ) and the maximum rebound velocity ( ˆrv ). Red markers indicate small thickness parameters (

1T < ) while blue markers indicate larger thickness parameters. Based on the criterion of Davis et al., 
quadrants I and II result in sticking while III and IV result in rebound. Based on our criterion, quadrants II and 
III result in stick while I and IV are rebound. Inset of (A): Cross-section of coating deformation for different 
thicknesses parameters. The time when the deformation is captured is selected specifically to ensure the 
magnitude of deformation at the center is similar for all T . (B) The maximum rebound velocity ( ˆrv ) for 
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various Stokes numbers and thickness parameters. Here 0ˆ /r rv v v=  can be interpreted as a wet coefficient of 
restitution. From bottom to top: 0.1, 0.5, 1.0, 5.0,  10,  and 50T = . Elasticity parameter was constant at 
0.01. Condition for rebound was set to be a maximum rebound velocity of 0.05 (blue dashed line).   

 

We plot all our data points that were close to the criterion of Davis et al. for rebound in Fig. 6A. The 

horizontal dashed line ˆ ˆ/ 1x w =  is their criterion for stick/rebound for a half-space model. We selected our 

stick/rebound criterion for all coating thicknesses as the black vertical dashed line ˆ 0 .05rv =  to minimize the 

differences of our stick/rebound predictions with that of Davis et al. From our criterion, quadrants I and IV are 

rebound outcomes while quadrants II and III are sticking outcomes. Meanwhile, if we apply their criterion 

regardless of thickness parameter, quadrants III and IV are rebound outcomes while I and II are sticking 

outcomes. Most of the results fall within quadrants II and IV regardless of thickness parameter, which shows 

good consistency between our criterion and that of Davis et al. However, several points fall within quadrant 

III, most of which are situations with thickness parameters 0.1T ≤ , indicated with red markers. As 

mentioned earlier, even when the central deformation is similar, the likelihood of rebound decreases as 

coating thickness decreases. As such, the criterion of Davis et al. would ‘overestimate’ the rebound for 

conditions with small thickness parameters, like in quadrant III.  

Our proposed rebound criterion that allows particles move a small distance away from the coating after 

the collision to be considered a non-rebound result. We estimate this distance to be small, we obtain an upper 

limit of “bouncing” distance for all 1 10St = − , =0.0001-0.01ε , and T = 0.5-50 surfaces to be 0.015. To 

give this distance some context, if we consider the sphere to have a radius no more than 0.5 cm, the coating to 

have a Poisson’s ratio of 0.5 and an elastic modulus between 30 kPa and 5 MPa, the dimensional upper limit 

of the rebound distance is 100 nm, which is in most cases comparable to or less than the scaling of surface 

roughness. 

Fig. 6B shows the maximum rebound velocity ˆrv for different Stokes numbers and coating thicknesses. 

Note here that ˆrv can be interpreted as the wet coefficient of restitution ( 0ˆ /r rCOR v v v= = )[20], except 

that here the particle is always submerged. As the Stokes number increases, ˆrv first remains nearly constant at 

a value near to zero before increasing non-linearly. However, unless there is energy transformation – such as 

from rotational or chemical to kinetic energy – which there is none within our conditions, we expect that ˆrv

will not exceed one. The low Re prerequisite limits the range of Stokes numbers that we can test, so we cannot 

capture the asymptotic behavior of the curve. Nevertheless, we do observe that the curves for rebound velocity 

for any intermediate thickness are strictly bounded between those of thicker and thinner coatings. Using the 

rebound criterion ˆrv  introduced above, we find the critical Stokes number for different elasticities and 

thickness parameters.  
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Prior work by Davis et al.[20] and Lian et al.[39] relates the cSt  of a half-space linearly to ln(1 / )ε . 

Using our rebound criterion, we solve numerically for the critical Stokes number for combinations of 

elasticities between 0.00001 and 0.05 and coating thicknesses between 0.1 and 50.  For each value of the 

thickness parameter, we observe similar linear relationships between cSt  and ln(1 / )ε , as shown in Fig. 7A. 

For a coating thickness of 50, which is mechanically equivalent to an elastic half-space, we find that 

0 .64 ln(1 / ) 0 .89cSt ε= − . The difference in our equation to those of Davis et al. 

0 .40 ln(1 / ) 0 .20cSt ε= −  and Lian et al.  0 .52 ln(1 / ) 1.67cSt ε= − is due to the rebound criterion used. 

Compared to the other two cS t  equations, ours will yield slightly higher values of cSt for the same elasticity 

parameter. 
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Fig. 7 (A) Critical Stokes cSt  as a linear function of ln(1 / )ε  for different thickness parameters. From top to 
bottom, T = 0.1, 0.5, 1, 5, 10, 50. Also shown are the prediction from Davis et al. [18] and Lian et al. [37] for 
comparison. Dashed lines are extrapolated from a linear fit of the data at ln (1 / ) 2ε ≥ . (B) Slope α  (Eqn. 
16) and y-intercept β  (Eqn. 17) of the cSt equation (Eqn. 15), as functions of the thickness parameter T . The 
circular and triangular markers are values of slope and y-intercept respectively from Fig. 8A, while the dotted 
lines are curve fits generated using MATLAB cftool. 

 

In Fig. 7A, we also show that the linear relationship between and ln(1 / )ε  holds for thin and 

intermediate coatings just like the case of half-space, but with different slope and y-intercept of the line. Also 

shown are the prediction from Davis et al. [20] and Lian et al.[39] for comparison.  From the variation in 

slope, we observe that coating thickness moderates the sensitivity of the critical Stokes number to elasticity. In 

other words, for the same change in elasticity, the critical Stokes number of a thinner coating will change less 

than a thicker coating. Similarly, for the same change in the thickness parameter, the critical Stokes number 

will change more significantly when ln(1 / )ε  is smaller, i.e. the coating material is softer. The reason for 

both of these trends is the sensitivity of compliance to both ε and T . Large changes inε will result in smaller 

changes in compliance when T is small, and vice versa.    

To further quantify the role of coating thicknesses on critical Stokes number cS t , we summarize our 

results in Fig. 7A for intermediate to thick coating thickness T and rewrite the equation for the critical Stokes 

number in the form: 

                           ( ) ( )1lncS t T Tα β
ε

⎛ ⎞= +⎜ ⎟
⎝ ⎠

.      (15) 

Note that ( )Tα  and ( )Tβ are sole functions of coating thickness (geometrical constrain) which is fully 

decoupled from the material property in Eqn.15. To obtain the functional forms for ( )Tα  and ( )Tβ  for Eqn. 

15, 250 trials with T = 0.1~50 were fitted using Matlab’s cftool. For ( )Tβ  we interpolate the numerical 

results to the (unphysical) limit of ln (1 / ) 0ε =  (shown in dashed lines in Fig. 7A). The only limitation was 

that ( )Tα  and ( )Tβ  approach the thick coating asymptotic value of ( ) 0.64α ∞ = and ( ) 0 .89β ∞ = −

respectively. Negative values for ( )β ∞ have been predicted by others[20,39] . Within the parameter space 

investigated here ( 0.01ε <  ), the negative values for β  never lead to negative Stc. It is possible that the Eqn. 

(15) would no longer be linear for values of the elasticity parameter beyond the range investigated in our 

work. The resulting curve fits are as follows: 

                          ( )
0.91

0.64
1 0.19

T
T

α
−

=
+

,      (16) 

                            ( )
1.24

5.654.76
1 0.27

T
T

β
−

= −
+

.      (17) 

cSt
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The two equations are a good fit for the ( )Tα  and ( )Tβ  data points, as shown in Fig. 7B above. At 

intermediate thickness parameters, 0.1 1T< <  , the values of ( )Tα  and ( )Tβ are increasing and decreasing 

respectively. Increasing ( )Tα corresponds to an increased sensitivity of cS t  in response to changes in 

elasticity. Both curves begin to plateau at 10T > , where the thickness parameter is significantly large to be 

comparable to an elastic half-space. On the other hand, since there was limited data for rebound in thin 

coating parameter conditions 0.1T < , the behavior of Eqns. 16-17 in that region are not accurate. In the 

theoretical limiting case of an extremely thin coating 0T → , the compliance of the coating is essentially that 

of the rigid substrate regardless of the elasticity of the coating. We would expect that under those conditions, 

the cSt is insensitive to changes in the elasticity parameter, so (0) 0α = , which is satisfied by Eqn. 16. On the 

other hand, the extremely thin coating, which will be as noncompliant as the rigid substrate, will not be able to 

deform and store elastic potential energy. Thus, assuming that there are no surface asperities on the particle, 

all the kinetic energy of the particle will be dissipated through fluid drainage, and there will not be any 

rebound. There is no value of St   that can cause the particle to rebound away from the coating, so 

theoretically, (0)β = ∞ . This is not the case in Eqn. 17, where the asymptotic value of β   as 0T →  is 4.76. 

The consequence of this is that our equation would underestimate the value of cSt  for thin coatings. 

In the next sections, we propose an effective elasticity parameter that combines both thickness and 

elasticity parameters to predict Stc. The rationale is that a coating of some thickness and elasticity parameters 

might behave similarly to a different coating with another set of thickness and elasticity parameters. The 

linearity of Eqn. 15 allows us to solve for different pairs of elasticity and coating thickness that yield the same 

critical Stokes number. As long as ( )Tα is nonzero, then for every cSt , there are infinitely many pairs of ε  

and T that will satisfy the equation. For the unique case that the coating is a half-space ( ~T ∞ ), we define 

the elasticity that yields that specific cS t to be the “effective” elasticity 'ε  . The effective elasticity is defined 

such that a soft coating with some finite thickness and elasticity will have the same Critical Stokes as a half-

space with of that given effective elasticity. It is important to remember that other than the cSt , the finite 

coating thickness system and the effective elasticity half-space system will not share similar deformation 

profiles, drainage time, separation, or other variables. However, there is still merit to relying on an effective 

elasticity for the cSt  since for large-scale collision models and simulations, cS t is one of the most important 

parameters as it can be used to calculate the post-collision rebound velocity of particles rapidly.  

To solve for the effective elasticity for any pair of ε  and T, we rearrange Eqn. 15 as: 

                          ( ) ( )( )'' exp 'T Tαε ε β= ,      (18) 
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where  '( ) ( ) / ( )T Tα α α= ∞  and '( ) ( ( ) ( )) / ( )T Tβ β β α= ∞ − ∞  . As noted previously, for a half-

space, the slope ( )α ∞  and intercept ( )β ∞  are 0.64 and -0.89 respectively. The same limitations for Eqns. 16-

17 also hold here, specifically the loss of accuracy for 0.1T < .   

 

 

Fig. 8 (A) Contour plot showing the effective elasticity ( 'ε )for different T and ε values. Every point on the 
same contours indicates that this combination of T and ε   yields the same effective elasticity value, indicated 
in red at the upper portion of the figure. (B) Verification of proposed effective elasticity formula. Results from 
trials with different combinations of Stokes number and effective elasticity are shown with different markers. 
The red filled circular markers and the red empty circular markers denote sticking and rebound outcomes 
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respectively in the data sets, both of which match our rebound criterion. The blue ‘x’ markers denote data that 
does not fit the stick-rebound criterion proposed. 

 

Fig. 8A shows a contour plot that shows pairs of the thickness and elasticity parameters that yield the 

same effective elasticity parameter based on Eqn. 18. The effective elasticity increases with coating thickness 

or elasticity. Note that above a certain coating thicknesses, around ~  10T  or so, the effective elasticity no 

longer changes with T . Beyond that point, ' ~ε ε , and the thickness parameter is large enough to be 

equivalent to a half-space. However, the exact value of T past which the effective elasticity no longer changes 

is not constant. As shown in Fig. 8A, as the elasticity parameter increases, that half-space approximationT

threshold increases as well. This changing threshold would be of significance to determine whether it is valid 

to assume that a given coating is thick enough to be treated as an elastic half-space.  

We verify our equation for the effective elasticity against data from 250 simulations with different Stokes 

number, elasticity and coating thickness parameters. For each unique triplet St  , 'ε  , and T , we calculate the 

effective elasticity 'ε  and verify if the rebound velocity is above the threshold for bouncing. First, since the 

elasticity of a half-space is equivalent to its effective elasticity, Eqn. 18 below shows the critical Stokes 

number as a function of effective elasticity. 

                              10.64 ln 0.89
'cS t

ε
⎛ ⎞= −⎜ ⎟
⎝ ⎠

.      (19) 

Fig. 8B includes this line to separate the bouncing and sticking outcomes. Then in Fig. 8B, we assign 

different marker depending on whether or not the results of the simulation for the ( , 'St ε ) pair matched the 

rebound criterion. If the result matched the criterion, a red circular marker was assigned, with a filled marker 

indicating a sticking outcome, and an empty marker indicating a rebound outcome. On the other hand, if the 

result did not match the criterion, a blue ‘x’ marker was assigned to the data point. From Fig.8B, for most 

combinations of ( , 'St ε ), Eqn. 19 separates the sticking cases and the bouncing cases successfully, meaning 

that it can be used directly to determine whether the particle will stick or rebound. For an experimental design 

with combination of coating thickness and material property, one can simply use Eqn. 18 to calculate the 

effective elasticity, and use Eqn.19 to find the Critical Stokes number – the minimum Stokes number needed 

for a rebound to occur. However, we observe that a large cluster of data points on the upper-right corner did 

not match the stick-rebound criterion. In fact, when ln(1 / ') 10ε >  , all the data points indicate that the 

particle did not rebound. The cluster of data point not captured by the effective elasticity is due to the choice 

of ( )Tβ . In the limit of 0T → , ( )Tβ  should approach infinity so that the effective elasticity approaches 

zero (equivalent to a rigid half space). However, since our arbitrary choice of ( )Tβ  does not reach infinity, 

the effective elasticity is less accurate when 0.1T < .To address this, we can modify the stick rebound 

criterion in Eqn. 19 to also include this additional restriction.  
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IV. Conclusions 

We rescaled the equations governing the elastohydrodynamic collision of a rigid sphere against a rigid, 

planar substrate with a soft incompressible coating of finite thickness. The rescaling showed that a new 

thickness parameter is also necessary to describe the collisions (in addition to the Stokes number and elasticity 

parameter that were already previously noted). The thickness parameter was shown to affect the degree to 

which the compliance of the soft coating was similar to that of the rigid substrate. We then developed 

bouncing criteria for the stratified substrate, characterized by the critical Stokes number ( cSt ). We find that 

cSt decreases when either the thickness parameter increases, or the elasticity parameter decreases. We then 

obtain a close form correction for an effective elasticity that accounts for the effect of stratification for the cSt

. The correction can be employed along existing classic scaling of cSt , without the need of full numerical 

simulations. By coupling thickness and elasticity parameters into effective elasticity, the original 

elastohydrodynamic bouncing problem is simplified as the dependency on three dimensionless parameters is 

reduced to only two (St and ε ). The method we developed in this article can be used improve the accuracy of 

large-scale multi-particle simulations, which are currently limited to the dichotomous “hard sphere” or “soft 

sphere” types of particles, with no option for stratified materials. We also provide regime maps that can be 

employed to predict rebound or sticking after normal collisions. These different regimes are crucial in 

understanding some non-Newtonian behavior of highly concentrated particulate systems[42,43].  

Acknowledgments 

This work was supported by the National Science Foundation through NSF-CMMI 1538003 and 
through a Research Experience for Undergraduate Supplement for M.R.T. (REU120897) M.R.T. also 
acknowledges support from the Johns Hopkins University Provost Undergraduate Research Award (PURA). 
Y.W. also acknowledges support from the National Natural Science Foundation of China (No. 51804319) and 
the Science Foundation of China University of Petroleum, Beijing (No. 2462018YJRC002) 

 

References 

[1] Z. Adamczyk, K. Sadlej, E. Wajnryb, M. Nattich, M. L. Ekiel-Jeżewska, and J. Bławzdziewicz, 
Streaming potential studies of colloid, polyelectrolyte and protein deposition, Adv. Colloid Interfac. 
153, 1 (2010). 

[2] C. B. Solnordal, Y. W. Chong, and J. Boulanger, An experimental and numerical analysis of erosion 
caused by sand pneumatically conveyed through a standard pipe elbow, Wear 43, 336 (2015). 

[3] R. A. Bagnold, Experiments on a Gravity-Free Dispersion of Large Solid Spheres in a Newtonian Fluid 
under Shear, Proc. R. Soc. Lond. 225, 49 (1954). 

[4] H. M. Jaeger, S. R. Nagel, and R. P. Behringer, Granular solids, liquids, and gases, Rev. Mod. Phys. 68 
1259 (1996). 

[5] Y. M. Chen, Recent advances in FCC technology, Powder Technol. 163, 2 (2006). 
[6] M. P. Dudukovic, Frontiers in Reactor Engineering, Science 325, 698 (2009). 
[7] C. T. Yavuz, A. Prakash, J. T. Mayo, and V. L. Colvin, Magnetic separations: From steel plants to 

biotechnology, Chem. Eng. Sci. 64, 2510 (2009). 



27 
 

[8] Y. Lu, Z. Huang, R. Hoffmann, L. Amundsen, and H. S. Fogler, Counterintuitive Effects of the Oil 
Flow Rate on Wax Deposition, Energy Fuels 26, 4091 (2012). 

[9] K. S. Soppimath, T. M. Aminabhavi, A. R. Kulkarni, and W. E. Rudzinski, Biodegradable polymeric 
nanoparticles as drug delivery devices, J. Control. Release 70, 1 (2001). 

[10] D. A. Fedosov, W. Pan, B. Caswell, G. Gompper, and G. E. Karniadakis, Predicting human blood 
viscosity in silico, Proc. Natl. Acad. Sci. 108, 11772 (2011). 

[11] Y. Li and E. Kumacheva, Hydrogel microenvironments for cancer spheroid growth and drug screening, 
Sci. Adv. 241, 869 (2018). 

[12] F. Wu et al., Bioinspired Universal Flexible Elastomer-Based Microchannels, Small 14, 1702170  
(2018). 

[13] A. Pandey, S. Karpitschka, C. H. Venner, and J. H. Snoeijer, Lubrication of soft viscoelastic solids, J. 
Fluid Mech. 799, 433 (2016). 

[14] J. H. Snoeijer, Analogies between elastic and capillary interfaces, Phys. Rev. Fluids 1, 060506 (2016). 
[15] Y. Wang, G. A. Pilkington, C. Dhong, and J. Frechette, Elastic deformation during dynamic force 

measurements in viscous fluids, Curr. Opin. Colloid Interface Sci. 27, 43 (2017). 
[16] Y. Wang, C. Dhong, and J. Frechette, Out-of-contact elastohydrodynamic deformation due to 

lubrication forces, Phys. Rev. Lett. 115, 248302 (2015). 
[17] P. Gondret, M. Lance, and L. Petit, Bouncing motion of spherical particles in fluids, Phys. Fluids 14, 

643 (2002). 
[18] R. H. Davis, J.-M. Serayssol, and E. J. Hinch, The elastohydrodynamic collision of two spheres, J. Fluid 

Mech. 163, 479 (1986). 
[19] G. Barnocky and R. H. Davis, Elastohydrodynamic collision and rebound of spheres: Experimental 

verification, Phys. Fluids 31, 1324 (1988). 
[20] R. H. Davis, D. A. Rager, and B. T. Good, Elastohydrodynamic rebound of spheres from coated 

surfaces, J. Fluid Mech. 468, 107 (2002). 
[21] K. Apostolou and A. N. Hrymak, Discrete element simulation of liquid-particle flows, Comput. Chem. 

Eng. 32, 841 (2008). 
[22] H. P. Zhu, Z. Y. Zhou, R. Y. Yang, and A. B. Yu, Discrete particle simulation of particulate systems: A 

review of major applications and findings, Chem. Eng. Sci. 63, 5728 (2008). 
[23] P. Gondret, E. Hallouin, M. Lance, and L. Petit, Experiments on the motion of a solid sphere toward a 

wall: From viscous dissipation to elastohydrodynamic bouncing, Phys. Fluids 11, 2803 (1999). 
[24] G. G. Joseph, R. Zenit, M. L. Hunt, and A. M. Rosenwinkel, Particle–wall collisions in a viscous fluid, 

J. Fluid Mech. 433, 329 (2001). 
[25] G. G. Joseph and M. L. Hunt, Oblique particle-wall collisions in a liquid, J. Fluid Mech. 510, 71 (2004). 
[26] R. Zenit and M. L. Hunt, Mechanics of Immersed Particle Collisions, J. Fluids Eng. 121, 179 (1999). 
[27] T. Müller and K. Huang, Influence of the liquid film thickness on the coefficient of restitution for wet 

particles, Phys. Rev. E 93, 042904 (2016). 
[28] T. Chastel, P. Gondret, and A. Mongruel, Texture-driven elastohydrodynamic bouncing, J. Fluid Mech. 

805, 577 (2016). 
[29] H. Ow, D. R. Larson, M. Srivastava, B. A. Baird, W. W. Webb, and U. Wiesner, Bright and stable core-

shell fluorescent silica nanoparticles, Nano Letters 5, 113 (2005). 
[30] K. Volk, J. P. S. Fitzgerald, M. Retsch, and M. Karg, Time‐Controlled Colloidal Superstructures: 

Long‐Range Plasmon Resonance Coupling in Particle Monolayers, Adv. Mater. 27, 7332 (2016). 
[31] T. J. Baudouin Saintyves, Thomas Salez, and L. Mahadevan, Self-sustained lift and low friction via soft 

lubrication, Proc. Natl. Acad. Sci. 113, 5847 (2016). 
[32] S. Leroy and E. Charlaix, Hydrodynamic interactions for the measurement of thin film elastic 

properties, J. Fluid Mech. 674, 389 (2011). 
[33] F. Restagno, E. Martinot, R. Villey, S. Leroy, C. Poulard, E. Charlaix, & L. Léger, Sensing the 

Mechanical Properties of Supported Micro-to Nano-elastic Films. In Handbook of Nanomaterials 
Properties (pp. 575-614). Springer, Berlin, Heidelberg (2014).  

[34] N. Balmforth, C. Cawthorn, and R. Craster, Contact in a viscous fluid. Part 2. A compressible fluid and 
an elastic solid, J. Fluid Mech. 646, 339 (2010). 

[35] Y. Wang, M. R. Tan, and J. Frechette, Elastic deformation of soft coatings due to lubrication forces, 
Soft Matter 13, 6718 (2017). 



28 
 

[36] Y. Wang and J. Frechette, Morphology of soft and rough contact via fluid drainage, Soft Matter 14, 
7605 (2018). 

[37] J. Li and T.-W. Chou, Elastic field of a thin-film/substrate system under an axisymmetric loading, Int .J. 
Solids. Struct. 34, 4463 (1997). 

[38] T. Nogi and T. Kato, Influence of a hard surface layer on the limit of elastic contact—Part I: Analysis 
using a real surface model, J. Tribol. 119, 493 (1997). 

[39] G. Lian, M. J. Adams, and C. Thornton, Elastohydrodynamic collisions of solid spheres, J. Fluid Mech. 
311, 141 (1996). 

[40] E. Izard, T. Bonometti, and L. Lacaze, Modelling the dynamics of a sphere approaching and bouncing 
on a wall in a viscous fluid, J. Fluid Mech. 747, 422 (2014). 

[41] L. C. Hsiao, S. Jamali, E. Glynos, P. F. Green, R. G. Larson, and M. J. Solomon, Rheological state 
diagrams for rough colloids in shear flow, Phys. Rev. Lett. 119, 158001 (2017). 

[42] X. Cheng, J. H. McCoy, J. N. Israelachvili, and I. Cohen, Imaging the Microscopic Structure of Shear 
Thinning and Thickening Colloidal Suspensions, Science 333, 1276 (2011). 

[43] N. J. Wagner and J. F. Brady, Shear thickening in colloidal dispersions, Phys. Today 62, 27 (2009). 
[44] C. B. Holmes, M. E. Cates, M. Fuchs, and P. Sollich, Glass transitions and shear thickening suspension 

rheology, J. Rheol. 49, 237 (2005). 
[45] E. Gacoin, C. Fretigny, A. Chateauminois, A. Perriot, and E. Barthel, Measurement of the mechanical 

properties of thin films mechanically confined within contacts, Tribol. Lett. 21, 245 (2006). 
[46] S. Pathak and S. R. Kalidindi, Spherical nanoindentation stress–strain curves, Mater. Sci. Eng. R-Rep. 

91, 1 (2015). 
[47] F. Gollwitzer, I. Rehberg, C. A. Kruelle, and K. Huang, Coefficient of restitution for wet particles." 

Phys. Rev. E 86, 011303 (2012). 
[48] A. Gopinath and L. Mahadevan, Elastohydrodynamics of wet bristles, carpets and brushes, P. Roy. Soc. 

A-Math. Phys, 467, 1665 (2011). 
[49] G. N. Greaves, A. Greer, R. Lakes, and T. Rouxel, Poisson's ratio and modern materials, Nat. Mater. 10, 

823 (2011). 
[50] See Supplemental Material for animation that compares the approach, deformation and rebound for the 

four particular thickness parameters: T = 0.05, 0.5, 5, and 50.  
[51] V. M. Kulik, S. V. Rodyakin, I. Lee, and H. H. Chun, Deformation of a viscoelastic coating under the 

action of convective pressure fluctuations, Exp. Fluids 38, 648 (2005). 
[52] T. Salez and L. Mahadevan, Elastohydrodynamics of a sliding, spinning and sedimenting cylinder near 

a soft wall, J. Fluid Mech. 779, 181 (2015). 
[53] J. R. Smart and D. T. Leighton, Measurement of the hydrodynamic surface roughness of noncolloidal 

spheres, Phys. Fluids 1, 52 (1989). 
[54] S. K. Birwa, G. Rajalakshmi, R. Govindarajan, and N. Menon, Solid-on-solid contact in a sphere-wall 

collision in a viscous fluid, Phys. Rev. Fluids 3, 044302 (2018). 
 
 


