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We perform a priori and a posteriori analyses of the equilibrium wall model for high-speed wall-
bounded turbulent flows. The time-averaged flow from various DNS databases is used as input to the
wall model, and the accuracy of the predictions in terms of wall shear stress and wall temperature (or
heat flux for isothermal wall boundary conditions) are assessed. Two different mixing-length-based
eddy viscosity models, and various damping functions are tested in this study. Both mixing-length
models involve two adjustable parameters: (i) the Karman constant (κ), which varies in literature
from 0.37 to 0.44, and (ii) a viscous damping constant (A+ for the Van-Driest damping function).
Also, for compressible flows, multiple scalings can be used for the viscous wall-normal spacing in
the damping function. The sensitivity of the results to these model parameters are reported, and
it is found that the predictions of skin-friction and wall temperature (or heat flux) are sensitive to
the constants used, damping function scaling, and the wall model exchange location. Wall-modeled
Large-Eddy Simulation (WMLES) is performed for (i) supersonic channel flow with cold wall, and
(ii) axisymmetric supersonic boundary layer at adiabatic wall condition, to verify the a priori trends
observed with respect to the damping functions. A posteriori WMLES results are consistent with
the trends observed in the a priori analysis of DNS data, thus indicating the usefulness of the a
priori analysis. We introduce a new damping function scaling, which appears to work better than
existing scalings over a range of Mach numbers and thermal wall conditions.

I. INTRODUCTION

Many practical flows are turbulent in nature, e.g., those over cars, airplanes and space vehicles; and predicting skin-
friction drag and heat flux accurately are a crucial component of the design. The applications typically involve fluid
flow at high Reynolds numbers (and Mach numbers for space vehicles) causing the flow to be turbulent. When using
Computational Fluid Dynamics (CFD) in the design of such applications, various fidelities can be utilized depending
on the available resources. Low-fidelity Reynolds-Averaged Navier-Stokes (RANS) models involve modeling all of
the turbulence, and solving only for the time-averaged flow quantities. While computationally efficient, it suffers in
accuracy for complex flows. Higher-fidelity scale-resolving methods such as Large Eddy Simulation (LES), and Direct
Numerical Simulation (DNS) are quite accurate but are computationally very expensive, especially for practical
applications. Spalart et al. [1] estimate that an LES of an aircraft wing at flight Re (10 million based on the chord)
would require on the order of 100 billion grid points (assuming a modest 20 points per boundary layer thickness)
and 5 million time steps, and thus, wall-resolved LES of a full aircraft configuration would not be feasible for the
foreseeable future.

The wall-modeled LES approach, in which the near-wall region is modeled with RANS, while the majority of the
length scales away from the wall are resolved using LES, is a reasonable compromise between accuracy and compu-
tational cost. Wall-modeled LES can further be classified into (i) Stress-based WMLES, and (ii) hybrid RANS/LES
methods such as Improved Delayed Detached Eddy Simulation (IDDES). In the stress-based WMLES approach, the
computational grid is coarse in the wall-normal (and wall-parallel) direction, thus requiring the regular no-slip bound-
ary condition to be supplemented by a wall shear stress (and heat flux/ temperature) boundary condition. See Cabot
& Moin [2], Piomelli & Balaras [3], Larsson et al. [4] and Bose & Park [5] for overviews of stress-based WMLES.
In IDDES, the grid is very fine in the wall-normal direction but coarse in the wall-parallel direction thus requiring
the LES eddy viscosity to be replaced by a RANS eddy viscosity where the majority of the turbulence is modeled.
See Spalart [6], Deck [7], Spalart et al. [8] and Shur et al. [9] for an overview of the DES-based approach. In this
study, we focus on the stress-based WMLES approach, which is implied when we refer to WMLES in the rest of the
manuscript.
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Stress-based WMLES can be further classified into equilibrium and nonequilibrium models depending on the level
of complexity of the wall model. The equilibrium wall model neglects nonequilibrium effects such as acceleration
and pressure gradient, and works quite well for canonical wall-bounded flows such as channels and boundary layers.
The relatively simple zero-equation mixing-length model for the eddy viscosity has been widely used in WMLES of
wall-bounded turbulent flows (channel, boundary layers and Couette flow) with reasonable success. Note that the
mixing-length model involves two empirical constants for incompressible speeds, namely the von Karman constant
(κ), and the damping function constant (A+ for the Van-Driest function). For low-speed flows, the definition of
y+ = yuτ/ν in the damping function is unambiguous, whereas for high-speed flows, the wall-normal co-ordinate (y)
can be non-dimensionalized (to y+) by either using the wall properties (density and viscosity), local properties or
a combination of both. While WMLES has performed well for low-speed flows [2, 3], its application to high-speed
flows is more recent [10–13] and has been limited in terms of the range of Mach number, and thermal wall condition
simulated. Note that high-fidelity DNS/LES data itself is scarce as compared to the incompressible flow regime.

There is limited freedom to change the scalings used in the eddy viscosity model, as the compressible law of the
wall relation fixes the scaling used for the eddy viscosity in the log-layer. However, the damping function, which was
first introduced by Van-Driest [14] for low-speed flows, is purely empirical with its constant (A+) set to match the
correct intercept of the log-law. For compressible flows, multiple normalizations (y+) of the wall-normal coordinate
(y) are possible, which is the main focus of this study. This has been previously investigated in the context of k − ε
RANS model by Aupoix & Viola [15]. They determined that the semilocal scaling yields best results overall. In
the context of WMLES with an equilibrium wall model, Kawai & Larsson [10] used the wall scaling for the damping
function. Bocquet et al. [11] and Yang & Lv [16] compared the wall and semilocal scalings and found that the semilocal
scaling works best. However, both the aforementioned studies only investigated flows with cold-wall thermal boundary
conditions.

In this study, we assess the performance of the equilibrium wall model with a mixing-length type eddy-viscosity
model and different damping function scalings for the Van-Driest damping function, over a range of thermal boundary
conditions (from adiabatic to cold wall) and Mach numbers matching available DNS databases. Note that this study
does not deal with errors associated with the log-layer mismatch, and uses the fix proposed by Kawai & Larsson[10]
to minimize such errors in the a posteriori WMLES simulations. A priori analysis is performed with existing and new
damping function scalings, and the errors in predicting the wall quantities (skin friction and temperature/heat flux)
are reported at various exchange locations from which data is input to the wall model. We empirically determine a
wall-normal scaling for the Van-Driest damping function that appears to work best over a range of Mach numbers and
thermal conditions. We also examine the sensitivity of the predictions to different mixing length models, inclusion
of pressure gradient effects and turbulent Prandtl number. Finally, a posteriori WMLES are performed for two flow
conditions: (i) Mach 3 channel flow with a cold wall, and (ii) Mach 2.85 axisymmetric turbulent boundary layer with
an adiabatic wall, to test the consistency of the effect of damping function scaling from the a priori analysis.

This paper is organized as follows. The equilibrium wall model equations along with the eddy viscosity models and
damping functions are described in Section II. Results from the a priori analysis of the wall model are reported along
with sensitivity to various parameters in Section III. The a posteriori WMLES results are reported for the supersonic
channel and axisymmetric boundary layer in Section IV, and the main findings are summarized in Section V.

II. EQUILIBRIUM WALL MODEL

The equilibrium wall model equations are derived from the compressible Reynolds-Averaged Navier-Stokes equations
with the boundary layer approximation, and neglecting nonequilibrium terms such as pressure gradient, as given below:

d

dy
[(µ+ µt)

du

dy
] = 0 (1)

d

dy
[(µ+ µt)u

du

dy
+ (k + kt)

dT

dy
] = 0 (2)

Here, y is the wall-normal coordinate, u is the mean wall-parallel velocity magnitude, T is the mean temperature,
µ and k are the mean dynamic viscosity and thermal conductivity and µt and kt are the eddy viscosity and turbulent
thermal conductivity, respectively. In the above equations, y and u are defined with reference to the corresponding
wall values (i.e., y = u = 0 at the wall). More details of the equilibrium wall model can be found in Larsson et al.
[4]. The eddy viscosity can be defined as following:
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µt,JK = ρκy
√
τw/ρD (3)

µt,Pr = ρκ2y2|du/dy|D (4)

The eddy viscosity for the wall model is obtained from the mixing-length model in which the length scale is taken
to be κy, while the velocity scale is either taken to be the local friction velocity (u∗τ =

√
τw/ρ) or the length-scale

multiplied by the velocity gradient (κy ∂u∂y ) as shown in Equation 4. Here, κ is the von Karman constant taken to be

0.41 in this study, but varies in literature between 0.37 and 0.44. The sensitivity of the predictions to κ is small, as
discussed in Section III. The eddy viscosity/ conductivity is multiplied by a damping function D to ensure that µ� µt
close to the wall. Note that the expression for eddy viscosity in Equation 3 is of the same form as the Johnson-King
model [17] and so, following Cabot [18], who appears to be the first to use this model, the subscript JK is used. The
expression in Equation 4 is based on the work of Prandtl [19] and so the subscript Pr is used. The eddy conductivity
is computed from the eddy viscosity and specific heat of the gas (Cp), assuming a constant turbulent Prandtl number
(Prt) as follows:

kt =
Cpµt
Prt

(5)

In the region beyond the buffer layer, typically for y+ & 30 (log-law region), the turbulent stresses dominate over
the viscous stresses (µt � µ), and so for large y+, the damping function (D) is designed to be unity (since no damping
is necessary). Under these conditions, integrating the momentum equation (Equation 1) with respect to y reduces to:

µt
du

dy
= τw = ρwu

2
τ (6)

Substituting the JK and Pr mixing length models, and setting uτ =
√
τw/ρw, we obtain:

µt,JK
du

dy
= ρwu

2
τ =⇒ κy

du

dy
=

√
ρw
ρ
uτ (7)

µt,Pr
du

dy
= ρwu

2
τ =⇒ (κy)2|du

dy
|2 =

ρw
ρ
u2τ (8)

It is straightforward to see that Equations 7 and 8 are identical, with the Prandtl mixing length model giving
square of the equation obtained using the JK mixing length model. This is the familiar compressible law of the wall
relationship (Van-Driest [20], Bradshaw [21], Huang et al. [22]). Thus, both the mixing-length models seem to be
appropriate as they reduce to the compressible law of the wall.

We now turn our attention to the damping function (D). The most popular damping function is the one given by
Van-Driest [14] (VD). In this study, we also examine the damping function used in the popular Spalart-Allmaras [23]
(SA) RANS model which is in turn based on the work of Mellor & Herring [24], and a modified VD damping function
proposed by Piomelli et al. [25]. Note that all the damping functions are empirical in nature with constants tuned to
yield proper decay of the eddy viscosity for small y+. The damping functions are given below:

DV D = [1− exp(− y
+

A+
)]2 (9)

DSA =
µ̂3
t

(µ̂3
t + C3

v1µ
3)

(10)

DPio = [1− exp[−(
y+

A+
)3] (11)

While the Van-Driest and Piomelli et al. [25] damping functions depend on the nondimensionalized wall-normal
distance (y+), the Spalart-Allmaras damping function depends on the undamped eddy viscosity (µ̂t) and dynamic
viscosity (µ). Note that all three are empirical in nature, with corresponding empirical constants A+ and Cv1. The
main requirement of the damping function is that D ≈ 1 for y+ & 30, and D → 0 for y+ → 0, typically as y2

or y3. The constant A+ is chosen to match the intercept in the log-law region of the velocity profile and is found
to be 26 [14] for the Prandtl mixing-length model, and 17 for the Johnson-King based mixing-length model when
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using the Van-Driest damping function. The sensitivity of the results to A+ is reported in Section III. For constant
density incompressible flows, there is no ambiguity in defining y+ = yuτ/ν; however, for compressible flows, multiple
definitions are possible depending on whether we choose the local density/ viscosity or the corresponding wall values.
Note that for the SA damping function, Cv1 = 7.1 and the local viscosity is used for compressible flows.

A. Damping Function Scalings

If we define the wall friction velocity, uτ =
√
τw/ρw, and the local friction velocity as u∗τ =

√
τw/ρ, multiple

definitions of y+ used in the Van-Driest damping function are possible, with two listed below:

y+wall =
ρwuτy

µw

y+SL =
ρu∗τy

µ
=

√
ρρwuτy

µ

The wall and semilocal (SL) scalings have previously been used in the WMLES literature. For high-speed flows, the
wall scaling has been used by Kawai & Larsson [10], Bermejo-Moreno et al. [12], among others, while the semilocal
scaling has been used by Bocquet et al. [11] and more recently by Yang & Lv [16]. Bocquet et al. [11] simulated the
cold wall Mach 3 channel flow corresponding to the DNS of Coleman et al. [26] (also used in this study), and found
that the semilocal scaling gives improved predictions when compared to the wall scaling. Yang & Lv [16] studied the
cold wall supersonic Couette flow case, and found that with the wall scalings, the error in prediction of Cf can be
of the order of 100% for large Mach numbers. They however did not report the errors in the prediction of wall heat
flux. The semilocal scaling and the eddy-viscosity form used in Equation 3 can be derived from the Trettel-Larsson
transformation [27] to collapse compressibility effects (see [16]). Since the Trettel-Larsson transformation was quite
successful in collapsing the compressible velocity profiles to the corresponding incompressible ones (especially for cold
wall flows), one might expect that the semilocal scaling would be very accurate. However, our results suggest that
this may not be the case. Also, more recently, Zhang et al. [28] reported that the Trettel-Larsson transformation is
less successful than previously observed ([27, 29]) based on their DNS of hypersonic turbulent boundary layers. In the
absence of an “exact” compressible transformation, it is worth looking into other empirical scalings. In this study, we
propose additional scalings as shown below:

y+local =
ρuτy

µ

y+mixed =
(y+wall + y+SL)

2

y+mixed2 =
(y+local + y+SL)

2

y+mixedmin = min(y+mixed, y
+
SL)

y+mixedmin2 = min(y+mixed, y
+
mixed2)

The local scaling uses the local properties and uτ instead of u∗τ used in the semilocal scaling. The mixed scaling is
a simple average of the wall and semilocal scalings, while the mixed2 scaling is the simple average of the local and
semilocal scalings. The mixedmin scaling uses the minimum of the mixed and semilocal scalings, while the mixedmin2
scaling uses the minimum of the mixed and mixed2 scalings. It will be seen later that the mixed scaling works best at
adiabatic conditions, while the semilocal or mixed2 scaling works best for most of the cold wall flows considered in this
study. For adiabatic flows, T (y) < Tw, and thus y+wall < y+SL implying that y+mixed < y+SL. Similar reasoning for cold

wall flows implies that y+mixed > y+SL. Thus, the mixedmin scaling uses the minimum of the mixed and SL scalings so
that it is identical to the mixed scaling for hot walls, and to the semilocal scaling for cold walls. The mixedmin2 uses
the same rationale but instead switches to the mixed2 scaling for cold walls. Note that all the compressible scalings
obey the basic requirements of a damping function (D → 0 as y → 0, and D ≈ 1 for y+ & 30), and reduce to the
same y+ = yuτ/ν for constant density incompressible flows. It should be noted that since the damping function itself
is purely empirical and adjusted to yield the correct near-wall eddy viscosity behavior, it appears that the choice of
a suitable damping function scaling for high-speed flows must also be determined empirically.
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B. Solution of Wall-Model Equations

The wall model equations listed in Equations 1-5 are solved using information from the LES solution (for a WMLES)
or the DNS/ LES database (for a priori analysis) at a certain distance from the wall, and returns the wall shear stress
and heat flux (or wall temperature for adiabatic flows). A second-order staggered finite-difference scheme is used to
solve the coupled system of equations. For the WMLES, the quantities returned by the wall model are applied as a
boundary condition to the LES near-wall grid point after solving the coupled Ordinary Differential Equations (ODE).
In all the results reported, 41 grid points were used with the first grid point spacing of ∆y+ < 0.1. Further increase
in grid points did not significantly alter the results. The equations were solved until a maximum residual of 10−8 was
reached for both u/u∞ and T/T∞ up to a maximum of 1000 iterations. Preliminary tests were used to determine
the number of grid points, number of iterations and residual that give acceptably good grid converged results. The
wall model code was also validated with the a priori results of Bocquet et al. [11] for the cold-wall channel flows, and
excellent agreement was obtained. Further details about the wall model and implementation can be found in Kawai
& Larsson [10] and Larsson et al. [4].

Historically, in WMLES, the solution from the first grid point adjacent to the wall was used as input to the wall
model, but Kawai & Larsson [10] showed that the LES solution in the first few grid points is inherently erroneous.
Most studies have thus chosen an exchange location of ≈ 5− 10% of the boundary layer thickness (δ99) or half-width
(h) for channel flows, with at least 3 grid points between the wall the exchange location. One of the objectives of this
study is to determine a suitable exchange location for a range of flow conditions.

For the a priori analysis, DNS data is input to the wall-model equations at different distances from the wall, and
the outputs of the wall model are compared to the corresponding values from DNS. The wall skin friction (Cf ) and
heat transfer parameter (Bq) for isothermal flows are defined as:

Cf =
µdu

dy |w
1
2ρ∞u

2
∞

(12)

Bq =
−k dT

dy |w
ρwuτCpTw

(13)

The error (εQ) in any wall model output quantity (Q) is defined as:

εQ(%) = (
Qwm −QDNS

QDNS
)× 100% (14)

Here, Q is either Cf , or Bq for isothermal walls and Tw for adiabatic walls. Note that the error (εQ) is independent
of the sign convention used for any quantity (Q) such as Bq.

III. A PRIORI ANALYSIS OF DNS DATA

For the a priori analysis, publicly available turbulent DNS databases1 are used in this study as listed below:

• Incompressible channel database for Reτ ≈ 590 flow corresponding to Moser et al. [30] [http://turbulence.
ices.utexas.edu/data/MKM/chan590/], and Reτ ≈ 2000 flow corresponding to Lee & Moser [31] [http://
turbulence.ices.utexas.edu/channel2015/content/Data_2015_2000.html].

• Incompressible boundary layer database upto Reθ = 8300 corresponding to Eitel-Amor et al. [32] [ftp://ftp.
mech.kth.se/pub/pschlatt/DATA/TBL/SIM/RE8000/].

• Supersonic channel database at Mach 1.5 and 3 and cold wall conditions corresponding to the study of Coleman
et al. [26] [https://turbmodels.larc.nasa.gov/Other_DNS_Data/supersonic-channel.html], and Modesti
& Pirozzoli [29][http://newton.dima.uniroma1.it/supchan/].

• Supersonic turbulent boundary layer database from Mach 2 to 4 corresponding to the study of Pirozzoli &
Bernardini [33, 34] and Bernardini & Pirozzoli [35, 36] [http://reynolds.dma.uniroma1.it/dnsm2/stat/] at
adiabatic conditions.

1 Last accessed: January 10, 2019

http://turbulence.ices.utexas.edu/data/MKM/chan590/
http://turbulence.ices.utexas.edu/data/MKM/chan590/
http://turbulence.ices.utexas.edu/channel2015/content/Data_2015_2000.html
http://turbulence.ices.utexas.edu/channel2015/content/Data_2015_2000.html
ftp://ftp.mech.kth.se/pub/pschlatt/DATA/TBL/SIM/RE8000/
ftp://ftp.mech.kth.se/pub/pschlatt/DATA/TBL/SIM/RE8000/
https://turbmodels.larc.nasa.gov/Other_DNS_Data/supersonic-channel.html
http://newton.dima.uniroma1.it/supchan/
http://reynolds.dma.uniroma1.it/dnsm2/stat/
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• Supersonic/ hypersonic turbulent boundary layer database corresponding to the study of Zhang et al. [28]
[https://turbmodels.larc.nasa.gov/Other_DNS_Data/supersonic_hypersonic_flatplate.html] over a
range of thermal conditions.

A. Incompressible Flows

We first assess the accuracy of the wall model for incompressible flows and its sensitivity to various parameters
before considering compressible flows. Since high-quality pseudospectral DNS results are available for the turbulent
channel flow, we choose to assess the sensitivities for this flow. We will then check the findings for a lower Reynolds
number channel and a turbulent boundary layer. The temperature is assumed to be constant, and the energy equation
(Equation 2) is not solved for the results in this section.

1. Reτ ≈ 2000 turbulent channel: Sensitivity To Various Parameters

We examine the sensitivity of the wall model to the mixing-length model, damping constant (A+), von Karman con-
stant (κ), including dp/dx and different damping functions. We consider the Reτ = 1995 channel flow corresponding
to the DNS of Lee & Moser [31] for this analysis.

The sensitivity of the predictions to the empirical constant A+ used in the Van Driest damping function (Equation
9) is shown in Figure 1 for the two mixing-length models (Equations 3 and 4). The typical value of A+ used for the
JK model by Cabot [18] and Cabot & Moin [2] is 17, while it is 26 for the Prandtl model by Van Driest [14]. Although
most studies use the aforementioned values of A+ with a variation of +/- 2, we intentionally choose a broader range
of A+ to understand how the errors vary with A+. Hence, we look at the sensitivity to A+ between 10 and 25 for
the JK model, and between 20 and 30 for the Prandtl model. For the results in Figure 1 and the rest of the figures
in this manuscript, the abscissa is the wall normal distance from the wall at which velocity (and temperature for
compressible flows) was input to the wall model (i.e., exchange location). Typically in WMLES studies, an exchange
location (y/h) between 0.05 and 0.15 is used. Therefore, in this and following plots, this region should be the region
of focus. The distance from the wall is specified in outer units (bottom axis), and viscous wall units (top axis). The
error in the output quantity (Cf ) defined by Equation 14 is the ordinate of the figure. The results from Figure 1
indicate that the wall model is highly sensitive to the value of A+ for both the mixing-length models and the the
lowest error is obtained with A+ = 17 for the JK model and A+ = 26 for the Prandtl model, consistent with previous
studies. A higher value of A+, which implies a lower y+/A+ and more damping, leads to a lower value of Cf , and
vice versa. It is also evident that the value of A+ is sensitive to the mixing-length model. For both models, the error
in prediction (for the optimal value of A+) is within 3% of the DNS value until y/h ≈ 0.15. While the equilibrium
wall model equations are technically only valid in the inner layer (y/h <0.15), it can be seen that the errors are still
within 5% for these two values of A+ until y/h ≈ 0.5. The other inference is that the performance of the two mixing
length models are equivalent in spite of the fact that the Prandtl model uses a more local velocity scale (κydu/dy),
and so we will focus more on the JK model hereafter.

The effect of the von Karman constant (κ) on the predictions using the JK model and Van Driest damping function
(with A+ = 17) is shown in Figure 2(a) with κ varying between 0.38 and 0.44. It can be seen that there is some
sensitivity (≈ 5%) to the value of κ. Overall, κ = 0.41 yields the best results in spite of the fact that the value of κ
obtained from DNS data by Lee & Moser [31], and others [37] was ≈ 0.384 for channel flow at this Reynolds number.
We think that this is because the value of κ and A+ together determine the overall predictive error; and for A+ = 17,
a corresponding value of κ = 0.41 yields the best results. Since we are using the equilibrium model which neglects the
pressure gradient term (dp/dx), it is of interest to see if including this term improves the predictions. We know for
a fully developed channel flow that dp/dx = −τw/h. We impose the dp/dx from DNS to the right hand side of the
wall model equations (Equation 2). The Johnson-King model (with A+ = 17) and the Prandtl model (with A+ = 26)
are considered using κ = 0.41. The results in Figure 2(b) show that including the dp/dx term does not significantly
improve the predictions, but rather makes the predictions worse for y/h > 0.1, possibly because the zero-equation
eddy viscosity models used do not incorporate nonequilibrium effects. For y/h < 0.1, we see that the effect of dp/dx
is relatively small, indicating that the equilibrium assumption is reasonable very near the wall. Thus, henceforth even
though we report errors until y/h = 0.5, we will mainly focus on the results for y/h <= 0.1 so that the nonequilibrium
terms can be neglected in the wall model.

We compare the predictions of different mixing length models and damping functions in Figure 3. The JK model
with VD (A+ = 17) and SA damping functions, and Prandtl model with VD (A+ = 26) and Piomelli et al. [25]
damping function (A+ = 25) results are shown. Overall, all the damping functions perform well for an exchange

https://turbmodels.larc.nasa.gov/Other_DNS_Data/supersonic_hypersonic_flatplate.html
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FIG. 1. The effect of the empirical constant (A+) on the wall model predictions for Reτ ≈ 2000 channel: (a) Johnson-King
type mixing length model, (b) Prandtl mixing length model. In this and following plots, the abscissa is the exchange location
at which data was input to the wall model.

FIG. 2. The effect of (a) the von Karman constant, κ using the Johnson-King type mixing length model, and (b) including
the pressure gradient term on the wall model predictions with κ = 0.41 for both the Johnson-King (A+ = 17) and Prandtl
(A+ = 26) models, for the Reτ ≈ 2000 channel.

location (y/h) between 0.05 and 0.15 with under 3% error. However at locations closer to the wall (y/h ≈ 0.01), the
SA and Piomelli et al. [25] damping functions have an error up to 8% in magnitude.

2. Reτ ≈ 590 Channel and Reτ ≈ 2118 Boundary Layer

The results for the Reτ ≈ 2000 channel flow have shown that the JK and Prandtl models with VD or SA (for
JK) damping functions work quite well and produce an error of less than 3% when the exchange location (y/h) is
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FIG. 3. Effect of different mixing length models and damping functions on the wall model predictions for Reτ ≈ 2000 channel
with a (a) linear scale, and (b) semi-log scaled abscissa. The numbers in the legend indicate the value of A+ used in the
damping function.

between 0.05 and 0.15. We now check the performance for a lower Re channel at Reτ ≈ 590 corresponding to the
results of Moser et al. [30] and a zero pressure gradient boundary layer at Reτ ≈ 2118 corresponding to the results
of Eitel-Amor et al. [32] The same mixing length models for eddy viscosity and damping functions as Figure 3 are
used here. The results shown in Figure 4 are consistent with those for the Reτ ≈ 2000 flow. For an exchange location
between 0.05 and 0.15 (y/h for channel, and y/δ99 for the boundary layer), the error in skin friction is less than ≈ 3%
in magnitude for both the flows. Based on these results we can be fairly confident of the accuracy of the equilibrium
wall model predictions for incompressible flows with the chosen set of parameters (κ and A+).

FIG. 4. Effect of different mixing length models and damping functions on the wall model predictions for (a) Reτ = 590
channel, and (b) Reτ = 2118 turbulent boundary layer.
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B. Compressible Flows

We now perform a priori analysis for high-speed compressible turbulent flows. We consider a cold wall supersonic
channel flow, adiabatic supersonic boundary layer, and supersonic-through-hypersonic boundary layer over a range of
thermal boundary conditions. The time-averaged velocity and temperature at different exchange locations are input
to the wall model, and the error in the skin friction (Cf ) and heat-transfer parameter (Bq) or wall temperature (Tw)
are analyzed. Since we have already checked the sensitivity of the model to A+, κ, dp/dx and mixing length model
for incompressible flows, we will mainly focus on the effect of the Van Driest damping function scaling for the JK
mixing-length model. We also report the results using the SA damping function since it is widely used for high-speed
RANS. For a subset of cases, we will also examine the sensitivity to the mixing-length model and turbulent Prandtl
number (Prt).

For the results that follow, the top horizontal axis of the figure is the viscous wall scaling y+ = yuτ/νw, with

uτ =
√
τw/ρw. The standard parameters from incompressible flow is also used here, namely κ = 0.41, A+ = 17 (for

JK model), and dp/dx is neglected for channel flows. Also, Prt = 0.9 for all the results reported, even though the
DNS at times predicts a somewhat different value. The viscosity-temperature relationship is chosen to match the
DNS simulation using either a power law or Sutherland’s Law. Our tests indicated that having a different viscosity-
temperature relationship in the wall model and DNS can incur significant errors (not shown).

1. Supersonic Channel Flow at cold wall conditions

We first consider the cold wall supersonic channel flow corresponding to the DNS of Coleman et al. [26]. The
Mach number (Mb) based on the bulk velocity and wall temperature is 1.5 and 3.0, while the Reynolds number based
on the bulk density and velocity, and wall viscosity (Re = ρbubh/µw) is 3000 and 4880, respectively. The centerline
temperature (Tc/Tw) is 1.378 and 2.49 for Mach 1.5 and Mach 3 flows, respectively. The effect of the damping function
scalings discussed in Section II A is shown in Figure 5 for the JK mixing-length model. The errors in skin friction
(Cf ) and heat-transfer parameter (Bq) are shown for Mach 1.5 and 3.0. For the Mach 1.5 case, we see that overall,
the local scaling works best followed by the mixed2 and semilocal scalings. For the Mach 3 flow, the mixed2 scaling
works best for both Cf and Bq, followed by the semilocal scaling. The SA damping function also works well for
these flows, and behaves similar to the semilocal scaling at larger exchange locations. The wall scaling yields the most
erroneous results among all the scalings for both the flows, with semilocal giving improved predictions, consistent with
previous findings of Bocquet et al. [11] and Yang & Lv [16]. The errors for the two flows are consistent with the values
previously reported by Bocquet et al. [11], who used a Prandtl mixing length model instead. Note that the Mach 3
flow has a higher Bq and a colder wall compared to Mach 1.5. Thus, for strongly cooled walls, the mixed2 scaling
appears to work best. One can observe a monotonic trend in the errors as we go from the wall, mixed, semilocal,
mixed2 and local scalings; with the mixed, mixed2 and semilocal scalings lying between the wall and local scalings.
For cold wall flows, y+wall > y+SL, and so the wall scaling implies lesser damping which yields an overprediction in Cf .
This is consistent with the behavior observed in the incompressible channel in Figure 1 where an overprediction in
Cf was observed for smaller values of A+ (or larger values of y+/A+). We see that using an incorrect scaling for
the damping function (wall scaling for cold wall flows) can results in significant error in the predictions (up to 100%)
which was also shown by Yang & Lv [16] for a supersonic Couette flow. Also, the mixedmin/ mixedmin2 scaling lies
right on top of the semilocal/ mixed2 scalings, which is expected for cold-wall cases. We also see that the errors are
generally lower at y/h ≈ 0.05, compared to larger values of y/h.

We also consider the cold-wall supersonic channel flow corresponding to the DNS of Modesti & Pirozzoli [29] at
Mb = 1.5 and Reb = 17000, with identical definitions of the two bulk parameters as before. This case has a significantly
higher Reynolds number compared to the Coleman et al. [26] data. The errors in Cf and Bq are shown in Figure 6
(a) and (b), respectively. The results are qualitatively similar to those in Figure 5 with the wall scaling overpredicting
by up to 25% in both Cf and Bq, and the semilocal, mixed2 and local scalings being least erroneous overall. The
results also indicate that the errors are lower in magnitude at higher Reynolds numbers compared to the Mach 1.5
results in Figure 5 (a,b), consistent with the analysis of Yang & Lv [16] for supersonic Couette flow.

2. Supersonic Turbulent Boundary Layer at adiabatic conditions

We now consider the adiabatic supersonic turbulent boundary layer corresponding to the study of Pirozzoli &
Bernardini [33, 34] and Bernardini & Pirozzoli [35, 36]. The freestream Mach numbers are 2 and 4, and the corre-
sponding Reτ = uτδ99/νw are 1113 and 398, respectively. The errors in Cf and Tw are shown in Figure 7. As observed
for the cold-wall flows, we still see a consistent trend in the Cf prediction as we go from the wall, mixed, semilocal,
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FIG. 5. The effect of damping function scalings is shown for the wall model using the Johnson-King based mixing length model
for (a,b) Mach 1.5 and (c,d) Mach 3 cold wall channel flows corresponding to the DNS of Coleman et al. [26]. Legend: wall,

mixed, semilocal, ·· mixed2, local, SA, © mixedmin and � mixedmin2.

mixed2 and local scalings. For adiabatic wall flows, y+wall < y+SL, and so the wall scaling implies more damping which
yields an underprediction in Cf , while the SL scaling overpredicts Cf . In general, the errors are lower for adiabatic
walls when compared to cold walls. We see that the mixed scaling best predicts the Cf , to within 3% error, while the
SA and semilocal damping overpredict the Cf by 5-10% at y/δ = 0.1. The error of the wall and semilocal scalings for
adiabatic flows appears to increase with Mach number, as observed between Mach 2 and 4 (and Mach 3 flow, which is
not shown here). In terms of the wall temperature predictions, interestingly, the different damping functions have a
negligible effect, with all of them predicting nearly identical wall temperature values. The mixedmin and mixedmin2
scalings collapse to the mixed scaling for adiabatic flow, which is most accurate for this regime, compared to the other
damping function scalings.
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FIG. 6. The effect of damping function scalings is shown for the wall model using the Johnson-King based mixing length model
for Mach 1.5 cold wall channel flow for (a) skin friction, and (b) wall heat flux, corresponding to the DNS of Modesti & Pirozzoli
[29]. Legend: wall, mixed, semilocal, ·· mixed2, local, SA, © mixedmin and � mixedmin2.

3. Hypersonic Turbulent Boundary Layer over a range of thermal conditions

In this section, the benchmark is the recent turbulent boundary-layer database of Zhang et al. [28], which covers
Mach numbers between 2.5 and 14, and wall-temperature conditions from cold through adiabatic conditions. Figure
8(a,b) show the predictions for a Mach 2.5 adiabatic turbulent boundary layer at Reτ = 510. Generally the findings
are similar to those in Section III B 2 in that the mixed (and mixedmin/mixedmin2) scaling give the best prediction
overall, with under 2% error for y/δ99 < 0.1. The wall scaling too performs well under these conditions. Again,
similar to previous observations, the wall-temperature predictions by the different scalings are nearly identical for all
the damping function scalings. Figures 8(c,d) show the predictions of errors in Cf and Bq for a Mach 5.86 boundary
layer, with Reτ = 453 and Tw/Tad = 0.76, where Tad is the adiabatic recovery temperature. For this case, the wall
scaling works best in terms of Cf but is more erroneous for Bq. The semilocal, mixed2, local and SA scalings have
a significant error in Cf but a lower error in Bq. Overall, the mixed scaling works best in terms of both Cf and Bq,
and the mixedmin and mixedmin2 scalings reduce to the mixed scaling for this flow. But overall, the best predictions
have larger errors (≈ 10%) compared to the previous (lower Mach number) cases.

In Figure 9, the errors in Cf and Bq are shown for Mach 7.86 and Mach 13.68 flows, with a corresponding Reτ =
480 and 646, and Tw/Tad = 0.48 and 0.18. We have so far seen that the wall scaling overpredicted Cf and Bq for
cold-wall flows while it underpredicted for adiabatic conditions; thus the errors decrease from cold to adiabatic wall,
with the opposite trend (increase in error) for the semilocal scaling. Thus, conceivably there should be a wall condition
(Tw/Tad) where the semilocal and wall scalings give identical results. It so happens that this occurs for the Mach 7.86
flow for Tw/Tad = 0.48, with all the scalings producing nearly identical predictions. However, at y/δ = 0.1, there is
significant error of ≈ 20% in Cf . Also, at this condition, the mixedmin/ mixedmin2 scalings neither exactly match the
mixed or semilocal/ mixed2 scalings, but have slightly lower error overall. This is not unexpected, as the mixedmin/
mixedmin2 scalings were designed to switch between the mixed and semilocal scaling for adiabatic and cold walls.
For the Mach 13.68 flow with a cold wall, the results are consistent with previously observed trends for the channel
flow of Coleman et al. (Section III B 1). The mixed2 scaling has the least error in Cf overall, and the semilocal and
SA scalings have the lowest error in Bq. The mixedmin/mixedmin2 scaling matches the semilocal/mixed2 scaling for
this condition.



12

FIG. 7. The effect of damping function scalings is shown for the wall model using the Johnson-King based mixing length model
for (a,b) Mach 2 and (c,d) Mach 4 boundary layer at adiabatic conditions. Legend: wall, mixed, semilocal, ··
mixed2, local, SA, © mixedmin and � mixedmin2.

4. Effect of Mixing-length Model and Turbulent Prandtl Number

Figure 10 shows the errors in wall quantities, revealing the effect of mixing length model for (a,b) the cold wall
Mach 3 channel discussed in Section III B 1 and (c,d) the adiabatic Mach 4 boundary layer discussed in Section III B 2.
The Johnson-King based and Prandtl mixing-length models are used. We show results corresponding to the wall and
semilocal scalings for the two mixing length models. Note that the damping function is the same for both, with
A+ = 17 and 26 for the JK and Pr models respectively based on the previously observed results for incompressible
flow (Section III A 1). Similar to observations from incompressible results, we see that the effect of the mixing length
model is small for the different flows and scalings shown in the figure. Thus, there appears to be no compelling reason
to use one model over another, provided the appropriate value for A+ is used for the damping function.

Figure 11 shows the effect of the turbulent Prandtl number (Prt) on the wall model errors for (a,b) the Mach 3
cold-wall channel and (c,d) the Mach 4 adiabatic boundary layer. The turbulent Prandtl number is varied between
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FIG. 8. The effect of damping function scalings is shown for the wall model using the Johnson-King based mixing length model
for an (a,b) adiabatic Mach 2.5 and (c,d) Mach 5.86, Tw/Tad = 0.76 boundary layer. Legend: wall, mixed, semilocal,
·· mixed2, local, SA, © mixedmin and � mixedmin2.

0.6 and 2.0. For the channel flow, the influence of Prt on the Cf errors appear to be small, but is significant for the
errors in Bq with up to 15% variation. For the adiabatic boundary layer flow, the effect of Prt on Cf is small until
y/δ = 0.05 and significant (up to 20%) beyond that. The turbulent Prandtl number also has a significant effect on the
wall temperature prediction for adiabatic flows. Although a large variation in Prt was assessed here, typical values
of Prt are between 0.8 and 1.0. Thus, over this range, the effect of Prt may be less significant (under ≈ 5%).

5. Quantitative Summary of the A Priori analysis of Damping Function Scaling

We now summarize the results for the high-speed flows considered so far for the different damping function scalings
in Table I. The different cases are named based on the authors of the corresponding reference paper. The accuracy of
the results in this table is dependent on the accuracy of the corresponding DNS, which we assume to be the “truth.”
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FIG. 9. The effect of damping function scalings is shown for the wall model using the Johnson-King based mixing length model
for a (a,b) Mach 7.86, Tw/Tad = 0.48 and (c,d) Mach 13.68, Tw/Tad = 0.18 boundary layer. Legend: wall, mixed,
semilocal, ·· mixed2, local, SA, © mixedmin and � mixedmin2.

The turbulent Prandtl number (Prt) in the DNS also influences the results, since we have used a value of 0.9 for all the
flows in this study. We estimate that the errors due to Prt should be small (< 2%), based on the reported values of
Prt in some of the DNS studies. The value of Tw/Tad reported for the channel flows for comparison with the boundary
layer flows is only approximate, and computed based on the centerline temperature [1 + 0.5r(γ−1)(ub/

√
γRTc)

2 with
r = 0.89]. Thus, the value of Tw/Tad for internal (channel) and external (boundary layer) flows may not be equivalent.

We report the errors (εQ%) in Cf and Bq/ Tw at y/h or y/δ of 5% and 10%, which are the typical exchange
locations in WMLES studies. We report the results for the wall, semilocal, local, mixedmin and mixedmin2 scalings
for the Van Driest damping function, and the Spalart Allmaras (SA) damping function. The mixed/mixed2 scaling
errors are approximately the average of the wall/local and semilocal damping scaling errors as can be observed in
Figures 5-9, and so are not reported here. The error values are colored in red, blue and green for error magnitudes
> 10%, 5 − 10% and <= 5%, respectively. Our main focus will be on the mixedmin and mixedmin2 scalings, which
reduce to the mixed scaling for hot-wall flows, and the semilocal/mixed2 scaling for cold-wall flows.
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FIG. 10. The effect of mixing length model for (a,b) the cold wall Mach 3 channel flow and (c,d) the adiabatic Mach 4 boundary
layer. Legend: JK wall, Prandtl wall, JK semilocal, Prandtl semilocal.

For the cold-wall channel flows corresponding to the DNS of Coleman et al. [26] (CKM) and Modesti & Pirozzoli
[29] (MP), we see that at an exchange location of 0.05, both the mixedmin and mixedmin2 give errors under 5%,
but at an exchange location of 0.1, the mixedmin2 scaling gives significantly improved predictions. The SA damping
function also gives excellent results for cold-wall channel flows, with under 5% error. The wall and mixed scalings
give large errors (up to 83%) for these cold wall flows.

For the adiabatic boundary-layer flows corresponding to the DNS of Pirozzoli & Bernardini [33, 34], Bernardini
& Pirozzoli [35, 36] (PB) and the Zhang et al. [28] (ZDC) we see that the mixedmin and mixedmin2 scalings give
the best predictions overall, with under 5% in both Cf and Tw, at both exchange locations. Note that both these
scalings reduce to the mixed scaling at this condition. The semilocal and SA scalings generally have higher errors,
which increase from 3-4% for Mach 2 to 8-10% for Mach 4. Presumably, based on this trend, the errors would be even
higher for hypersonic flows (M∞ > 5).

For the Mach 5.86 boundary layer with Tw/Tad = 0.25, and the Mach 13.86 boundary layer with Tw/Tad = 0.18
corresponding to Zhang et al. [28], the behavior is generally consistent with the cold-wall channel flows, with the
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FIG. 11. The effect of turbulent Prandtl number is shown for the wall model using the Johnson-King based mixing length
model for (a,b) the cold wall Mach 3 channel flow and (c,d) the adiabatic Mach 4 boundary layer.

mixedmin2 scaling giving the lowest errors overall at both exchange locations. However, we see that the errors in Bq
are slightly higher (5-11%) for both the mixedmin and mixedmin2 scalings, which reduce to the semilocal and mixed2
scalings, respectively. The performance of the SA damping function is similar to the semilocal scaling for these flows,
with the wall scaling having large errors of up to 62%.

The Mach 5.86 boundary layer with Tw/Tad = 0.76 and the Mach 7.86 boundary layer with Tw/Tad = 0.48
corresponding to the DNS of Zhang et al. [28] overall have the largest errors for both the mixedmin and mixedmin2
scalings. For the Mach 5.86 case, both the mixedmin and mixedmin2 scalings reduce to the mixed scaling, with an
error of up to 12%. For this case, the wall scaling has the minimum error in terms of Cf but has a large error in
terms of Bq. For the Mach 7.86 flow, we see that all the scalings have similar errors, between 10-20% in terms of Cf ,
but good predictions for Bq with < 5% error.

Overall, for all the flows, it appears that the mixedmin2 scaling provides the best predictions for both adiabatic and
cold wall flows with under 5% error in terms of both Cf and Bq or Tw. For intermediate thermal boundary conditions
(Tw/Tad = 0.48, 0.76), we see that the errors are typically larger, at ≈ 10%, at an exchange location of 0.05, and
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up to 19% at an exchange location of 0.1. We need additional data at these intermediate conditions to attempt to
improve the scalings. For the mixedmin scaling, which reduces to the semilocal scaling for cold-wall flows, the errors
are generally lower at an exchange location of 0.05 compared to 0.1, but for the mixedmin2 scaling which reduces to
the mixed2 scaling, the errors are comparable at both exchange locations.

TABLE I. Errors in prediction of wall quantities (Q) at an exchange location (y/h or y/δ) of 0.05, 0.1 are listed using the JK
mixing-length model. The errors are highlighted in red, blue and green for error magnitudes > 10%, 5 − 10% and <= 5%,
respectively.

Case M Reτ
Tw

Tad
Q wall SL local SA mixedmin mixedmin2

CKM [26] 1.5 222 0.46 Cf 7.9, 26.2 2.5, 8.6 0.6, 2.5 -4.3, 1.3 2.5, 8.6 1.5, 5.6
Bq 2.6, 12.9 0.4, 5.2 -0.3, 2.5 -2.2, 2.4 0.4, 5.2 0.1, 3.8

3.0 451 0.18 Cf 39.2, 83.2 3.9, 10.2 -3.9, -8.6 -4.8, 2.4 3.9, 10.2 0.1, 1.1
Bq 14.2, 34.4 0.1, 5.6 -3.1, -3.3 -3.4, 2.4 0.1, 5.6 -1.6, 1.2

MP [29] 1.5 1011 0.46 Cf 24.4, 21.7 2.7, 0.9 -5.2, -7.4 1.9, 1.2 2.7, 0.9 -1.0, -3.0
Bq 12.6, 12.0 2.7, 2.3 -1.2, -1.8 3.1, 3.3 2.7, 2.3 0.9, 0.4

PB [33–36] 2.0 1113 1.0 Cf -3.2, -2.9 3.2, 3.3 5.7, 5.2 4.5, 4.4 0.2, 0.3 0.2, 0.3
Tw -1.7, -1.8 -1.7, -1.8 -1.7, -1.8 -1.9, -1.9 -1.7, -1.8 -1.7, -1.8

3.0 502 1.0 Cf -4.7, -5.8 5.8, 7.1 9.9, 11.7 5.7, 8.4 0.7, 1.1 0.7, 1.1
Tw -3.4, -3.5 -3.4, -3.5 -3.4, -3.5 -3.6, -3.7 -3.4, -3.5 -3.4, -3.5

4.0 398 1.0 Cf -5.3, -6.9 6.3, 9.7 11.0, 15.7 5.2, 11.0 0.6, 2.1 0.6, 2.1
Tw -4.0, -4.1 -4.0, -4.0 -4.0, -4.0 -4.2, -4.3 -4.0, -4.1 -4.0, -4.1

ZDC [28] 2.5 510 1.0 Cf -2.2, -2.6 5.8, 7.2 9.2, 11.1 5.5, 8.6 1.9, 2.5 1.9, 2.5
Tw -3.0, -4.4 -3.0, -4.4 -3.0, -4.4 -3.0, -4.4 -3.0, -4.4 -3.0, -4.4

5.86 450 0.25 Cf 33.3, 59.5 2.3, 9.5 -4.2, -3.1 -5.8, 6.7 2.3, 9.5 -1.0, 3.2
Bq 6.8, 18.9 -6.2, -1.1 -9.1, -7.0 -9.7, -2.3 -6.2, -1.2 -7.6, -4.1

5.86 453 0.76 Cf 2.7, 1.3 14.0, 17.1 18.6, 22.5 13.6, 18.3 8.5, 10.1 8.5, 10.1
Bq -14.0, -12.9 -8.9, -6.5 -7.0, -4.4 -10.6, -7.5 -11.3, -9.4 -11.3, -9.4

7.86 480 0.48 Cf 16.2, 20.1 13.7, 20.7 13.0, 21.0 11.9, 21.6 12.9, 18.6 12.3, 17.7
Bq -1.7, 2.0 -2.9, 2.4 -3.2, 2.1 -3.9, 2.1 -3.2, 1.2 -3.6, 0.1

13.86 646 0.18 Cf 43.2, 61.5 0.2, 8.6 -11.1, -8.0 -6.1, 7.8 0.2, 8.6 -5.0, 0.3
Bq 9.3, 18.2 -8.4, -2.6 -13.7, -10.4 -11.1, -2.9 -8.4, -2.6 -11.0, -6.5

IV. A POSTERIORI WMLES

So far we have performed a priori analysis of wall-model prediction capabilities using the time-averaged DNS
databases to identify the most suitable damping function scaling for compressible flows. We now perform a posteriori
WMLES for a cold wall Mach 3 channel flow and an axisymmetric Mach 2.85 boundary layer. The Johnson-King
mixing length model, and the Van Driest damping function with different scalings are used in the wall model. The
Charles solver2 is used in the simulations. This code solves the compressible Navier-Stokes equations on unstructured
grids by using a cell-centered finite-volume methodology. The solver is second-order accurate in space for unstructured
grids. An explicit third-order Runge-Kutta scheme is used for time advancement. The constant coefficient Vreman
model was used to model the subgrid terms. The solver uses an ENO-based reconstruction scheme with an HLLC
flux for shock capturing. Further details about the numerics can be found in Khaligi et al. [38]. The solver has been
applied to a wide range of problems such as shock/turbulence interaction [12], supersonic jets [39] and WMLES of
turbulent separated flows [40–45].

2 Cascade Technologies, Webpage: http://www.cascadetechnologies.com [Last accessed: January 10, 2018]

http://www.cascadetechnologies.com


18

A. Supersonic Cold-Wall Channel Flow

We perform WMLES for a supersonic cold wall channel flow corresponding to the DNS of Coleman et al. [26]. The
bulk Mach number (Mb = ub/cw), and the bulk Reynolds number (Reb = ρbubh/µw) are 3 and 4880, respectively,
while the friction Reynolds number (Reτ = uτh/νw) is 451. Isothermal conditions are imposed at the wall with
Tw/Tb = 0.4186. The domain size (Lx/h, Ly/h, Lz/h) used is (16, 2, 6), with uniform spacings in all three directions
using 16 points per channel half width (h). The corresponding grid spacings in viscous wall units are ∆x+ = ∆y+ =
∆z+ = 28. Periodic boundary conditions were imposed in the streamwise and spanwise directions, while the shear
stress and heat flux from the wall model were imposed at the top and bottom walls. The exchange location (EL) at
which data was input to the wall model was y/h = 0.1 (y+ ≈ 45) which corresponds to the second grid point from the
wall to minimize numerical/subgrid scale errors based on the reasoning of Kawai & Larsson [10]. The simulation was
driven by a source term in the x-momentum and energy equations to maintain constant bulk velocity and temperature,
respectively. The source terms used were identical to previous WMLES of Bocquet et al. [11], and so the details are
not repeated here.

Table II shows the errors in Cf and Bq for the different damping function scalings. Note that the mixed-
min/mixedmin2 scaling results are identical to semilocal/mixed2 results for this flow condition. Overall, it can
be seen that the results are qualitatively similar to the a priori analysis results with the mixedmin2/mixed2 scalings
yielding the best predictions with under 2% error at an exchange location of y/h = 0.1. Note that the a priori and
a posteriori results are not quantitatively identical, due to other errors in the WMLES as also observed by Bocquet
et al. [11]. However, our results are closer to the a priori results compared to Bocquet et al. [11], since the exchange
location is further away from the wall. We also performed additional simulations for the wall and semilocal scalings
using a finer grid, with twice the resolution in each direction, and the results did not vary significantly.

TABLE II. A Priori and A Posteriori errors (εQ%) in Cf , Bq for the Mach 3 cold-wall channel flow.

Case y/h|EL wall mixed mixedmin, mixedmin2,
semilocal mixed2

A Priori 0.1 83.2, 34.4 51.0, 22.6 10.2, 5.6 0.7, 1.2

A Posteriori 0.1 68.6, 29.1 43.4, 19.6 9.3, 5.3 0.9, 1.4

Figure 12 shows the variation of the time-averaged velocity, temperature and total turbulent shear stress (modeled
plus resolved) with the wall-normal coordinate (y), and velocity in inner units, for the different damping function
scalings used, and is compared with the DNS results. Since we are imposing the bulk velocity and temperature in the
simulation, the velocity and temperature when scaled with the bulk quantities are nearly identical for all the damping
function scalings, and match well with DNS. Errors up to 5% in the velocity and temperature are expected based
on the corresponding errors in the wall quantities from the a priori analysis. The turbulent shear stress u′v′ is best
predicted by the mixedmin2/mixed2 scalings. Likewise, when plotted in inner units (u+ = u/uτ ), the semilocal and
mixed2 scalings agree well with DNS, while the mixed and wall scalings show a large error due to the erroneous Cf
predicted. Overall, the mixedmin2 scaling yields the best predictions.

B. Axisymmetric Supersonic Boundary Layer at Adiabatic conditions

We next simulate an axisymmetric supersonic boundary layer interacting with a compression corner corresponding
to the experimental conditions of Dunagan et al. [46]. The freestream Mach number (M∞) is 2.85, and the freestream
unit Reynolds number (Re = ρ∞u∞/µ∞) is 18 million/m. This corresponds to an Reθ = ρ∞u∞θ/µ∞ ≈ 12000
at a station 4.5 cm upstream of the compression corner. We simulate a portion of the experimental domain with
an azimuthal extent of 30◦. The inflow of the computational domain is 30 cm upstream of the compression corner
where the boundary layer thickness δin ≈ 0.8 cm. The grid contained about 22 points per δin in the streamwise
and wall-normal directions, and 50 points per δin in the spanwise direction, with a total grid count of 2 million.
The corresponding grid spacings in viscous wall units are ∆x+ = ∆y+w = 50 and ∆z+ = 20 at 4.5 cm upstream of
the compression corner. The mean velocity, temperature and turbulent stresses at the inflow were specified using
SA-RANS, and a synthetic inflow-turbulence generator based on the method of Shur et al. [47] was used to generate
fluctuations at the inflow plane. More details about the computational setup can be found in Iyer & Malik [45]. The
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FIG. 12. The variation of (a) time-averaged velocity (u/ub), (b) temperature (T/Tb), (c) turbulent shear stress (u′v′/u2
b) and

(d) velocity in inner units (u+) for different damping function scalings is shown for the Mach 3 channel flow. Legend: wall,
mixed, semilocal/mixedmin, ·· mixed2/mixedmin2, and � DNS of Coleman et al. [26].

WMLES results were relatively insensitive to the grid resolution in the attached portion of the domain, and to an
increase in the azimuthal domain size to 90◦ [45]. Hence, we will only discuss the results for the coarse grid here.

The a priori and a posteriori errors at 25 cm from the inflow plane (x/δin ≈ 31) are reported in Table III for the
wall, mixed and semilocal scalings, and are consistent with previous adiabatic results in Table I. The a priori analysis
was performed using the SA-RANS mean flow data. Note that the mixed2 scaling result is worse than semilocal and
so is not shown, and the mixed and mixedmin scalings are identical to the mixedmin2 scaling under this condition.
The mixedmin2 scaling gives the best results overall, although the errors in the wall and semilocal scalings are small
at this M∞ and Reθ. It is interesting that although the mean flow specified was from SA-RANS, the a priori analysis
did not show any bias towards the semilocal scaling which was closest to the SA damping function, as observed in
the previous section. The variation of Cf upstream of the compression corner is shown in Figure 13. The inflow
plane is located 30 cm upstream of the compression corner, and the inflow boundary layer thickness (δ99) was 0.8 cm.
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Overall, we see that the mixedmin2 scaling agrees best with the SA-RANS result although the errors in the other
scalings are small. A transient region associated with the inflow turbulence generation can be observed in Figure 13
until x/δin ≈ 20, indicated by a drop in Cf .

TABLE III. A Priori and A Posteriori errors in Cf and Tw for Mach 2.85 adiabatic axisymmetric boundary-layer flow.

Case y/δ|EL wall semilocal mixedmin2,
mixedmin,

mixed

A Priori 0.08 -5.6, 0.03 3.6, 0.03 -0.74, 0.03

A Posteriori 0.08 -2.2, -0.18 4.3, 0.22 1.9, -0.17

FIG. 13. Variation of Cf in the zero pressure gradient region upstream of the compression corner for the different damping
function scalings. Legend: wall, ·· mixed/mixedmin/mixedmin2, semilocal, and B SA-RANS.

Figure 14 shows the wall normal variation of u/u∞, u′v′/u2∞ and velocity in inner units (u+) at x =-4.5 cm, and
ρ/ρ∞ at x =-5.03 cm. These were the locations at which experimental data were available. Similar to the results for
the channel flow, we see that when the quantities are scaled with the outer units (freestream values), the velocity and
density profiles are nearly identical for all the scalings. Some differences show up in the turbulent shear stress, which
typically scales in inner units (uτ ). Also, in the u′v′ profiles it can be seen that the results are erroneous very near the
wall, due to the coarse wall-normal resolution (∆y+w = 50) used. The velocity variation in the inner units shows that
the mixedmin2 scaling is closest to the SA-RANS. Overall, the agreement with experiment is good, but the results
are closer to the SA-RANS results since this was used to provide the mean flow for the inflow turbulence generator.

V. CONCLUSIONS

We analyzed the predictive ability of an equilibrium wall model for high-speed wall-bounded turbulent flows using
a priori and a posteriori analyses. For the a priori analysis, the time-averaged flow parameters from various DNS
databases were used as input to the wall model to assess the accuracy of the outputs with respect to the values
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FIG. 14. The variation of time-averaged (a) velocity (u/u∞), (b) density (ρ/ρ∞), (c) turbulent shear stress (u′v′/u2
∞) and

(d) velocity in inner units (u+) is shown for different damping function scalings for the Mach 2.85 boundary layer flow at
x/δin ≈ 31. Legend: wall, ·· mixed/ mixedmin/ mixedmin2, semilocal, B SA-RANS and � Experiments of Dunagan
et al. [46].

obtained from DNS. Two mixing-length models and multiple damping function scalings for the Van Driest damping
function were studied. For the a priori analysis, we first looked at incompressible flows to assess the sensitivity of the
wall model to various parameters, such as the mixing-length model used, Karman constant (κ), empirical constant
in the damping function (A+), and inclusion of the pressure gradient for channel flows. The results confirmed that
the values used in most studies, with κ = 0.41, A+ = 26 for the Prandtl mixing length model and A+ = 17 for the
Johnson-King based zero-equation model were optimal. The predictions of both the mixing-length models were of
comparable accuracy. We also looked at multiple damping functions, which include the Van Driest, Spalart-Allmaras-
based, and a modified Van Driest type function; again the performance of all were of comparable accuracy. The effect
of including the pressure gradient term for channel flows was small when the exchange location was less than 10% of
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the channel half width. Overall, good predictive accuracy was observed for incompressible flows with under 5% error
(and even lesser depending on the exchange location) in predicting Cf .

We then assessed the predictive ability for high-speed compressible flows for thermal boundary conditions ranging
from cold through adiabatic walls. The optimal values of κ and A+ for incompressible flows was used to be consistent.
Multiple damping function scalings for the Van Driest damping function was studied which include the wall, mixed,
semilocal, mixed2, local, mixedmin and mixedmin2 scalings. All these damping function scalings conform to the basic
requirement of the damping function (D → 0 as y → 0, and D ≈ 1 for y+ & 30), and reduce to the incompressible
scaling at low speeds. Note that one could instead fix the damping function scaling, and vary the A+ depending on the
flow conditions to obtain accurate results. However, this would make the values specific to flow conditions. We instead
prefer to use the incompressible values of the empirical constants and come up with a general wall-normal scaling for
the damping function that would yield best results irrespective of the flow conditions. The wall and semilocal scalings
have been used in previous WMLES studies, with the semilocal scaling yielding better predictions for cold wall flows.
We proposed newer damping scalings such as mixed and mixed2, whose predictions lie between the semilocal and
either wall or local scalings, respectively. Depending on the thermal boundary condition, y+wall would be higher (cold

walls) or lower (hot walls) than y+local and y+SL. A higher value of y+wall implies lower damping, and correspondingly
an overprediction in Cf . Thus, the wall scaling overpredicted Cf for cold wall flows and underpredicted Cf for
adiabatic flows, with the opposite trend for the semilocal/local scalings. The mixed, mixed2 scalings were motivated
by empirical observations to reduce errors in the prediction of wall quantities. It was observed that the mixed scaling
gave the best predictions for adiabatic conditions in terms of both Cf and Tw with under 5% error in both. Overall,
the mixed2 scaling gave the best predictions in terms of both Cf and Bq for cold wall flows with under 5% error in
both. The semilocal scalings also gave acceptable predictions for cold wall flows, although the errors were higher at
farther exchange locations. The mixedmin/mixedmin2 scalings were designed to automatically switch to the mixed
scaling for hot walls, and semilocal/mixed2 scalings for cold walls. For the boundary layer flows with intermediate
thermal wall conditions, with Tw/Tad = 0.48 and 0.76, the wall model errors were generally higher (10-18%) when
compared to cold wall (Tw/Tad < 0.3) and adiabatic cases. Note that multiple DNS databases were available and used
for the analysis at cold wall and adiabatic condtions, thus providing a higher confidence in the inferences. However,
for the intermediate wall-temperature boundary-layer cases, only a single DNS database was available, and so these
need to be verified with other studies. We also looked at sensitivity to the mixing length model, and found that
similar to incompressible flows, both the mixing length models used were of comparable accuracy. The sensitivity to
the turbulent Prandtl number (Prt) indicated that it is around 5% in terms of Cf and Bq or Tw for values ranging
between 0.8 and 1.0. Overall, a value of 0.9 seemed to be a reasonable value to use.

A posteriori WMLES were performed for a Mach 3 channel flow with a cold wall, and a Mach 2.85 axisymmetric
boundary layer at adiabatic conditions, and the results obtained using different scalings for the Van Driest damping
function were qualitatively consistent with the a priori analysis performed using DNS databases. The mixedmin2
scaling gave best predictions for both flows in terms of wall quantities (Cf , Bq or Tw), and in terms of the wall
normal variation of the time-averaged velocity (in terms of both inner and outer scalings), temperature (or density)
and stresses. Some small quantitative differences were observed between the a priori and a posteriori results owing
to a posteriori errors such as discretization and subgrid-scale modelling errors, among others.

Overall, based on the analysis over a range of thermal conditions and Mach numbers, we recommend the Van Driest
damping function with the mixedmin2 scaling for compressible flows, and an exchange location close to 10% of the
boundary layer thickness (δ99) or channel half width (h). The mixedmin2 scaling for the Van-Driest damping function
gave consistently lower errors compared to other scalings, typically less than 5% in Cf and Bq or Tw for most of the
flows considered in this study. While our focus in this study was on WMLES, the mixedmin2 scaling should be equally
applicable to RANS models which use a Van-Driest-type damping function such as the Baldwin-Lomax model [48].
The mixedmin2 scaling was arrived at based on empirical observations in this study, and therefore is by no means a
perfect scaling. However, we hope that the trends observed in this study for different scalings would lead to a more
theoretically rigourous and accurate scaling in future.
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