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Thinning dynamics in spin coating of viscous films is influenced by many physical processes.
Temperature gradients are known to affect thin liquid films through their influence on the local
fluid surface tension as Marangoni stresses. We show here experimentally and numerically that
adding a static temperature gradient has a significant effect on the equilibrium film thickness and
height profile reached in spin coating (applications). Most notably, we find that the thickness of the
resulting thin film in spin coating scales linearly with the strength of the thermal surface tension
gradient. Once equilibrated, the thin film height profile is controlled by the temperature profile.
For small but non-negligible Ma the surface has a negative curvature at the center and reaching
equilibrium takes progressively longer with smaller Ma. In this limit, the steady state reached is set
by competition between Marangoni effects and the disjoining pressure.
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FIG. 1. (a) Schematic drawing of the container with the interferometry setup and all the relevant parameters: the rotation
speed Ω in radians per second, the initial filling height H0, the radius of the container R, the dynamic viscosity and surface
tension of the fluid, η, γ respectively. (b) the location of the heating element underneath the container, and double-walled
rotating axis that doubles as a cooling tube.

I. INTRODUCTION

Thin layers of fluids on solid substrates display surprisingly rich dynamics due to the interplay of a variety of
forces [1–5]. Much progress has been achieved on the study of thin fluid films. For low Reynolds number flows, they
are well characterized by the lubrication approximation of the Navier-Stokes equation. This useful reduction allows
for tractable analysis of a wide range of fluid dynamics problems, such as liquids spreading on flat surfaces [6], inclined
surfaces [7], convergent viscous gravity currents [8], spin coating applications [9–11], flow of granular suspensions [12]
and geophysical [13] contexts, with “thin” here meaning that the height h of the film is small with relative to the typical
lateral lengthscale. The spatiotemporal evolution of the height field h(x, y, t) is of a very general form, essentially
a nonlinear conservation equation, describing how a profile in h evolves in time. The evolution is driven by various
forces, including gravitational, surface tension and, in a rotating system, centrifugal forces. If all the forces are
sustained at constant levels, the film may approach an steady state profile.

In a rotating container, the free-surface of a fluid will develop a parabolic free-surface profile to balance gravitational
pressure and centrifugal forces with the amplitude of the profile increasing with the rotation rate [8, 14–16]. For
sufficiently large rotation rates, Ω > Ωc, the profile will be truncated by the bottom of the container [8, 14]. Related
flows are observed in other studies using a stationary container with a rotating bottom plate [17, 18]. For a fluid
that wets the container walls, a thin film of fluid will remain in the center of the container, we call this the central
thin film (CTF), whose radius depends on the rotation rate [8]. Away from the center, the height profile of the
surrounding layer will be parabolic. After sufficient time, the full height profile h will converge to an equilibrium,
due to conservation of mass in the container. The CTF drains progressively slowly, which makes spin coating of
engineering interest: spin coating allows for the deposition of thin layers of well defined thickness on the order of
micrometers. The region connecting the outer parabolic solution and the CTF (effectively a circular contact line) is in
fact quite nontrivial as we will see, which hinders precisely defining the edge of the CTF. In engineering applications,
the wall of the container is usually omitted, allowing for the fluid to drain from the outer edge of the plate.

The thinning dynamics of the film is described in the classic work of Emslie, Bonner and Peck [19] (EBP), who
considered the simplest case of centrifugal forcing of a viscous fluid. From the balance of viscous and centrifugal forcing,
they derived that h(t) ∝ t−1/2, a progressively slowing down thinning behavior. This behavior has been confirmed and
expanded by many [20–24] and is of fundamental importance in all spin coating techniques, for example in lithographic
microchip production and in making the next generation of photovoltaics [25].

Here we show that the addition of a surface tension gradient stress also known as a Marangoni stress drives
nontrivial spatio-temporal dynamics in a thin fluid film generated by spin coating. The inward Marangoni stress we
create produces an accumulation of mass in the center of the film. We quantify how the thinning dynamics is affected
by Marangoni stresses, and how the equilibrium profile is determined by the balance of Marangoni forcing with the
various other forces acting on the thin film. We observe that Marangoni driving can even qualitatively change the
structure of the surface at the edge of the CTF.

The paper first describes the experimental (Sec. II) and theoretical approach (Sec. III) used, and then presents
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FIG. 2. Fringe pattern of the CTF after steady rotation for 1 hour at Ω = 2π at isothermal conditions (leftmost panel). At
t = 0 min, heating/cooling is turned on. Even though the CTF has not equilibrated to its steady state, the Marangoni forcing
immediately induces strong height variations in the CTF. Image crop measures about 4.6 cm in width.

the results in four main divisions: Sec. IV A shows how we can recover the classic EBP scaling dynamics; Sec. IV B
describes how Marangoni forcing changes the EBP scaling. We also obtain results on the final equilibrium profile
of the thin film spot after thinning has ceased: for the isothermal case, these results are described in Sec. IV C; the
Marangoni effects on the equilibrium profile are described in Sec. IV D.

II. EXPERIMENTAL SETUP

The experimental system consists of an initially uniform layer of fluid of thickness ∼ 3 mm in a shallow cylindrical
container – see Fig. 1. The container is spun-up using a stepper motor to rotation speed Ω = 2π radians per
second (rps) unless otherwise noted. The container measures 13 cm in diameter and 2 cm in height. On the bottom
of the container, a 4-inch diameter silicon wafer (University Wafers) is placed; the wafer is fixed to the base through
the deposition of a small (<∼ 1 ml) amount of fluid between wafer and the bottom of the container. The suction
force that keeps the wafer stuck to the container relies on the hydrodynamic drag on the thin film between wafer and
container, and remains even after complete submersion of the wafer. The container is filled with a volume V of fluid
which gives an initial filling height H0 = V/(πR2) with R the radius of the container. We use polydimethylsiloxane
(PDMS) for all experiments described in this work; this fluid completely wets the silicon wafer. The fluid wetting,
combined with the fact that the thin films explored in this work are never thinner than several microns eliminates the
necessity of extreme wafer cleanliness. The properties of PDMS are density ρ = 965 kg/m3 [26] and γ = 0.02 N/m.
The thermal sensitivity of the surface tension for PDMS is dγ/dΘ ≈ 6 × 10−5N/(◦C·m) [27, 28]. We use a range of
dynamic viscosities of 10-10,000 mPa·s; in all cases the viscosity and rotation rates used ensure that Coriolis forces do
not play a role, since the Ekman number Ek = η/(ρΩh2) � 1 is large in our experiments [19]. The transparency of
the PDMS and reflectivity of the silicon wafer allows for a laser-assisted alignment of the gravity-leveled fluid surface
and the silicon wafer in the container, whose orientation can be tuned by set screws. Interferometry provides access
to the spatio-temporal features of the thin film dynamics [29] – see Fig 1a. Wafer illumination is provided with a
uniform sodium light via a beam splitter. The spatial structure of the interference pattern of reflected and incoming
light waves is recorded with a digital camera. In particular, height dynamics at any location can be measured through
rate at which interferometric fringes evolve. The fringe succession rate can be measured with the varying intensity
of the interference pattern, which we record by camera. The magnitude of the interference signal (the pixel values in
the recording) is irrelevant, but the periodicity of the signal indicates the passing of fringes, which represent a height
reduction (or increase) of known amplitude. Here we use this technique to measure the thin film dynamics in the
center of the container at r = 0. We will neglect the weak temperature dependence of the index of refraction (required
for the fringe-based height measurements) of PDMS.

In isothermal experiments, the container is uniformly heated to a temperature of 24◦C to fix the temperature
dependent viscosity η and surface tension γ of the fluid. Temperature control is implemented by running water at
a set temperature through the double-walled rotating axis. To establish Marangoni forcing, we cool the center of
the container by running cooling water through the double-walled rotating axis while heating the outside ring of the
container with a foil heater (Minco), positioned underneath the container (Fig. 1b). The Marangoni forcing has a
very significant effect on h(r). To show the qualitative effect of the initiation of heating on an almost flat CTF, see
Fig. 2. After isothermal spin-up of about 1 hour, we turn on Marangoni forcing. While the container is establishing
its equilibrium radial temperature profile, we see strong evolution of the fringes in CTF region.

The power for the foil heater is supplied through a slip ring (Moog) on the rotating axis. In the thermal gradient
experiments, the level of cooling, set by the thermal bath that circulates the water (Neslab RTE7), is always run at
maximum capacity. The maximum thermal gradient is then achieved at the largest heating power we can provide,
which is 100W. The edge temperature at 100W heating is about 60◦C. For a complete description of the setup, see
[30]. This heating mechanism gives a azimuthally symmetric thermal profile in the bottom of the container, and hence
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on the silicon wafer, as shown in Fig. 3a. The temperature gradient is opposite in direction compared to the thermal
profile considered in [31].

Fig. 3b shows the temperature profile on a silicon wafer at maximum heating/cooling capacity in an empty container.
We measure the profile with an infrared (IR) camera (FLIR A325). The infrared measurements require a known
emissivity for the substrate, and low reflectivity of spurious infrared radiation into the camera. The measurements are
thus performed with a layer of spray paint (Krylon flat white 1502) on the silicon wafer and in an empty container. We
determined the infrared emissivity of the spray painted silicon wafer by calibrating the response at known temperature,
similar to [32]. The spray painted wafer was subsequently placed in the container in the same way an uncoated wafer
would be mounted in an experiment with an actual fluid present. The IR data is available only up to the edge of the
silicon wafer, at approximately 0.8R.

III. GOVERNING MODEL

A. Temperature profile

Due to the high thermal conductivity of the wafer, we expect the temperature profile to be maintained in the steady
state set by the balance of the outer heating and central cooling. In the circular geometry, the temperature difference
does not yield a uniform temperature gradient over the whole domain, so some attention is needed to the form of the
temperature profile. We discuss an idealized profile with prescribed boundary conditions, but then make use of an
empirical fit that proves to be more convenient.

At the outer edge, the heating effectively sets the temperature at the boundary, r = R. On the interior, the
temperature should satisfy the steady axisymmetric heat equation, with a heat sink, q, for the influence of the
cooling, To represent the idealized conditions, we write the steady state heat equation in cylindrical coordinates,

0 =
κ

r

∂

∂r

(
r
∂Θ

∂r

)
− q, (1)

in which κ is the thermal conductivity. We model the cooling as being a uniform constant value over a small inner
region, 0 ≤ r ≤ r1, and zero outside. Consequently, the temperature distribution can be described over the central
and outer annular regions in terms of a parabolic profile and the classic axisymmetric steady state solution,

Θ(r) = Θ0 +
q

4κ

{
r2 0 ≤ r ≤ r1

r2
1 + 2r2

1 log(r/r1) r1 ≤ r ≤ R
(2)

where Θ0 is the temperature at the origin. Fig. 3 shows that equation (2) matches the experimental profile well. Over
a significant portion of the domain, the profile has a nearly uniform radial temperature gradient of about 7.4◦C/cm.
For PDMS[27, 28], this translates to a maximum surface tension gradient of about 4.4× 10−2 N/m2. It is important
to note that it is not appropriate to approximate Θ(r) by a linear profile because this would yield an unphysical
gradient in the solution at the origin which can produce spurious behaviors.

Fitting (2) to the actual temperature profile data as shown in Fig. 3, we obtain an inner region where the parabolic
profile applied with r1 ≈ 1.95 cm (r1 ≈ 0.3R, scaled relative to R). This radius is much larger than the width of the
tubing ri ≈ 0.17R indicated in Fig 3b. We conclude that the assumption of uniform central cooling is not exactly
satisfied and will replace (2) with a qualitatively equivalent but less restrictive empirical profile.

The qualitative form of the temperature profile given by (2) should be mostly insensitive to variations in the
properties of the central cooling, but we have not attempted to calibrate those values precisely. It will be convenient
to replace this with an empirical fit to a single smooth function on 0 ≤ r ≤ R, given by

Θ(r) = Θ0 +B
(
1− exp(−Cr2)

)
, (3)

which has Θ′(0) = 0 at the origin. Here B,C are dimensional fitting constants: C relates to the effective width of
the central cooling while B scales with overall temperature rise to the outer edge of the container. The product BC
corresponds to the ratio of the source strength to conductivity from (2), BC = q/(4κ), and the effective linear tem-

perature gradient is given by the maximum slope, Θ′max = B
√

2C/e. This profile fits the experimental measurements
well and is very close to (2) over most of the domain (see Fig. 3b). For our experimental setup, by fitting to the
profile in Fig. 3 we determined C ≈ 0.0935 cm−2.
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FIG. 3. (a) Infrared (IR) false color top view of the container showing the temperature profile of the base obtained at the largest
thermal gradient possible. Color indicates temperature, ranging from 20◦ to 60◦C. The temperature profile on the dashed line
is shown in (b) for the entire wafer, as a function of the radial position in units of the container radius R (blue solid line). The
black short-long dashes line indicates a linear fit with slope 7.4◦C/cm. The actual thermal profile is well fitted to a smooth
profile based on a Gaussian (red dash-dotted curve; see text) that approximates the piecewise-defined steady state solution
(green solid curve). The arrow and dashed vertical line indicate the radius of the cooling tubes at the base of the container.

B. Lubrication model

The time dependent film height h(r, t) in the rotating container is described with a the time dependent axisymmet-
ric lubrication approximation that includes surface tension, surface tension gradients, gravity, centrifugal force and
disjoining pressure[9, 10, 30, 33, 34],

− 1

3r

∂

∂r

{
1

η(Θ)

(
ρΩ2r2h3 +

3rh2

2

dγ

dr
− rh3 ∂

∂r

[
ρgh− A

h3

]
+ rh3 ∂

∂r

[
γ

r

∂

∂r

(
r
∂h

∂r

)])}
=
∂h

∂t
, (4)

where h is the height of the axisymmetric surface depending on the radial coordinate, r, and time, t. In the influence
of the wetting properties of the container’s base is given by the contribution of the disjoining pressure, Π = A/h3,
with negative Hamaker constant for complete wetting.

To incorporate thermal Marangoni stresses, we use the temperature profile Θ(r) to write

dγ

dr
=
dγ

dΘ

dΘ

dr
= −τ dΘ

dr
(5)

with τ being a material parameter that captures the temperature dependence of the surface tension of PDMS.
We assume a linear dependence of the surface tension γ on the temperature Θ [6, 35]; the literature suggests τ ≈
6×10−5 N/K·m [27, 28, 35]. The viscosity of PDMS also depends on temperature through Arrhenius-like behavior [36].
For the 100 mPa·s fluid in the experiments, we use η(Θ) = 10750/Θ−0.5168 with Θ in Kelvin from [36] and note that
the activation energy in the Arrhenius behavior is relatively independent of the chain length in this regime of PDMS
composition [36]. Note that since the viscosity is r-dependent, its form could be important for the time-dependent
evolution of the film [24]. Below we will show that the dependence of η on spatially varying temperature has only
weak effects on the dynamics. In contrast, the temperature dependence of the surface tension will be important for
generating Marangoni stresses.

The temperature dependence of the PDMS density is only about 5% over the explored temperature range [37, 38]
and will hence be neglected. Similarly, γ drops by only 10% from the value at the center of the container over the
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explored temperature range [35]. Our computational results for Eq. 4 using γ = γ0 − τ(Θ − Θ0) show that this
variation in surface tension can be neglected in the capillarity term and that γ can be treated as a constant (γ0) for
that term.

We nondimensionalize Eq. 4 with h(r, t) = H0h̃(r̃, t̃ ), r = Rr̃, t = T t̃ with the timescale T = η0R
2/(ρgH3

0 ) based
on the balance between viscous and gravity-driven effects, where the viscosity η0 is based on the temperature at the
origin, η = η0η̄(r̃). With these choices and after dropping the tildes on all nondimensionalized variables, the scaled
equation is:

− 1

3r

∂

∂r

{
1

η̄(r)

(
Fr2 r2h3 −Ma

3rh2

2
φ(r)− rh3 ∂h

∂r
−Ha

3r

h

∂h

∂r
+
rh3

Bo

∂

∂r

[
1

r

∂

∂r

(
r
∂h

∂r

)])}
=
∂h

∂t
, (6)

where the nondimensionalized temperature gradient function is

φ(r) = 2cre−cr
2

with c = 3.95, (7)

where c = CR2 (analogous to a Damkohler or Thiele parameter for the dimensionless ratio of a reaction rate to a
diffusivity) and other dimensionless parameters being

Fr2 =
Ω2R2

gH0
Ma =

τB

ρgH2
0

Ha =
|A|
ρgH4

0

Bo =
ρgR2

γ0
, (8)

respectively: a rotational Froude number, a modified Marangoni number (the ratio of thermally driven surface tension
gradients to gravity), a dimensionless Hamaker parameter, and a Bond number based on the size of the container.

We use a second-order-accurate implicit finite difference scheme to solve the time dependent axisymmetric lubri-
cation equation (6) subject to no-flux boundary conditions, which maintains a fixed fluid volume. In addition, we
also solve for the steady-state profiles with a different quad-precision numerical code to give an independent check on
the accuracy of the computational results for large times. We use values consistent with PDMS; ρ = 965 kg/m3 and
A = −7.6× 10−21J for a numerically convenient Ha = 10−14.

IV. RESULTS

A. Isothermal thinning dynamics

We study the thinning dynamics for the system with H0 = 2.9 mm, Ω = 2π rps, and PDMS oil with viscosities in
the range η = 10 − 10000 mPa·s with the fringe-passing technique described in Fig. 4 and via solving Eq. 4. Under
steady rotation the thickness of the central film h(r = 0, t) will decrease until an equilibrium state is reached. Due
to the thinning of the CTF during rotation, viscous forces increase progressively as the shear rates increase in the
thinning layer, while the centrifugal force remains constant. The equilibrium solution is thus approached only very
slowly. In our rotating container, we track the evolution of the thin film by recording the succession of fringes at r = 0,
the center of the container. Each successive fringe implies a thinning of the central thin film by ∆hf = λ/2n = 210 nm
with λ being the wavelength of the sodium light (λ ≈ 588 nm) and n the index of refraction of PDMS (n ≈ 1.4).
A typical intensity profile for the center of the container is shown in Fig. 4a: clearly the fringe succession period
∆T = tk+1 − tk, corresponding to h(0, tk+1) = h(0, tk) − ∆hf , grows over time. Solving Eq. 4 gives the expected

EBP thinning dynamics with a scaling of h(r = 0, t) ∝ t−1/2 in the CTF as shown in Fig. 4b. Eventually the
numerical solution reaches a steady state profile in which the final equilibrium height is set by the disjoining pressure.
Numerical data shown in aforementioned panel is obtained for the experimental conditions of a thinning experiment
with a 1 Pa·s fluid. We perform equivalent experiments for a range of different viscosities by counting the number of
fringe successions as a function of time to obtain scaling of h(r = 0, t). All experiments are done at a rotation rate of
2π rps.

We cannot track all the passing fringes, as recording the entire experiment on video would result in prohibitively
large data sets. Instead, we record short periods of the thinning process at several stages during the thinning process.
Each recording is long enough to observe the length of a fringe passing period, so from every recording we can estimate
the thinning rate. However, as we do not record the total number of passed fringes, we cannot get an accurate measure
of the total change in the height profile; we can only record the thinning rate. The minimum fringe passing time is
of the order of several frames in the 30 frames per second video imaging, limiting the thinning rate measurements
in the early stages of the thinning process. The manual recording of thinning dynamics make the thinning rate
measurements irregularly spaced in time at later times. Our experimental method yields a small error on both fringe
passing duration and time, which is relevant. of extracting data from videos by making intensity plots as in Fig. 4a of
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FIG. 4. (a) Typical interferometric signal at r = 0 for a thinning experiment. The increasing period length of the intensity
modulation in the interferometric signal signifies a decreasing thinning rate. (b) the result of numerically solving Eq. 4 with

the parameters from a 1 Pa·s spinning experiment. The solid black line has a slope corresponding to the EBP scaling of t−1/2.
The arrow points to the plateau in h(r = 0, t) when the equilibrium profile was reached. (c) Experimental data on the fringe
succession time increase with time measured for various fluid viscosities, in units of mPa·s: (10, red 4), (100, indigo +), (1000,
green ◦), (10000, light blue ×) at Ω = 2π rps. The green line corresponds to the data is the same as shown in panel (b), in the
fringe succession time representation. The dashed line indicates the experimental bound where the fringe passing takes more
time than the duration of the experiment. (d) Rescaling the time axis with the EBP scaling of η−1/3, we can collapse all data

from panel (c). In the fringe succession representation, the expected EBP scaling corresponds to t3/2 (see text) as observed
(black line).

the video data obtained in the three experiments. after which we manually measured the length of one period centered
around a given time point. Because all ∆T are much larger than the frame rate, the error in the determination of
∆T is certainly always much smaller than the symbol size used in our figures, especially when shown on a logarithmic
scale. However, our data extraction method couples the uncertainty in t to the length of the period ∆T , which gives
a natural bound for the error t−∆T ≤ t ≤ t+ ∆T . We include this bound visually and in error bars on data points
where this error becomes of the order of the symbol size, which is only in Fig. 5.

Results are shown in Fig. 4c. The slowdown in thinning is clearly observed by the gradual increase in ∆T/∆hf . The
numerical solution shown in Fig. 4b, from which we compute the derivative ∆T/∆hf from the h(r = 0, t) data, also
coincides with the corresponding experimental data without any free fitting parameters. Experimental data for fluids
with different viscosities can be collapsed by rescaling the time axis with η−1/3 as shown in Fig 4d, also consistent
with EBP scaling. The rescaling shows clearly that the time between a fringe succession ∆T ∝ t3/2, which implies
that h(t) ∝ t−1/2, also consistent with the EBP scaling. These results show that our experimental and numerical
methods in the rotating container geometry are effective in capturing the classic thinning dynamics. Interestingly,
they indicate that the accumulation of fluid at the edge of the container during its rotation do not noticeably affect
the EBP scaling for the thinning of the CTF.
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FIG. 5. (a) Experimental (symbols) and numerical (solid curves) data on thin film height dynamics at r = 0 during spinning
with Ω = 2π rps and subject to different thermal gradients: (7.4◦C/cm, red ◦), (6◦C/cm, indigo +), (1.8◦C/cm, green 4). For
the numerics, we used B = 39, 13, 3.25 corresponding to a maximum thermal gradient of: (6◦C/cm, red), (2◦C/cm, blue) and
(0.5◦C/cm, green) to obtain best fits. Inset: digital image data, showing the circular fringes of the fluid hump in the center.
Image width is approximately 3 mm. The dashed line indicates the experimental bound where the fringe passing takes more
time than the duration of the experiment. The error on the experimental is of the order of the symbol size and explicitly shown
only for the last data point of each set. (b) Same data as in (a), now plotted as a thinning rate to show that the divergence of
∆T represents a slow down.

B. Marangoni effect in thinning dynamics

We can now determine the effect of adding thermal Marangoni forces to spin coating applications. We probe the
thinning dynamics for a η = 100 mPa·s silicone oil spun at Ω = 2π rps with H0 = 2.9 mm. In three different
experiments, we provided an equilibrated, steady thermal gradient profiles of 7.4, 6 and 1.8◦C/cm. The thinning
dynamics in representation ∆T/∆hf are shown in Fig. 5a. The early time thinning behavior displays the classic EBP

scaling with ∆T/∆hf ∝ t3/2, corresponding to h ∝ t−1/2. After some time however, the thinning dynamics slows
down substantially, leading to what looks like a divergence of ∆T/∆hf . We check that our numerical simulations
provide the same perspective. We can indeed quantitatively capture the experimental observations with the numerics
even if we remove the temperature dependence of the viscosity; we will justify this simplification below – see Fig. 5a.

Note that given our experimental setting, we allow for a small variation in the numerical value of the thermal
stress gradient strength B, as we can only image the thermal profile at the base and have to assume a homogeneous
temperature in the thin fluid layer. The divergence in the thinning time is accompanied by the appearance of a set
of rings in the center of the rotating container (Fig. 5a inset). This suggests that the thermal Marangoni stress,
which is directed towards the center of the container, draws fluid inward and serves to increase the height in the
center of the container. The numerical simulations again confirm the physical understanding of the experimental
behavior. In Fig. 6a we show computed h(r, t) profiles at several times in the dynamics subject to a thermal gradient
of approximately 2K/cm. After approximately 104 time units, the profile has effectively reached a steady shape
with a central fluid hump. With the appearance of the hump, deviation with respect to EBP dynamics and indeed
convergence to a finite-thickness steady state is expected.

The influence of Marangoni effects on the thinning behavior can be understood from a simplified version of (6).
Similar to approaches used in [24] and [34] we will consider the evolution of the height profile near the center of the
container,

h(r, t) ∼ h̄(t) + h1(t)r2 + h2(t)r4 r → 0 (9)

where the scaled viscosity is likewise expanded as η̄(r) ∼ 1 + η̄1r
2 + η̄2r

4 yielding the equations for the evolution of
the film thickness and curvature at the center of the container,

dh̄

dt
= −2

3
Fr2 h̄3 + 2cMa h̄2 +

4

3
h̄3h1 + 4Ha

h1

h̄
− 64

3Bo
h̄3h2, (10)
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FIG. 6. (a) Numerical profiles h(r, t) from equation (6). Dash-dotted lines assume a constant η; for the solid lines we have η(Θ).
Dashed black curves give predictions of the steady state profile described in Sections IV C and IV D and the semi-parabolic
profile attained near the outer wall as described in Section IV C. (b) Numerically computed evolution of the film thickness
h̄(t); again solid lines are with temperature dependent viscosity and dash-dotted lines assume constant viscosity. The scaled
curvature h1(t) at the origin is shown with (red) and without (blue) the temperature dependence of the viscosity. The form of
the viscosity is significant for the central curvature but negligible for the film thickness. h̄(t) and h1(t) are shown on the same
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dh1

dt
= −4c2Ma h̄2 + 2η̄1

(
2

3
Fr2 h̄3 − 2cMa h̄2

)
+O(h1) +O(h2), (11)

where for an initially flat film, the starting state will be h̄(0) = 1, h1(0) = h2(0) = · · · = 0. For systems subject
to moderate thermal and rotational forcing, the Froude and Marangoni terms will dominate the evolution of the
thickness. For short times (when h̄ ≈ 1 and h1, h2 are small), the central curvature grows linearly, and the temperature-
dependence of the viscosity (represented by the η̄1 term) can make the central hump noticeably more prominent, see
Fig. 6. Neglecting this effect, by taking the viscosity to be a constant, η̄ ≡ 1, (formerly “setting η̄1 = 0,”) yields a
nearly flat central film with h(r, t) ≈ h̄(t) almost until the equilibrium profile is reached, see Fig. 6a,b. We will use
this simplification for the remainder of the paper; note that at equilibrium, the height profile is independent of the
form of the viscosity since η̄(r) factors out of the flux.

Assuming the curvature to be small, we can drop the influence of capillarity including any temperature dependence
in γ, as was numerically show earlier to be insignificant. We will also neglect disjoining pressure for short to moderate
times while the CTF remaining relatively thick. Consequently, the r → 0 limit yields the leading order equation

dh̄

dt
= −2

3
Fr2h̄3

(
1− 3cMa

Fr2 h̄

)
, (12)

where c is the parameter from (7) relating to the variance of the temperature profile about the origin. If the curvature
were retained, it would give only a small increase in the coefficient for this thinning rate, Fr2 → Fr2 + 2|h1|. When h̄
is relatively large, the factor in parentheses will be close to unity and the solution will be

h̄(t) ∼
(
1 + 4

3Fr2 t
)−1/2

, (13)

which corresponds to the EBP scaling, see Fig. 7a. For longer times, as h̄ becomes smaller, the influence of the
Marangoni stress is to slow the EBP thinning rate and to establish an equilibrium film thickness where Marangoni
stresses and centrifugal forcing balance,

h̄∗ =
3cMa

Fr2 , (14)

see Fig. 7. Consequently, Eqn (13) gives an estimate of the (dimensionless) time when a near-equilibrium thickness
has been reached, t∗ = 3(h−2

∗ − 1)/(4Fr2), for small Ma, yielding h̄∗ � 1, this yields t∗ ∼ Fr2/(12c2Ma2). For
our experimental settings at relatively large Ma, this yields dimensionless t∗ ∼ 104 and larger; as the time scale
T = η0R

2/(ρgH3
0 ) is approximately 1.65 seconds, this equilibration estimate consistent with Fig. 5a. Since the
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timescales needed to explore the thinning dynamics become prohibitively large for smaller Ma, and experimental
control of the temperature gradient is not ideal with smaller temperature gradients, we will explore the long time
behavior only numerically.

Note that Fig. 7b shows deviations from the linear scaling with respect to (Ma/Fr
2
) for small h (and very small

Ma); we will see that this occurs when the disjoining pressure is no longer negligible compared to Ma and establishes
a minimum thickness for the CTF layer.

C. Isothermal equilibrium profiles

To better frame the influences of the Marangoni stresses on the steady CTF profile, we first review behaviors for
the isothermal free surface fluids in rotating containers [14]. Assuming h = O(1), allowing us to neglect disjoining
pressure effects, for small rotation rates the steady free surface will have a central depression that is paraboloidal,

h(r) = 1 +
Fr2

2

(
r2 − 1

2

)
+ Fr2

(
2

Bo
− I0(r

√
Bo )√

Bo I1(
√

Bo )

)
. (15)

This result incorporates the contribution of surface tension through a term involving the ratio of modified Bessel
functions Ii. Surface tension has a weak influence on the form of the solution, yielding a boundary layer of width
O(
√

Bo)→ 0 at the outer wall of the container to satisfy a contact angle condition, here taken to be h′(1) = 0.
For higher rotation rates [14], a central bare spot will form,

h(r) ≈

{
0 0 ≤ r < rc
1
2Fr2(r2 − r2

c ) rc < r < 1
(16)

where the radius of the bare spot is given by

rc ≈
√

1− 2

Fr
≥ 0 for Fr ≥ 2. (17)

Note that for large rotation rates, this shows that the fluid volume becomes forced into a narrow layer at the outer
walls of the container, of width 1− rc ∼ 1/Fr = O(Ω−2) → 0 as Ω → ∞. Similar expressions for a “fluid hole” were
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derived in [16], but there the influence of gravity was neglected. This expression for the radius of the hole gives a very
good estimate of the critical Froude number corresponding to the maximum rotation rate for the onset of formation
of a hole, Frc = 2, or equivalently, Ωc = 2

√
gH0/R.

In reality, on a completely wetting substrate, the “bare spot” will not be dry and will retain an adsorbed thin
film due the intermolecular forces with the substrate, this describes our CTF. Neglecting the influences of capillarity
and gravity for very thin films, by balancing the effects of the centrifugal effects with the disjoining pressure, we can
obtain an approximate steady height profile for the CTF region,

Fr2r2h3 −Ha
3r

h

dh

dr
= 0 → h(r) =

(
h−3

0 −
Fr2

2Ha
r2

)−1/3

, (18)

where h0 = h(0) is the height at the origin. This solution can be used to produce a scaling relation for the curvature
of equilibrium solutions at r = 0,

h′′(0) =
Fr2

3Ha
h(0)4 > 0. (19)

The scaling for h(0) for Fr > 2 is not clear, based on the numerical simulations we have fit the data to an empirical
relation like h(0) ∝ (Fr−2)−0.25/ ln(Fr)0.72, see Fig. 8a. In summary, when Marangoni forcing is absent, the curvature
of the film at the origin is positive for all rotation rates, but above the critical Froude number, the central curvature
becomes much smaller and depends sensitively on the wetting properties of the substrate. While Fig. 8a shows that
the simplified prediction for the critical Froude number agrees very well with the full simulations, Fig. 9 shows that
neglecting capillary effects and the disjoining pressure does affect the profile near the predicted CTF radius given by
(17).

D. Marangoni effects on the equilibrium profile

To explore the equilibrium profile dynamics at finite Marangoni number, we again use the experimental values for all
parameters in the numerical exploration and pick 100 mPas for viscosity and 2π rps for the spinning rate. Depending
on the strength of the Marangoni stresses, we observe that the thinning in the center of the container initially follows
the standard EBP scaling and reaches a minimum equilibrium thickness for the entire range of Marangoni strengths
explored: see Fig. 7a.

As described earlier, centrifugal effects scaled by the Froude number work to force fluid out of the central region, with
the disjoining pressure and gravity opposing this outflow. Thermocapillary effects due to the imposed temperature
gradients will promote opposing inwards flows. To explore the full range of behaviors that can occur from difference
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balances of these effects, we use numerical simulations to compute the steady state solutions of (4) over a range of
Marangoni numbers.

Fig. 9 shows steady profiles in the central thin film region for a range of Marangoni numbers, with other parameters
fixed in the regime with Fr > 2. Fig. 9b shows that for very small Ma, the central thin film will have positive
curvature; this is to be expected from the result (19) for Ma = 0. However, we observe that for stronger thermal
forcings, Marangoni stresses are sufficiently strong to draw in fluid to form a central “hump” with a local maximum,
h′′(0) < 0.

When the film is thin smooth and slowly varying, for large Bond numbers we can neglect surface tension in the
central region to approximate (4) by a first order equation for the steady CTF profile with no flux through the origin,

dh

dr
=

(
rFr2 − 3Ma

2h
φ(r)

)/(
1 +

3Ha

h4

)
. (20)

This equation on 0 ≤ r < rc must be asymptotically matched to an interior layer at rc that captures capillary effects
at the contact line and allows for matching to the outer solution (16) on rc < r ≤ 1. In general, determining the value
of h(0) will depend on this matching process, but we will show that over a range of larger Ma, a simpler solution can
be obtained.

Fig. 7b shows that for Ma → 0, a minimum film thickness will be set as a function of Ha via the influence of
the disjoining pressure. While the curvature of the CTF changes sign with Ma, the central height h(0), is always
monotone increasing with Ma. Eqn (20) gives a good approximation of the CTF profile up to a transitional range in
Ma where surface tension starts to play a more important role in setting the structure of the film at rc, see Fig. 9b.

For Ma above this range, surface tension is still important locally at rc, but in the CTF region, the centrifugal
and thermocapillary influences dominate in (20) to balance and give an explicit leading order estimate of the height
profile in terms of the scaled gradient of the temperature profile,

h(r) =
3Ma

2Fr2

φ(r)

r
on 0 ≤ r < rc. (21)

This well defined hump profile gives h(0) ∼ 3c(Ma/Fr
2
) and h′′(0) ∼ 3c2(Ma/Fr

2
) yielding the linear scaling regimes

seen in Figures 7b and 10a. For even larger Marangoni numbers, this scaling ends when the thermal stresses are able
to pull in the fluid from the outer region, to significantly degrade the semi-parabolic profile in (16).

As suggested by the variation in forms of the height profiles for small Ma shown in Fig. 9b, Figure 10b indicates
that the central curvature has a nontrivial dependence on the system parameters in (20) and capillarity to yield the
non-uniform behavior shown. In computations of the steady solutions with higher rotation rates, it was found that
h′′(0) could become non-monotone with respect to Ma at the transition of Ha to Ma dominated behavior occurring
near Ma/Fr2 ≈ 10−5.



13

100

10-2

10-4

(a)
10-6|h

’’ eq
(0

)| 
[u

n
it

s 
of

 H
0/

R2
] 

10-210-6 10-4

1 0.7

x10-4

x10-50.2 1 1.61.20

-15

-10

-5

0

h’
’ eq

(0
) [

un
it

s 
of

 H
0/

R2
] 

0.4 1.4

(b)

0.6 0.8
Ma/Fr2 Ma/Fr2

FIG. 10. (a) The absolute value of the curvature of the steady state film height at the origin, h′′eq(r = 0). Diamonds indicate
positive value (a local minimum); filled circles represent negative curvature (a central hump) obtained from long-time runs of
the dynamic problem (6). The solid line was obtained by solving the steady state version of the equation over a range of Ma
values. Scaling regimes are indicated with the thin solid lines and accompanying scaling exponents. The green, blue and red
vertical line indicate the experiments at low, intermediate and high Ma respectively from Fig. 5. (b) Zoomed-in view on a
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V. DISCUSSION

We have seen that Marangoni forces significantly affect the height profile in the CTF of a spin coating application
context. We expect that this feature can be used in various applications. The dramatic changes for small Ma shown
in Figures 9 and 10 will be observable in experimental fringe patterns for the CTF. We expect that this can developed
further to yield a method for determining properties of the disjoining pressure (and characterize wetting properties of
the substrate) by tuning the Marangoni number of a small range. The slow thinning dynamics need not be prohibitive:
spin coating is done with rotation speeds that are orders of magnitude larger than used in this study, and the viscosity
of the PDMS liquids (used for their low volatility) can also be orders of magnitude lower. Note that at much larger Ω
and much smaller η, the Ekman number becomes so small that Coriolis forces cannot be neglected anymore, certainly
in the transient case, where h is still appreciable. Extending the current work into this limit is an interesting avenue
for future work. In general we expect to see more interesting change-overs such as observed in Fig. 9, depending on
the relative strengths of gravity, disjoining pressure, and capillarity.

The sensitivity of the spatiotemporal thin film dynamics to surface tension gradients can be of great interest in
fields where functional nanometer thin films are produced with spin coating techniques [39]. Even thin film fluid
deposition methods used in 3D printing can be improved with thermal gradient technology to design features smaller
than a thickness of the fluid layer. If a temperature field is not the most natural control method, surface tension
gradients can also be induced with other modes of forcing like electric fields [40] or light [41].

Fundamentally, there is also interest in exploring whether the competing centrifugal versus thermocapillarity influ-
ences can give rise to undercompressive shocks and fingering instabilities, as in the studies by Bertozzi and collaborators
for planar thin films [42–44].

VI. CONCLUSIONS

We performed experiments and examined numerical solutions on thin film dynamics and steady state profiles in
a rotating container in the presence of a thermal surface tension gradient force. Using interferometry, we compared
a pointwise experimental test for ∂h/∂t at the origin with the performance of the numerical model and found it to
be in quantitative agreement. Our numerical results for the entire profile shape h(r, t) indicate that such thermal
Marangoni forces can significantly affect the profile thickness and spatial height variations of the central thin film that
develops at large enough rotation rates. Most notably, we find that the equilibration CTF height scales linearly with
Ma. Once equilibrated, the CTF height profile follows the temperature profile. In the limit of small Ma, reaching
equilibrium takes progressively longer and the steady state reached is set by competition between Marangoni and
disjoining pressure.
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