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Abstract

Capillary fingering is a displacement process that can occur when a non-wetting fluid displaces a

wetting fluid from a homogeneous disordered porous medium. Here, we investigate how this process

is influenced by a pore size gradient. Using microfluidic experiments and computational pore-

network models, we show that the non-wetting fluid displacement behavior depends sensitively on

the direction and the magnitude of the gradient. The fluid displacement depends on the competition

between a pore size gradient and pore-scale disorder; indeed, a sufficiently large gradient can

completely suppress capillary fingering. By analyzing capillary forces at the pore scale, we identify

a non-dimensional parameter that describes the physics underlying these diverse flow behaviors.

Our results thus expand the understanding of flow in complex porous media, and suggest a new

way to control flow behavior via the introduction of pore size gradients.
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I. INTRODUCTION

Drainage is the process by which a non-wetting fluid displaces a wetting fluid from a porous

medium. This phenomenon is ubiquitous: it arises in diverse settings including groundwa-

ter contamination, oil migration, gas venting from sediments, CO2 sequestration, mercury

porosimetry, soil drying, liquid infusion into porous membranes, and oxygen accumulation

within polymer electrolyte membranes [1–17]. The ability to accurately predict the displace-

ment pathway of the non-wetting fluid is critically important in all of these cases [3, 18].

For instance, whether the fluid flows through a compact, stabilized front or a narrow and

fingered channel impacts how much contaminant penetrates into an aquifer, how much oil

can be recovered from a reservoir, and how much water remains in a dried soil [19–22].

Different displacement behaviors can arise during drainage. For a homogeneous dis-

ordered medium of uniform wettability and uncorrelated pore sizes, these behaviors are

predictable using two non-dimensional parameters: the viscosity ratio M ≡ µnw/µw and the

capillary number Ca ≡ µnw(Q/A)/γ, where µnw and µw are the non-wetting and wetting

fluid viscosities, Q is the fluid flow rate through a cross-sectional area A of the medium, and

γ is the interfacial tension between the two fluids [23–25]. Many processes are characterized

by M > 1 and Ca � 1; under these conditions, capillary forces dominate, and the non-

wetting fluid cannot enter a pore of diameter a until the fluid pressure reaches a threshold

∼ γ/a. Therefore, the non-wetting fluid displacement proceeds one pore invasion at a time.

At each time, the fluid invades the largest pore accessible to it, which is characterized by the

lowest capillary pressure threshold. The flow behavior is thus determined by pore-to-pore

variations in the pore size, resulting in a displacement process known as capillary fingering

(CF) that is characterized by a ramified and disordered pathway [25–36].

Many naturally-occurring and synthetic porous media are not homogeneous, however. For

example, shales, sandstones, and soils are typically heterogeneous, with smooth gradients or

sharp discontinuities in pore size both along and orthogonal to the fluid flow direction [37–

39]. Sharp pore size stratification has been shown to alter the fluid pathway during drainage

[22, 40–42], yet the influence of a smooth gradient in pore sizes is still unclear. Theoretical

calculations, numerical simulations, and indirect experimental evidence suggest that an ap-

plied pressure gradient can modify the fluid pathway [43–46], and a pore size gradient has

been conjectured to play a similar role [47], but this conjecture has not been directly tested
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in experiments. Recent investigations of viscous fingering, a distinct fluid displacement be-

havior that arises for M < 1, demonstrate that gradients and spatial correlations in pore

size can indeed strongly impact the geometry of the fluid pathway [18, 48–51]. However,

how a pore size gradient impacts capillary fingering remains unknown. As a result, accurate

prediction of fluid displacement pathways is still elusive for many real-world applications.

Here, we use microfluidic porous media and computational pore-network models to in-

vestigate how capillary fingering is influenced by a pore size gradient. We find that the

non-wetting fluid displacement behavior depends sensitively on the direction and the mag-

nitude of the gradient, and for a sufficiently large gradient, capillary fingering is completely

suppressed. Instead, if the non-wetting fluid flows down the gradient, it propagates via a

uniform, stabilized front, while if the fluid flows up the gradient, it propagates through a

single, unstable, fingered channel. This behavior also depends on the relative amount of

disorder in the geometry of the medium; we demonstrate that the fluid displacement can be

described by a single non-dimensional parameter that quantifies the competition between a

pore size gradient and pore-scale disorder. Moreover, by analyzing capillary forces at the

pore scale, we develop a geometric criterion that predicts when capillary fingering is com-

pletely suppressed. Our results thereby help elucidate how diverse flow pathways can arise

due to pore size gradients in disordered media.

II. EXPERIMENTAL MATERIALS AND METHODS

To systematically study the influence of pore size gradients and disorder on drainage, we

design polydimethylsiloxane (PDMS) microfluidic devices with controlled pore geometries.

The devices are comprised of a rectangular channel of width W = 28 mm and length L =

25 mm containing a two-dimensional (2D) array of cylindrical pillars that span the channel

height H = 166 ± 8 µm, where the uncertainty reflects experimental variations in device

fabrication. Importantly, because H � W , the fluid flow is effectively 2D. We arrange the

pillars on a square diagonal lattice with a diagonal length D of 1.6 mm, as shown in Figure 1.

The lattice has 31 rows with either 17 or 18 pillars per row. The pillar diameters determine

the pore diameters: the diagonal distances between neighboring pillars represent the pore

throats. We denote the diameters of the pores throats in row n by an,i, where i indexes

the pores along the row, and the mean diameter by ān. Our experiments explore the range
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FIG. 1: Design of microfluidic devices with controlled pore geometries. (Left) 3D schematic of a

device. The fluid flows from the inlet to the outlet. The width and length of the porous medium are

labeled by W and L, respectively. (Middle) The pillars are arranged on a square diagonal lattice;

their diameters thus determine the pore diameters. The pore throat diameters are given by a and

are indexed by the row number and the position along the row. Schematic shows an example of a

disordered porous medium with pores of variable, uncorrelated sizes. (Right) Experimental image

of capillary fingering. Black shows invading non-wetting fluid, while white circles show pillars

defining the solid matrix and additional white is the pore space. The scale bar represents 5 mm.

Flow is from bottom to top.

111 µm ≤ ān ≤ 621 µm, with an uncertainty of ± 1 µm due to experimental variability in

device fabrication. We also introduce a triangular area at the inlet of each device to ensure

that the flow is uniform before it reaches the first set of pillars [18].

We fabricate the devices using standard soft lithography. First, we design silicon molds

for the devices using photolithography with a positive photoresist and deep reactive ion

etching. We then cast the devices using PDMS (Dow Corning Sylgard 184), with a cross-

linker to elastomer ratio of 1.5 to 10. We heat the castings for 20 minutes at 150 ◦C and

treat them for 30 seconds using a Corona treatment. Finally, we attach a glass slide to each

casting and leave them to bond further overnight at 65 ◦C. The finished PDMS surfaces

are hydrophobic and oleophilic, as previously described [18]; our images (e.g. in Figs. 2-

3) indicate that interactions with the PDMS primarily dictate the mean curvature of the

fluid-fluid interface in the experiments.

Prior to each experiment, we saturate the device with the wetting fluid, silicone oil
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of viscosity µw = 5 mPa s. We then inject the non-wetting fluid, 76.5 vol% glycerol in

water colored with food dye; the interfacial tension between the wetting and non-wetting

fluids is γ ≈ 30 mN/m. The non-wetting fluid has viscosity µnw = 50 mPa s; therefore,

our experiments probe M = 10. We use a Harvard Apparatus Pump 11 Elite syringe

pump to impose a constant injection flow rate Q = 0.003 mL/h, which corresponds to

Ca ≡ µnw(Q/WH)/γ ≈ 3 × 10−7, well in the capillary fingering regime for homogeneous

disordered media. Our experiments confirm this expectation: we observe that the non-

wetting fluid invades the pore space sequentially, one pore invasion at a time.

As the non-wetting fluid flows, we image the evolution of the flow pathway using a

mounted digital camera taking 4K resolution images between 1 and 2 frames per minute.

To characterize the structure of the resulting displacement pathway, we use the binarized

images to determine the fraction of the pore space volume that is occupied by the non-

wetting fluid, VF, focusing on a field of view four rows away from the lateral boundaries

and the entrance of the medium to minimize boundary effects. Moreover, to minimize exit

effects, we measure VF when the non-wetting fluid first reaches the halfway point of the

medium.

III. INFLUENCE OF A GRADIENT ON DRAINAGE BEHAVIOR

We first test a disordered, gradient-free porous medium. To incorporate a controlled amount

of disorder in the medium, we fabricate porous media with pillars whose diameters are chosen

from a normal distribution. We choose the pillar diameters such that the pore diameters are

also given by a normal distribution with a mean of 111 µm and with a standard deviation

≈ σ = 3.25 µm, such that the difference between the maximum and minimum pore diameters

equals 2σ. Hence, the quantity σ provides a measure of the disorder in the medium. Because

Ca � 1, we expect the drainage to proceed via capillary fingering. Consistent with this

expectation, the fluid displacement proceeds one pore invasion at a time, resulting in a

ramified and disordered pathway with VF ≈ 0.45 as shown in the rightmost panel of Fig.

1. This pathway is morphologically similar to previous observations of capillary fingering

pathways, which can have VF ranging from ≈ 0.3 to 0.7 [23, 52].

We next test the influence of a pore size gradient on the fluid displacement. To define a

gradient, we fabricate porous media with pillars whose diameters, averaged across each row,
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increase by a fixed amount |g| per row along the imposed flow direction. As a result, the

mean pore diameter decreases by |g| from one row to the next, as schematized in the top row

of Fig. 3 [18, 53, 54]. The mean pore diameter in row n is thus given by ān = ā1 + g(n− 1),

where the parameter g quantifies the gradient; in general, a negative or positive value of

g indicates that the pore diameters are decreasing or increasing along the flow direction,

respectively. We maintain a controlled amount of disorder in the medium by choosing the

size of each pore in a given row n from a normal distribution of sizes centered around ān

and with the difference between the maximum and minimum pore diameters again equal to

2σ. To isolate the influence of the gradient, we fix σ = 3.25 µm and test four different values

of g: ±10 µm and ±16.7 µm.

Remarkably, although Ca� 1, well within the capillary fingering regime for homogeneous

media, the addition of the pore size gradient completely suppresses capillary fingering. In-

stead, we observe two distinct flow pathways. In both cases, the non-wetting fluid displaces

the wetting fluid sequentially, one pore invasion at a time; however, the macroscopic flow

pathway is starkly different from the ramified and disordered pathway characteristic of cap-

illary fingering. For g < 0, the non-wetting fluid propagates via a uniform, stabilized front,

as shown in the left panel of Fig. 2, ultimately yielding a non-wetting fluid volume fraction

VF ≈ 0.9. We term this displacement behavior stable displacement. By contrast, for g > 0,

the non-wetting fluid propagates through a single, unstable, fingered channel, as shown in

the right panel of Fig. 2, ultimately yielding a non-wetting fluid volume fraction VF ≈ 0.1.

We term this displacement behavior unstable fingering. Interestingly, these displacement

behaviors arise for both values of |g|, and the final VF appears to only depend on the sign

of g, not its magnitude, in this range of |g|.

We can understand the origin of these displacement behaviors by analyzing the pore-

scale capillary forces for a fluid interface trapped within a pore in a given row. Because

Ca� 1, the non-wetting fluid pressure must exceed the capillary pressure threshold ∼ γ/a

to enter a pore of diameter a. For the media with a pore size gradient, the smallest pore

in row n, characterized by the largest capillary pressure threshold, has diameter ān − σ;

by contrast, the largest pore in row n + 1, with the smallest capillary pressure threshold,

has diameter ān+1 + σ. Because ān+1 − ān = −|g|, the smallest pore in row n is larger

than the largest pore in row n + 1 when |g|/2σ > 1, as in the experiments, which have

|g|/2σ ≈ 1.5 and 2.6. Hence, when this macroscopic criterion holds—independent of the
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exact value of |g|—the pores along each row remain separated in diameter from those in the

adjacent rows. Consequently, the capillary pressure threshold is lower for pores in row n

compared to pores in row n + 1. The pore size gradient therefore dominates over disorder

in determining the non-wetting fluid pathway: the non-wetting fluid fills all pores in a given

row before proceeding to the next, ultimately leading to stable displacement as observed

experimentally (Fig. 2, left).

FIG. 2: Influence of a gradient on drainage behavior. (Left) Top is an experimental image showing

the non-wetting fluid (black) propagating via a uniform, stabilized front in a medium with a

gradient of decreasing pore sizes along the flow direction. The capillary pressure threshold is lower

for pores in row n compared to pores in row n+ 1; thus, the non-wetting fluid fills all pores in the

former row (green in lower panel) before proceeding to the next (red in lower panel). (Right) Top

is an experimental image showing the non-wetting fluid (black) propagating via a single, unstable,

fingered channel in a medium with a gradient of increasing pore sizes along the flow direction. The

capillary pressure threshold is higher for pores in row n compared to pores in row n + 1; thus,

the non-wetting fluid preferentially fills a pore in the next row (green in lower panel) before filling

adjacent pores in the current row (red in lower panel). Scale bars are 5 mm. Experimental images

show the displacement pathway when the non-wetting fluid first reaches the halfway point of the

medium.
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A converse argument holds for the case of g > 0: when |g|/2σ > 1, the largest pore

in a given row n is smaller than the smallest pore in row n + 1, independent of the exact

value of |g|. The magnitudes of the corresponding capillary pressure thresholds again remain

separated between adjacent rows; the pressure threshold is then higher for pores in row n

compared to pores in row n + 1. The pore size gradient thus dominates over disorder in

determining the non-wetting fluid pathway again: in this case, instead of laterally filling a

given row, the non-wetting fluid successively fills neighboring pores in adjacent rows along

the flow direction. As a result, the fluid propagates through the medium in a single thin

channel approximately one pore wide, ultimately leading to unstable fingering as observed

experimentally (Fig. 2, right).

IV. COMPETITION BETWEEN A GRADIENT AND DISORDER

This geometric argument predicts that the fluid displacement pathway only depends on the

sign of g, not its magnitude, when the non-dimensional parameter |g|/2σ > 1—resulting

in stable displacement or unstable fingering, as observed in the experiments. The thresh-

old |g|/2σ = 1 accordingly represents a macroscopic geometric criterion describing when

capillary fingering is completely suppressed, even under conditions in which capillary finger-

ing would typically be predicted for homogeneous disordered media. By contrast, the fluid

displacement must proceed by capillary fingering in the limit that |g|/2σ approaches zero,

in which pore size disorder solely determines the displacement pathway. We thus expect

a transition between these displacement behaviors as |g|/2σ increases from zero: the pore

size distributions and the corresponding capillary pressure thresholds characterizing adja-

cent rows overlap less and less (top row of Fig. 3, left to right). The gradient then plays

an increasing role in determining the displacement pathway, with stable displacement or

unstable fingering increasingly dominating for increasing values of |g|/2σ, depending on the

sign of g, up to the threshold |g|/2σ = 1.

We quantitatively test this prediction by performing experiments on devices with different

values of g and σ spanning over three decades in the non-dimensional parameter |g|/2σ.

Representative images showing the morphology of the fluid displacement pathway for g < 0

are shown in the middle row of Fig. 3. Consistent with our hypothesis, we find that as the

relative magnitude of the gradient increases, the non-wetting fluid displacement becomes
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FIG. 3: Influence of disorder on drainage behavior. (Top row) Schematic of pore size distributions

for each row, indexed by n, n+1, n+2, in porous media with different amounts of disorder. (Middle

row) Experimental images and (Bottom row) pore-network simulation images for g = −10 µm and

2σ = 130, 20, 2, and 0 µm (left to right). Black shows non-wetting fluid. Scale bars are 5 mm.

Experimental images show the displacement pathway when the non-wetting fluid first reaches the

halfway point of the medium. For media with a small relative gradient (first column), the pore

size distributions for adjacent rows strongly overlap, and the non-wetting fluid pathway is ramified

and non-uniform. As the relative gradient increases (second column), the pore size distributions

for adjacent rows overlap less, and the non-wetting fluid propagates via a more uniform front.

For media with a large relative gradient or no disorder (third and fourth columns), the pore size

distributions for adjacent rows do not overlap, and the non-wetting fluid propagates via stable

displacement. The corresponding non-wetting fluid volume fraction VF increases from the capillary

fingering value.

increasingly uniform for g < 0, ultimately leading to a stabilized front (Fig. 3, left to right).

Conversely, for g > 0, we find that as the relative magnitude of the gradient increases, the

fluid displacement becomes increasingly unstable, ultimately leading to propagation through

a single fingered channel.
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The full set of our measurements of VF are shown by the large symbols in Fig. 4. Consis-

tent with our hypothesis, VF increases or decreases as |g|/2σ increases above zero for g < 0

and g > 0, respectively. Surprisingly, these transitions are highly sensitive to the magnitude

of the gradient: the non-wetting fluid volume fraction begins to appreciably deviate from

the capillary fingering value when |g|/2σ is as small as ∼ 10−2, as shown in Fig. 4. Moreover,

consistent with our hypothesis, the flow pathway eventually reaches the stable displacement

and unstable fingering limits—which we measure to have VF ≈ 0.9 and ≈ 0.1—for g < 0 and

g > 0 respectively, as |g|/2σ increases above one. We confirm these limiting values by also

testing media with a pore size gradient (|g| = 10 µm) but no disorder (σ = 0). Additionally,

to confirm that the results are insensitive to the choice of M in this regime of Ca � 1,

we test different viscosity ratios M = 4 and 40 using 65.6 and 89.1 vol% glycerol as the

non-wetting fluid, respectively. In both cases, the gradient completely suppresses capillary

fingering, as exemplified for the case of g < 0 in Fig. 3, and we measure VF = 0.932 and

0.893 for g = −10 µm and VF = 0.166 and 0.161 for g = 10 µm, respectively. Finally, we

find qualitatively similar results using different image analysis protocols as indicated by the

squares and circles in Fig. 4, further indicating that our findings are robust. The slight

discrepancy between the measured volume fraction in the stable displacement limit and the

expected value of VF = 1 arises from experimental boundary effects. These are exemplified

in Fig. 2 (Left) and in Fig. 3 (Middle Row), which show unfilled pores that occur at the

boundary of the medium.

To describe the variation of VF with |g|/2σ, we extend the geometric argument presented

in Section II. We again analyze the pore-scale capillary forces for a fluid interface trapped

within a pore in row n, which represents the downstream tip of the non-wetting fluid inter-

face. However, to more generally represent the pore structure, we describe the distribution

of pore diameters an in the row by the probability density function pn. We denote the

minimum and maximum pore diameters in row n by an,min and an,max, and the cumulative

distribution function of pn by Φn; pn(an) then represents the probability that a pore in row

n has size an, while Φn+1(an) represents the fraction of pores in row n + 1 that are smaller

than an. For a gradient-free medium, all the pn are the same and are thus independent of n,

while as |g|/2σ increases from zero, pn and pn+1 begin to overlap less and less. We assume

that the non-wetting fluid randomly samples pores as it invades the pore space, and that

pore invasion only occurs at the downstream tip of the fluid interface. The non-wetting fluid
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FIG. 4: Transition from capillary fingering (CF) to stable displacement (SD) or unstable fingering

(UF) with an increasing relative gradient. Large filled symbols show experimental measurements

of the non-wetting fluid volume fraction VF; circles are for measurements taken when the non-

wetting fluid first reaches the halfway point of the medium, while square are for measurements

taken when the non-wetting fluid breaks through to the outlet. Small filled symbols show results

obtained from pore-network model simulations; each point represents the mean value obtained

from multiple independent runs having the same |g|/2σ, which span the full range indicated by

the light shaded regions. Solid lines show the solution to Eq. 2 derived from a simple geometric

argument. The color indicates the sign of g; blue represents g < 0, red represents g > 0, and grey

represents g = 0. The bars above the plot demarcate the different flow regimes.

volume fraction can then be approximated by the probability that a pore randomly selected

from row n is larger than a pore randomly and independently selected from row n+ 1:

VF ≈
∫ an,max

an,min

pn(an)Φn+1(an)dan (1)

For comparison with the experiments, we represent pn by the normal distribution and thereby
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obtain a full analytic prediction for the non-wetting fluid volume fraction:

VF ≈
1√
2π

∫ an,max

an,min

[
1 + erf

(ξ − g/2σ√
2/2

)]
e−2ξ

2

dξ (2)

Here, ξ is an integration variable and thus, Equation 2 demonstrates the central role of the

non-dimensional parameter g/2σ in describing the flow dynamics. We numerically solve Eq.

2 by replacing an,min and an,max by −∞ and +∞, respectively. This solution is shown by

the solid lines in Fig. 4.

The comparison between the solution to Eq. 2 and the experimental data indicates that

our geometric argument qualitatively captures the transition from capillary fingering at low

|g|/2σ to stable displacement (g < 0) or unstable fingering (g > 0) as |g|/2σ increases to

above one. However, this argument underpredicts the sensitivity to the magnitude of the

gradient: the predicted VF begins to appreciably deviate from the capillary fingering value

only when |g|/2σ ∼ 10−1, an order of magnitude larger than in the experiments. This

discrepancy reflects the simplifying assumptions made in this model—specifically, that the

non-wetting fluid randomly samples pores as it invades the pore space, and that pore invasion

only occurs at the downstream tip of the fluid interface. These assumptions neglect the sizes

of and the connectivity between individual adjacent pores; they also neglect the possibility

of pore invasion upstream from the downstream tip of the fluid interface, as well as wetting

fluid trapping throughout the pore space, which decreases the accessibility of pores. Fully

describing the influence of a pore size gradient therefore requires a more accurate description

of the pore space structure and the pore-scale displacement dynamics.

V. PORE-SCALE COMPUTATIONAL MODEL

We hypothesize that considering pore-scale capillary forces can describe the transition to

capillary fingering with increasing disorder, but only when the sizes and connectivity between

individual pairs of pores in the full medium are taken into account. To test this idea, we use

a computational pore-network model of invasion percolation with trapping that explicitly

considers the pore-to-pore variation in capillary pressure thresholds for a specified medium

geometry [25, 28, 55–58].

We first generate a grid of pores arranged on a square diagonal lattice with the same

structure as the experimental devices. Using this grid, we use a graph object for the pore
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network. Pore bodies become nodes that are either “filled” by the non-wetting fluid or are

“not filled”—that is, filled with the wetting fluid instead—and pore throats become edges

connecting two bodies/nodes. The pore body and throat sizes are generated statistically,

using specified values of σ and g, in a manner similar to the experiments. Importantly,

the pore throat sizes define the capillary pressure thresholds such that larger pore throats

are more easily invaded than smaller ones due to the resultant differences in their capillary

pressure thresholds.

At the beginning of each simulation, all the pores in the first row are filled with the

non-wetting fluid. At each time step, we determine the connected component clusters of

“not filled” pore bodies; the boundaries with these clusters delineate the invading non-

wetting fluid interface or trapped wetting fluid regions. We then find the largest pore throat

along the invading non-wetting fluid interface and fill the corresponding pore body, keeping

trapped wetting fluid regions unchanged to model an incompressible fluid. The model then

iterates through time steps until the non-wetting fluid reaches the outlet. Similar to the

experiments, we characterize the resultant flow pathway by calculating the fraction of the

pore space that is occupied by the non-wetting fluid, VF, including both pore bodies and

pore throats as in the experiments.

The non-wetting fluid pathways obtained using the pore-network simulations show excel-

lent agreement with the experimental observations. Similar to the experimental observations

described in Fig. 3, we find that for g < 0 and increasing |g|/2σ, the non-wetting fluid dis-

placement becomes increasingly uniform for g < 0, ultimately leading to a stabilized front as

shown in the bottom row of Fig. 3. Moreover, the flow pathway is insensitive to the choice

of σ for |g|/2σ > 1. Conversely, for g > 0, we find that as the relative magnitude of the

gradient increases, the fluid displacement becomes increasingly unstable, ultimately leading

to propagation through a single fingered channel.

As a final test of our hypothesis, we run pore-network simulations for geometries with

different values of g and σ spanning over three decades in |g|/2σ, similar to the experiments.

The mean value of VF obtained for each |g|/2σ is shown by the small symbols in Fig. 4, while

the full range of VF determined in the simulations is shown by the light shaded regions. As

observed in the experiments, as |g|/2σ increases, VF quickly varies from the two-dimensional

capillary fingering value ≈ 0.5, appreciably increasing (g < 0) or decreasing (g > 0) when

|g|/2σ ∼ 10−2. Moreover, as observed in the experiments, the flow pathway eventually
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reaches the stable displacement and unstable fingering limits VF ≈ 1.0 and ≈ 0.05 for

g < 0 and g > 0, respectively, as |g|/2σ increases above 1. The pore-network simulations

thus establish that the macroscopic geometric criterion |g|/2σ = 1 (dashed line in Fig. 4),

which does not explicitly consider the pore-scale connectivity of the medium or the full pore

invasion dynamics, can still describe when capillary fingering is completely suppressed.

Intriguingly, the values of VF obtained in the simulations are highly variable, similar to

the experiments, which show a considerable amount of scatter. We do not observe any ap-

parent correlation between VF and the value of g or σ used in a simulation (Appendix, Fig.

A.1), confirming the governing role of the non-dimensional parameter |g|/2σ in describing

the displacement behavior. Instead, the variability in VF reflects the different possible pore

structures that can be generated for a given value of |g|/2σ; these pore structures individually

determine the different non-wetting fluid displacement pathways. Given this variability, we

find good agreement between the experimental measurements and the pore-network simula-

tions. Moreover, the variability in VF decreases as |g|/2σ increases for both the experiments

and the simulations: the pore size gradient increasingly dominates over disorder in deter-

mining the non-wetting fluid pathway. Together, these results support our hypothesis that

for |g|/2σ > 1, pore-scale capillary forces can describe the non-wetting fluid pathway, but

only when the full pore space structure and the pore-scale displacement dynamics are taken

into account.

VI. CONCLUSION

Using experiments with microfluidic porous media and simulations with pore-network mod-

els, we demonstrate how capillary fingering is influenced by the competition between a pore

size gradient and pore-scale disorder. We find that as the non-dimensional parameter |g|/2σ

increases, the non-wetting fluid displacement behavior quickly transitions away from the

gradient-free limit of capillary fingering, even under flow conditions in which capillary fin-

gering would typically be predicted for homogeneous disordered media. Capillary fingering

is eventually completely suppressed when |g|/2σ = 1, above which the non-wetting fluid

flows via either stable displacement or unstable fingering, depending on the direction of the

gradient. By analyzing capillary forces at the pore scale, we develop a geometric criterion to

predict these limiting behaviors. Indeed, because the displacement behaviors studied here
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are controlled by capillary forces at the pore scale, we expect that our results are also appli-

cable to porous media with wettability gradients. This work thus expands our understanding

of drainage in porous media, which is typically described only by the two non-dimensional

parameters, M and Ca [23]. It also suggests a way to control flow behavior in homogeneous

porous media through the introduction of a pore size or wettability gradient—for example,

via the controlled deposition of solute through the pore space [59].
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Appendix A INFLUENCE OF GRADIENT AND DISORDER ON VF

To verify that g/2σ is an appropriate nondimensional parameter, we show that the volume

fraction VF obtained in the simulations does not independently depend on g or σ for a given

value of g/2σ. This finding is exemplified in Figure A.1: VF is not correlated with either

g (left column) or σ (right column) for three different values of g/2σ = 1, 0.1, and 0.01

± 2.5% (rows a, b, and c respectively). Furthermore, we calculate the Pearson correlation

coefficient ρA,B, which is zero when variables A and B are uncorrelated and ±1 when they

are perfectly correlated or anti-correlated. For columns a, b, and c, we find ρVF,g = 0.044,

−0.009, and −0.003, and ρVF,σ = 0.049, −0.007, and −0.001, indicating a lack of correlation.
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FIG. A.1: Volume fraction VF as a function of gradient g (left column) or disorder σ (right column)

in different simulations with g/2σ set to (a) 1, (b) 0.1, (c) 0.01 ± 2.5%. We find no correlation in

either case.
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