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Abstract

The effect of void fraction on turbulent multifluid flows undergoing topology changes in a vertical

channel is examined by numerical simulations using a front tracking/finite volume method. Several

blobs or bubbles of the light fluid are initially placed in a turbulent channel flow. When the blobs

collide and the liquid film between them becomes very thin it is ruptured, and the blobs are allowed

to coalesce. The rupture is done for a predetermined film thickness selected in such a way that the

results are relatively insensitive to its exact value. For the parameters used here, the blobs generally

break up after the initial coalescence and five simulations for void fractions from about 5% to 25%

are carried out until the flow has reached an approximately steady state. The evolution of various

integral quantities, such as the average flow rate, wall-shear, and interface area are monitored and

compared. Various averages of the flow field and the phase distribution, over planes parallel to

the walls, are then examined at late times, when the flow has reached an approximate statistically

steady state. At steady state, the probability distribution of blob volumes is similar and the light

fluid is contained in blobs with an average Eötvös number about 3.5, for all the void fractions.

However, the deformation and the surface area of the largest blob are much larger for the higher

void fractions, suggesting that the flow starts to depart from the bubbly regime at a void fraction

of about 15%.
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I. INTRODUCTION

Considerable effort has been devoted to studies of bubbly flows using Direct Numerical

Simulations (DNS) for the last two decades or so [5, 6, 8, 12, 13, 16, 28, 29, 48]. For channel

flows results are now available for hundreds of bubbles and relatively large Reynolds num-

bers, such as in [44, 45], where the motion of 571 bubbles of various sizes was simulated

for a friction Reynolds number of Re+ = 500 (corresponding to a channel Reynolds number

of about twenty four thousand). Such simulations have yielded significant insight into the

dynamics of bubbly flows including how the void fraction distribution depends on the de-

formability of the bubbles and the flow directions. For an overview of the recent progress in

DNS studies of bubbly flows, see the recent review article by Elghobashi [15]. Those results

are currently being used to help improve conventional models of the average multiphase

flows at scales that cannot easily be followed using DNS [4, 18, 33], as well as for explor-

ing new modeling strategies [31, 32]. Bubbly flows are, however, mostly seen for relatively

low void fractions and even in cases where the flow consists predominantly of bubbles, the

flow is often more complex due to transient coalescence and breakup. For sufficiently high

void fractions the fluid are so intermingled that it is difficult to identify distinct bubbles (or

drops).

Experimental studies of multiphase flow in vertical pipes include [2, 42, 46, 51] for adia-

batic flows. Other authors have studied the effect of surfactants [39], and flashing flows [34],

for example. As the void fraction increases, the flow characteristics change in fundamental

ways as the flow transitions from one regime to another and many authors have presented

maps that show the boundary between the different regimes as functions of the governing

parameters. Early proposals can be found in [24] and [49] and a brief overview of the different

maps that have been proposed is given by [40]. For a review of experiments and modeling of

air liquid flows in vertical pipes, with a focus on gas-lift pumps for oil recovery, see [21], for

example. Modeling flow regime transitions is, however, still very primitive and based mostly

on experimental results and scaling considerations. So far little has been done to use DNS

to cast light on the various processes governing the flow in regimes beyond bubbly flows.

In [30] we examined the evolution of flows initially consisting of several bubbles in a

turbulent channel at a sufficiently high void fraction so that the bubbles collide and the

liquid film between them becomes very thin. This film was ruptured at a predetermined
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thickness and the bubbles were allowed to coalesce. The focus was on the effect of surface

tension and for high surface tension the bubbles continued to coalesce, eventually forming one

large bubble. At low surface tension, on the other hand, the large bubbles broke up again,

sometimes undergoing repeated coalescence and breakup. The evolution of various integral

quantities, such as the average flow rate, wall shear, and interface area, was monitored

and compared for different governing parameters, as well as averages of the flow field and

the phase distribution over planes parallel to the walls. The microstructure of one case, at

statistically steady state, was examined in some detail, using low-order probability functions.

In the present paper we continue to examine multifluid channel flows undergoing repeated

topological changes but focus on the effect of the void fraction, keeping all other parameters

constant. We do, in particular, examine how the size and shape distribution of blobs of the

light fluid, as well as the frequency of topology changes, depend on the void fraction, and

for what void fraction range the flow can reasonably be classified as bubbly flow.

II. GOVERNING EQUATIONS AND NUMERICAL METHOD

We examine the flow in a vertical rectangular channel, where two immiscible fluids, a

light and a heavy one, are driven upward by an imposed pressure gradient. Thus, we write

the pressure gradient as a sum of the imposed pressure gradient (dP0/dx)k, where k is a

unit vector in the vertical direction x, and the pressure needed to make sure the flow is

incompressible, ∇p′. Although the full pressure changes from one end of the computational

domain to the other end in the flow direction, ∇p′ can be assumed to be periodic. By adding

and subtracting the weight of the mixture, the “one-fluid” Navier-Stokes equations are:

∂ρu

∂t
+∇·(ρuu) = −∇p′−βk−(ρ−ρav)gk+∇·µ(∇u+∇uT )+σ

∫
F

κfnfδ(x−xf )dAf , (1)

which describe the flow in the whole computational domain. The singular last term is the

surface tension which is concentrated at the fluid interface. Here, u is the velocity vector,

ρ and µ are the discontinuous density and viscosity fields, respectively, g is the gravity

acceleration, and σ is the constant surface tension. δ is a three-dimensional delta function

constructed by repeated multiplication of one-dimensional delta functions, κf is twice the

mean curvature, nf is a unit vector normal to the front, x is the point at which the equation

is evaluated, and xf is the position of the front. In addition to the momentum equations
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we need the incompressibility conditions ∇ · u = 0, which leads to a non-separable elliptic

equation for the pressure. Here,

β =
dP0

dx
+ ρavg, (2)

where ρav is the average weight of the mixture in the whole channel. At steady state, the

wall shear τw balances the imposed pressure gradient and the weight of the mixture so we

must have τw = hβ where h is the half width of the channel. In our simulations we keep β

constant when we change the void fraction and thus ρav.

The equations are solved on a regular structured staggered grid, using a front-tracking /

finite-volume method. Time integration is done by a second-order predictor-corrector

method, the advection terms are approximated using a QUICK scheme and the viscous

terms are discretized by second-order centered differences. The pressure equation is solved

using a multigrid method in HYPRE [17] to enforce a divergence-free velocity field. The

fluid interface is tracked by connected marker points (referred to as the “front”) to advect

the density and the viscosity fields, and to accurately compute the surface tension. The front

points are connected into an unstructured surface grid that is advected by the fluid velocity,

interpolated from the fixed grid. As the front stretches and deforms, surface markers are

dynamically added and deleted as needed. The surface tension is represented as a singular

distribution (delta-functions) at the front. The gradient of the indicator function (delta

function when the change is abrupt across the interface) and the singular surface force are

transferred to the fixed grid by approximating the singular distributions by compact but

smooth functions on the grid. After the front has been advected, the density and the viscos-

ity fields are reconstructed by integration of the smooth grid-delta function and the surface

tension added to the nodal values of the discrete Navier-Stokes equations. The method is

not completely volume conserving and we therefore adjust the volume at each time step by

moving the interfaces slightly in the normal direction. In all cases these adjustments are

very minor. The method was introduced in [47] and has been tested and validated in a

number of ways. The necessary grid resolution varies with the governing parameters of the

problem and finer resolution is generally required for high Reynolds number flows compared

to low Reynolds number flows, as in other numerical simulations. We have applied the

method to a large range of multiphase flows and studies of bubbly flows include [3, 7, 8, 16].

Implementation of similar ideas by other researchers and applications to bubbly flows can

be found in [4, 12–14, 22, 25, 37, 48], for example.

4



Case 1 Case 2 Case 3 Case 4 Case 5 Case 6

Initial bubble diameter 0.5 0.5 0.5 0.5 0.5 0.25

Initial number of bubbles 8 15 23 31 38 64

Void fraction (α) 5.31% 9.95% 15.25% 20.56% 25.20% 5.31%

TABLE I: Parameters list for all cases for effect of surface tension.

Topology changes in multiphase flows take place as films rupture and threads break.

Methods that track an indicator function identifying the different phases directly on an

Eularian grid (such as VOF or Level Set methods), will produce topology change when the

resolution of a film or a thread is comparable to the grid spacing but methods that use

connected marker points to track the interface generally will not yield a change in topology.

Both methods can, of course, be modified to either allow or prevent topology changes.

Thin threads that break are by far the easier to deal with. The Navier-Stokes equations

predict that the diameter of threads becomes zero in a finite time and no additional physical

modeling needs to be included. The breakup is also fast and although the thread may not

be well resolved just before it breaks, this is usually such a short time that it does not

have a significant effect on the overall dynamics of the flow. Most methods generally handle

thread breakup easily. The thickness of thin films, on the other hand, does usually not go

to zero in a finite time, according to the standard Navier-Stokes equations, and we need to

introduce additional processes to account for rupture. In reality, instabilities due to short

range attractive forces lead to a hole that grows by retreat and breakup. Short range forces

are, however, usually not included in simulations of multiphase flows and in simulations by

methods that track the marker function directly, such as VOF or level set methods, rupture

takes place when the film is no longer resolved. In many cases results produced by such

methods look “plausible,” but in other cases the grid dependency of the rupture prevents

convergence under grid refinement. When the interface is tracked by connected markers, as

here, the default behavior is no rupture and if rupture is desired, that must be explicitly

added to the method.

In the simulations discussed here the topology change is accomplished by reconnecting

fronts that are closer than a prescribed minimum distance. The topology change algorithm
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consists of first identifying close front points and then restructuring the front. To identify

close points we divide the domain into sub-domains and construct a linked list of points

in each domain so that we can limit the search to points in each subdomain. Once close

points have been identified, we merge all close points and eliminate elements between merged

points. In the actual code, we have implemented a number of steps to increase the efficiency

of the topology change, but none of these steps affect the eventual outcome.

In our earlier paper [30], we examined in some detail how coalescence criteria and resolu-

tion affected the results for flows undergoing repeated topology changes and found that for

a range of parameters the results were relatively insensitive to the exact value. We believe

that the flow examined here will show a similar insensitivity. While the question of how

important it is to incorporate the full physics responsible for the rupture of thin films and to

resolve small scale features is obviously not a fully settled issue, we believe that the approach

taken here approximates the evolution of a real two fluid system fairly well and that the

aspects that we emphasize are relevant to real systems.

III. PROBLEM SETUP

Our computational domain is a rectangular channel, bounded by two parallel vertical

walls, and with periodic boundaries in the streamwise and spanwise directions. In compu-

tational units the domain size is π × 0.5π × 2 in the streamwise (X), spanwise (Z) and the

wall-normal (Y ) direction. The flow is driven upward by an imposed pressure gradient and

the initial velocity field is a stationary turbulent flow with a friction Reynolds number of

150. The density of the heavy fluid is ρl = 1.0 and the density of the light fluid is ρg = 0.1.

The heavy and the light fluid viscosities are both µl,g = 2.5× 10−4, and gravity is g = 0.1,

acting in the negative X direction. Surface tension is σ = 0.002. The initial turbulent flow

is generated using a spectral code ([19, 20]) and the bubbles are simply placed in the flow

at time zero, requiring the flow to adjust to the bubbles in the first few time steps. Using

an initially turbulent flow ensures that the bubbles collide with each other.

The Morton number is Mo = ∆ρgµ4/ρ2σ3 = 4.4 × 10−8. The nondimensional pressure

gradient is β/∆ρg = 0.0156, and the Eötvös number based on the channel width is Eo =

∆ρgD2/σ = 180, where D = 2 is the width of the channel. Instead of the Eötvös number we

could also use the Archimedes number Ar = ρ∆ρgD3/µ2 = 1.15× 107. We use the channel
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width in the Eötvös and the Archimedes numbers since the eventual diameter of the bubbles

is not prescribed. If we assume that it is likely that the bubbles will coalesce and breakup in

such a way that bubbles with Eötvös number based on diameter equal to unity are likely to

appear, then the diameter of those bubbles would be d1.0 =
√
σ/∆ρg = 0.149. According to

a well known chart in [9], bubbles with Eo = 1 should be slightly deformed. We note that

in our earlier paper[30] the friction Reynolds number was 128, and the void fraction was

13.58%. The high void fractions examined here lead to much more frequent and complex

topology changes.

The objective of the present investigation is to examine how the flow structure changes

with void fraction and to do so we conduct a series of simulations where all parameters

have been kept constant except for the void fraction. Initially, a number of relatively large

bubbles with a diameter of 0.5 are placed randomly in the channel. The number of bubbles

is varied to give different void fractions. The initial number of bubbles, their diameters, and

the void fraction α for each case are listed in Table I. In one case (Case 6), we also did a

simulation starting with a larger number of smaller bubbles, but void fraction and all other

parameters equal to Case 1, to confirm that the evolution at later times is independent of

the initial conditions. The computational domain is resolved by a grid that is 192 (uniform)

× 96 (uniform) × 128 (non-uniform) cells. The smallest and biggest cell sizes in the wall-

normal direction are 0.003549 and 0.023 in computational units. Interface undergo topology

changes when the distance between two distinct interfaces is less than 0.32∆x = 0.005236

[30]. We present all results in computational, rather than nondimensional units, to reduce

the probability of error or misinterpretation.

IV. RESULTS

A. Transient evolution

The interface separating the light and the heavy fluid is shown in Figure 1 for void fraction

equal to 15.25% (Case 3), at the initial time and three subsequent early times. The surface

tension here is sufficiently small so the initially spherical bubbles start to deform, breakup

and coalesce almost immediately and even in the second frame we see that bubbles much

smaller than the original ones have formed. The interfaces continue to deform and in the
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third and fourth frame we see both large and small bubbles. While there is an obvious

difference between the interface structure in the second and the third frame, in the third

and the forth frame the overall structure appears to be more similar, suggesting that the

shape of the interface is reaching a statistically stationary state. Notice that there is almost

no accumulation of bubbles at the channel walls, indicating that most of the bubbles are

deformed and haver a small or negative lift coefficient [10].

The time evolution of various quantities averaged over the whole channel is shown in

Figure 2. The top frame shows the phase averaged velocity of the heavy fluid (“liquid”)

and the middle frame shows the phase averaged velocity of the light fluid (“gas”). For the

lowest void fractions the velocities very quickly settle down to a nearly constant value. The

gas velocity initially shows a spike as the flow adjusts to the presence of the bubbles, and

then fluctuates more than the liquid velocity. The velocities for the two lowest void fractions

(5.31% and 9.94%—Cases 1 & 2) are essentially identical and the profiles for void fraction

15.31% (Case 3) is just slight larger. For void fraction 20.56% (Case 4) the velocities are

still higher and increase slightly with time, particularly the liquid velocity. For void fraction

25.20% (Case 5) the velocity is highest and continues to rise with time. The average wall

shear stress is shown in the bottom frame. At time zero, as well as once the flow reaches

a statistically stationary state, the pressure gradient driving the flow and the weight of the

mixture balance the wall shear. As the bubbles are inserted the buoyancy causes a transient

drop in the wall shear but the flow then adjusts to the presence of the light fluid and for

the lower void fraction cases the wall shear fluctuates around the equilibrium value. For the

highest void fraction the wall shear continues to grow. The figure suggest that the lowest

void fraction cases have remained near the steady state for most of the simulations but the

two higher void fraction cases have a long transient that has not fully disappeared.

In Figure 3 we examine the surface area versus time. Instead of plotting the surface

area directly, we compute the Sauter Mean Diameter (SMD) and the equivalent number

of bubbles, from the total surface area and the volume occupied by the light fluid. We

assume that the gas is contained in n bubbles of diameter d and use that the gas volume

is then V = n(π/6)d3 and the total surface area is A = nπd2. Given V and A, we can

solve for d = 6(V/A) and n = (1/36π)A3/V 2.1 The top frame shows that the SMD quickly

1 In our earlier paper on this subject [30], the equation in the text on page 11 for the number of bubbles is

wrong. However, as far as we can tell, Figure 9 (bottom) in [30] is correct.
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(a) (b) (c) (d)

FIG. 1: Four frames showing the fluid interface for early times, 0.0(a), 10.0(b), 20.0(c) and

30.0(d), for void fraction equal to 15.25% (Case 3).

settles down to a constant but fluctuating value and that the value is very similar for all

cases, except for highest void fraction where it is slightly lower—although not by much.

The observed diameter, dSMD ≈ 0.26, corresponds to Eötvös number EoSMD = 3.04. The

bottom frame shows that the number of equivalent bubbles increases with the void fraction,

as we expect. The results of figures 2 and 3 suggest that the three lowest void fraction

cases are very similar in that they quickly reach a well-defined stationary state where the

gas and the liquid velocities (and thus the slip velocity) are similar and the bubble sizes are

similar. The void fractions are different and therefore the number of bubbles. These cases

are therefore clearly in the bubbly flow regime. The higher void fraction cases have similarly

sized bubbles which appear to quickly settle down to a relatively stable distribution (at least

as measured by the SMD) but take a much longer time to reach a steady state.

We have also done a simulation Case 6 with the same void fraction as Case 1, but starting

with the light fluid contained in many more smaller bubbles, as listed in Table I. After an

initial short transient the evolution is in all aspects the same as for Case 1. Figure 4 shows

the phase distribution at time 800, for the regular initial conditions (Case 1) on the left and

the smaller initial bubbles (Case 6) on the right. We have compared the phase distribution

at other times, as well as the wall shear, the flow rate, the surface area and other quantities

and find excellent agreement. Thus, we believe that the results presented here, and most

definitely the long-time results, are independent of the specific initial conditions that we

used for the phase distribution.
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FIG. 2: (a) The liquid velocity; (b) The gas velocity; (c) The wall shear stress, versus time

for all five cases. The dashed line in (c) is the equivalent wall shear stress balanced by β.

B. Long time statistics

The focus of the present paper is on the nearly statistically stationary long-term state and

with the exception of the three figures discussed in the preceding section, we will not examine

the transient evolution here. Although the two highest void fraction cases do not appear to

have reached an exact stationary state, many aspects appears to have done so, so we will

average over the latest times, as discussed below. Figure 5 shows the interface at a late time

for the five different void fractions in the top row and contours of the streamwise velocity
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FIG. 3: (a) The Sauter Mean Diameter; (b) The equivalent number of bubbles, versus time

for all five cases.

in the center plane in the bottom row, along with the interfaces of the bubbles crossing the

plane. The lowest void fraction is on the left and the highest on the right. For the lowest

void fraction the flow can clearly be classified as bubbly flow. The bubbles are smaller than

the initial ones and come in a variety of sizes. The largest ones are highly deformed but the

smaller ones are nearly spherical. An examination of additional frames shows that although

coalescence and breakup take place continually, the overall distribution of bubble sizes is

relatively constant. As the void fraction is increased in the second frame, we see a larger

number of bubbles, but the overall structure is not unlike the lowest void fraction case so it

is still reasonable to refer to the flow as bubbly flow. For even higher void fraction, in the

middle frame, small bubbles are clearly visible, but many of the large interface structures are

strongly deformed and barely bubbles in the usual sense. The change in interface structure

continues as the void fraction increases. While small bubbles are still visible for the two large

void fraction cases, the large fluid structures are much more convoluted. The streamwise

velocity is lowest at the walls in all cases, as expected, and increases in the middle of the

channel as the void fraction increases. For the highest void fraction case it is, in particular,
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FIG. 4: The long time state for different initial conditions.

Left: Regular initial bubbles (Case 1); Right: Small initial bubbles (Case 6)

(a) (b) (c) (d) (e)

FIG. 5: The fluid interface at late times for all five cases in the top row and contours of

the streamwise velocity in a plane through the middle of the channel in the bottom row.

clear that the velocity in the core shows large fluctuations. For the lower void fractions the

velocity in the bubbles is not significantly higher than in the liquid, since the slip velocity

is relatively modest compared to the bulk velocity.

Profiles of several quantities averaged over planes parallel to the walls, after the flow
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FIG. 6: Averaged profiles at nearly steady state for all five cases. (a) The liquid velocity

(left) and the gas velocity (right). (b) The void fraction (left) and the Reynolds stresses

(right). (c) The surface area (left) and the ratio of the projected area in the spanwise and

the streamwise direction (right). (d) The turbulent kinetic energy (left) and the turbulent

dissipation (right). The profiles are averaged over 500 time units for Cases 1, 2, and 3, but

only over 100 time units for Case 4 and 5.
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FIG. 7: The various terms of the average momentum balance (equation 3) across the

channel for all five cases. The averaging is done as in Figure 6.

has reached an approximately steady state are shown in Figure 6. Since the three lowest

void fraction cases clearly have reached steady state, we average over long times, from time

500 to 1000, for those, but only for the last 100 time units for the two higher void fraction

cases. Where relevant, we include the profile for single phase flow (α = 0%), for reference.

The average liquid (left) and the gas (right) velocities are shown in the top row. For the

two lowest void fractions the liquid velocities are nearly the same, and fairly close to the

velocity for single phase flow, although the single phase velocity is slightly more uniform in
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FIG. 8: One example of the interface structure at early time for Case 3.

the middle of the channel. The gas velocities are also similar. The velocities for Case 3 are

higher but only slightly so. The velocities for the highest void fractions, on the other hand,

are significantly larger, as well as more nonuniform. The second row shows the average void

fraction on the left and the average Reynolds stresses in the liquid on the right. The shape

of the void fraction profiles is similar in that the value in the middle of the channel is nearly

constant, except for the lowest void fraction, and drops off sharply near the walls. The

numerical values for the different cases are obviously not the same. The Reynolds stresses

for the two lowest void fraction cases are nearly identical but the slope is significantly larger

than for single phase flow, since the Reynolds stresses balance not just the pressure gradient

but the buoyancy term also. For the higher void fractions both the slope in the center and

the values close to the walls are larger. The third row shows the total surface area on the

left and the ratio of the area projected in the spanwise and the streamwise direction on the

right. The surface area obviously grows with void fraction, is highest in the center for the

lowest void fraction, nearly uniform in the middle for the intermediate void fractions and

highest close to the walls for the highest void fractions. The higher surface area near the
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walls suggest that the bubbles there are more deformed than in the middle, since the void

fraction is nearly constant. The ratio of the projected areas suggests that the bubbles are

“flat” (or oblate ellipsoids) for the lower void fractions and in the middle of the channels

for the higher ones, since the projection of the area in the horizontal direction is smaller

than the projection in the vertical streamwise direction. The higher ratios near the walls,

for the highest void fractions, are presumably a result of the streamwise filaments or tilted

deformed bubbles, seen in rightmost frame in Figure 5. The turbulent kinetic energy (left)

and the turbulent dissipation (right) in the liquid are shown in the bottom row. For all

void fractions the kinetic energy drops to zero at the walls but the dissipations spikes, as

expected. For the lowest void fraction the profiles are, again, similar and uniform across

most of the channel. Both the kinetic energy and the dissipation are significantly higher

than for single phase flow and as the void fraction increases the values for both in the middle

of the channel remain similar to the low void fraction cases (although slightly larger) but

the values near the walls grow.

Averaging equation (1) over planes parallel to the walls, over both fluids, gives

∂ρU

∂t
= −β −

〈
(ρ− ρavg)g

〉
+

d

dy

〈
µ
du

dy

〉
− d

dy

〈
ρu′v′

〉
+
〈
σ

∫
F

κfnfδ(x− xf )dAf

〉
, (3)

for U(y), the average velocity in the vertical direction. Here, the brackets, < >, denote

the averages. The second to fifth terms on the right hand side are the buoyancy force, the

viscous stress, the Reynolds stress, and the surface force, respectively. At steady state the

left hand side is zero. For single phase flow the gravity and surface tension terms are zero
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so β = dτT/dy, where τT is the sum of the viscous and the Reynolds stresses. For spherical

clean bubbles the average surface force is zero and the lift forces move the bubbles in such

a way that the gravity term balances β in the middle of the channel [29, 44]. This leads to

considerable simplifications and the void fraction profile can be approximated analytically.

In our case, however, there is no reason to believe that any of the terms on the right hand side

will be zero. Figure 7 shows the various terms—and sums of terms—in equation (3) at late

times for all five cases. We first note that in the middle of the channel the viscous stresses

are essentially zero for all the cases and the balance is predominantly between the buoyancy

term and the Reynolds stresses. Only for the lowest void fraction case does the imposed

pressure gradient add a slight amount. Secondly, in the middle of the channel the surface

force is nearly zero for the lowest void fraction but then becomes increasingly negative.

Near the wall it changes sign and increases with void fraction. At the wall the buoyancy

changes sign, since no light fluid is there, and the viscous stresses increase significantly. The

Reynolds stresses increase also and the main balance continues to be between the Reynolds

stresses and the rest of the terms on the right hand side of equation (3). Notice that the

terms add up to nearly zero, even for the highest void fractions where the flow is still slowly

slowing down, emphasizing how slowly the velocity is going down. We have examined a

large number of other quantities, such as velocity fluctuations and vorticity and generally

find that those are very similar for the lowest void fractions and more or less uniform across

most of the channel, but increase for higher void fractions and have a peak near the walls.

The plots in figures 5–7 show that the overall flow structure remains similar as the void

fraction increases, but the flow rate increases. We note that we are keeping the driving

force (β in equations 1 and 3) constant, so when the mixture becomes lighter, we reduce the

pressure gradient.

For the lowest void fraction case it is clear that the light fluid consists of discrete and

well-defined bubbles. For the higher void fractions the geometry of the regions occupied

by the light fluid is more complex. In Figure 8 we show the blobs at an early time for

Case 3. Each blob is colored differently and we have made all but one semi-transparent

to make other blobs visible. The non-transparent blob, shown in red, is highly convoluted

and is likely to undergo changes in its topology in the near future. It is also unlikely that

its motion can be described assuming that it is a “regular” bubble. We note that some of

the blobs extend across the periodic boundaries and should, in principle, be cut and a part
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FIG. 10: The probability distribution of blob sizes of the light fluid for all cases. (a) The

volume based probability density function, and (b) the cumulative volume fraction, at

nearly steady state.
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FIG. 11: The probability distribution of the light fluid blobs’ non-sphericity for all cases.

(a) The volume based probability density function, and (b) the cumulative volume

fraction, at nearly steady state.
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FIG. 12: The non-sphericity of each blob versus its volume, as a scatter plot, for the lowest

void fraction (left) and the highest void fraction (right).

placed on the other side of the computational domain. We have not done so to emphasize

their connectivity.

The average frequency of coalescence is shown in Figure 9, for a late time interval. The

averaging is over shorter time than most of the data presented here since we did not record

when topology change took place for the earlier times and did not have a way to reconstruct

the information from the data collected during the run. We have, however, confirmed that

the data is reasonably well converged in the sense that it does not depend on the length of

the time interval. As expected, the frequency of topology changes remains low for the lowest

void fractions, but then grows rapidly as the void fraction increases. We have also computed

the frequency of breakups and find that they agree well with the frequency of coalescence

at low void fractions. For statistically steady state, where the number of blobs of the light

fluid remain constant on the average, this is what we expect. However, under some complex

situations at higher void fractions, where multiple breakups of the same blob can take place

at the same time and breakups do not always lead to separate blobs, we could not identify

what were distinct breakup and therefore the numbers of breakups and coalescences did not

always match.

To quantify the distribution of flow structures and, in particular, to assess if it makes

sense to talk about bubbles for the higher void fractions, we have found all blobs containing

19



light fluid, by identifying connected interfaces, at several times for each case and computed

their volume and surface area. Figure 10 shows the probability distribution of blob sizes

for all five cases, where the equivalent diameter deqv is found by assuming that the volume

of each blob is contained in a sphere with diameter deqv. The probability density function

(pdf), which is calculated as the fractional volume volume of each blob size, is plotted in the

top frame and the cumulative distribution in the bottom frame. Obviously, very little of the

light fluid is contained in bubbles with an equivalent diameter less than about 0.2, about half

of the volume is contained in blobs with an equivalent diameter of 0.28 (and Eod=0.28 = 3.5),

and almost all the volume is in blobs with a diameter of 0.4 or less. Notice that although

the mean equivalent diameter for the blobs containing most of the light fluid is about the

same as the SMD in Figure 3 they are different. What Figure 10 does show, however, is

that the distribution of equivalent diameters is similar for all the cases, just as the SMD

was approximately the same. The highest void fraction case has slightly smaller bubbles,

which is consistent with Figure 3. As discussed later (Figure 15), we have also compared

the number of blobs to the numbers in Figure 3 and find that for the lowest void fraction

cases, where the light fluid consists of well-defined bubbles, the numbers are similar, but at

the higher void fraction where there are large irregularly shaped blobs, the actual number

of blobs is much smaller than the equivalent number in Figure 3. Since a highly convoluted

blob is likely to be better approximated by several smaller small spherical bubbles, rather

than one large one, this seems reasonable.

We have also computed the “non-sphericity” of each blob by dividing the surface area by

the surface area of a sphere with the corresponding volume. Since a sphere has the smallest

surface area for a given volume this ratio is obviously always larger than unity. The pdf

is plotted in the top frame of Figure 11 versus the non-sphericity for all five cases and the

cumulative distribution in the bottom frame. The pdf peaks for low non-sphericity and

the cumulative volume grows very quickly with increasing non-sphericity, but the height

of the peak of the pdf and the growth of the non-sphericity depends strongly on the void

fraction. For the lowest void fraction case almost all the volume is contained in blobs with

non-sphericity less or equal to 1.5, but for the highest void fraction not all the volume is

accounted for when the non-sphericity is equal to 3.0. We note for a reference that the

non-sphericity of an oblate ellipsoid with a thickness of one fourth of the diameter is 1.44, so

it seems unlikely that we can talk about distinct bubbles for non-sphericity higher than 2 or
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FIG. 13: The two point probability function for the phase distribution in the streamwise

(solid line) and the spanwise (dashed line) directions.

so. Thus, the figure suggest that at best the lowest three volume fractions can be considered

“real” bubbly flows.

To gain a better insight into the distribution of bubble sizes and shapes we show a scatter

plot of the non-sphericity of each light fluid blob versus its volume, in Figure 12, for 500

late times for the lowest void fraction, and 100 late times for the highest void fraction.

For the low void fraction case essentially all the blobs are small and the non-sphericity is

mostly below 1.5, but for the larger void fraction the non-sphericity is much larger, even for

the small blobs, and there is a scattering of blobs that are very large and have large non-

sphericity. We have not included the intermediate void fractions since they fall in-between

the extreme cases. We have also plotted the non-sphericity versus surface area (not shown)

and find, not unexpectedly, that those follow each other, although with some scatter.

To examine the phase distribution we plot the two-point correlations for the light fluid in

Figure 13, for both the streamwise and spanwise direction. We define an indicator function

χ such that χ = 1 in one fluid and χ = 0 in the other one. The two-point correlation
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FIG. 14: The velocity conditional correlation functions. (a) Ru′u′ in the streamwise

direction; (b) Ru′u′ in the wall-normal direction; (c) Rv′v′ in the streamwise direction; (d)

Rv′v′ in the wall-normal direction.

function for the χ = 1 fluid is then defined by

S2(r) =
〈
χ(x)χ(x + r)

〉
, (4)

where the brackets 〈 〉 denote the appropriate average. Obviously χ(x)χ(x + r) = 1 if

x and x + r are both in the same fluid where χ = 1, but zero if one or both points are

in the other fluid. The correlation drops off relatively rapidly and although the spanwise

correlation drops slightly faster, at a distance of 0.3 or so the phase distribution is essentially

uncorrelated.

Figure 14 shows the conditional correlation between the fluctuation velocity at two dif-

ferent points in the same fluid, computed by:

Rij =

〈
χ(x)u′i(x)χ(x + r)u′j(x + r)

〉
〈χ(x)u′i(x)u′j(x).〉

. (5)

Here, i, j = 1, 2 or 3, for the streamwise, wall-normal and spanwise direction, and we

divided by the single point correlation to obtain a value of unity for r = 0. The streamwise
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FIG. 15: Averages over the whole domain versus void fraction, at statistically steady state.

(a) The average velocities of the heavy (liquid) and the light (gas) fluid; (b) The SMD and

the volume weighted diameter of blobs of the light fluid; (c) The number of blobs of the

light fluid as well as the SMD estimate; (d) The volume weighted non-sphericity.

correlations are shown on the left and the spanwise on the right. The spanwise correlation

of the streamwise velocity fluctuations, < u′u′ > , is shown in the top row and the spanwise

correlation of velocity fluctuations in the wall-normal direction, < v′v′ >, in the bottom row.

The < v′v′ > correlations are both nearly zero for a distance of about 0.4, but the < u′u′ >

correlations decays slower. Other velocity correlations show similar behavior. A comparison

of figures 13 and 14 shows that the velocity is correlated over larger distances than the phase

distribution. The correlations for both the phase distribution and the velocity are computed

for the middle of the channel, from y = 0.3 to y = 1.7, for all cases.
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A few quantities averaged over the whole channel, and plotted versus the void fraction in

Figure 15, summarize some of the results discussed here. In (a) we show that the average

gas and the liquid velocities both increase rapidly with void fraction, but the slip velocity

remains nearly constant. The average equivalent diameter of blobs of the lighter fluid,

computer either as the average of the equivalent diameters of each blob, or as the Sauter

Mean Diameter, is nearly constant and decreases only slightly as the void fraction increases.

The average number of blobs, found either by counting the number of connected blobs,

or as equivalent number when finding the SMD, is shown in (c). Both increase with the

void fraction but whereas the different estimates agree for low void fractions, at higher

void fractions the real number of blobs grows more slowly than the SMD estimate. This is

consistent with the average non-sphericity, shown in (d) of blobs of the light fluid, which

grows as the void fraction increases and highly contorted blobs become more common.

V. CONCLUSIONS

We have examined the effect of the void fraction on the structure of multiphase flow in

a vertical channel where the surface tension has been taken to be sufficiently low so that

the interface continuously undergoes coalescence and breakup. We find that at modest

void fraction the overall structure of the flows remains similar as the void fraction changes

and the flow can be characterized as a bubbly flow. As the void fraction increases beyond

approximately 10%-15% the structure starts to change, although the light fluid continues

to be contained in distinct blobs. It is perhaps slightly surprising but the distribution of

blob sizes remains essentially the same for all void fractions, with the exception that for

the highest void fraction case a shift to slightly smaller blobs is seen. The main difference

is that as the void fraction increases the blobs are more deformed and the surface area

larger. Even when the total forcing of the flow, the imposed pressure gradient plus the

mixture weight, is kept constant, the flow rate increases as the void fraction increases. The

slip velocity remains, however, essentially constant. We emphasize that although we have

computed averages at late times for the two highest void fraction cases, the wall shear has

not reached its equilibrium value and the flow is therefore still slowing down, although very

slowly. Thus, the results for those two cases are only approximations to what to expect at

truly stationary states. We do not, however, expect the overall conclusions for those void
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fractions will change much at longer times. We note that although we clearly have bubbly

flows at low void fractions the non-bubbly state could consist of several different regimes.

This remains to be studied in more details.

We have avoided referring to the simulations presented here as direct numerical simula-

tions (DNS) since the term usually refers to verified solution of a validated mathematical

model, for systems containing a large range of temporal and spatial scales. While our sys-

tem contains a large range of scales, fully verified solutions are accurate solutions of the

governing equations, independent of any numerical parameters such as grid resolution, and

validated model requires the equations to capture faithfully the physical processes that we

are simulating. For our case those are only approximately satisfied. The smallest scale struc-

tures are likely to be under-resolved and the physical processes responsible for the actual

rupture of thin films are approximated in a crude way. These are the same challenges faced

in simulations of atomization and breakup [1, 11, 23, 27, 35, 41]. Most of those simulations

are, however, done advecting the marker function directly on the fluid grid, using VOF or

level set methods, where topology changes always take place for structures on the grid scale,

in an uncontrolled way. It has been known for a long time that explicit tracking of the

interface maintains the integrity of the interface better [38] and we hope, in particular, that

the small-scale surface forces are captured more accurately.

The characterization of complex multiphase flows undergoing rapid topology changes is

a challenging topic and we note that we sought ideas from many fields for the appropriate

strategies, including from studies of random heterogeneous materials [43] and the dynamic

evolution of interfaces undergoing mixing in rheology and turbulent combustion [26, 36, 50].

As we move further toward developing the insight and the data needed to improve average

two-fluid and LES-like models we are likely to need to draw on those sources even further.
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