
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Consolidation of freshly deposited cohesive and
noncohesive sediment: Particle-resolved simulations
Bernhard Vowinckel, Edward Biegert, Paolo Luzzatto-Fegiz, and Eckart Meiburg

Phys. Rev. Fluids 4, 074305 — Published 15 July 2019
DOI: 10.1103/PhysRevFluids.4.074305

http://dx.doi.org/10.1103/PhysRevFluids.4.074305


Consolidation of freshly deposited cohesive and non-cohesive sediment:
particle-resolved simulations

Bernhard Vowinckel,∗ Edward Biegert, Paolo Luzzatto-Fegiz, and Eckart Meiburg
Department of Mechanical Engineering, University of California, Santa Barbara, CA 93106, USA

(Dated: June 22, 2019)

We analyze the consolidation of freshly deposited cohesive and non-cohesive sediment by means of
particle-resolved direct Navier-Stokes simulations based on the Immersed Boundary Method. The
computational model is parameterized by material properties and does not involve any arbitrary
calibrations. We obtain the stress balance of the fluid-particle mixture from first principles and
link it to the classical effective stress concept. The detailed datasets obtained from our simulations
allow us to evaluate all terms of the derived stress balance. We compare the settling of cohesive
sediment to its non-cohesive counterpart, which corresponds to the settling of the individual primary
particles. The simulation results yield a complete parameterization of the Gibson equation, which
has been the method of choice to analyze self-weight consolidation.

I. INTRODUCTION

Fine grained sediments interact via attractive electric
forces, commonly referred to as van der Waals (vdW)
forces [1, 2], and adhesive forces due to extracellular poly-
meric substances (EPS) such as biofilms [3, 4]. Cohe-
sive sediment thus behaves very differently from its co-
hesionless granular counterpart. This is especially true
for sediment mixtures containing large quantities of cohe-
sive sediment and organic matter, which are also known
as ‘mud’ [5–7]. Mud deposition can lead to siltation of
marine and riverine infrastructure or it can bind con-
taminants, which has important implications for ecology,
sedimentology, and civil engineering as it is ubiquitous
in various aquatic environments such as lakes, estuaries,
and benthic habitats [8, 9]. The consolidation of mud is
also important in the context of deep-sea hydrocarbon
exploration [10].

The deposition of mud can be subdivided into two pro-
cesses: hindered settling [11–16] and consolidation [17–
22]. Both processes can happen simultaneously in the
water column as sediment is still in the process of set-
tling until all suspended grains have made contact with
the sediment bed that is supported by a bottom wall
[14, 23, 24]. Consolidation is characterized by a con-
tracting sediment bed due to the weight of the overly-
ing deposits. This yields an excess pore pressure, which
imposes an upward counterflow through the porous bed
that is governed by the bed’s permeability and the effec-
tive stress of the sediment. These processes have been
the basis of the Gibson equation [25]

∂φv
∂t

=
∂
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(
k(ρp − ρf )φ2

v

ρf
+
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∂σeff

∂y

)
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which is derived from one-dimensional mass and momen-
tum conservation principles for the fluid and the sedi-
ment to predict the change of the horizontally averaged

∗ vowinckel@engineering.ucsb.edu

volume fraction φv of consolidating soils over time [24].
Here, t is time, y is the vertical coordinate, ρp and ρf
are the particle and fluid densities, ρ = φpρp+(1−φp)ρf
is the averaged density of the suspension in a given con-
trol volume, g is the gravitational acceleration, k is the
permeability of the porous medium in units of length per
time, and σeff is the effective normal stress component in
the y-direction.

The effective stress has classically been assessed by
means of the ‘effective stress concept’ [26], which states
that the total stress is the sum of the pore pressure and
the effective stress. While it is a common definition that
the effective stress reflects the part of the sediment weight
that is supported by inter-particle contact, the exper-
imental assessment of this physical quantity has been
subject to debate. Winterwerp and Van Kesteren [27]
argued that this term is used as a mathematical concept
to close the stress balance and Sills [19] even claimed that
there is no physical meaning to effective stress. Hence,
while simulations using the Gibson equation [28, 29] show
excellent agreement with experimental data, the model
lacks general predictive capabilities since the empirical
fitting of the parameters entering the Gibson equation
has to be performed separately for each new experiment.

There are several reasons for the limitations of the Gib-
son model. First, the effective stress concept remains
one-dimensional, whereas it has been acknowledged that
viscous fingering due to spatially heterogeneous particle
concentrations can trigger instabilities that lead to com-
plex three-dimensional flow features [30, 31]. Further-
more, it was pointed out that every experimental setup
inevitably contains sidewalls [19]. These sidewalls can
lead to preferential drainage that introduces artifacts in
the analysis. In recent years, experimental efforts have
focused on the settling of sand-mud mixtures [32–37],
where particles are too large to exhibit Brownian mo-
tion. Since the Gibson theory was derived for pure muds
in the first place, applying the model to sand-mud mix-
tures might be problematic [38]. At the same time, the
larger sized particles render the physical configuration
attractive for phase-resolved simulations that allow for a
full description of the fluid and the particle motion [39–
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44].
The present study addresses these issues from a com-

putational perspective. Following our earlier particle-
resolved simulations [45–47], we present simulation data
of settling cohesive and noncohesive sediment where we
compute the motion of every particle in a fully resolved
three-dimensional flow field without side walls. We
present a detailed stress balance for the fluid-particle
mixture that allows for a direct transfer of the govern-
ing equations to the classical ‘effective stress concept’.
As a result, we provide a way to parameterize the Gib-
son equation in a straightforward fashion and illustrate
the effects of cohesive forces on macroscopic particles by
means of intergranular stresses in the sediment packing.

The paper is structured as follows: First, we briefly
review our fully coupled computational approach to sim-
ulate particles in a viscous flow in section II. Then, we
derive the ’effective stress concept’ from our governing
equations in section III, before we present results for the
settling behavior of cohesive grains of silt size and its
noncohesive counterpart in section IV.

II. COMPUTATIONAL APPROACH

A. Particle-resolved Simulations

We solve the unsteady Navier-Stokes equations for an
incompressible Newtonian fluid, given by

∂u

∂t
+∇ · (uu) = − 1

ρf
∇p+ νf∇2u + fIBM , (2)

along with the continuity equation

∇ · u = 0 (3)

on a uniform rectangular grid with grid cell size ∆x =
∆y = ∆z = h following the scheme of [43]. Here, bold
and italic symbols represent vectors and scalar quanti-
ties, respectively, where u = (u, v, w)T designates the
fluid velocity vector in Cartesian components, p denotes
pressure with the hydrostatic component subtracted out,
νf is the kinematic viscosity, and fIBM represents a vol-
ume force introduced by the Immersed Boundary Method
(IBM) [48, 49]. This volume force acts in the vicinity of
the inter-phase boundaries and couples the fluid phase to
the particle motion.

Within the framework of the IBM, we consider spher-
ical particles as an approximation of primary particles
from the grain-size fraction of silt. We calculate the mo-
tion of each individual spherical particle by solving an
ordinary differential equation for its translational veloc-
ity up = (up, vp, wp)

T

mp
dup
dt

=

∮
Γp

τ · n dA︸ ︷︷ ︸
=Fh,p

+Vp (ρp − ρf ) g︸ ︷︷ ︸
=Fg,p

+Fc,p , (4)

and its angular velocity ωp = (ωp,x, ωp,y, ωp,z)
T

Ip
dωp
dt

=

∮
Γp

r× (τ · n) dA︸ ︷︷ ︸
=Th,p

+Tc,p . (5)

Here, mp is the particle mass, Γp the fluid-particle inter-
face, τ the hydrodynamic stress tensor, ρp the particle
density, Vp the particle volume, g the gravitational ac-
celeration, Ip = 8πρpR

5
p/15 the moment of inertia, and

Rp the particle radius. Furthermore, the vector n is the
outward-pointing normal on the interface Γp, r = x−xp
is the position vector of the surface point with respect to
the center of mass xp of a particle, and Fc,p and Tc,p are
the force and torque due to particle interactions, respec-
tively, which are computed using the Discrete Element
Method (DEM) as described by [43]. Furthermore, note
the designation of the hydrodynamic force and torque as
Fh,p and Th,p, respectively, as well as Fg,p the force due
to gravity.

We employ the approach of [49] for evaluating the IBM
forces and solve (4) and (5) according to [43]. The par-
ticles are explicitly coupled to the fluid motion through
the hydrodynamic stress tensor τ comprising viscous and
pressure drag as a direct result of the IBM. The integra-
tion scheme subdivides the fluid time step into a total
of 15 substeps to integrate (4) and (5) in time. It was
shown by Biegert et al. [43] that this is necessary to re-
solve short-range particle-particle interactions such as lu-
brication and cohesive forces.

Our simulation approach was validated by [43] for the
fluid-particle coupling of the method against experimen-
tal data of a sphere settling in an unbounded quiescent
fluid [50] as well as towards a wall [51]. The particle-
contact model was validated against benchmark data of
[52] and [53]. The collective motion of a sediment bed
sheared by a viscous flow was compared to the experi-
mental data of [54] and we found satisfactory agreement.

B. Particle-particle Interaction

We use the computational approach of Biegert et al.
[43] for modeling cohesionless particle-particle interac-
tions. This reference provides validation results for var-
ious benchmark experiments. In addition, the present
study employs the cohesive force model proposed and val-
idated by Vowinckel et al. [45]. The particle-particle in-
teraction comprises short-range effects due to unresolved
hydrodynamic lubrication forces Fl and cohesive forces
Fcoh, as well as direct contact forces Fd = Fn+Ft acting
in the normal and tangential directions, denoted as Fn
and Ft. The resulting force on particle p is the sum of
all these effects

Fc,p =

Np∑
q, q 6=p

(Fl,pq + Fd,pq + Fcoh,pq) +

Fl,pw + Fd,pw + Fcoh,pw , (6)
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where the subscripts pq and pw indicate interactions with
particle q or a wall, respectively. Detailed information
about how we model the lubrication and direct contact
forces is provided in [43]. For the present study, we have
chosen the same parameterization determined for silicate
materials in experiments and used in our previous simu-
lations [39, 41–43, 45, 55, 56].

To account for cohesive forces, we take an approach
that is consistent with the theory for colloids developed
by Derjaguin-Landau-Verwey-Overbeek (DLVO) [57, 58],
which states that there are two dominant short-range
forces that can be interpreted as opposing potentials
surrounding particles with grain sizes in the micro- to
nanometer range. On the one hand, there exists a re-
pulsive force when equally charged surfaces are in close
proximity. On the other hand, as one particle causes
correlations in the fluctuating polarization of a nearby
particle surface an attractive force is generated. The for-
mer effect is usually called the repulsive ‘double-layer’
(DL) force, while the latter effect is commonly referred
to as van-der-Waals (vdW) force. These forces become
important for gap sizes ζ0 < ζn < ζ∞, where ζ0 defines
the microscopic size of surface asperities and ζ∞ is the
distance for which these forces decay to zero [59]. The
repulsive DL force and the attractive vdW force due to
polarization scale as Frep ∝ e−ζn and Fatt ∝ ζ−2

n , respec-
tively. The superposition of the two potentials yields a
net force as a function of the gap size ζn. A model in-
corporating both effects has been proposed by Pednekar
et al. [60]

FDLVO = ARReff exp

(
−ζn
κ

)
︸ ︷︷ ︸

Frep

− AHReff

12(ζ2
n + ζ2

0 )︸ ︷︷ ︸
Fatt

, (7)

where AR is a repulsive force scale for ζn = 0 as a mea-
sure of the particles’ surface potential, κ is the Debye
length, AH is the Hamaker constant, and ζ0 is the sur-
face roughness preventing Fatt from diverging to infinity
for vanishing gap size. These four parameters need to be
adjusted according to the physical system.

To account for these effects in particle resolved simu-
lations, Vowinckel et al. [45] proposed a model with the
following properties: (i) it decays to zero as the gap size
goes to zero, (ii) it has a maximum at a gap width orders
of magnitude smaller than the particle diameter, and (iii)
it decays to zero for larger gap sizes, without any discon-
tinuous jumps. The physical idea of this model is de-
scribed in [45]. The above properties are fulfilled with
the mathematically simple model of a parabolic spring
force

Fcoh =

{
−kcoh(ζ2

n − ζnλ)n 0 < ζn ≤ λ
0 otherwise ,

(8)

where kcoh = AHReff

ζ0λ3 denotes the stiffness constant, λ

represents the range over which the cohesive force is dis-
tributed, AH is the Hamaker constant, ζ0 is the minimal

separation distance [61] and Reff = RpRq/(Rp+Rq) is the
effective radius. The cohesive range λ can be interpreted
as a Debye length.

The dimensional form (8) still requires the proper pa-
rameterization of the empirical parameters AH and ζ0.
However, we can replace these empirical constants by
writing (8) with respect to the maximum cohesive force
max(||Fcoh,50||). Choosing the median grain diameter
D50, the buoyancy velocity us =

√
g′D50, the charac-

teristic time scale τs = D50/us and the characteristic
mass m50 = ρfπD

3
50/6, the characteristic force scale

for particles settling under gravity in an otherwise qui-
escent fluid becomes the specific weight m50g

′, where
g′ = (ρp − ρf )g/ρf denotes the reduced gravity. After
normalizing (8) with the specific weight we obtain

Fcoh =

{
−Co 8Reff

λ2 (ζ2
n − ζnλ)n 0 < ζn ≤ λ

0 otherwise .
(9)

Hence, the characteristic parameter to define cohesive
forces becomes the cohesive number

Co =
max(||Fcoh,50||)

m50g′
. (10)

It represents the ratio of the maximum cohesive force for
particles of diameter D50 to the characteristic gravita-
tional force scale of the problem [62].

We can transfer the DLVO-theory (7) to our sim-
pler model (9) by choosing the following parameters: (i)
AH = 1 · 10−20 J, which reflects silica materials in wa-

ter according to [64], (ii) Reff =
RpRq

Rp+Rq
=

Rp

2 = 5µm

for monodisperse silt particles of grain size Dp = 20µm,
(iii) ζ0 = 4.7nm; (iv) we determine κ using the approxi-
mation for the monovalent salt sodium chloride given by

[65] as κ = 0.304·10−9m−1

|z|
√
Csalt

in meters, where z is the va-

lency of the salt and Csalt is the salt concentration in
mol/liter. Here, we choose the salinity of sea water with
35ppt. These parameters yield Csalt = 0.6mol/liter and
κ = 0.393nm; (v) Since a key feature of our model is to
have vanishing forces for particle contact, i.e. ζn = 0,
we set AR = AH/(12ζ2

0 ). The DLVO curve for this
case is displayed in figure 1. In this scenario, the to-
tal force FDLVO follows the attractive forces with a dis-
tinct minimum at ζn ≈ 1nm. The minimum force is
|min(FDLVO)| = 3 · 10−10N, while the weight becomes
Fg = π g(ρp − ρf )D3

p/6 = 6.78 · 10−11N, where we
set gravitational acceleration, particle density, and fluid
density to be g = 9.81m/s

2
, ρp = 2650kg/m

3
, and

ρf = 1000kg/m
3
, respectively. This yields a cohesive

number of Co = |min(FDLVO)|/Fg = 5.0. We found our
parabolic spring model to be a good approximation of
the curve shown by the solid line in figure 1.

Consequently, the cohesive number used in our simu-
lations corresponds to the properties of fine to medium
sized grains of silt settling in salt water. Note that
the present approach can easily be extended to different
types of cohesive sediment given that the temporal dis-
cretization is able to resolve the parabolic spring model
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FIG. 1. DLVO curve for Dp = 20µm, AH = 1 · 10−20, ζ0 =
4.7nm, and Csalt = 35ppt.

during particle-particle interaction. In such case, the
parameter needed to determine the cohesive number is
|min(FDLVO)|, i.e. the maximum attractive force. To
investigate biofilms, for example, one can no longer use
the present analogy of the DLVO-theory. Instead, the
maximum attractive force would have to be determined
experimentally [63].

C. Simulation Scenario

To explore the influence of cohesive forces on the sed-
imentation process of a large, polydisperse ensemble of
particles, we further analyze the simulation data first pre-
sented in Vowinckel et al. [45], who investigated the hin-
dered settling of silt particles. In this reference, a poly-
disperse mixture of particles with a relative density of
ρp/ρf = 2.6 was placed in a tank of viscous fluid to obtain
an initial volume fraction of φv = Vs/V0 = 0.155 (Figure
2a), where Vs denotes the volume occupied by the parti-
cles and V0 = Lx×Ly×Lz = 13.1D50×40.0D50×13.1D50

is the computational domain size.
Consistent with the experiments of [37], we chose a

Reynolds number of Re = usD50/νf = 1.35. The size
distribution of the polydisperse particles was continu-
ous with a ratio of max{D}/min{D} = 4 obeying a log-
normal size distribution, which yields min{D}/D50 = 0.6
and max{D}/D50 = 2.4 for the smallest and largest par-
ticle, respectively. A total of 1261 particles was placed
randomly to obtain an almost uniform initial profile of
φv (Figure 2b). We conducted preliminary tests of dry
settling, i.e. neglecting fluid forces, with varying particle
distributions and domain sizes to investigate the depen-
dency of the final deposit on the initial particle distribu-
tion. With the present domain being 40D50 in height,
we found no dependence of the final configuration on the
initial particle distribution, either. We impose a no-slip

condition at the bottom wall (y = 0) and at the par-
ticle surfaces as well as a free-slip condition at the top
wall (y = Ly), along with periodic boundary conditions
in the wall-parallel x- and z-directions. This means that
sidewalls are absent in our numerical simulations. Grav-
ity is pointing towards the bottom wall in the negative
y-direction. The minimum, median and maximum pri-
mary particle sizes are discretized by min{D}/h = 11,
D50/h = 18.25 and max{D}/h = 44 grid cells, respec-
tively. It was shown by Vowinckel et al. [45] by a com-
parison to the analytical particle settling velocity that
the grid resolution of our computational domain is fine
enough to capture the settling behavior of all particle
sizes at the particle Reynolds numbers encountered in
the simulations presented in section IV. We spread the
cohesive forces over a shell of thickness λ = h, but it was
shown by Vowinckel et al. [45] that the simulation results
are not sensitive to this choice provided that λ < Rp.

Two simulations were performed for different values of
the cohesive number: (i) cohesionless grains with Co = 0,
and (ii) cohesive sediment with Co = 5. For both sim-
ulations, the particles with identical initial particle dis-
tributions were released from rest in a quiescent fluid to
guarantee a straightforward comparison of (i) and (ii).
Subsequently, the particles settle under the influence of
gravity undergoing different settling behavior due to co-
hesive forces. Following the scaling argument of [60] pre-
sented in section IIB above, Co=5 corresponds to the
properties of fine to medium sized silt in a saline am-
bient, i.e. the settling of macroscopic silica particles in
ocean water. For example, choosing a median grain size
of D50 = 25µm renders the simulation domain 1mm tall.
As will be shown in section IV below, this choice allows
for a simulation domain that is large enough to capture
all relevant processes of particle settling so that the re-
sults can be evaluated along the lines of the ‘effective
stress concept’.

III. STRESS BALANCE FOR THE
FLUID-PARTICLE MIXTURE

To understand the settling and the consolidation of the
fluid-particle mixture, we analyze the balance of the wall-
normal stress components for the two phases separately.
According to Biegert et al. [46] and Biegert [47], we can
write the momentum balance of the fluid (2) in an in-
tegral sense to obtain fluid stresses for a control volume
ΩCV that extends from the top-wall (y = Ly) to an arbi-
trary height y in the vertical direction and encompasses
the entire domain in the x- and z-directions (figure 3).
We can write the integral form of (2) as∫
Ω+

CV

ρf
∂u

∂t
dV +

∫
Γ+
CV

ρf (uu) · n+ dA =

∫
Γ+
CV

τ+ · n+ dA,

(11)
where Γ+

CV = Γw ∪ Γs ∪ Γ+
y ∪ ΓpCV comprises all sur-

faces of the control volume shown for a single particle as
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FIG. 2. Initial settling behavior at t = 17.6τs. (a) Particle distribution, (b) particle volume fraction, and (c) vertical profiles
of particle and fluid stress for Co = 0 normalized by the total stress of the entire computational domain (ΩCV = V0) according
to (22).

FIG. 3. Schematic of the control volumes for (a) the particle
interior and (b) the fluid surrounding the particle.

a minimal example in Figure 3b and n+ is the normal
vector pointing outwards from Ω+

CV . In addition, we re-
cast the pressure and viscous terms using the fluid stress
tensor, τ+ = −pI+µf (∇u+(∇u)T ), where I is the iden-
tity matrix. Here we neglect the effect of the immersed
boundary force, assuming that it is implicitly handled by
the fluid stress at the fluid/particle interface.

All of these terms except for the fluid stress at the par-
ticle surface are straightforward to calculate. However,
we can evaluate the fluid stress indirectly using the IBM
force, as was done to obtain the particle equations of mo-
tion (4) and (5). That is, the IBM force acts as a jump

in stress:∫
LCV

fIBM dV =

∫
Γp
CV

τ+ · n+ dA+

∫
Γp
CV

τ− · n− dA, (12)

where we are careful to distinguish between n+, the out-
ward surface normal for the volume Ω+

CV , and n−, the

outward surface normal for the volume Ω−CV , which point
in opposite directions.

To evaluate the fluid stress τ− · n− in the particle in-
terior, we can perform a stress balance on Ω−CV (figure
3a). The integral form of the Navier-Stokes equations
together with divergence theorem give us∫
Γ−
y

ρf (uu)·n− dA =

∫
Γp
CV

τ− ·n− dA+

∫
Γ−
y

τ− ·n− dA. (13)

Using (13) together with (12) and (11), we obtain∫
Ω+

CV

ρf
∂u

∂t
dV

︸ ︷︷ ︸
Acceleration term

∫
Γw

τ+ · n+ dA+

∫
ΩCV

fb dV

︸ ︷︷ ︸
External force

=

−
∫
Γy

τ · ndA+

∫
Γy

ρf (uu) · ndA

︸ ︷︷ ︸
Fluid force

−
∫
LCV

fIBM dV

︸ ︷︷ ︸
Particle force

, (14)

where ΩCV = Ω+
CV ∪Ω−CV , Γw is the area of the top wall,

and Γy = Γ+
y ∪ Γ−y .
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Using the definition of the horizontal, superficial aver-
age [66],

〈θ|y〉 =
1

LxLz

∫ Lz

0

∫ Lx

0

θ(x, y, z, t) dxdz, (15)

we can rewrite (14) for the y-velocity component as

1

Aw

∫
ΩCV

ρf
∂v

∂t
dV

︸ ︷︷ ︸
Local acceleration

+
〈
p|Ly

〉
+ 2νfρf

〈
∂v

∂y

∣∣∣∣
Ly

〉
︸ ︷︷ ︸

Stress on the top wall

=

−〈p|y〉+ 2νfρf

〈
∂u

∂y

∣∣∣∣
y

〉
− ρf 〈vv|y〉︸ ︷︷ ︸

Fluid stress

−
∫ Ly

y

〈fIBM ,x 〉dy︸ ︷︷ ︸
Particle stress

, (16)

where Aw = LxLz is the area of the bottom wall. For
this derivation, we have used the fact that µf and ρf are
constant throughout the domain.

This yields the stress balance of the fluid phase for the
horizontally averaged, vertical component of the normal
stress

σt,f = σh,f − σw,f + σi,f . (17)

Here,

σt,f (y, t) =
1

Aw

∫
ΩCV

ρf
∂v

∂t
dV (18)

is the stress due to local acceleration. Further,

σw,f (t) = −〈pw|Ly 〉+ 2ρfνf

〈
∂v

∂y

∣∣∣∣
Ly

〉
(19)

is the hydrodynamic stress on the top wall. The angular
brackets denote horizontal averaging. The hydrodynamic
stress due to fluid motion becomes

σh,f (y, t) = −〈p|y〉+ 2νfρf

〈
∂v

∂y

∣∣∣∣
y

〉
− ρf 〈vv|y〉 (20)

which comprises pressure and viscous forces as well as
convection. Finally,

σi,f (y, t) = − 1

Aw

∫
Sint

τ · n dA (21)

is the interfacial stress exerted on the fluid by the par-
ticles, where Sint is the total area of the fluid particle
interface enclosed in the control volume ΩCV . In our
simulations, we found that σw,f −σh,f = σi,f holds at all
y-locations and all times (e.g. figure 2c). Furthermore,

the fluid stress was dominated by the pressure term, so
that we conclude σw,f − σh,f ≈ 〈p|y〉, provided that vis-
cous stresses and stresses due to convection are small.
Since the hydrostatic component is subtracted out for
(2), p is equivalent to the excess pressure in the water
column [27].

For the particle phase, we sum over all particles within
the control volume for the different terms in the particle
equation of motion (4) to get integral quantities:

1

Aw

∑
NCV

mp
dvp
dt︸ ︷︷ ︸

=〈σt,p〉y

=
1

Aw

∑
NCV

∮
Γp

τyy · ny dA︸ ︷︷ ︸
=〈σi,p〉y=〈p|y〉

+

1

Aw

∑
NCV

Vp (ρp − ρf ) gy︸ ︷︷ ︸
=〈σtot〉y

+
1

Aw

∑
NCV

Fc,p,y︸ ︷︷ ︸
=〈σeff〉y

, (22)

where NCV is the number of particles enclosed in ΩCV
and the operator 〈·〉y indicates the volume average over
ΩCV , which is to be distinguished from the horizontal
averaging operator 〈·〉 defined by equation (15).

The explicit link between the two phases via the IBM
yields that σi,f is equal to the static excess pressure (cf.
figure 2c). Hence, (17) and (22) are coupled through
the equality −σi,f = 〈p|y〉 = 〈σi,p〉y. Using this equal-
ity and assuming 〈σt,p〉y to be small, we can interpret
(22) in terms of the ’effective stress concept’ [26]. It was
described in this reference that

−〈σtot〉y = 〈p|y〉+ 〈σeff〉y , (23)

where −〈σtot〉y is the weight of the particles submerged
within ΩCV , 〈p|y〉 is the pore water pressure at location
y and 〈σeff〉y is the effective stress due to particle inter-
actions. For this reason, we normalize all stresses by the
total submerged weight of all the particles 〈σtot〉0 in the
following section.

The weight of the sediment can be computed in a
straightforward manner:

〈σtot〉y = (ρp − ρf )g

∫ Ly

y

φv(y, t)dy , (24)

where φv is particle volume fraction, and Ly is the length
of the domain in y-direction. The pressure is computed
as the horizontal average in plane y, which is the lower
bound of the control volume under consideration:

〈p|y〉 =
1

Aw

∫ Lz

0

∫ Lx

0

p(x, y, z, t)dxdz . (25)

To compute depth-resolved distributions of effective
stresses, we introduce a horizontal averaging operator
that uses a step function to distinguish between parti-
cles and fluid:

〈σeff〉y =
1

Aw

∫ Lz

0

∫ Lx

0

∆Vp
Vp

Fc,p,y(x, y, z, t) dxdz ,

(26)
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FIG. 4. Particle configurations during the settling process. (a) Co = 0 and (b) Co = 5. The color scheme reflects the vertical
velocity, and the solid black line denotes the contour of vanishing vertical fluid velocity.
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where Aw is the area of the bottom wall and ∆Vp is the
volume of particle p cut by the horizontal slice, and Vp
is the total volume of this particle. This operator is very
similar to the one used by [45] to compute averages of
particle velocities.

IV. RESULTS

A. Settling Behavior

After the initial release of the particles from rest, the
grains start to settle towards the bottom. As shown by
Vowinckel et al. [45], the kinetic energy of the particles
peaks at t = 17.6τs. The stress balance for this moment
is shown in Figure 2c. Since both the cohesionless and
the cohesive simulation are initialized identically, their
results collapse for this initial stir-up phase. During this
phase, particles have not yet settled out and all the static
pressure induced by the particle weight is transferred to
the fluid pressure. As the particle distribution is still
fairly uniform (figures 2a and b), the two profiles shown
in figure 2c are approximately linear in the y-direction.
The excess pore pressure builds up throughout the water
column to reach a balance with 〈σtot〉0 at the bottom
wall.

Figure 4 shows the settling process over time as snap-
shots taken at t/τs = 25%Tsim, t/τs = 50%Tsim and
t/τs = 100%Tsim, where Tsim is the total simulation time.
The figures show both, the instantaneous particle distri-
bution and a translucent contour slice cutting through
the front of the domain showing the vertical fluid veloc-
ity component. Particles are also colored by their wall-
normal velocity component following the color scheme of
the contour slices. Since particles appear as opaque ob-
jects, the grains in the front are blocking the view on
the particles in the back of the domain. Note, however,
that since we are resolving the motion of each particle
individually, the number of particles remains constant
throughout the simulations.

As particles start to settle, they replace fluid at the
bottom of the tank and generate an upward counterflow
(red regions in figure 4 at t = 120τs). For the current sim-
ulations, this counterflow is sufficiently strong to sweep
smaller particles upward. This effect is more pronounced
for cohesionless particles. The upwelling fluid represents
one mechanism for hindered settling and for the segrega-
tion of the grain sizes for very large water columns [37].
Indeed, it was shown by Vowinckel et al. [45] that the
present data yields excellent agreement with the classi-
cal hindered settling functions of Richardson and Zaki
[12] and Winterwerp [14].

As time progresses the impact of cohesive forces on the
settling behavior becomes evident (figure 4 at t = 240τs).
The cohesive sediment starts to built aggregates as parti-
cles attach to each other once they come into close enough
contact. The flocculation process is exemplified in figure
5, which shows a zoom into figure 4b at t = 240τs. For

FIG. 5. Zoom into the lower third of the domain with settling
cohesive sediment (figure 4b at t = 240τs).

the current physical configuration, cohesive particles are
able to form chains of several particles with varying di-
ameter. Hence, small cohesive particles that bond to
bigger ones move with the settling velocity of the large
particle. As a result, smaller particles settle faster than
individual primary particles would. This observation is
in line with experimental evidence [67–69].

This observation is addressed in a statistical sense in
figure 6. Figure 6 shows the number of settling parti-
cles ns (conditioned by vp > 0.01us). Initially, particles
start to accelerate and those that were initially close to
the bottom are immediately filtered out. Later in time,
a steady decrease of ns over time can be observed for
the cohesionless sediment, whereas for cohesive sediment
ns shows a slight increase reaching a local maximum at
t ≈ 100τs. During this time, particles are moving rather
fast through the domain, and once they get into contact,
they form larger aggregates such as the one depicted in
figure 5. Subsequently, the number of settling particles
decreases more rapidly for cohesive sediments as the ag-
gregates settle faster than the noncohesive sediments.

The aggregation process is further addressed by count-
ing all particle-particle interactions of all settling parti-
cles. Throughout the entire simulation time, the aver-
age number of direct contacts ncon and the average num-
ber of short-range interactions ncoh (within the distance
λ) remains fairly constant for cohesionless grains. Note
that for this type of sediment, short-range interactions
are influenced by lubrication forces only. Cohesive sedi-
ment, on the other hand, forms larger aggregates with up
to three different particles on average considering direct
contacts and cohesive short-range interaction combined.
As larger aggregates settle faster than individual parti-
cles, these aggregates make contact with the bottom wall
earlier in time, so that the number of particle-particle
interactions summed over all settling particles starts to
decay at t ≈ 300τs. As the cohesive sediment settles
out faster than the noncohesive sediment, the counter-
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flow decays earlier in time (figure 4b t = 480τs).

B. Transition from Hindered Settling to
Consolidation

The enhanced settling speed for Co = 5 is confirmed
by the horizontally averaged concentration profiles plot-
ted over time (Figure 7a and b) following the analysis of
Been and Sills [17]. Up to t = 120τs, the volume frac-
tion contours for the two simulations are nearly identi-
cal, as cohesive forces have not yet had sufficient time to
cause a noticeable change. As time progresses, two fronts
become clearly visible for both simulations. The upper
front marks the transition between the clear fluid and
the suspended sediment, whereas the second front shows
the transition between the suspended sediment and the
sediment bed. The isoline marking this front is called the
gelling concentration [14]. Since cohesive forces result in
the formation of flocs with larger settling speeds, parti-
cles accumulate at the bottom of the tank more quickly.
At t ≈ 350τs, the two fronts merge into one for the simu-
lation data of the cohesive sediment. This point in time is
called the point of contraction (PoC) and marks the tran-
sition between hindered settling and consolidation [27].
The cohesionless sediment, on the other hand, has not
yet reached the PoC by the end of the simulation.

The transition from hindered settling to consolidation
can also be analyzed in terms of the effective stress con-
cept (23). To this end, we compute all stress compo-
nents for ΩCV = V0, i.e. the entire computational do-
main. To evaluate the effective stress, we compute the
normal stresses due to contact forces in the wall-normal
direction. Note that we also computed the normal stress
components in the periodic x- and z-directions as will
be shown in section IV D below. We found these two
wall-parallel components to be identical, which yields
transversal isotropic conditions. This proves that the
width of the simulation domain is large enough to cap-
ture all relevant effects of particle-particle interactions in
these directions.

We plot all components entering the effective stress
balance (equation (23)) over time in figure 7c. It was
shown in section IV A that particles are deposited on
the bottom more rapidly for cohesive sediment. These
dynamics are also reflected in the stress balance of the
fluid-particle mixture. Recall that 〈p|0〉 is the fluid stress
acting on the particle phase, which after the initial phase
is equivalent to the weight of those particles that are still
suspended [17, 24]. On the other hand, 〈σeff〉0 captures
all particle-particle interactions. Since the forces between
two interacting particles in suspension are opposite and
equal, these do not cause a net force on the bottom wall.
Thus, 〈σeff〉0 reflects the weight of those particles that
are supported by the external contact forces with the
bottom wall. After the initial increase of 〈p|0〉 up to
〈σtot〉0, when all of the particle weight is supported by
fluid forces (cf. figure 2c), 〈p|0〉 decays over time, whereas

〈σeff〉0 increases at the same rate. Hence, less and less of
the particle weight is supported by fluid forces, and more
and more of it is supported by interparticle forces within
the sediment bed, which illustrates the transition from
hindered settling to consolidation [27]. While 〈p|0〉 and
〈σeff〉0 behave very similarly for cohesive and noncohe-
sive sediment until t = 180τs, cohesive sediment experi-
ences a systematic shift at this time that illustrates the
enhanced settling due to flocculation. Particles that as-
semble in flocs are seen to make contact with the wall at
earlier times. Apart from the initial increase, we obtain
〈p|0〉 + 〈σeff〉0 ≈ 〈σtot〉0, whereas the rate of change for
both components is approximately linear. This suggests
that the local acceleration does not add to the stress bal-
ance of the particle motion even though the processes un-
der investigation are inherently transient. Interestingly,
we obtain 〈σeff〉0 = 0.71〈σtot〉0 for the cohesive sediment
at the PoC (t ≈ 350τs). This is the same value observed
for cohesionless sediment at the end of the simulation
time t = 480τs, where the PoC has not been reached
(figure 7a), but the height of the cohesive sediment bed
is much thicker compared to the cohesionless sediment
bed. Hence, comparing figures 7a and b, we conclude
that flocculation promotes larger pore spaces due to dif-
ferent vertical distributions of effective stresses.

While (22) provides a measure for the volume averaged
stresses, we can also evaluate the stress terms as vertical
profiles for all components of (23). The instants shown
in figure 8a correspond directly to the situations in fig-
ure 4. As expected, we obtain 〈p|y〉 = 〈σtot〉y far away
from the wall, where all particles are fully supported by
the fluid. Initially, 〈p|y〉 decreases linearly with height
(t = 120τs). Whereas 〈σtot〉y decreases linearly in the
suspended region, the profile for cohesive sediment be-
comes convex as flocs start to form, which indicates an
accelerated settling process.

The increase of the sediment bed thickness is shown by
regions with 〈σeff〉y > 0. Again, 〈σeff〉y increases linearly
with height. In addition, 〈σeff〉y and 〈p|y〉 add up to
〈σtot〉y by an out-of-balance of less than 1%, illustrating
the capability of our method to explicitly compute the
stress balance of the entire fluid-particle mixture.

C. Parameterization of the Gibson Model

The Gibson equation (1) was derived by [24] for
the simultaneous treatment of sedimentation and self-
weight consolidation by using continuity principles and
the Darcy-Gersevanov law:

(1− φv)(vf − vp) = −k 1

gρf

∂〈p|y〉
∂y

, (27)

where vf is the horizontally averaged vertical fluid veloc-
ity and vp is the horizontally averaged particle velocity.
Solving (1) requires constitutive relationships for the pa-
rameters k and σeff [70]. According to [24], it has been a
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FIG. 6. a) Number of settling particles (vp > 0.01us) over time. b) Number of direct contacts ncon and short-range interactions
ncoh for all settling particles.

common assumption that k and σeff depend on the vol-
ume fraction only, even though it was discussed in this
reference that the assumption can not hold for σeff, which
must be zero in a suspension while φv is not.

We can test this hypothesis by computing k and σeff

based on (27) and (22). If k and σeff were functions of φv
only, then the data from different instants in time would
collapse on a single master curve. This is illustrated in
figure 8b for the data plotted in figures 4 and 8a. The
curves for the different quantities and different times do
not collapse and the lines are highly convoluted in some
regions. While this is due to the semi-logarithmic plot
style as k and σeff approach zero, we can clearly iden-
tify three characteristic regions for both quantities: (i)
a suspension region (φv < 0.25) with a high permeabil-
ity, which decreases rapidly as φv decreases. This be-
havior is most pronounced at t/τs = 120, when most
of the particles are still in suspension. Since there are
hardly any particle-particle interactions in this region,
σeff approaches zero. In addition, the lines of k and σeff

are highly convoluted around φv ≈ 0.15. Hence, as ex-
pected, the assumption of k and σeff being a function
of the volume fraction only does not hold in this region.
(ii) A consolidating region (0.25 < φv < 0.58) with an
exponential decay of k and increase of σeff, respectively,
as φv increases. Hence, this region serves very well to
derive scaling laws for k and σeff. (iii) A jamming re-
gion (φv = 0.58), where large values for σeff represent
the layer formed at the very bottom of the domain that
holds the weight of the entire overlying sediment. As the
fluid flow ceases and the soil becomes fully consolidated,
k approaches zero as well.

As a result, we obtain a mean permeability of k/us =
5.7 · 10−4 within the sediment bed. We can convert
the nondimensional permeability into dimensional quan-
tities choosing D50 = 20µm, ρp = 2600kg/m

3
, ρf =

1000kg/m
3
, and g = 9.81m/s

2
. This yields us =

√
D50g(ρp − ρf )/ρf = 1.8 · 10−2m/s and a dimensional

value of k = 1 · 10−5m/s. This value corresponds very
well to the permeability of a semi-pervious medium such
as very fine sand or silt [71], which is exactly in line with
the chosen values for Co and Re that are meant to rep-
resent primary particles with a median grain size of silt.

Le Hir et al. [28] and Grasso et al. [29] have used power
laws as constitutive relationships to parametrize k and
〈σeff〉. Based on the observation above, we can imme-
diately conclude that fitting a power law function over
all three regions will result in a poor fit. Hence, we per-
formed a regression of a power law for regions (ii) and (iii)
in figure 8b for all data that are marked by the circles.
The fitted functions have different coefficients for cohe-
sive and noncohesive sediments. A fair agreement for
region (ii) can be achieved, but region (iii) is not well de-
scribed for k. The coefficient of determination R2 ranges
between 0.67 and 0.81, which is satisfactory. Hence, the
presented data highlights the capability of our simulation
approach to improve parameterization strategies for the
Gibson equation. However, larger simulations for a wider
range of cohesive numbers and larger Reynolds numbers
are needed to obtain a better scaling of k and σeff.

D. Interparticle Stress

While the analysis in section IV C provides insight into
how the support of the granular weight transitions from
hydrodynamic forces to collision forces with the bottom
wall, it does not characterize internal granular stresses
parallel to the wall since sidewalls are absent in our nu-
merical simulations. As a consequence, all interparti-
cle forces are opposite and equal in this direction. On
the other hand, the weight of the particles Fg does not
cancel out for contacts in the wall-normal direction so
that contact forces at a given height reflect the weight
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FIG. 7. Contours of the horizontally-averaged particle volume fraction φv over time: (a) cohesionless sediment and (b) cohesive
sediment. (c) Time evolution of the different components of the particle stress balance acting on the bottom wall.
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FIG. 8. (a) Vertical stress distributions reflecting the configurations illustrated in Figure 4; (b) Permeability k and effective
stress 〈σeff〉y as a function of particle volume fraction φv to parameterize the Gibson equation (1). Circles mark the data used
to fit the regression function (‘Reg’) given in the figure.

of the overlying sediment. We applied operator (26) to
all contact forces summarized by equation (6). We de-
note σ⊥ = σyy as the normal stress acting in y-direction,
whereas σ‖ = 1

2 (σxx + σzz) denotes the normal stresses
acting parallel to the wall. Having this analysis in place,
we can further subdivide the effective stress into its com-
ponents comprising stresses due to direct contact σd, un-
resolved lubrication σl, and cohesion σcoh.

Since we focus on the sediment deposit, figures 9a - c
show a close-up of the bottom part of the domain. For
cohesionless sediment, the data was taken at the final
simulation stage, i.e. t = 480τs. At this stage, 71% of
the particle weight is supported by contact forces. For a
meaningful comparison, we take the data from the cohe-
sive sediment simulation at t = 346τs, when it has the

same value of 〈σeff〉0. For both simulations, it becomes
immediately obvious that stresses due to direct contact
(Figure 8a) are one order of magnitude larger than the
other two components (Figure 8b and c). As expected,
the nearly linear profiles of σd,⊥ reflect effective stress
as the weight of the sediment beds. The steeper slope
of the curve for cohesionless sediment is consistent with
the fact that it is packed much more densely. The hor-
izontal component σd,‖ shows significant stresses within
the sediment deposit that peak at y/D50 ≈ 2. These
are more pronounced for cohesive grains. Throughout
the sediment column, unresolved lubrication stresses re-
main small (Figure 8b). This holds for both simulations
and is expected as most of the lubrication forces are re-
solved by the IBM. Figure 8c shows significant cohesive
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FIG. 9. Zoom into the horizontally averaged interparticle stress at the time when σc,p/σg,p = 0.71 corresponding to t = 480τs
and t = 346τs for cohesionless and cohesive sediments, respectively: (a) direct contact, (b) unresolved lubrication, and (c)
cohesion.

forces throughout the entire sediment deposit. Interest-
ingly, the vertical component σcoh,⊥ is smaller than the
horizontal component σcoh,‖. From a physical point of
view, the horizontal intergranular stress due to cohesion
σcoh‖ prevents particles from arranging themselves into
the densest packing formation, while the vertical cohesive
stress σcoh,⊥ works towards a more rapid consolidation
of the sediment. In the present simulation the horizontal
component exceeds the vertical one, and we conclude that
even small cohesive forces enable the deposited particles
to remain in flocs as they are subjected to the weight of
the particles settling from above. This effect accounts for
the lower sediment volume fraction at the bottom of the
tank for the cohesive sediment simulation (Figure 7).

V. CONCLUSIONS

The present study successfully applied phase-resolved
simulations to the situation of consolidation of freshly
deposited cohesive and non-cohesive sediment. To this
end, we have derived a stress balance based on the gov-
erning equations that makes a direct connection to the
effective stress concept. The simulations fully resolve the
three-dimensional flow field and provide an efficient way
for excluding sidewalls from the analysis by employing
periodic boundary conditions. The highly resolved data
yields a physical interpretation of the effective stress as
the part of the sediment weight that is supported by ex-
ternal contact forces with the bottom wall, as well as a
full parametrization of the Gibson equation.

An analysis of the intergranular stresses clarified the
respective roles of direct contact, unresolved lubrication,

and cohesive forces during consolidation and dewatering
of a freshly deposited bed. For the presented data, we
find that direct contact forces dominate over the other
two components. As a result of the attractive Van der
Waals forces, cohesive sediment experiences larger inter-
granular stresses due to direct contact forces. Within
the sediment deposit, cohesive forces yield intergranular
stresses that lead to larger pore spaces than obtained for
the consolidation of cohesionless sediment.

Hence, the first test case presented here encourages
further studies with larger physical domains and a larger
number of particles to achieve more realistic settling con-
ditions. For example, larger domains could accommodate
three-dimensional instabilities of particle-induced viscous
fingering in the flow field [30, 31] and the stress balance
presented here could further enhance the development of
two-phase flow model closures such as the µ(I)-rheology
[73, 74] or kinetic theory [75]. In addition, thicker sed-
iment beds could lead to self-weight consolidation in a
creeping motion [19, 72]. To extend the present simu-
lation approach from macroscopic silica grains towards
aggregates of mud, a more realistic description of the
particles is needed [6]. For example, the physical prop-
erties of the spherical particles used in the present study
could be extended towards particles that are porous and
compressible [76], so that a description of creeping con-
solidation and dewatering becomes possible.
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