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Under statically-stable conditions in wall-bounded flows, turbulence is generated by shear and
dissipated by buoyancy and viscosity. Most studies have focused on the steady-state balance of this
budget, but the time-evolution of the turbulence when the stabilizing buoyancy flux is first imposed
is as important in many geophysical applications. In this letter, we utilize a new paradigm on the
critical role of shear production damping by buoyancy to develop a quantitative model for the rate of
decay of turbulent kinetic energy (TKE), at early and intermediate times, after buoyancy is abruptly
imposed on a steady neutrally-stratified Ekman boundary-layer flow. Scaling analyses and reduced
models are developed to obtain an expression for this rate of decay, which is then validated using
results from direct numerical simulation (DNS). We further show that the TKE production term
persists as a parameter outside of the classic stability parameter term (the flux Richardson number)
under unsteady conditions, and is therefore needed to describe the dynamics of evolving stable
boundary layers. The long-time steady dissipation-production-buoyancy balance is also analyzed
using the same modeling framework and confirms that the damping of shear TKE production by
buoyancy is the main agent for the reduction in TKE, while the direct role of buoyancy destruction
is secondary.

I. BACKGROUND AND MOTIVATION

Statically-stable turbulent flows continue to be a topic
of broad interest due to their ubiquitous geophysical
manifestations and the inherent complexity of their
dynamics [1–6]. However, while most studies focus
on statistically-stationary conditions, real-world applica-
tions often involve the onset of unsteady stable conditions
in flows that are initially neutrally- or even unstably-
stratified. One example is the stabilization of the at-
mospheric boundary layer during the evening transition,
where the TKE and fluxes decrease rapidly with time
[7]. Under such unsteady conditions, turbulence might
not remain in quasi-equilibrium with the mean flow and
the “memory” of the turbulence could have an influence
on its evolution [8]. This, along with other characteris-
tics of stable flows, could manifest as a failure of various
turbulence closure schemes [4, 9], but currently our un-
derstanding of the unsteady evolution of wall-bounded
turbulent flows subjected to a rapid onset of stabilizing
conditions remains inadequate to address their implica-
tions. This challenge motivates the current study.
Of particular interest in such flows is the rate at which

turbulence decays after the transition to the statically-
stable conditions. Some previous studies have addressed
this question [7, 10]. Flores and Riley [10] for exam-
ple analyzed the rate of decay of vertical-velocity vari-
ance in a stable boundary layer with time, but only for
early times after the onset of stability. Nadeau et al. [7]
on the other hand developed models for this rate of de-
cay that assume the turbulence production is completely
shut off and TKE then decays due to viscous dissipation
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and buoyant destruction. However, previous studies have
shown that the turbulent production does not go to zero
despite its sharp drop. The dynamics of the turbulence
decay are more strongly controlled by the decrease in pro-
duction rather than by the buoyant dissipation [11, 12].
This decrease in production is triggered by the reduction
in vertical variance and mixing length that buoyancy ini-
tiates, which then lead to reduced downward momentum
transport, reduced surface friction, and then finally to
reduced TKE production [12].
Here, we quantify the rate at which the reduction in

TKE evolves at short and intermediate time scales, as
well as the steady-state balance at long time scales. Using
DNS data and theoretical arguments, we model the grad-
ual drop in turbulence production and the time-evolution
of buoyant and viscous dissipations. We also assess the
effects of direct buoyancy destruction in comparison to
the drop in shear TKE production to provide theoreti-
cal evidence that the latter is the main factor leading to
lower TKE under stable conditions (compared to neutral
flows).

II. NUMERICAL AND PHYSICAL

PARAMETERS

Despite the fact that large eddy simulation (LES) has
become the backbone of atmospheric modeling under
neutral and statically unstable conditions [13], here we
elect to use DNS for the study of stable flows. While
this limits the Re of the simulated flow, turbulence under
stable conditions can become spatially and temporally in-
termittent [14–17], with reduced characteristic eddy size
[18] and a high degree of anisotropy [3, 19]. This chal-
lenges some of the underlying assumptions in LES and
thus when the scientific questions being addressed require
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the analysis of higher-order turbulence statistics, DNS is
preferred.

The incompressible form of the Navier-Stokes equa-
tions with the Boussinesq approximation, along with the
thermal energy budget equation, are solved numerically.
The flow is driven by a mean barotropic (constant in
height) horizontal pressure gradient that is expressed as
an equivalent geostrophic wind, and experiences a Corio-
lis force that causes non-zero mean cross-stream velocity.
The rotation in the velocity field due to Coriolis force is
useful to generate a flow that is more similar to real geo-
physical flows (albeit at a lower Re), but effectively the
role of rotation in the turbulence dynamics of the prob-
lem at hand is secondary. The horizontal directions of the
computational domain are treated as periodic, while the
vertical boundary conditions are no-slip with imperme-
ability at the bottom wall (u = v = w = 0) and a stress-
free impermeable surface with zero heat flux at the top
(similar to a half-channel simulation). A constant tem-
perature θ0, lower than the free stream temperature θ∞
above the boundary layer, is imposed at the wall. Fur-
ther details on the governing equations and the numerical
methodology used for the DNS, along with code valida-
tion for the same simulation used here, can be found in
Shah and Bou-Zeid [12].

The parameters of the simulations relevant for this
study are listed in table I. The three primary non-
dimensional inputs, defined such that they can be com-
puted a priori without using the simulation outputs, are:
(i) the Reynolds number Ref = GD/ν = G/(νf/2)1/2

(G is magnitude of the geostrophic wind speed aligned in
the streamwise direction, D the laminar Ekman bound-
ary layer depth, ν the kinematic viscosity, and f the Cori-
olis parameter); (ii) the initial surface gradient Richard-
son number Ri0,0 = gΓ0,0D

2/θ∞G2 (at t = 0 and
z = 0, g = 9.81ms−2 is the gravitational acceleration
and Γ0,0 the initial dimensional temperature gradient
near the surface); and (iii) the Prandtl number Pr =
ν/α = 0.7 (α is the thermal diffusivity). The correspond-
ing bulk parameters are: the effective Reynolds number
Reδt = Gδt/ν, where δt is the initial (neutral) turbulent
Ekman-layer depth scale, and the bulk Richardson num-
ber Rib = g ∆θ δt/θ∞G2 where ∆θ = θ∞ − θs. We sim-
ulate a latitude of 90◦ resulting in a Coriolis parameter
f = 1.454 × 10−4 rad s−1. We also non-dimensionalize
time either with the Coriolis frequency that represents
the inertial time scale in the flow (ti = tf), or with the
turnover time of eddies of size equal to the Obukhov scale
at t = 0 (tt = tu∗,t=0/L). The relation between the two
non-dimensional times is: tt = ti(δt/L), and the values
of δt/L needed for conversion are reported in table I.

Simulations carried out for this study are at a Reynolds
number Ref of 600; the influence of variation in Re
is therefore not evaluated (but the reader can refer
to Shah and Bou-Zeid [12] where we report results at
three Ref values). The computational domain size is
Lx×Ly×Lz = 36D×36D×25D, yielding an Lz about 1.5
times larger than the dynamically-simulated turbulent

Ref Ri0,0 u∗/Ug δt/D Reδt Reτ δt/L Rib

600 0 0.0595 17.85 10,710 637.0 0.0 0
0.001 0.0581 17.43 10,458 622.0 0.219 0.100
0.002 0.0572 17.16 10,296 612.3 0.386 0.200
0.005 0.0523 15.69 9,414 559.9 0.819 0.501
0.010 0.0494 14.82 8,891 528.8 1.273 1.003

TABLE I. Simulations carried out for this study and the rele-
vant parameters. Here δt/D = u∗,t=0/fD, where δt is neutral

turbulent Ekman-layer depth scale, D = (2ν/f)1/2 is the lam-
inar Ekman layer depth, u∗,t=0 is the neutral friction velocity
at time 0, Reδt = Gδt/ν, Reτ = u∗δt/ν, Obukhov length
L = −u3

∗θref/κgHk,s where θref is reference temperature,
Hk,s = −α d〈θ〉/dz|0 is kinematic heat flux at the surface,
and Rib = g ∆θ δt/θ∞G2.

boundary layer depth (1.5δt). While these domain sizes
might be small for strongly stable cases where streaks or
patches of laminar flow are seen, the DNS analysis carried
out in this paper is limited to the time periods before the
collapse and laminarization of the flow (which occurs for
the high Rib cases at later times); turbulence levels are
hence still significant and the turbulent field is continu-
ous. Thus, the domain sizes are sufficient for the present
analysis: for flows with continuous turbulence we have
checked that these domain sizes give the same results as
longer domain sizes (see Shah and Bou-Zeid [12]).

The notation used in this paper is as follows: uj =
〈uj〉 + u′

j = Uj + u′
j, p = 〈p〉 + p′, ρ = 〈ρ〉 + ρ′ and

θ = 〈θ〉 + θ′, where angle brackets 〈 〉 or capital letters
denote Reynolds averaging and the fluctuating compo-
nent is denoted by primes (′). Subscripts x, y and z are
used interchangeably with 1, 2 and 3, respectively de-
noting the streamwise (relative to geostrophic wind since
due to Coriolis there is a cross-stream flow near the wall),
cross-stream, and vertical directions in the domain. Un-
less stated otherwise, averaging has been carried out over
xy-planes, which are the wall-parallel periodic homoge-
neous flow directions. Since we analyze unsteady flows,
no time averaging is performed.

III. ANALYSIS AND RESULTS

In this section, we will first establish, from DNS data,
the applicability of the Monin-Obukhov similarity the-
ory under the simulated stable conditions in the follow-
ing subsection (A) and the dissipation-production time
lag (subsection B). Then we will model the TKE drop
rate (subsection C) at short, intermediate and long time
scales. In subsection D, we show that the drop in TKE
production is significantly larger than the buoyant de-
struction. In subsection E we illustrate that the dynam-
ics of evolving stable boundary layers cannot be reduced
to a Richardson number similarity.
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A. Flux-gradient relations in the stable ABL

The Monin-Obukov similarity theory [20] (MOST)
postulates that the average non-dimensional wind speed
and temperature gradients (which are denoted by φm and
φh respectively) in non-neutral diabatic boundary-layer
flows can be expressed in terms of height z normalized
by the Obukhov length L. This theory is just a stability
correction to the log-law that recovers the latter under
neutral conditions (both requiring a relatively high Re).
MOST relations have been initially determined empir-
ically, with more recent theoretical derivations of their
canonical functional forms [21, 22]. In stable boundary

layers, wind speed (M =
√

〈u〉2 + 〈v〉2) and temperature
gradients are usually assumed linear in the stability pa-
rameter z/L for 0 ≤ z/L < 1 (Brutsaert [23], Stull [24],
Li, Katul, and Bou-Zeid [25]):

φm

(

z

L

)

=
κz

u∗

∂M

∂z
= 1 + βm

z

L
, (1)

where βm is an empirical constant. Notice that since
our highest δt/L is 1.273 (table I), the inertial sublayer
will always be in the linear range of φm. The stabil-
ity parameter z/L gives a measure of the relative im-
portance of buoyant destruction (or production) of TKE
relative to production by shear (like a flux Richardson
number). The Obukhov length scale L (see definition in
table 1) indicates the height at which buoyancy destruc-
tion (or production) is on the same order as TKE produc-
tion by shear. Under neutral conditions where the kine-
matic heat flux at the surface Hk,s = −α d〈θ〉/dz|0 = 0,
z/L = 0 and the traditional log-law is recovered with a
non-dimensional velocity gradient φm = 1.
Figure 1 shows the velocity profiles on a log-linear

scale and figure 2 shows the variation of non-dimensional
velocity gradient with height for the neutral and the
two weakly-stable simulations under statistically-steady
conditions (that is, averaged in space and in time over
several large-eddy turnover times after the flow equi-
librates to the new stabilizing surface buoyancy flux).
For the strongly-stable simulations, the mean flow un-
dergoes an inertial oscillation (see illustration and mod-
eling for example in Momen and Bou-Zeid [26]) that
makes it difficult to obtain converged statistics through
time-averaging to verify the applicability of MOST. For
the illustrated cases, the mean velocity gradients follow
MOST despite the moderate Reynolds numbers. The
value of the empirical constant βm is approximately 9,
higher than what has been observed in other studies in
the atmosphere at much higher Reynolds numbers (where
βm ≈ 5 is reported [24, 27–29]). The Reynolds-number
dependence of this constant has been theoretically ex-
plained by Chung and Matheou [30] by considering the
u-w cospectra model for the inertial range [30–32] in a
stable regime. The important take away point from this
section on the mean velocity and velocity gradient is that
an inertial (log for neutral) layer develops in the DNS
despite the moderate Reynolds number, and MOST is

thus an applicable stability correction for the gradients
in that layer. This needs to be established to justify the
relevance of the results to real high Reynold-number geo-
physical flows and since later we will invoke MOST in our
scaling analysis of the TKE decay rate.
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FIG. 1. Plot of mean velocity in inner coordinates, M+ =
M/u∗. Vertical black lines delimit the viscous sublayer (z+ ≤
5), buffer layer (5 < z+ ≤ 30) and log-layer (30 < z+ ≤ 200)
for neutrally-stratified boundary layers.
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FIG. 2. Mean non-dimensional velocity gradient φm. Solid
grey lines show the neutral boundary layer constant non-
dimensional velocity gradient (φm = 1), and the gradients
predicted by MOST, φm = 1 + 9 z

L
. The colored lines are

the corresponding simulated profiles, where the solid blue line
is for neutral conditions, dashed green line for Rib = 0.100
(with Obukhov length is L1), and dot-dashed red line for
Rib = 0.200 (with Obukhov length L2).
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B. Dissipation-production time lag

The correlation coefficient between TKE production
and viscous dissipation, individually averaged over the
whole domain, is shown in figure 3 as a function of a lag
time τ introduced between the two time series. The plot
indicates that the dissipation lags TKE production (since
the correlation reaches a maximum at a time τ > 0),
which is expected. Moreover, a correlation coefficient of
almost 1 is seen in the most stable case, and the peak
correlation value increases monotonically with increasing
stability (although the optimal time-lag does not vary
monotonically, and given the limited statistical conver-
gence due to the lack of time averaging, we are not certain
the magnitude of the time lag itself is accurately cap-
tured). This indicates that dissipation lags production
almost perfectly under stable conditions, meaning that
the variations are strongly correlated if the appropriate
lag is used. This might be a manifestation of the reduced
role of transport in causing an imbalance between pro-
duction and dissipation under higher stabilities. Hence,
one can conclude that the lower total TKE in statically-
stable flows is, as anticipated, not due to changes in vis-
cous dissipation, which simply responds to production.
The decrease in TKE as stability sets in must then be
related with to buoyancy destruction or to a lower TKE
production rate. The neutral case also displays a lag be-
tween dissipation and production, but the stronger TKE
results in faster evolution and stronger transport of tur-
bulence; therefore, the peak correlation is lower.
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FIG. 3. Lagged correlation between TKE production and
dissipation for neutral and stable cases Rib = 0.1, 0.2, 0.5,
versus the non-dimensional time-lag τf . Vertical lines with
filled circles depict the locations of maximum correlation.

C. Decay of vertical velocity variance and TKE

Figures 4 shows the decay with time of the vertical
velocity variance (σ2

w = 〈w′2〉) at z+ ≈ 50 (inside the in-
ertial layer), where the variance has been normalized by
the squared friction velocity of the neutral flow at time
t = 0. As noted by Flores and Riley [10], at early times,
buoyancy flux is the primary term damping the vertical
component of the TKE since the other terms respond
more slowly to the onset of the stabilty. With a scaling
analysis of the vertical velocity variance budget at short
times, they were able to conclude that the time (tc1) for
its decay in the buffer layer (z+ = 15) to its new stably-
stratified equilibrium scales with L/u∗,t=0 (the scaling
was found to depend on h/u∗,t=0 in the outer layer). We
confirm (not shown) the same behavior in our simulations
inside the buffer layer (z+ = 15, where the TKE produc-
tion is maximum), as well as at the interface between the
buffer layer and the log-layer (z+ ≈ 30). Furthermore,
the results in figure 4 indicate that the same scaling of the
decay time of σ2

w with L/u∗,t=0 applies in the log-layer
at z+ ≈ 50.

FIG. 4. Decay of the normalized vertical velocity variance
with time normalized by L/u∗,t=0 at different stabilities at
z+ ≈ 50. Note that u∗,t=0 is the same for all cases since it
is the neutral friction velocity. Linear decay as predicted by
Flores and Riley [10] is shown with solid grey line.

We now aim to extend the analysis and apply it to
the full TKE budget equation. Due to anisotropy un-
der stable conditions, the horizontal variances and the
TKE (q = 1

2
〈u′

iu
′
i〉) might not scale similarly to the ver-

tical variance and one could conceive of situations where
the vertical variance is completely damped while two-
dimensional turbulent motions persist in the horizontal
directions. Moreover, the damping of the horizontal vari-
ances would not only be affected by buoyancy destruction
(which directly acts on the vertical component), but also
potentially by a drop in the shear production (which ap-
pears in the budgets of the horizontal variances), and the
lagged drop in viscous dissipation. Despite these consid-
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erations, the drop in the TKE depicted in figure 5 (using
the same normalization as the σ2

w plot in 4) suggests that
its decay time also scales with L/u∗,t=0. However, the
decay time of TKE is about one or two orders of mag-
nitude larger than for the vertical component. In addi-
tion, the figure suggests that this linear decay extends
till tL/u∗,t=0 ≈ 2.5 for all cases.
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FIG. 5. Decay of normalized TKE (q/u2
∗,t=0) with time nor-

malized by L/u∗,t=0 at different stabilities at z+ ≈ 50. Note
that u∗,t=0 is the same for all cases since it is the neutral
friction velocity. Linear decay rate is shown with grey solid
line.

Another subtle difference to note at very early times
(tL/u∗,t=0 < 0.2) is that, while the vertical variance de-
cays rapidly, the full TKE at that early point is less af-
fected for the lowest stabilities. Separate plot of the hori-
zontal components of the TKE (not shown) confirms that
they do not start to decay until about tL/u∗,t=0 ≈ 0.2.
This is not surprising since w is the component directly
and most rapidly influenced by buoyancy and the onset
of stability. The response of the horizontal components
to buoyancy is indirect, first through pressure redistri-
bution [33] and then through drop in production, and as
such it is slower to develop. To analyze this drop in q and
its scaling, we consider the full TKE budget. The trans-
port terms will be neglected since under stable conditions
they are even smaller than under neutral or convective
conditions (in absolute and relative terms) [12]. These
assumptions are comparable to the ones used to study
the TKE drop in initially-convective boundary layers af-
ter the removal of the destabilizing surface buoyancy flux
[34, 35]. Nieuwstadt and Brost [34] found that the TKE
drops as −tw∗/δt if the heat flux is shut off suddenly (w∗

being the convective velocity scale that is based on the
surface buoyancy flux). While this is expectedly different
from our scaling, both the δt/w∗ in the convective case
and the L/u∗ in the stable case approximate the turn-
over time of the largest eddies in the flow that dominate
the turbulence response.
The TKE budget equations under stable conditions is

given by ∂q/∂t ≈ P + B − ε. We will consider that
all the terms are averaged in space as a surrogate for
Reynolds averaging. Here, P , B, and ǫ are the time-
varying shear production, buoyant destruction and vis-
cous dissipation terms, respectively. Substituting expres-
sions for the dominant components of each of the above
terms in the inertial layer, and then invoking Monin-
Obukhov similarity to express them (lumping the pro-
duction terms in the two horizontal directions) yields

∂q

∂t
≈−〈u′w′〉

∂U

∂z
−〈v′w′〉

∂V

∂z
+

g

θref
〈w′θ′〉−ε (2)

∂q

∂t
≈u2

∗

u∗

κz

(

1 + β
z

L

)

−
u3
∗

κL
− ε. (3)

The buoyancy term is directly related to the vertical tur-
bulent heat flux Hk = 〈w′θ′〉, which is downward and
negative in a stable boundary layer, making buoyancy a
sink of TKE. In the equation above, we assumed that
(i) the total stress is approximately constant all the way
to the top of the inertial layer, (ii) the viscous fluxes in
the inertial layer are negligible. These two assumptions
together imply that the turbulent stress magnitude at
z+ = 50 is approximately the surface stress magnitude
u∗2. The viscous flux contribution at the Reδt ≈ 10, 000
that we simulate and in the inertial layer we focus on is
< 5% of the total Shah and Bou-Zeid [12] (also see fig-
ures 7.3 and 7.4 in Pope [36]). The last assumption (iii)
is that the gradients follow their MOST function as the
flow adapts to the new stability; but the value of β might
be different from the equilibrium value and might change
in time.
The dissipation term under stable conditions also fol-

lows Monin-Obukhov similarity and previous studies sug-
gest various functions of its variation with z/L [37, 38].
Here we will adopt a simple linear form for consistency
with the gradient function expression:

ǫ =
u3
∗

κz
φε =

u3
∗

κz

(

1 + βε
z

L

)

. (4)

With this expression for dissipation, Eq. 3 becomes

∂q

∂t
≈

u3
∗

κL
(β − βε − 1). (5)

Some studies suggest an additive constant different from
1 in Eq. 4 for φε, thus indirectly encoding the neglected
effect of transport [38]. For the present scaling analysis,
and to remain consistent with the assumed production-
dissipation equilibrium under neutral steady-state condi-
tions (when z/L = 0 in the equation), it is clear from Eq.
5 that the two additive constants in the gradient and dis-
sipation MOST functions should be set equal and we will
adopt the value of 1 for both (though the present model
can be modified by future users to account for transport
or other effects). In the following sections, we will ana-
lyze the TKE trends indicated by the budget above, with
needed modifications, for various time horizons.
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1. Early times: the rise of buoyancy destruction

As argued by Flores and Riley [10], at (very) early
times one would expect the onset of buoyancy flux to be
the fastest response in the flow since it triggers the onset
of other responses. This is also consistent with the setup
of the simulations where we abruptly impose a drop in
wall temperature at time 0. The initial flow is highly
turbulent and the imposed cooling of the wall allows a
strong heat flux to develop early on (heat flux time series
from our simulations reveal a rapid rise until tf ≈ 0.1).
The buoyancy term will thus increase significantly in
magnitude (from its zero neutral value), while the wall-
shear, TKE shear production, and dissipation decrease
only slightly from their near neutral values. If at early
times one approximates that u∗ ≈ u∗,t=0 (the mean flow
responds slowly and the pressure-Coriolis-friction force
balance constrains the rate of drop in friction velocity),
and given that at these times the observed decrease in
TKE with time is linear, Eq. (5) becomes

∂q

∂t
≈

q(t)− q(0)

t
≈

u3
∗,t=0

κL
(β − βε − 1) (6)

yielding

q(t)

u2
∗,t=0

≈
q(0)

u2
∗,t=0

+
β − βε − 1

κ

tu∗,t=0

L
. (7)

First, note that for q(t) to be decreasing with time, it
must be that β − βε < 1. In fact the slope of the grey
linear fit in figure 5 is ≈ −0.33, from which one can in-
fer that β − βε = 0.867. Since β − βε > 0, the TKE
would have increased if the −1 term in the equation, cor-
responding to the buoyancy term, was not present. This
implies that at these early time the buoyancy destruc-
tion is critical. Second, the linear decrease of the TKE
with the non-dimensional time suggested by the equa-
tion indeed agrees with the scaling observed in Fig. 5
up till tu∗,t=0/L ≈ 2.5. However, this early phase with
neutral values of the friction velocity cannot in fact last
that long. As illustrated in Fig. 4, the rapid initial on-
set of buoyancy damps the vertical variance rapidly until
tu∗,t=0/L ≈ 0.2 only. In addition, times series of heat
flux (not shown) indicate that, after its initial rapid rise,
the heat flux plateaus for the lowest stability and even
decreases for the higher ones when tf ≥ 0.1. One thus
needs to investigate the mechanisms for the continued
self-similar drop in TKE up to tu∗,t=0/L ≈ 2.5 despite
the much-earlier stabilization of the vertical component,
as well as the scaling of this continued TKE drop.

2. Intermediate times: the fall of shear production

Buoyancy preferentially damps the largest turbulent
structure [18, 39], and during the initial phase where it
dominates, these large flux-carrying eddies are weakened.
The downward momentum flux and the friction velocity

are then reduced, the flow away from the wall acceler-
ates, and the stress magnitude decreases at all heights.
This damps shear generation significantly. As illustrated
above, dissipation also decreases but with a time lag since
the smallest scales that dissipate the TKE are not di-
rectly damped by buoyancy. Since production and dis-
sipation drop, one needs to use the current values, with
the current friction velocity, of these quantities in Eq. 5.
An equation similar to Eq. 7 can be derived with the
time-local friction velocity:

q(t)

u2
∗

≈
q(0)

u2
∗

+
β − βε − 1

κ

tu∗

L
. (8)

Eq. 8 suggests a linear decay with the time normalized
by the local friction velocity. This is indeed confirmed by
our DNS, but Fig. 5 also indicates a linear decrease with
the time scaled by the initial friction velocity. Eq. 8 can
in fact be recast as:

q(t)

u2
∗,0

≈
q(0)

u2
∗,0

+
β − βε − 1

κ

u3
∗

u3
∗,0

tu∗,0

L
. (9)

Thus, the continued linear decrease in TKE with
tu∗,t=0/L observed in the figures necessitates a stabiliza-
tion of the friction velocity with time during this inter-
mediate period such that u3

∗/u
3
∗,t=0 ≈ constant. Indeed

analysis of the time evolution of the friction velocity (re-
ported in Shah and Bou-Zeid [12]) confirms that it drops
by 10 to 20% relative to the neutral value but stabilizes
(or even recovers slightly) at tf ≥ 1. This can be un-
derstood in the Ekman boundary layers since the driving
pressure gradient is constant and the pressure force has
to be balanced by wall friction and the Coriolis force.
Therefore, wall friction remains on the same order as the
neutral value even if the flow completely laminarizes, vis-
cous stresses then having to sustain the downward mo-
mentum flux. The slope of the drop in TKE during these
intermediate times however is reduced compared to the
early times by a factor u3

∗/u∗3

t=0

. This period extends

from tu∗,t=0/L ≈ 0.1 up to tu∗,t=0/L ≈ 2.5.

A major assumption in the scaling for these interme-
diate times that we made is that MOST-like scaling for
production and dissipation still holds, despite the diver-
gence of the trends of these TKE budget terms and of the
friction velocity. An a priori justification for this assump-
tion is that during this phase the turbulence maintains
its neutral initial characteristics while it decays. An a
posteriori support for its plausibility is the success of the
scaling in matching the DNS results. However, the scal-
ing can indeed be maintained even if the values of β and
βε are different from their equilibrium or neutral values.
This is why we refer to the models of production and dis-
sipation as MOST-like. The model for buoyancy on the
other hand is exact.
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3. Later times: the return to equilibrium

At long times, the heat flux will start to decrease as
the fluid near the surface cools down and the difference
between the fluid and (constant) wall temperature de-
creases, causing the Obukhov length scale to increase.
From Eq. 5, it can be noted that this will reduce the de-
cay rate of the TKE, indeed as observed in Fig. 5. Even-
tually, a new equilibrium will be reached (though iner-
tial oscillations can significantly delay its onset) where, if
MOST holds, one should observe β = βε+1 (or a similar
form if the additive constants are not taken equal). In the
high-Re ABL under steady conditions, the usual values
found are βε ≈ 2.5 and β ≈ 5 [38]. In addition, as pointed
out before, the additive constant in the dissipation is em-
pirically found to be < 1, indicating that under neutral
conditions production exceeds dissipation and transport
must compensate for the difference in the inertial surface
layer. These two observations then strongly indicate that
transport must also play a role in the TKE budget of the
inertial layer [40], violating a key assumption of MOST.
This role will be important under steady conditions when
the other terms are constant in time. Furthermore, if the
imposed stability is high, the strongly-stable flow will also
not obey MOST [3, 41–43]; however, here we presume the
turbulence is always continuous and thus in the mildly
stable regime.
Despite these observations, we note that Fig. 2 indi-

cates that the steady state gradients can still be described
using a form similar to MOST. The local shear that en-
ters into the TKE production terms will not be equal to
u2
∗, but will remain proportional to that surface stress.

In addition, the buoyancy term as expressed in Eq. 3
is exact since it is just re-expressing the buoyancy flux.
Therefore, it is reasonable to retain the models of the
production and buoyancy used thus far. The dissipation
term on the other hand will no longer follow the MOST
relations; this has been verified using the current DNS
data and suggested in other studies (see discussion and
comparison in Hartogensis and De Bruin [38]). A mod-
ified model of the dissipation is thus needed. First, we
re-write Eq. 3 without a specific dissipation expression
as:

∂q

∂t
≈

u3
∗

κz
+

u3
∗

κL
(β − 1)− ε. (10)

Since the equilibrium plateau reached by the TKE is
a valuable parameter to know in stable flow, we consider
the above equation when the new steady state is reached
and ∂q/∂t = 0. The dissipation at that point can be
expressed as

ǫ ≈
u3
∗

κ

(

1− β

L
−

1

z

)

. (11)

In the above equation, since β ≈ 9 > 1, dissipation ǫ is
always negative as expected. One can also note that if
z ≪ L, the second term dominates the right hand side
of Eq. 11 dominates and the dissipation is controlled by

proximity to the wall (buoyancy is weak and viscous dissi-
pation balances production as under neutral conditions).
On the other hand, given that β ≈ 9, it is sufficient
for that z ∼ L for the first term in the parentheses to
dominate. Stability then controls the rate of viscous dis-
sipation (indirectly via how much is left for viscosity to
dissipate after buoyant destruction) independently from
z. This second limit is consistent with the so-called z-less
scaling of the stable boundary layer [44].
Since the dissipation strongly depends on how much

TKE is present in the domain, a commonly-used alter-
native to the MOST model for ε can be formulated as
ǫ ≈ −q3/2/Λ, where Λ is a length scale that includes
any proportionality constant needed. A physically more
transparent way of writing this model is ǫ ≈ −q(q1/2/Λ),
where q1/2/Λ is an energy cascade inverse time scale as-
sociated with the turnover of the large large eddies that
control the rate of energy production and cascade. Based
on this model and Eq. 11, we can write:

−q3/2

Λ
≈

u3
∗

κ

(

1− β

L
−

1

z

)

(12)

q

u2
∗

≈

(

Λ

κ

(

β − 1

L
+

1

z

))2/3

. (13)

Λ here is the characteristic large eddy scale that will be
the smallest of L or z. Under weakly stable conditions
when z << L and Λ ∼ z one obtains:

q

u2
∗

≈

(

CΛ/z

κ

)2/3

, (14)

where CΛ/z is as indicated in the subscript the ratio Λ/z
assumed constant and ∼ 1 for these conditions. How-
ever, under more stable conditions when z ∼ L (but the
stability must remain mild for the MOST linear gradient
functions to apply), Λ ∼ L and we obtain:

q

u2
∗

≈

(

CΛ/L
β − 1

κ

)2/3

. (15)

CΛ/L ∼ 1 again is the constant (under these conditions)
ratio Λ/L.
In both limits, q ∼ u2

∗, but the ratio q/u2
∗ is much

higher under the mildly stable conditions than under the
weakly stable ones (assuming both constants are ∼ 1).
Since this ratio is the TKE normalized by the surface
stress, higher values represent a decrease in the efficiency
of downward momentum transfer under increasingly sta-
ble conditions. Furthermore, since β decreases as the
Reynolds number increases as discussed before, lower Re
flows also have a reduced momentum transport efficiency.

D. Roles of drop in shear production versus

buoyancy in TKE decay

To quantify the relative contributions of buoyancy
destruction and drop in shear production towards the
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TKE reduction, we will focus on the buffer layer around
z+ ≈ 30 where the TKE shear production is maximum.
The gradients at these heights are not strongly affected
by buoyancy as shown in Fig. 2, and the production thus
scales with u3

∗/kz without a MOST correction. We can
then express the drop in this peak production as

P − Pn =
u3
∗

κz
−

u3
∗,0

κz
,

where P is shear production at any time under stable con-
ditions and Pn its initial value under neutral conditions.
This reduction in production can then be compared to
direct buoyancy destruction B = −u3

∗/(κL) as:

P − Pn

B
=

(

z

L

)−1(u3
∗,0

u3
∗

− 1

)

(16)

For the simulations conducted here, u3
∗,0/u

3
∗ ranges

from 1.3 to 1.95. This ratio alone suggests a drop in
production that is 30 to 95 % larger than buoyant de-
struction. However, upon considering also z/L, this ra-
tio becomes much higher. The lowest δ/L in our simu-
lations is 0.219; therefore, in the regions of peak produc-
tion where z << δ, we have z/L << 1 yielding a ratio of
(P −Pn)/B >> 1. This confirms that the effect of buoy-
ancy destruction is confined to early times and to direct
reduction in momentum transport efficiency, while the
significant drop in TKE is mainly a result of the drop
in TKE production. The drop in production is caused
by a drop in downward transport of momentum and the
reduction in wall stress due to the damping of vertical
motions by buoyancy, as elucidated in Shah and Bou-
Zeid [12]. This ratio (P − Pn)/B however can be ∼ 1
for z/L >≈ 2 (if the same drop in u∗ is assumed for sim-
plicity). This implies that the role of buoyancy via direct
destruction increases also linearly (as observed in other
studies [9, 18]) with increasing z/L, which is expected
since z/L ≈ Rif = −B/P .

E. Role of TKE production as a parameter

It has been briefly argued by Shah and Bou-Zeid [12]
that a stability parameter based on the balance between
TKE production by shear and direct destruction by buoy-
ancy, like the flux Richardson number or the Monin-
Obukhov stability parameter z/L, might not be suffi-
cient for describing the dynamics of stable Ekman layers.
That hypothesis is better explored through the analysis
we present in this paper using the equation of the rate of
decay. For example, consider the TKE budget equation
for stable conditions normalized by TKE production; un-
der a local equilibrium assumption (that still allows for
unsteady means) such that all transport terms are ig-
nored for simplicity

P−1Dq/Dt ≈ 1 + P−1ǫ−Rif . (17)

As can be seen here, TKE production generally persists
as a parameter outside of the stability parameter term
(given by flux Richardson number).
When the tendency term is small and the flow is

near steady-state conditions, a production-buoyancy-
dissipation balance is established such that the budget
reduces to P−1ǫ = Rif − 1, a form where the produc-
tion/dissipation ratio is a linear function of Rif . Under
such conditions, similarity theories based on Rif can be
developed since changes in Rif encode changes in the
viscous dissipation to production ratio. This also applies
to the Monin-Obukhov similarity theory.
However, for unsteady flows where the tendency is sig-

nificant, the non-dimensional rate of the TKE variation
P−1Dq/Dt not only depends on Rif , but also on P−1ǫ,
which here is a parameter that can be independent from
Rif . Under such conditions, an Rif based similarity is
only applicable if P−1ǫ is a universal function of Rif .
Given the lag between dissipation and production and
the potential lag between buoyancy variation and subse-
quent impacts on the TKE budget, there is no physical
reason to expect this condition to be satisfied (and in fact
the empirical evidence from the DNS used here points to
its failure). Under such conditions, the TKE production,
viscous dissipation, and buoyant destruction become in-
dependent and Rif cannot encapsulate all the dynamics
of the unsteady stable flow.
We here should note that this emergence of a second

relevant dimensionless parameter to characterize the dy-
namics is not restricted to unsteady flows, but will also be
observed when transport is important. Chamecki, Dias,
and Freire [45] proposed a two-dimensional phase space
approach to characterize the state of the turbulence un-
der such conditions. Freire et al. [40] then showed that
the second dimensionless parameter (in their work related
to transport) explains the observation of Kolmogorov tur-
bulence at higher Richardson numbers than expected.

IV. CONCLUSIONS

We combine DNS and reduced models to investigate
the evolution of turbulent kinetic energy following the
onset of a stabilizing buoyancy flux in an initially neu-
tral turbulent flow. First we establish that the mean ve-
locity and velocity gradient profiles follow MOST, even
at the moderate simulated Reynolds numbers our DNS
can reach. Then we illustrate the lagged dissipation re-
sponse, relative to the more rapid response of the tur-
bulence shear production, after the onset of stabilizing
buoyancy. We use these observations to develop a model,
based on the TKE budget equation, to predict the evo-
lution of turbulence in the inertial layer at various time
scales after stability is imposed.
At very early times, buoyancy rises while production

and dissipation remain about constant. This damps the
vertical variance but has little impact on the horizontal
variance and the total TKE since the vertical compo-
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nent’s contribution is the smallest. The damping of the
larger scales by buoyancy sets the stage for the inter-
mediate times dynamics where the the contribution of
buoyancy reaches a plateau and is rapidly overtaken by
the reduction in shear production, while dissipation lags.
Despite the different physics, the DNS and the reduced
model indicate that the TKE drop for both early and
intermediate time scales is linear in −tu∗,t=0/L, though
the slope of the linear reduction with this time scale is
different during early and intermediate times. At long
times, dissipation catches up and we are able to iden-
tify two limiting regimes, a weakly stable one (z ≪ L),
where the TKE to surface stress ratio is controlled by
the distance to the wall, and a mildly stable one (z ∼ L),
where that ratio is solely determined by the Obukhov
length independent of z. In either regimes, we note that
both increasing stability and decreasing Reynolds num-
ber reduce the effectiveness of turbulence in generating
downward momentum flux and wall drag, as indicated
by the decreasing value of the TKE normalized by the
squared friction velocity.
These insights are then used to support two key find-

ings of this study: 1) The lower total TKE in statically

stable flows, compared to an otherwise similar neutral
flow, is mainly due to smaller TKE production rate and
not because of buoyant destruction. We support this
using a scaling analysis that illustrates that even at a
z/L ≈ 1, buoyancy destruction explains only about a
third of the TKE reduction. 2) TKE production persists
as a flow parameter independent of the classic stability
parameter term (given by flux Richardson number) un-
der unsteady conditions. Another dimensionless number,
such as P/ε, is then needed to fully characterize the tur-
bulence.
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