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Magnetic induction in magnetohydrodynamic (MHD) fluids at magnetic Reynolds number (Rm)
less than 1 has long been known to cause magnetic drag. Here, we show that when Rm � 1 and
the fluid is in a hydrodynamic-dominated regime in which the magnetic energy is much smaller
than the kinetic energy, induction due to a mean shear flow leads to a magnetic eddy viscosity. The
magnetic viscosity is derived from simple physical arguments, where a coherent response due to shear
flow builds up in the magnetic field until decorrelated by turbulent motion. The dynamic viscosity
coefficient is approximately (B2

p/2µ0)τcorr, the poloidal magnetic energy density multiplied by the
correlation time. We confirm the magnetic eddy viscosity through numerical simulations of two-
dimensional incompressible MHD. We also consider the three-dimensional case, and in cylindrical or
spherical geometry, theoretical considerations similarly point to a nonzero viscosity whenever there
is differential rotation. Hence, these results serve as a dynamical generalization of Ferraro’s law of
isorotation. The magnetic eddy viscosity leads to transport of angular momentum and may be of
importance to zonal flows in astrophysical domains such as the interior of some gas giants.

I. INTRODUCTION

The combination of rotation and magnetic fields is
common in astrophysical fluid dynamics, found in stellar
interiors, gas giant atmospheres, and astrophysical disks.
In the outer atmosphere of planets, magnetic fields do
not play a significant role; the flow is dominated by rota-
tion, which leads to anisotropic flow in which turbulence,
waves, and coherent structures interact. A common fea-
ture is the presence of long-lived mean shear flows, called
zonal flow, which alternate in latitude. In Jupiter’s atmo-
sphere, for instance, zonal flows are remarkably persistent
[1]. But deeper into gas giant interiors, or in exoplanets,
magnetic fields may play an important role and influence
the flow.

In resistive magnetohydrodynamics (MHD), it is well
known that when the magnetic Reynolds number is
less than one, fluid flow across a magnetic field results
in magnetic drag [2]. The magnetic Reynolds number
Rm = LV/η measures the relative strength of induction
and magnetic diffusion, where L is a characteristic length
scale of the system, V is a characteristic fluid velocity,
and η is the magnetic diffusivity.

The regime Rm � 1 is more dynamical and complex.
Within this regime we examine a subset of parameter
space: we assume large Reynolds number and, conse-
quently, turbulent flow. We also assume a hydrodynamic-
dominated regime where the influence of the magnetic
field is small. We characterize this latter restriction
with the dimensionless parameter A � 1, where A =
|J × B|/|ρv · ∇v| is the ratio of the Lorentz force to
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the inertial force. If the energy-containing scale lengths
of the magnetic field and velocity field are comparable,
then equivalently A = (B2/µ0)/(ρv2), i.e., the ratio of
magnetic energy density to kinetic energy density. Here,
J is the current density, B the magnetic field, v the fluid
velocity, ρ the fluid mass density, and µ0 the permeability
of free space.

In this paper, we suggest that within the above regime,
the Lorentz force on mean shear flow acts not as a mag-
netic drag but rather as an effective magnetic eddy vis-
cosity. We demonstrate this result in 2D incompressible
MHD simulations. Under conditions where A approaches
unity, the Lorentz force becomes appreciable. If the mean
shear flow is a turbulence-driven zonal flow, the magnetic
eddy viscosity can be strong enough to suppress it. Fig-
ure 1 offers a schematic diagram showing the parameter
space within which the magnetic eddy viscosity is ex-
pected in a turbulent flow.

This paper is primarily a study of MHD physics in
an idealized setup; however, a potential example where
the regime Rm � 1 and A � 1 could be realized is in
the interiors of gas giants. In the outer atmospheres of
Jupiter and Saturn, the bulk fluid is electrically insulat-
ing, but the conductivity increases rapidly with depth,
giving way to a conducting fluid in the interior [3, 4].
Recent spacecraft measurements have shed light on long-
standing questions regarding the depth of zonal flow in
planetary interiors. Gravitometric observations indicate
that the zonal flows in Jupiter and Saturn terminate at a
depth of approximately 3,000 and 8,500 km, respectively
[5–8]. These depths are near the transition zone where
the electrical conductivity increases rapidly. The greatly
enhanced conductivity in the interior leads to a stronger
influence of the magnetic field on bulk fluid motion. The
coincident depths of the suppression of zonal flow and
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the rise in conductivity in Jupiter and Saturn have led to
the hypothesis that the magnetic field is responsible for
terminating differential rotation. Moreover, simulations
of planetary dynamo models provide some support for
this possibility [9–12]. While magnetic drag at Rm < 1
has been studied for gas giants and hot Jupiters as the
mechanism to suppress differential rotation [13, 14], there
remains a great deal of uncertainty about parameter val-
ues. Intermediate regimes may exist in which Rm � 1
and A� 1.

Idealized settings to study individual effects prove
fruitful. For example, certain aspects of fluid physics
under the influence of rotation and magnetization can
be studied in the 2D beta plane or 2D spherical surface
[15–19]. A beta plane is a Cartesian geometrical sim-
plification of a rotating sphere that retains the physics
associated with rotation and the latitudinal variation of
the Coriolis effect [20]. The unmagnetized beta plane
is one of the simplest settings in which coherent zonal
flows emerge spontaneously from turbulence and is of-
ten used for idealized studies [21, 22]. Such idealizations
eliminate many sources of complexity, including thermal
convection, variation in the density and electrical con-
ductivity, and true 3D dynamics. Two-dimensional MHD
studies, have sufficed, however, to demonstrate magnetic
suppression of zonal flow [15–17]. Here, our numerical
simulations continue with the 2D magnetized beta plane,
although our physical considerations are quite general.
The magnetic eddy viscosity also sheds light on earlier
results on the magnetized beta plane and magnetized 2D
spherical surface.

An outline for the rest of this paper is as follows. In
Section II, we derive the magnetic eddy viscosity of mean
shear flow. In Section III, we recall the negative eddy
viscosity for comparison. In Section IV, we describe the
setup for our 2D simulations. The simulations results
are shown in Section V. Section VI provides the 3D gen-
eralization of the magnetic eddy viscosity. Section VII
applies these results to consider zonal flows deep in plane-
tary interiors. We summarize our results in Section VIII.

II. MAGNETIC EDDY VISCOSITY

In this section, we consider a mean shear flow v =
U(y)x̂ and investigate the zonally averaged magnetic
force acting back on the flow due to the correlations in-
duced by the flow. The zonal average of a quantity f is
defined as

f
def
=

1

Lx

∫ Lx

0

dx f, (1)

where Lx is the length of the domain in the x direction,
assumed to be periodic. The deviation from the zonal
mean is denoted with a prime, i.e.,

f ′
def
= f − f. (2)

magnetic 
drag

magnetic 
eddy 

viscosity

zonal flow 
suppressed

FIG. 1. Schematic showing the magnetic response to a mean
shear flow expected in a turbulent regime. As Rm increases,
the magnetic response transitions from a magnetic drag (for
flow perpendicular to the magnetic field) for Rm < 1 to a
magnetic eddy viscosity for Rm > 1, assuming also A � 1.
As Rm increases further, the magnetic energy rises to a value
comparable to the kinetic energy, A = 1. If the mean shear
flow is turbulence-driven, such as zonal flow, then the mean
flow is suppressed.

The Lorentz force F = J×B acting on a fluid can be
expressed as ∇ ·T, where the Maxwell stress tensor T is

T =
BB

µ0
− B2

2µ0
I, (3)

and the stress terms associated with the electric field are
neglected within the MHD approximation. This formu-
lation of the Lorentz force will be most convenient for
our purposes, though we return to consideration of the
current in Appendix A. The force per unit volume in the
x direction is

Fx =
∂Txx
∂x

+
∂Tyx
∂y

+
∂Tzx
∂z

. (4)

The first term on the right-hand side (RHS) vanishes
after a zonal average. In the remainder of this section,
we assume a quasi-2D system and set Bz = 0 and ∂z = 0,
so

F x =
∂T yx
∂y

=
∂

∂y

BxBy
µ0

. (5)

We evaluate the coherent effect that a shear flow has
on inducing correlations in the magnetic field and in the
corresponding back-reaction on the shear flow. We as-
sume a regime Rm � 1, in which the magnetic diffusiv-
ity has minimal effect on energy-containing length scales
over short timescales, and the magnetic field is frozen in
to the fluid. The induction equation is then

∂B

∂t
= ∇× (v ×B) = B ·∇v − v ·∇B, (6)
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where the second equality applies for incompressible flow
∇ · v = 0, and ∇ ·B = 0 has been used. Then

∂B

∂t
= By

∂U

∂y
x̂− U ∂B

∂x
. (7)

Consider the evolution of the magnetic field from some
arbitrary initial time t = 0 over a short increment ∆t.
The magnetic field at time ∆t is

B(∆t) =

(
Bx + ∆tBy

∂U

∂y
−∆tU

∂Bx
∂x

)
x̂

+

(
By −∆tU

∂By
∂x

)
ŷ +O(∆t2), (8)

where the magnetic-field quantities on the RHS are eval-
uated at t = 0. At time ∆t, we can evaluate the zonally
averaged Maxwell stress as

Bx(∆t)By(∆t) = BxBy + ∆tB2
y

∂U

∂y

−∆t

(
UBy

∂Bx
∂x

+ UBx
∂By
∂x

)
+O(∆t2). (9)

The third and fourth terms on the RHS combine to be-
come −∆tU∂x(BxBy), which is annihilated by the zonal
average. We obtain

∆BxBy = ∆tB2
y

∂U

∂y
+O(∆t2), (10)

where ∆BxBy
def
= Bx(∆t)By(∆t)−Bx(0)By(0). We have

thus derived a relation between the Maxwell stress and
the shear. The periodicity constraint is essential in pro-
ducing this exact result; the physical systems in which
zonal flow are known to occur all have such periodicity.
The derivation of Eq. (10) depended on nothing but the
standard MHD induction equation at large Rm.

We would like our theoretical description to involve
statistically observable quantities, but Eq. (10) involves

the quantities ∆BxBy and B2
y evaluated at arbitrarily

selected points in time, and the increment ∆t, which is
not a physically observable quantity associated with the
system. What we do is neglect terms of O(∆t2) and then
replace ∆t by the shortest relevant correlation time τcorr.
The intuition guiding this choice is that the coherent ef-
fect of the velocity shear builds up in the magnetic field
and in the Maxwell stress until some process stops it.
Various processes can scramble the coherent effect of the
shear, including the magnetic diffusion, turbulent inertial
effects, and the shearing itself. In turbulent flow, particu-
larly in hydrodynamic regimes where the magnetic forces
are too weak to have significant effect, the turbulent eddy
turnover time and perhaps the shearing time are natural
correlation times. Whether the higher-order terms in ∆t
are negligible in Eq. (10) depends on the specific regime
and the various decorrelation mechanisms.

In light of the preceding paragraph, we make a con-
ceptual switch, from interpreting our result in Eq. (10)

as a literal initial-value calculation to instead viewing it
through the lens of time-averaged statistical observables.
With the replacement of ∆t by τcorr, we interpret the
LHS of Eq. (10) as a statistical, time-averaged quantity,
and the RHS in the same way. The relation between the
shear and the magnetic stress becomes

BxBy = αB2
yτcorr

∂U

∂y
, (11)

where we have introduced an order-unity constant α.
Hence, the net result is a magnetically originated dy-
namic viscosity of the form

µm = α
B2
y

µ0
τcorr, (12)

such that in the zonally averaged momentum equation,
the mean shear results in a coherent contribution to the
zonally averaged Lorentz force of F x = ∂y(µm∂yU).

We stress that the derivation of Eq. (10) required no
assumptions on the spatial structure of the magnetic
field. The magnetic field could be straight (i.e., a poloidal
field), but it could also have arbitrary spatial structure.

B2
y incorporates the mean magnetic field as well as all

magnetic field perturbations.

Figure 2 shows the induction of a magnetic field by
a shear flow over a short time ∆t for two initial field
configurations. Also depicted is the decomposition of the
x-component of the zonally averaged Lorentz force into
the tension and pressure force, J×B = FT +FP , where
FT = (B2/µ0)b̂·∇b̂, FP = −∇⊥B2/2µ0, b̂ = B/B, and

∇⊥ = (I− b̂b̂) ·∇. When the initial magnetic field lines
are straight, F x is due to magnetic tension, akin to the
behavior of a shear Alfvén wave. However, in the general
case with non-straight field lines, as might be expected to
occur in the tangle of magnetic fields when induction is
important and Rm� 1, F x includes contributions from
both tension and pressure. In the alternative definition
of pressure and tension, where the pressure is isotropic
and the tension is given by B · ∇B/µ0, F x is entirely
tension. Regardless of the initial field configuration, F x
still acts as a viscosity, in accordance with Eq. (10).

In the derivation of Eq. (10), we have only imposed
the effect of a mean shear flow. Let us consider what
would happen if we included the full fluid velocity field
in the induction equation, in which the mean shear flow

U
def
= v · x̂ is embedded. In a small time increment, there

would be additional contributions to ∆B. Those con-
tributions not correlated across the zonal domain would
mostly cancel out when the zonal average of the Maxwell
stress is taken. Hence, it is the mean shear flow that
gives rise to a coherent zonally averaged effect.

In Section V, we compare the prediction Eq. (11) for
the Maxwell stress with direct numerical simulations.
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U(y) B(t = 0) B(∆t)

F Tx F PxU(y) B(t = 0) B(∆t)

FIG. 2. The change in the magnetic field in a short time in-
crement ∆t due to a mean shear flow for two different initial
configurations, neglecting magnetic diffusivity. The modifi-
cation of the field has been exaggerated for visibility. The
resulting x-component of the zonally averaged Lorentz force
F x in both cases acts as a viscosity to reduce the shear flow.
The decomposition into magnetic tension and pressure forces,
FTx and FPx, respectively, is also shown. Top row: from an
initially straight field line, F x is due solely to tension (at first
order in ∆t). Bottom row: when the magnetic field is not
straight, F x will in general have contributions from both ten-
sion and pressure.

III. NEGATIVE EDDY VISCOSITY

For comparison with the magnetic eddy viscosity, it is
worthwhile to recall the so-called negative eddy viscosity.
The notion of a hydrodynamic negative eddy viscosity in
2D flow has a long history [23–26]. A negative eddy vis-
cosity emerges in a variety of mathematical approaches,
which can be seen as a reflection of the general tendency
for energy to tend towards large scales in 2D [27]. The
early theoretical literature was primarily concerned with
the context of isotropic turbulent flows. Recent work,
however, has revived the negative eddy viscosity to help
explain and interpret the physics of the formation and
maintenance of zonal flow.

For example, the zonostrophic instability supposes a
statistically homogeneous turbulent background and con-
siders the growth of a perturbing zonal flow [28–33].
For a weak zonal flow of wavenumber q and turbu-
lent background with spectrum Φ(k), the flow reinforces
the perturbation at a rate that schematically looks like∫
dk q2(1−q2/k2)g(k)Φ(k), where g contains anisotropic

wavevector dependence. At small q, this goes like q2. At
larger q, there is a cutoff of the form (1− q2/k2), which
can be traced back to the v′ ·∇ζ term, where ζ is the
vorticity [34, 35]. Many treatments have neglected this
term compared to v ·∇ζ ′ under the assumption of long-
wavelength mean flows. We return to discussion of this
cutoff at the end of the section.

Manifestations of a negative eddy viscosity are visible
at cloud level in both Jupiter and Saturn. Careful mea-
surements have demonstrated that the Reynolds stress of
observed cloud-level velocity fluctuations are positively

correlated with the mean shear [36–38]. Hence, the tur-
bulent fluctuations appear to transfer energy to the mean
flow via Reynolds stress. Measurements of the turbulent
Reynolds stress in laboratory plasma devices lead to sim-
ilar conclusions [39, 40].

It is instructive to calculate the Reynolds stress in a
similar manner as we did the Maxwell stress. The calcu-
lation also serves as yet another simple demonstration of
a negative eddy viscosity. The details are given in Ap-
pendix B. We obtain a prediction for the Reynolds stress,

ρv′xv
′
y = γρv2yτcorr

∂U

∂y
, (13)

where γ is a positive constant of order unity. This corre-
sponds to a negative dynamic eddy viscosity,

µe = −γρv2yτcorr. (14)

The dynamic eddy viscosity has magnitude approx-
imately equal to the kinetic energy density multiplied
by a correlation time. In pure hydrodynamic flow, the
eddy turnover time at the energy-containing scale, τturb,
is often the appropriate correlation time. Using vturb ∼
Lturb/τturb leads to a mixing-length estimate for the kine-
matic negative eddy viscosity acting on mean shear flow,
νe = −γL2

turb/τturb.
Assuming the relevant correlation times in Eqs. (11)

and (13) are equal, the zonally averaged momentum flux
due to the turbulent Reynolds and Maxwell stresses is

∂

∂t
(ρvx)

∣∣
turb

=
∂

∂y

[(
α
B2
y

µ0
− γρv2y

)
τcorr

∂U

∂y

]
. (15)

Hence, the magnetic eddy viscosity becomes compara-
ble to the negative eddy viscosity when the fluctuating
magnetic energy has reached a roughly similar level as
the fluctuating kinetic energy. However, in Section V,
we shall see from our 2D simulations that the numerical
prefactor γ can be an order of magnitude smaller than α.
Therefore, if the turbulent Reynolds stress is the primary
driver of zonal flow, the magnetic viscosity can have a
significant influence even when the fluctuating magnetic
energy is much smaller.

A refinement of Eq. (13) is possible. The aforemen-
tioned (1− q2/k2) cutoff in the growth rate motivates a
simple modification of Eq. (13),

ρv′xv
′
y = γ2ρv2yτcorrL̂

(
∂U

∂y

)
. (16)

Here, L̂ is an operator that multiplies the Fourier am-
plitude by (1 − q2/k2c ) for q ≤ kc, and suppresses the
Fourier amplitude for q > kc, where kc is a characteristic
eddy wavenumber. This refinement is additionally moti-
vated by the fact that modeling attempts that use only
the local shear and neglect higher-order derivatives lead
to divergent growth of small scales, but proper inclusion
of the cutoff leads to well-behaved models [35].
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IV. SIMULATION SETUP

We perform a series of numerical simulations to assess
our prediction for the Maxwell stress and Reynolds stress.
We study the behavior of a 2D incompressible MHD fluid
on a magnetized beta plane [15].

The coordinates on the beta plane are x
def
= (x, y),

where x is the azimuthal direction (longitude) and y the
meridional direction (latitude). It is convenient to rep-
resent both the velocity and magnetic field by poten-
tials. The velocity in the rotating frame is written as
v = ẑ ×∇ψ, where ψ is the stream function. The vor-

ticity normal to the plane is ζ
def
= ẑ · (∇ × v) = ∇2ψ.

The magnetic field B = B0 + B̃ consists of a constant,
uniform background field B0 and a time-varying compo-
nent B̃(x, t). We define a corresponding vector potential

A = Aẑ such that B = ∇ ×A, where A = A0 + Ã and
A0 = −B0yx + B0xy. As we have imposed the presence
of a background magnetic field, this 2D system is not
subject to anti-dynamo theorems, and magnetic amplifi-
cation can result such that B � B0.

We perform simulations in which the background mag-
netic field is either purely toroidal (i.e., aligned in the
azimuthal direction, B0y = 0) or purely poloidal (i.e.,
aligned in the latitudinal direction, B0x = 0).

The evolution of the system can be described by a for-
mulation involving vorticity and magnetic potential,

∂ζ

∂t
+ v ·∇(ζ + βy) = −B ·∇∇2A− κζ + ν∇2ζ + ξ,

(17a)

∂A

∂t
+ v ·∇A = η∇2A. (17b)

Here, β is the latitudinal gradient of the Coriolis param-
eter, κ is the linear drag, ν is the viscosity, η is the mag-
netic diffusivity, and ξ(x, t) is a mechanical forcing to
excite hydrodynamic fluctuations. The first term on the
RHS of Eq. (17a) stems from the curl of the Lorentz force.
Equation (17b) is the magnetic induction equation writ-
ten for the potential A. For mathematical convenience,
we have set the permeability µ0 = 1 and the mass density
ρ = 1.

We numerically solve Eq. (17) using the code
Dedalus [41]. We employ periodic boundary conditions
in both directions. During time-stepping, we use a high-
wavenumber spectral filter to remove enstrophy from ac-
cumulating at the grid scale. Unless noted, our domain
size is Lx × Ly = 4π × 4π at a resolution of 5122 grid-
points. The forcing ξ is statistically homogeneous and
isotropic white noise. It is also small-scale, localized near
wavevectors with magnitude kf = 12, and injects energy
per unit area at a rate 10−3 (see Ref. [17] for more de-
tails).

The majority of our simulations use nonzero drag κ
on the hydrodynamic flow in order to saturate without
filling the largest scales of the box. However, we also
show a case with only viscosity, κ = 0, to confirm our

results are not sensitive to the presence of drag.

V. SIMULATION RESULTS

We perform two series of simulations: one with a back-
ground toroidal magnetic field B0 = 10−2, and one with
a background poloidal magnetic field B0 = 10−3. These
runs use κ = 10−2, ν = 10−4, and β = 10. For each sim-
ulation series, we vary η. It is then convenient to define
another magnetic Reynolds number that is referenced to
the hydrodynamic limit,

Rm0
def
=
L0V0
η

, (18)

where L0 and V0 are a characteristic length scale and
velocity scale in a regime where the magnetic field has
no influence, i.e., large η. For L0 we use a typical eddy
length scale computed from the eddy energy spectrum

as Lturb
def
= [

∫
dk k2E(k)/

∫
dkE(k)]−1/2. For V0 we

use the rms eddy velocity vturb. Our simulations yield
Lturb = 0.14 and vturb = 0.21, giving Rm0 = 0.03/η.
Our reported values of A are computed as the total mag-
netic energy divided by the total kinetic energy.

As we decrease η from large values, we move through
the three regimes depicted in Figure 1. First, is the
regime of large η, Rm0 < 1, and magnetic energy much
smaller than kinetic energy, A � 1. As η is reduced,
a second regime is entered, where Rm0 > 1, and still
A � 1. Then, as η is decreased even further, Rm0 � 1
and A ≈ 1. The intermediate regime is the one where
the assumptions behind the magnetic eddy viscosity are
valid.

Figure 3 shows results from three representative sim-
ulations. The left column shows space-time diagrams
of the zonal flow U(y, t) = vx. The right column
shows time series of the different contributions to the
domain-averaged energy density: zonal-flow kinetic en-
ergy ZKE = 〈U2/2〉, eddy kinetic energy EKE = 〈(v′2x +

v′2y )/2〉, zonal magnetic energy ZME =
〈
B̃

2

x/2
〉
, eddy

magnetic energy EME = 〈(B′2x + B′2y )/2〉, and the back-

ground magnetic energy BME = B2
0/2. Here, 〈f〉 def

=∫
dx f/LxLy denotes a domain average of quantity f .
The top panels in Figure 3 show a case with Rm0 = 0.3.

Panel (a) shows that zonal jets form spontaneously. Af-
ter an initial transient time of about 5/κ = 500, seven
jets equilibrate at finite amplitude and remain coherent
throughout the rest of the simulation. The eddy mag-
netic energy is about 4 orders of magnitude smaller than
the kinetic energy of the flow (panel (b)). The mid-
dle row shows a case with toroidal background field at
Rm0 = 300. The magnetic energy is somewhat smaller
than the kinetic energy, A = 0.05. The zonal flow is
mostly suppressed; it has smaller amplitude and is less
coherent. The bottom row shows a case with poloidal
background field at Rm0 = 30. Here, the zonal kinetic
energy is not reduced from the hydrodynamic case as in



6

0 500 1000 1500 2000 2500 3000
t

0

4

8

12

y

(a)

0 500 1000 1500 2000 2500 3000
t

0

4

8

12

y

(c)

0 500 1000 1500 2000 2500 3000
t

0

4

8

12

y

(e)

0 500 1000 1500 2000 2500 3000
t

10−7
10−6
10−5
10−4
10−3
10−2
10−1

en
er

gy

(b)

0 500 1000 1500 2000 2500 3000
t

10−7
10−6
10−5
10−4
10−3
10−2
10−1

en
er

gy

(d)

0 500 1000 1500 2000 2500 3000
t

10−7
10−6
10−5
10−4
10−3
10−2
10−1

en
er

gy

(f)

ZKE

EKE

EME

ZME

BME

−0.2 0.0 0.2

U(y, t)

Toroidal B0 = 10−2, η = 10−1

Toroidal B0 = 10−2, η = 10−4

Poloidal B0 = 10−3, η = 10−3

FIG. 3. Results from three representative simulations. Left column: space-time plots of the zonal flow U . Right column: Time
traces of averaged energy densities associated with the zonal flow (ZKE) and the hydrodynamic eddies (EKE), the background
magnetic field (BME), the zonally averaged magnetic field (ZME), and the eddy magnetic field (EME). The top row shows a
case at Rm0 = 0.3 in which magnetic fluctuations are too weak to have an effect on the hydrodynamic flow. The middle row
demonstrates the effect of magnetic field on the zonal flow with toroidal background field and Rm0 = 300. The bottom row
shows a case with poloidal background field and Rm0 = 30.

panel (a), but the coherency of the zonal flow is clearly
reduced in panel (e). There is a continual cycle of jet
merging and formation of new jets, and the zonal flow
never settles down to a steady state. Interestingly, this
behavior occurs even when A = 0.006.

A. Maxwell stress

We compare the Maxwell stress predicted by Eq. (11)
with the actual stress observed in the simulations. To
facilitate the comparison, we perform a least-squares best
fit for the single free parameter α, which serves merely
as an overall constant of proportionality and does not
affect the spatial structure. The fit is performed on the
Maxwell stress itself, not its derivative.

Figure 4 examines a simulation with toroidal back-
ground field. For this simulation, Rm0 = 30 and A =
0.005. The curves labeled “predicted B′xB

′
y” are com-

puted using correlation time τcorr = Lturb/vturb. Both
short-duration averages (50 time units, left column) and
long-duration averages (500 time units, right column)
are shown for this comparison to illustrate that there is
no substantial difference. The proportionality constant
α = 1.02 for the short-time average and 1.04 for the long-
time average. The predictions for the Maxwell stress
from Eq. (11) are in very good agreement with those

from the simulations. B′2y does not vary much with y
(first row), and, therefore, the Maxwell stress closely re-
sembles the mean flow shear; compare the second row
with the third row. Additionally, by comparing the spa-
tial dependence of ∂yB′xB

′
y (bottom row) with −U and

∂2yU (fourth row), we see that ∂yB′xB
′
y more closely re-

sembles ∂2yU . Thus, the Lorentz force acts like viscosity
rather than like drag.

Figure 5 is much the same, but for a poloidal back-
ground field, with Rm0 = 30 and A = 0.006. There is
an additional subtlety here regarding the calculation of
the Maxwell stress. The prediction in Section II uses the
total magnetic field B. For a poloidal background field,
BxBy = BxB0y + B′xB

′
y (whereas for a toroidal back-

ground field, BxBy = B′xB
′
y). However, Eq. (11) can be

used as a prediction for B′xB
′
y if we replace B2

y with B′2y .

The figure shows the prediction for B′xB
′
y rather than

BxBy, though this distinction has little quantitative sig-

nificance here because B0 � B̃ for Rm� 1.

In Figure 5, the prediction for the Maxwell stress
agrees quite well with the actual values. The proportion-
ality constant α = 1.05 for the short-time average and
1.17 for the long-time average. It is interesting to note
that unlike the toroidal case, B′2y has significant variation
in y. This dependence leaves a noticeable imprint in the
Maxwell stress, showing that B′xB

′
y is not merely pro-
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portional to the flow shear ∂yU . The bottom row shows,
in addition to the derivative of the fluctuating stresses,
the term ∂y(BxB0y). This term, which is responsible for

magnetic drag at Rm� 1, is much smaller than ∂yB′xB
′
y

here.

Figure 6 shows simulations results at different values
of Rm0. The left column shows results in the statistically
steady state for a toroidal background field. The regime
of magnetic eddy viscosity is valid for 3 . Rm0 . 300.
The upper bound is determined where the magnetic field
has a significant influence on the flow and the condition
A � 1 no longer holds. Panel (e) shows the correlation
coefficient between the derivative of the Maxwell stress
and the prediction, which is close to 1 in the magnetic
eddy viscosity regime. Panel (g) shows the rms values of
the Reynolds stress and Maxwell stress, which exhibit
a similar dependence as the kinetic energy and mag-
netic energy. The proportionality constant α for both
the toroidal and poloidal cases is approximately equal to
1, as seen in panels (i) and (j).

The right column depicts the case with a poloidal back-
ground field. The details are similar, with the regime of
magnetic eddy viscosity existing for 10 . Rm0 . 100.
Figure 6 also demonstrates that the Lorentz force tran-
sitions from a magnetic drag at low Rm0 to magnetic
viscosity at high Rm0. Panel (f) shows that at low Rm0,
the correlation of ∂y(BxB0y) with −U is equal to 1, in-
dicating drag. A straightforward calculation shows the
amplitude of the magnetic drag at low Rm0 is expected to
be F x = −(B2

0/ηµ0)U (momentarily returning to dimen-
sional quantities); this amplitude is quantitatively recov-
ered in the simulation. As Rm0 increases, the Lorentz
force due to fluctuating magnetic fields, ∂yB′xB

′
y, corre-

lates well with the predicted magnetic viscosity. When
Rm0 & 10, the viscous-like fluctuating force begins to
dominate, as seen in panel (h).

Even though the kinetic energy is much greater than
the magnetic energy for Rm0 < 300, Figure 6(d) shows
how a poloidal background field affects the coherency of
the zonal flow even starting at Rm0 = 3. Panel (d) is
computed using the time average 〈U〉2t/2, which is re-
duced compared to the zonal kinetic energy when the
spatial structure of the zonal flow is not steady in time
(see Figure 3(a,e)). The longer the duration of the time
average, the more 〈U〉2t will be reduced by the decoher-
ence.

To check whether the prediction for the Maxwell stress
is sensitive to the presence of frictional drag, we also per-
form a simulation with κ = 0 but maintaining nonzero
viscosity. The results are shown in Figure 7. This sim-
ulation uses domain size Lx × Ly = 2π × 2π, numerical
resolution of 2562, and parameter values β = 2, ν = 10−4,
and η = 10−4. The background magnetic field is toroidal,
with B0 = 10−2. Without drag, the structures tend to
fill the box size, and only a single jet exists at late times.
Time averaged around t = 2500, we find Lturb = 0.56,
vturb = 0.46, hence Rm ≈ 2600. The magnetic energy is
much smaller than the kinetic energy, with A ≈ 6×10−4.

Equation (11) accurately predicts the Maxwell stress
in this simulation as well. This is true both at early
times 200 < t < 350, when there are two jets, and at late
times, 3000 < t < 3250, after the two jets have merged
so that a single wavelength fills the domain. Moreover,
at late times, the spatial structure of U and ∂2yU are

significantly different, and ∂yB′xB
′
y is clearly closer to

∂2yU . We also observe that Eq. (11) holds even though
the kinetic energy has not yet saturated under viscous
dissipation, because the timescale setting the magnetic
quasi-equilibrium is much shorter than the viscous time.

B. Reynolds stress

We also examine the negative eddy viscosity in our
simulations to determine whether the relation in Eq. (13)
holds in our simulations. The results for one simulation
are shown in Figure 8. The simulation uses a background
toroidal field of B0 = 10−2. The systems has A � 1
and so the magnetic field has little influence on the flow.
Correlations induced in the fluctuating Reynolds stress
by the zonal flow are picked out by zonal averaging.
The zonally averaged Reynolds stress and its divergence
are in overall good agreement with the predictions from
Eq. (13), with a best-fit γ = 0.08. Observe that the pro-
portionality constant for the Reynolds stress γ is about
10 times smaller than the proportionality constant for
the Maxwell stress α (see Figure 6(i,j)).

Equation (13) produces a noticeable over-prediction
of the jet forcing −∂yv′xv′y at the eastward peaks of
the jets. Figure 8 also shows the refined prediction
of Eq. (16). The refined prediction removes the over-
estimate of −∂yv′xv′y at the eastward jets and shows
much better agreement with the actual value. We have
used kc = 1/Lturb = 7.1, so the only free parameter is
the overall proportionality factor which, for this case, is
γ2 = 0.13.

VI. GENERALIZATION TO THREE
DIMENSIONS

The simple derivation of magnetic eddy viscosity in
Section II assumed a 2D Cartesian system. Here, we
follow a similar procedure to generalize Eq. (10) to 3D in
Cartesian, cylindrical, and spherical coordinates. We find
the relevant components of the Maxwell stress tensor that
are required to compute the zonally averaged Lorentz
force. As in Section II, the following equations are exact
to first order in ∆t and depend only on the large-Rm
limit of the MHD induction equation.

In Cartesian coordinates, let v = U(y, z)x̂. A zonal
average is over x, and periodicity in x assumed. We
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FIG. 4. Results for the simulation with toroidal B0 = 10−2, η = 10−3 (Rm0 = 30), and A = 0.005. The left and right columns

show short-time and long-time averages, respectively. (a, b) The zonally averaged magnetic eddy energy components B′2x and

B′2y . (c, d) The zonal flow shear ∂yU . (e, f) The Maxwell stress B′xB′y and the prediction of Eq. (11). (g, h) The structure

of −U and ∂2
yU . (i, j) The divergence of the Maxwell stress ∂yB′xB′y and the derivative of the prediction of Eq. (11). The

proportionality constant α is 1.02 for the short-time average and 1.04 for the long-time average.

obtain

∆BxBy = ∆t

[
B2
y

∂U

∂y
+ByBz

∂U

∂z

]
+O(∆t2), (19a)

∆BxBz = ∆t

[
B2
z

∂U

∂z
+ByBz

∂U

∂y

]
+O(∆t2). (19b)

In cylindrical coordinates (s, φ, z), let v = U(s, z)φ̂, and

a zonal average is over the azimuthal angle φ. We find

∆BsBφ = ∆t

[
sB2

s

∂

∂s

(
U

s

)
+BsBz

∂U

∂z

]
+O(∆t2),

(20a)

∆BzBφ = ∆t

[
B2
z

∂U

∂z
+ sBsBz

∂

∂s

(
U

s

)]
+O(∆t2).

(20b)

In spherical coordinates (r, θ, φ), let v = U(r, θ)φ̂, and
again a zonal average is over φ. We obtain

∆BrBφ =
∆t

r

[
r2B2

r

∂

∂r

(
U

r

)
+BrBθ sin θ

∂

∂θ

(
U

sin θ

)]
+O(∆t2), (21a)

∆BθBφ =
∆t

r

[
B2
θ sin θ

∂

∂θ

(
U

sin θ

)
+ r2BrBθ

∂

∂r

(
U

r

)]
+O(∆t2). (21b)

We make several observations. First, in cylindrical or
spherical geometry, the first-order coherent effect in the

Maxwell stress due to U vanishes if U ∼ s ∼ r sin θ,
i.e., solid body rotation. Second, one can straightfor-
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FIG. 5. Same as Figure 4, for the simulation with poloidal B0 = 10−3, η = 10−3 (Rm0 = 30), and A = 0.006. In panels (i,
j), the term ∂y(BxB0y) is also shown. The proportionality constant α is 1.05 and 1.17 for the short and long-time averages,
respectively.

wardly compute that in the cross terms ByBz, BsBz, or

BrBθ, there is no first-order coherent effect due to U .
One might expect the fluctuating field’s contribution to
this term averages to approximately zero. A mean mag-
netic field could lead to nonzero correlation such as BrBθ,

although in a regime Rm � 1 the B2
r and B2

θ terms
likely dominate. Third, the computation of the zon-
ally averaged Lorentz force in non-Cartesian geometries,

Fφ = ∇ · T · φ̂, introduces additional geometric factors
in the tensor divergence. Fourth, for rotation about an
axis, U = sΩ, Eqs. (20) and (21) may be written com-
pactly as

∆Bp · t̂Bφ = s∆tBp · t̂Bp ·∇Ω +O(∆t2), (22)

where Bp is the poloidal (non-azimuthal) part of the mag-

netic field and t̂ is a unit vector in the plane orthogonal
to φ̂, e.g., t̂ = ŝ, ẑ, r̂, θ̂.

Equation (22) functions as a dynamical generalization
of Ferraro’s law of isorotation, which states that for an
axisymmetric magnetic field and axisymmetric azimuthal
flow with angular velocity Ω(s, z), a steady state is pos-
sible only when Bp ·∇Ω = 0 [42]. Hence, Ferraro’s law
has been cited for the notion that magnetic fields tend
to suppress differential rotation (although this is not re-
quired; the law merely requires that Bp lies in surfaces of
constant Ω). Our derivation of a magnetic eddy viscosity

generalizes the isorotation law because it (i) allows for
turbulent dynamics, (ii) does not assume axisymmetry
of the magnetic field, and (iii) provides an estimate for
the magnitude of the resulting force that counteracts dif-
ferential rotation. The isorotation law is recovered from
Eq. (22) if Bp is axisymmetric.

Under appropriate physical conditions where second-
order effects can be neglected, one can apply the same
arguments as in Section II to relate the coherent part of
the statistically averaged Maxwell stresses to the mean
shear flow. If the first-order truncation is applicable, then
it is clear that a differentially rotating body will induce
coherent Maxwell stresses that act to redistribute angular
momentum in a way similar to a viscosity.

While the prediction of the Maxwell stress was verified
in 2D MHD beta-plane simulations in Section V, com-
paring the equations of this section with 3D numerical
simulations is out of scope of the present work. The ex-
pressions in Eqs. (19)–(21) could be directly compared
with the Maxwell stress observed in 3D simulations to
determine the applicability of the magnetic eddy viscos-
ity in a particular regime.
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FIG. 6. Results for several simulations with varying η (Rm0 = 0.03/η). The left column shows the case with background
toroidal field and the right column with poloidal field. Panels (a) and (b) show steady-state energies (see text for definitions
of the various terms). A is small for Rm0 . 300. Panels (c) and (d) show the fraction of kinetic energy in a coherent zonal
flow, where 〈·〉t is a time average. Panels (e) and (f) show the correlations of the magnetic stresses observed in the simulations
with the prediction of Eq. (11). For the case of a poloidal field, the correlation of ∂y(BxB0y) with −U is 1 for Rm0 < 1; this
is magnetic drag. Panels (g) and (h) depict the rms values of the relevant stresses, showing the Maxwell stress rises to be
sufficiently strong to counteract the Reynolds stress at large enough Rm. Panels (i) and (j) show the best-fit proportionality
constants α and γ, but only for the cases in the magnetic-eddy-viscosity regime: Rm0 > 1, but small enough such that a
coherent mean zonal flow still exists. All quantities were averaged over 2000 ≤ t ≤ 3000.

VII. ESTIMATES FOR JUPITER AND SATURN

Could the magnetic eddy viscosity regime apply in
some planetary interiors, and perhaps be responsible for
suppression of differential rotation? We consider this
question along with some Jupiter and Saturn data. We
explore the possibility that Rm � 1 occurs in regions
with significant mean flow (implicitly with A� 1). This
analysis is restricted to the upper atmosphere as the
deeper planetary dynamo region likely has A ∼ O(1).

There is currently a great deal of uncertainty about the

dynamics below the cloud-top level in these two gas gi-
ants. While the flow speed is expected to decrease with
depth due to the increasing mass density, for this esti-
mate we shall use the observed outer-atmosphere values.

Cloud-tracking of Jupiter’s and Saturn’s upper-level
atmosphere showed that eddies act to reinforce the zonal
jets with an effective eddy viscosity νe,J ≈ −106 m2 s−1

for Jupiter [36] and νe,S ≈ −2 × 105 m2 s−1 for Sat-
urn [37, 38]. We observe that νe,J is roughly equal to
the mixing-length estimate νe = −γL2

turb/τturb, using
Lturb = 1000 km and τturb = 2.5 × 105 s observed at
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the Jupiter cloud tops. Supposing the negative eddy vis-
cosity is the sole driving of the zonal flow, we ask: if the
negative eddy viscosity is to be counterbalanced solely
by magnetic eddy viscosity, then (i) what is the strength
of the magnetic field needed to do so, and (ii) how deep
below the cloud tops of the two gas giants do we expect
such strong magnetic fields?

The mass density increases rapidly beneath the cloud-
tops. We use a number intermediate within the expected
density range for both Jupiter and Saturn, ρ ≈ 200
kg m−3 [3, 43, 44]. For the correlation time, we use the
turbulent eddy turnover time τturb = 2.5 × 105 s. This
time is not that different from the typical shear time asso-
ciated with the surface-level zonal jets tshear,J ≈ 2×105 s
and tshear,S ≈ 5 × 104 s [1, 37]. We also use typical
mean magnetic field values B0,J = 4 × 10−3 T [45] and
B0,S = 2×10−5 T [46]. With these in hand, the kinematic
magnetic eddy viscosity νm = µm/ρ computed with the
mean magnetic field values is 2 to 4 orders of magnitude
smaller than the corresponding negative eddy viscosity.
Thus, magnetic viscosity can only start becoming impor-
tant if we take into account the magnetic fluctuations.

For convenience, we assume the scaling B2 ∼ B2
0Rm

at Rm � 1. Accounting for the factor of Rm, we esti-
mate for Jupiter that νm ≈ νe requires RmJ ≈ 60 and
for Saturn requires RmS ≈ 700. Hence these results are

consistent with the assumption Rm � 1. Then, using
the outer-atmosphere typical eddy length-scale Lturb and
speed vturb, we compute that the required Rm values cor-
respond to magnetic diffusivities of ηJ ≈ 6 × 104 m2 s−1

and ηS ≈ 6×103 m2 s−1. Finally, from Refs. [3, 4, 13] we
find that such magnetic diffusivity values are achieved at
≈ 0.96RJ and ≈ 0.8RS . Therefore, under the assump-
tions we have made, we expect zonal jets would be mag-
netically terminated by these depths. These estimates
are not inconsistent with the recent gravitometric esti-
mates of depths of 0.96RJ and 0.85RS [5–8].

The decrease of flow velocity with depth will modify
these calculations. Suppose that at the critical depth, the
characteristic velocity and turbulent length scale have de-
creased by a factor of ten relative to the observed surface
values. The negative eddy viscosity would be smaller by
a factor of 100, using the scaling of Section III. Hence,
the required RmJ falls below 1, making it marginal, while
the required RmS is about 7, still within the regime of
magnetic eddy viscosity. The required ηS = V L/RmS is
unchanged from the previous estimate.

This discussion is not intended to assert magnetic eddy
viscosity is the mechanism responsible for terminating
the zonal flows in Jupiter and Saturn, but rather serves
as a consideration of whether it is a plausible mechanism
for gas giants at all. There are substantial complexi-
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FIG. 8. Comparison of the zonally averaged Reynolds stress
in a simulation with the prediction of Eq. (13) and the refined
prediction of Eq. (16). Shown are (a) the Reynolds stress and
(b) its divergence. This simulation used a toroidal background
magnetic field B0 = 10−2 and η = 10−2 (Rm0 = 3). The
proportionality constants are γ = 0.08 and γ2 = 0.13. Time-
averaged between 2000 ≤ t ≤ 2500.

ties not included in this discussion, such as the variation
of conductivity and density with depth, meridional flow,
thermal convection, and realistic physics of planetary dy-
namos. Still, these estimates suggest that magnetic eddy
viscosity is a potential candidate for inhibiting differen-
tial rotation in the interior of some gas giants.

VIII. CONCLUSION

In 2D incompressible MHD, under the assumptions of
Rm � 1 and a turbulent flow regime where the mag-
netic energy is smaller than the kinetic energy, we have
shown that a mean shear flow induces correlations in the
magnetic field that result in a magnetic eddy viscosity.
Numerical simulations of a 2D magnetized beta plane, in
which zonal flows arise naturally, confirm this result.

Two key ingredients lead directly to the prediction of
magnetic eddy viscosity, given in Eqs. (11) and (12).
First is the large-Rm limit of the MHD induction equa-
tion. Second is the assumption of turbulent flow, which
acts to scramble any coherent effect built up in the mag-
netic field, by enforcing a short correlation time.

The expressions for the 3D generalization of the com-
ponents of the Maxwell stress tensor are given in Sec-
tion VI. They show directly how differential rotation
leads to zonally averaged Maxwell stress that trans-
port angular momentum. Additionally, these expressions
function as a dynamical generalization of Ferraro’s law of
isorotation, because they (i) allow for turbulent dynam-

ics, (ii) do not assume axisymmetry of the magnetic field,
and (iii) provide an estimate for the magnitude of the re-
sulting force that counteracts differential rotation.

In 2D simulations with a mean poloidal magnetic field,
we observe the Lorentz force transition from magnetic
drag to magnetic eddy viscosity as Rm increases beyond
about 10. Magnetic eddy viscosity also occurs in simula-
tions where the mean magnetic field is toroidal, in which
case the omega effect is absent and there is no associated
magnetic drag; the magnetic eddy viscosity is due solely
to magnetic fluctuations.

Rotating, magnetized fluids are commonly found in as-
trophysical domains. The magnetic eddy viscosity may,
in certain parameter regimes, provide a simple character-
ization of the transport of angular momentum and the
magnetic braking force due to differential rotation. Our
main numerical example here is a case where the mean
shear flow consists of a turbulence-driven zonal flow, with
a simple idealized model that could provide insight into
the interiors of gas giants. Mean shear flow also occurs
in astrophysical disks, and magnetic eddy viscosity could
be explored in that context as well.
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Appendix A: Calculation of current and force
directly from J×B

Although the Maxwell stress tensor is the most direct
route to the force and momentum flux derived in Sec-
tion II, we can also calculate the force by finding the
current and using J×B. As in Section II, we stick to 2D
for simplicity. The current is given by µ0J = ∇×B. For
convenience, we use somewhat different notation than be-
fore; here we refer to quantities at t = 0 as J0 and B0,
and refer to their first-order perturbations at t = ∆t as
J1 and B1. From the magnetic field in Eq. (8), we can



13

compute the current,

µ0J0 = ẑ

(
∂B0y

∂x
− ∂B0x

∂y

)
, (A1)

µ0J1 = −ẑ∆t

[
∂

∂x

(
U
∂B0y

∂x

)
+

∂

∂y

(
B0y

∂U

∂y
− U ∂B0x

∂x

)]
. (A2)

The Lorentz force per unit volume, F = J×B, has an x
component

Fx = −JzBy. (A3)

Thus, we have

F0x = −J0zB0y, (A4)

F1x = −(J0zB1y + J1zB0y). (A5)

We assume that F 0x = 0, which is satisfied if B0xB0y =
0.

Let us now consider F1x, and substitute the previous
expressions to write everything in terms of U and B0.
From now on, we drop the 0 subscript for simplicity.
After some algebra, we obtain for the zonally averaged
force,

F 1x = ∆t
∂

∂y

(
B2
y

µ0

∂U

∂y

)
+O(∆t2). (A6)

This expression is equivalent to Eq. (10).
To summarize, we have recovered the same net force

using J ×B directly as we did earlier with the Maxwell
stress tensor. In the 2D MHD system where B is in the
xy plane, both J0 and J1 are along ẑ, implying currents
must be able to flow in the z direction.

Appendix B: Derivation of negative eddy viscosity

In this section we derive for 2D hydrodynamic flow the
“negative eddy viscosity” discussed in Section III using
the same technique as we used to derive the magnetic
eddy viscosity.

The zonally averaged force per unit volume in the x
direction is given by the Reynolds stress,

F x =
∂

∂y
ρvxvy. (B1)

We use the vorticity formulation of the equation of
motion. We suppose at t = 0 there is a blob of vor-
ticity, ζ0(x, y) = z0 cos(k · x). One could multiply the
spatial dependence by an envelope function to localize
the spatial extent, but that is unnecessary for the ef-
fect of interest. Now, consider the evolution of this
vorticity blob due to advection by an imposed shear,

v = U(y)x̂ = U0 sin(qy)x̂. We neglect both the Cori-
olis and the Lorentz force in this derivation. We have

∂ζ

∂t
= −v ·∇ζ = −U0 sin(qy)

∂ζ

∂x
. (B2)

To include the high-wavenumber cutoff discussed in Sec-
tion III, one should retain the v′ ·∇ζ term, but we neglect
it here for simplicity.

We evolve ζ for a short time increment ∆t. The vor-
ticity becomes

ζ(∆t) = z0

{
cos(k · x)

+
∆tkxU0

2

[
cos(k− · x)− cos(k+ · x)

]}
, (B3)

where k± = k±q and q = qŷ. From ζ = ∇2ψ, we obtain

ψ(∆t) = −z0
{

1

k2
cos(k · x)

+
∆tkxU0

2

[
1

k2−
cos(k− · x)− 1

k2+
cos(k+ · x)

]}
.

(B4)

Calculating v(∆t) = ẑ × ∇ψ(∆t), then constructing

vx(∆t)vy(∆t), we obtain

∆vxvy =
z20k

2
x∆t

2k4

(
1− 4k2y

k2

)
qU0 cos(qy) +O(∆t2, q3).

(B5)
We identify qU0 cos(qy) = ∂yU , as well as k2xz

2
0/k

4 =

k2xψ
2
0 ≈ v2y and v2y = v2y/2. Furthermore, we observe that

the factor (1 − 4k2y/k
2) is only positive for k2x > 3k2y,

a rather small slice of k space. This k-dependent pref-
actor does not arise in the magnetic calculation. We
collapse this factor into a k-independent constant, recog-
nizing the constant may be smaller in magnitude than α
because (1 − 4k2y/k

2) is only positive in a small fraction
of k space. Finally, as in Section II, we replace ∆t with
τcorr, the maximum time the shear can act coherently
on a structure before being decorrelated. Again, we in-
terpret our results in a statistically averaged sense. We
obtain a Reynolds stress

∆ρvxvy = γρv2yτcorr
∂U

∂y
. (B6)

This expression corresponds to a negative dynamic eddy
viscosity

µe = −γρv2y, (B7)

where γ is a positive, order-unity constant.
Because this calculation is based on the vorticity for-

mulation, a generalization to 3D is not clearly applicable.
Negative eddy viscosities have in the literature been lim-
ited to 2D or quasi-2D flow, and the quasi-2D nature of



14

flow is a consequence of rotation. In contrast, the positive
magnetic eddy viscosity is derived in 3D in Section VI
without such complications.

We remark on the relation between the wavenumber
dependence here and that found in a related Kelvin–
Orr calculation. In that calculation with an initial wave
shearing in a velocity profile U = Syx̂, the energy trans-
fer to the mean flow is found to have a factor 1−4k2y/k

2,
as in Eq. (B5) [17, 34, 47]. This wavenumber depen-
dence arose when a k-independent friction was used as

the decorrelation mechanism. When a viscosity instead
acts as the decorrelation mechanism, the length-scale de-
pendence of the viscosity modifies the the factor in the
energy transfer from 1 − 4k2y/k

2 to 1 − 6k2y/k
2. Re-

turning to the calculation here, we observe that we did
not include any explicit friction or viscosity. Instead,
we posited that decorrelation occurred due to turbu-
lent inertial motion, and we implicitly assumed it was
wavenumber-independent. Hence, we recovered the same
factor 1−4k2y/k

2 as found using a k-independent friction.
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