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The present study evaluates the capabilities of a low-order flow model based on the resolvent
analysis of McKeon & Sharma (J. Fluid Mech., vol. 658, 2010, pp. 336-382) for the purpose of
controller design for drag reduction in wall-bounded turbulent flows. To this end we first show
that the model is able to approximate the change in mean wall shear stress, which is commonly
used as measure for drag reduction. We also derive an analytical expression that decomposes the
drag reduction in internal flows into terms that can be predicted directly by the model, and terms
that allow for quantification of model error if high-fidelity data is available. We then show by
example of varying-phase opposition control in a low Reynolds number turbulent channel flow that
the drag reduction predicted by the resolvent model captures the trend observed in direct numerical
simulation (DNS) over a wide range of controller parameters. The DNS results confirm the resolvent
model prediction that the attainable drag reduction strongly depends on the relative phase between
sensor measurement and actuator response, which raises interesting flow physics questions for future
studies. The good agreement between resolvent model and DNS further reveals that resolvent
analysis, which at its heart is a linear technique, is able to approximate the response of the full
nonlinear system to control. We also show that in order to make accurate predictions the model
only needs to resolve a small subset of the DNS wavenumbers and that the controlled resolvent
modes obey the Reynolds number scaling laws of the uncontrolled resolvent operator derived by
Moarref et al. (J. Fluid Mech., vol. 734, 2013, pp. 275-316). As a consequence, our results suggest
that resolvent analysis can provide a suitable flow model to design feedback flow control schemes for
the purpose of drag reduction in incompressible wall-bounded turbulent flows even at technologically
relevant Reynolds numbers.

I. INTRODUCTION

Turbulence may be aesthetically pleasing to the observer’s eye, yet it is undesired in most engineering applications.
For example, turbulent drag accounts for more than 50% of the total drag force exerted on a large oil tanker [1]
and thus a reduction of the turbulence level by just a few percent could lead to tremendous energetic and monetary
savings. The potential benefits associated with targeted manipulations of turbulent flows have spurred enormous
interest in the field of flow control for well over a century and while important advances have been made in various
aspects, equally many questions remain open even at the very fundamental level (see for example Gad-el-Hak [2]).
One important open question of the field is the formulation of tractable and effective flow models to enable systematic
controller design for various control objectives. The present study aims at contributing towards this question and
assesses the potential of a flow model based on the resolvent analysis of McKeon & Sharma [3] for the purpose of
controller design. We limit the scope of this study to the class of incompressible wall-bounded turbulent flows, to the
control objective of drag reduction and to the mechanism of active feedback flow control. The resolvent model may
also be useful to design controllers for other types of flows, objectives and control mechanisms, but the assessment of
such applications is beyond the scope of this study.

A. Resolvent analysis

Research efforts over the past 25 years have shown that linear mechanisms play a key role in the transition to tur-
bulence (among others, Trefethen et al. [4]) and in the dynamics of fully-developed wall-bounded turbulent flows (for
example, Butler & Farrell [5]). One line of work devoted to these linear mechanisms in wall-bounded turbulence con-
siders the amplification characteristics of the forced linearlized Navier-Stokes operator. Different analysis techniques
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and types of forcing have been proposed in the past (see McKeon [6] for an overview) and the resemblance of the as-
sociated linear responses to different features of turbulent flows has underscored the importance of linear mechanisms
and the robustness of the Navier-Stokes system to the type of forcing. The foundation for this study is one particular
analysis of the forced linear Navier-Stokes system, namely the resolvent analysis of McKeon & Sharma [3]. Under the
resolvent formulation the full nonlinear Navier-Stokes equations (NSE) are rewritten as a linear operator that maps
the nonlinear advection term to velocity and pressure fluctuations. Unique to this approach is that the nonlinear
term is viewed as intrinsic forcing to the remaining linear system and that an efficient representation of the linear
operator is obtained from identifying the directions which are most amplified by the operator in an energy norm sense.
The resulting decomposition of the operator lends itself to low-order modeling and will be at the heart of the flow
model considered here. A clear understanding of the method and results of this study requires basic familiarity with
resolvent analysis and we therefore briefly review its key elements below by example of a fully-developed turbulent
channel flow with periodic boundary conditions in the wall-parallel directions.

Following McKeon & Sharma [3] we first Reynolds decompose all flow quantities into a spatiotemporal mean (.) and
turbulent fluctuations (.)′. For example, u(x, y, z, t) = u(y) + u′(x, y, z, t) where x, y and z denote the streamwise,
wall-normal and spanwise coordinate, respectively, with corresponding components u, v and w of the velocity vector
u and t represents time. The streamwise mean velocity profile u(y) is assumed to be known (from an experiment,
numerical simulation or eddy viscosity model), which allows us to restrict the problem to the turbulent fluctuations.

The model development progresses by seeking an optimal basis in all three spatial dimensions and time, where the
notion of optimality is defined in an energy norm sense: in each dimension, we seek that basis whose first N basis
functions capture more kinetic energy |u|2 (under an L2-norm) of the flow than the first N functions of any other basis.
It can be shown analytically that the Fourier basis is the optimal one in the statistically homogeneous streamwise and
spanwise directions and in the stationary temporal coordinate [7]. This motivates expanding the fluctuating velocity
and pressure (p′) fields in terms of Fourier modes[

u′(x, y, z, t)
p′(x, y, z, t)

]
=

∞∑
l=−∞

∞∑
m=−∞

∫ ∞
−∞

[
û(l,m, ω, y)
p̂(l,m, ω, y)

]
ei(

2π
Lx
lx+ 2π

Lz
mz−ωt) dω, (1)

with coefficients [û, p̂]T . Recall that the domain is periodic in x and z, with period Lx and Lz, respectively. The
periodicity restricts the streamwise (kx) and spanwise (kz) wavenumber to integer multiples of the fundamental
wavenumber, kx = l (2π/Lx), kz = m (2π/Lz) with {l,m} ∈ Z, and reduces the Fourier transforms in these directions
to Fourier series. The temporal coordinate is unbounded and therefore ω ∈ R. A single Fourier mode can be
characterized either by its streamwise and spanwise indices and temporal frequency [l,m, ω]T or by its wavenumber
vector k = [kx, kz, ω]T and both notations will be used interchangeably when working in Fourier domain.

The fluctuating part of the NSE can be written for each mode with k 6= 0 as

û(k, y)
v̂(k, y)
ŵ(k, y)
p̂(k, y)

 =


−iω + ikxu− ∆

Reτ
du
dy 0 ikx

0 −iω + ikxu− ∆
Reτ

0 d
dy

0 0 −iω + ikxu− ∆
Reτ

ikz
ikx

d
dy ikz 0


−1

︸ ︷︷ ︸
H(k)


f̂u(k, y)

f̂v(k, y)

f̂w(k, y)
0


︸ ︷︷ ︸

f̂(k,y)

, (2)

where ∆ = d2/dy2 − k2
x − k2

z is the Laplacian, {f̂u, f̂v, f̂w} denote the Fourier transforms of the nonlinear advection

terms and Reτ = uτh/ν is the Reynolds number based on the channel half-height h, friction velocity uτ =
√
τw/ρ

and kinematic viscosity of the fluid ν (τw is the mean wall shear stress and ρ is the fluid density). As implied by Reτ ,
all quantities are made dimensionless with h and uτ and, unless stated otherwise, the same nondimensionalization
will be employed in the remainder of this study. The linear operator H(k) that maps the nonlinear forcing terms to
the velocity and pressure fluctuations at each k is called the resolvent operator. Recall that we assumed the mean
velocity profile to be known and therefore H(k) is fully determined.

The optimal basis in the remaining wall-normal direction is obtained from a singular value (Schmidt) decomposition
of the resolvent operator, as suggested by McKeon & Sharma [3], and interested readers are referred to Moarref et al.
[8] and Luhar et al. [9] for an in-depth discussion of the technicalities. The singular value decomposition returns an

ordered basis pair {ψ̂j , φ̂j} which can be used to rewrite Eq. (2)

[
û(k, y)
p̂(k, y)

]
= H(k) f̂(k, y) =

∞∑
j=1

σj(k) ψ̂j(k, y)
〈
φ̂j(k, y), f̂(k, y)

〉
, (3)
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where σ1 ≥ σ2 ≥ · · · > 0 denote the singular values (gains) of H(k), ψ̂j = [ûj , v̂j , ŵj , p̂j ]
T and φ̂j = [f̂uj , f̂vj , f̂wj , 0]T

are, respectively, the left and right singular vectors (wall-normal basis functions) associated with σj and 〈·, ·〉 denotes
the L2-inner product in the wall-normal direction for vector-valued functions. We will refer to the left singular vectors

ψ̂j as resolvent modes hereafter. The basis elements are ranked in order of descending gain, σj , and the singular
values come in pairs of equal or at least same order of magnitude values, which is a peculiarity of the channel geometry
(see Moarref et al. [8] for details). The paired singular vectors are not unique (any linear combination of them is also
a legitimate singular vector) and an additional constraint is required to ensure uniqueness. Following [8], we therefore
impose an additional wall-normal symmetry constraint on the paired singular vectors, which results in distinct wall-
normal symmetries of the resolvent modes: ûj , ŵj and p̂j of the first paired mode are even while v̂j is odd in y and
the symmetries of all components are inverted for the second mode of the pair.

Previous work has shown that the resolvent operator at each k is low-rank [3, 8] and owing to the particular choice
of bases the low-rank nature is reflected in expansion (3): typically, the first two singular values are an order of
magnitude larger than the remaining ones and it can therefore be assumed that the flow is reasonably approximated
by just the first two terms of the expansion. Since almost all singular values are paired and the corresponding singular
vectors only differ in their wall-normal symmetry, it is often possible to simplify further and just consider the first
singular value and vector, which gives a so-called rank-1 approximation of the operator. It will be shown in §II B that
a rank-1 approximation is sufficient for the purpose of this study.

While the singular values and vectors can be calculated directly from the resolvent, the nonlinear forcing f̂ is not
known a priori and has to be modeled to make further progress. It is well-known that the resolvent operator is a very
selective amplifier [3] and it is therefore reasonable to assume that the exact form of forcing is irrelevant as long as the
real flow contains some forcing in the dominant directions. Note, however, that there is an increasing body of work
devoted to modeling the shape of the forcing to accurately reconstruct the flow field [10–12]. In the present study we
seek the simplest representation of the forcing that captures the control trends for this system and therefore we use

the so-called rank-1, broadband forcing model 〈φ̂1(k), f̂(k)〉 = 1, ∀k instead of the more complex models mentioned
above. To guard against a common misconception we would like to emphasize that the resolvent formulation of the

NSE with broadband forcing is not a linearization. A linearization would set f̂(k) = 0, while the rank-1 broadband

forcing assumption employed here explicitly retains the nonlinearity and models it as f̂(k) = φ̂1(k).
The resulting rank-1 broadband forcing approximation of the NSE in resolvent form (3) is given by[

û(k, y)
p̂(k, y)

]
≈ σ1(k)ψ̂1(k, y) . (4)

To facilitate the following discussion, we will refer to Eq. (4) as the resolvent model hereafter. We note that this
approach was developed in a series of previous publications and was shown to capture many key statistical and
structural features of wall-bounded turbulent flows [3, 8, 13]. The subject of this study is to assess whether the
resolvent model is a suitable flow model to design controllers for turbulent drag reduction in internal flows. The
assessment is based on a generalized version of the well-known opposition control scheme [14], which often serves as a
benchmark among the flow control community and which will be briefly reviewed hereafter. It is important to point
out that there is nothing particular about the choice of controller and we expect that the results generalize to any
control scheme with a linear control law.

B. Opposition control and low-order modeling

The idea at the heart of opposition control is to reduce turbulent drag in wall-bounded flows by detecting and
suppressing the sweeps and ejections associated with the coherent structures of the near-wall cycle. To this end
the control scheme measures the wall-normal velocity at a detection plane located at a distance yd above the wall
(yw = ±1) and applies blowing and suction with equal amplitude but opposite sign at the wall: v(yw) = −v(yd).

Previous direct numerical simulation (DNS) studies of turbulent channel [14] and pipe [15] flow at Reτ ≈ 180
show that opposition control can reduce drag by up to 25%. The control effectiveness strongly depends on the
sensor location: drag reduction (DR) is only observed for sensors located below y+

d ≤ 23 (the superscript + denotes

normalization with respect to inner units, i.e. y+ = yuτ/ν) and the maximum DR occurs around y+
d = 15 [16].

The range of sensor locations leading to drag reduction can be increased by reducing the controller gain [16] and
the maximum DR can be increased by either using upstream sensor information [17] or adding an integral term to
the control law [18]. The effectiveness of the control scheme depends on the Reynolds number and decreases with
increasing Reτ : for example, the maximum DR drops from approximately 25% at Reτ = 180 to 18% at Reτ = 1000
[19]. The computational cost of DNS currently inhibits studies at higher Reτ , so that DNS cannot be used to analyze
and design a version of the control law for technologically relevant Reynolds numbers.
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The prohibitive cost of DNS necessitates the development of low-order flow models for controller design. Grounded
in the insight that linear mechanisms play a key role in wall-bounded turbulence, one line of work approaches flow
control for internal flows from a linear system point of view. Lim & Kim [20] used a singular value analysis to assess
the effect of opposition control on optimal initial disturbances to the linearized NSE. In agreement with previous
DNS results, their analysis shows that the growth of the disturbances, which is interpreted as a proxy for turbulence
intensity, decreases for a narrow range of sensor locations y+

d and increases if the sensor is located too far away
from the wall. In a similar manner but considering a different control strategy, Duque-Daza et al. [21] used the
linearlized NSE to study how streamwise-traveling waves of spanwise wall velocity affect the energy amplification of
initial perturbations that resemble elongated streamwise vortices. Their results indicate a strong correlation between
the change in energy amplification of the initial perturbation and the drag reduction observed in DNS for traveling
waves of various frequencies and wavelengths. Of particular relevance for the present study is previous work by Luhar
et al. [13] who used the resolvent model (4) to analyze opposition control in a turbulent pipe flow. In contrast
to the aforementioned work, the resolvent model does not capture how control affects the growth of specific initial
disturbances, but rather how control alters the response of the flow to intrinsic forcing from the nonlinear advection
terms. Luhar et al. [13] showed that the resolvent model can qualitatively reproduce the changes in DR with
sensor location and Reynolds number previously observed in DNS. They further use the resolvent model to analyze
a generalized version of the opposition control law given by v̂(k, yw) = −Âdv̂(k, yd), where Âd ∈ C is the complex
controller gain at each Fourier mode characterized by k, and the original opposition control scheme corresponds
to |Âd| = 1 and ∠Âd = 0. The resolvent model predicts that the effectiveness of opposition control in turbulent

pipe flow strongly depends on the phase ∠Âd between the sensor measurement and the actuation response, but this
prediction has not yet been confirmed in the full nonlinear system. The same resolvent model was subsequently
used by Nakashima et al. [22] to study the effect of suboptimal control in a turbulent channel flow and building
on this work, Kawagoe et al. [23] used resolvent analysis to design modified versions of the suboptimal control law.
In this case the agreement between resolvent prediction and DNS was mixed: the study considered two modified
controllers and a good agreement between model and DNS was observed for one of them, while the two predictions
deviated for the other controller. Similar ideas were recently also applied to other classes of flows: Yeh & Taira [24]
used the gains of the uncontrolled resolvent operator as proxy to identify adequate control parameters for separation
control over an airfoil and showed that parameter combinations with high uncontrolled gain correspond to favorable
controller settings. Leclerq et al. [25] considered and controlled a two-dimensional incompressible open-cavity flow
using structured H∞-synthesis on a sequence of linear flow models, where each flow model of the sequence is based
on the resolvent operator about the mean of the previous controlled flow. Their study shows that the controller is
able to successfully suppress the oscillations in a sequence of five controllers.

The literature results reviewed above suggest that linear models are able to capture at least aspects of the response
of internal flows to control. With regards to resolvent-based models it remains unclear to what extent the model
is able to capture the response of the nonlinear system, since the available dataset for comparison (compiled by
[13, 22, 23]) is small and shows mixed agreement. Furthermore, previous resolvent-based control designs in internal
flows have been limited to low Reynolds numbers and it remains to be clarified how the approach can be generalized
to technologically relevant Reτ .

These two questions will be the main thrust of this study. Concretely, we consider the generalized opposition
control law with unit gain (|Âd| = 1) but nonzero phase (∠Âd 6= 0) and we will refer to this control scheme as varying-
phase opposition control hereafter. The resolvent model will be used to predict the drag reduction of varying-phase
opposition control in a turbulent channel flow at Reτ = 180 and a DNS of the same flow and control scheme will be
used to validate the predictions over a wide range of parameters, which will allow the drawing of stonger conclusions
about the capabilities of the resolvent model. We also formalize an approach for wavenumber space subsampling
and outline how scaling laws can be used to make resolvent model predictions at technologically relevant Reynolds
numbers.

II. APPROACH

Two approaches are used to study a turbulent channel flow at Reτ = 180: the resolvent model introduced in §I A
and a DNS. This section presents the details of the two frameworks, outlines their commonalities and differences and
describes wavenumber space subsampling in the evaluation of the resolvent model.
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A. Direct numerical simulation

The direct numerical simulations of the full nonlinear system are performed with a code framework developed by
Flores & Jimenéz [26]. The DNS follows the method proposed by Kim et al. [27] and solves the NSE in velocity-
vorticity formulation by integrating the wall-normal vorticity and the Laplacian of the wall-normal velocity in time.
The details about the numerical method can be found in [26], it is only mentioned here that the streamwise and
spanwise directions are discretized using a pseudospectral Fourier-Galerkin method. The DNS therefore naturally
provides access to the Fourier coefficients û(kx, kz, t, y), which greatly simplifies the connection and comparison
between the DNS and the resolvent model: leaving the order reduction in y out of account, the two formulations only
differ in the treatment of the temporal coordinate and one can map from the resolvent model to the DNS by means
of an inverse Fourier transform in time.

The parameters of the DNS are chosen to match the domain size and resolution of previous numerical simulations
such as [26, 28]. The nondimensional size of the computational domain in the streamwise and spanwise direction is
Lx = 4π and Lz = 2π, respectively, and Nx = Nz = 256 Fourier modes are used in these directions. This corresponds
to a resolution of ∆x+ ≈ 8.8 and ∆z+ ≈ 4.4 in terms of Fourier modes before dealiasing at the nominal Reτ = 180
of the uncontrolled flow. A sinusoidal grid with Ny = 172 points is used in the wall-normal direction, which gives a
resolution of ∆y+

min ≈ 0.37 at the wall and ∆y+
max ≈ 3.09 at the channel center. Note that Reτ , and therefore also

the resolution in inner units, change when control is applied. The resolution increases if the drag is decreased and
vice-versa and runs with Reτ > 245 may be considered slightly underresolved. Two runs (y+

d = 15,∠Âd = −π/4
and y+

d = 15,∠Âd = π/2) with higher resolution (Nx = 512, Ny = 272, Nz = 512) were performed to rule out the
possibility of grid effects in the results and it was indeed confirmed that the results were almost identical.

The flow is driven by a constant mass flux, so that the effect of control can be captured in the change of wall
shear stress. All control experiments are started form the same initial condition and statistics are collected over at
least 10 eddy turnover times (h/uτ ) once a statistically steady state is reached. It is also worth mentioning for later
comparison that the cost of a single DNS was around 120 core hours at the time of writing. The adequacy of the
current settings is confirmed by comparing the results of the present DNS to literature data of an uncontrolled channel
flow at Reτ = 180 by Lee & Moser [28]: the mean Reynolds stress profiles of the two DNS are shown in Fig. 1a
(dash-dotted blue and solid black line). It is apparent that the two profiles are in excellent agreement throughout the
channel and so are all the other statistical quantities available for comparison (data not shown).

B. Rank-1 resolvent model

The low-order flow model put to test by DNS is the rank-1 resolvent model (4) introduced in §I A. Following a large
body of work (e.g. [8, 29, 30]), we use the semi-empirical turbulent eddy viscosity model proposed by Reynolds &
Tiedermann [29] with parameters α = 25.4 (constant in van Driest wall law) and κ = 0.426 (constant in the Kármán
log law) to represent the mean velocity profile u of the resolvent operator. Such an approach may be extended
to regimes in which experimental or numerical results are not available, and is appealing because of the analytical
formulation it provides, which is readily incorporated into resolvent codes. In this study, we use the mean profile
obtained using the eddy viscosity for resolvent analyses of both uncontrolled and controlled flows, i.e. we do not obtain
the mean profile for the controlled flows. The latter constitutes a further modeling simplification, some implications
of which are discussed below. An energy norm is chosen for the singular value decomposition of the resolvent and the
approach described in Luhar et al. [9] is used to compute the singular values and vectors.

As indicated earlier, a rank-1 approximation of the operator is sufficient for the present study: it will be shown in
§III B that in order to evaluate the effect of control on the DR, we need to compute the mean Reynolds stress profile
and evaluate an integral of the form

I =

∫ 1

−1

y
(
u′v′

)
dy . (5)

For a rank-2 model the contribution of a single Fourier mode to the mean Reynolds stress u′v′ = ûv(k = 0) is
proportional to

ûv(0, y) ∼ <
{
σ2

1û1(k, y)v̂∗1(k, y) + σ1σ2û1(k, y)v̂∗2(k, y) + σ1σ2û2(k, y)v̂∗1(k, y) + σ2
2û2(k, y)v̂∗2(k, y)

}
, (6)

where < denotes the real part of a complex number and the superscript ∗ denotes its complex conjugate. Recall from
the discussion about the wall-normal symmetry of resolvent modes (§I A) that if the singular values are paired, then
û1, v̂2 are even, while û2, v̂1 are odd in y. Consequently, the cross-terms (σ1σ2û1v̂

∗
2 and σ1σ2û2v̂

∗
1) are even in y. The
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(a) DNS
(b) resolvent model

FIG. 1: (Color online) Uncontrolled Reynolds stress profiles from DNS and the resolvent model. Figure (a):
DNS data of Lee & Moser [28] (uncontrolled flow), present DNS (uncontrolled flow). Figure (b): resolvent

model baseline (uncontrolled flow), subsampled model (uncontrolled flow), linear fit to model Reynolds stress
profile in the outer flow.

cross-terms integrate to zero when weighted with y and therefore they do not contribute to the integral I. Moreover,
the real part of the two diagonal terms (σ2

1û1v̂
∗
1 and σ2

2û2v̂
∗
2) is equal and odd in y. The diagonal terms therefore do

contribute to I, but since their real part is equal there is no difference between a rank-1 and rank-2 approximation.
Recall that almost all singular values are paired, so that the above statement is true for almost all resolvent modes; it
can therefore be expected that the DR (which is based on integrals of the form I) predicted by a rank-1 and rank-2
model is almost identical and this has indeed been confirmed in numerical experiments (data not shown). For the
purpose of the present study it thus suffices to consider a rank-1 approximation, as anticipated in §I A.

The resolvent model uses the same numerical parameters as the DNS wherever possible, so that model errors
due to resolution discrepancies can be ruled out and a meaningful comparison can be made. This choice has the
additional benefit that minimal empirical knowledge is required to select an appropriate set of model parameters. In
this spirit, we resolve the same streamwise and spanwise wavenumbers in the model as in the DNS (after dealiasing):
kx = l/2, l ∈ [−84, 84] and kz = m, m ∈ [−84, 84]. In practice only the non-negative wavenumbers are evaluated,
since the wavenumber symmetries discussed in §II D can be used to account for the contribution of the negative kx
and kz. In the wall-normal direction the resolvent operator is discretized on a set of Ny = 172 Chebyshev collocation
points so that the grid of the model and the DNS are identical up to a stretching factor described in [28].

The only coordinate that requires empirical input for parameter selection is the temporal frequency: the continuous
range of frequencies resolved in the DNS is too large to be handled reasonably by the numerical framework of the
model and furthermore the DNS does not provide a well-defined sampling rate because the timestep changes subject to
a CFL condition. However, there is compelling empirical evidence that the temporal frequency content of each Fourier
mode is approximately sparse, so that the entire frequency spectrum does not need to be resolved. As summarized
by Bourguignon et al. [31] the dominant temporal frequencies at kx 6= 0 can be parametrized by the wave speed
c = ω/kx and fall in between the empirical range 10 ≤ c ≤ Ucl, where Ucl is the channel centerline velocity. This
suggests picking the temporal frequency vector ω at each kx such that at least the range 10 ≤ ω/kx ≤ Ucl can be
resolved. For reasons that will become clear shortly we use the slightly more conservative range 0 ≤ ω/kx ≤ Ucl in this
study. Note that since the range of wave speeds is kept constant across all k, the corresponding temporal frequencies
change for different kx.

An appropriate sampling rate in c can be derived from the wall-normal localization of the resolvent modes: Fig. 2a
shows that the mean Reynolds stress contribution of a single resolvent mode is localized around its critical layer, i.e.
around the wall-normal location yc where its wave speed equals the local mean velocity c ≈ u(yc). Conversely, one
can say that the dominant contribution to the Reynolds stress at a fixed y comes from modes whose critical layer yc
correspond to that y. The discretization of the wall-normal coordinate naturally samples the mean velocity profile
and defines the critical wave speeds that are resolved by the grid. From the previous argument we expect that the
dominant Reynolds stress contribution at each gridpoint yi is given by modes with wave speed c = u(yi). This suggests
that the sampled wave speeds should correspond to the discretized mean velocity profile, so that 0 ≤ ω ≤ kxUcl (as
mentioned before) and ∆ωi(kx) = kx∆u(yi). Note that empirical knowledge is only required to justify this range of
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ω, no empirical knowledge is required to evaluate it: the temporal frequency vector is fully determined by the given
mean velocity profile and wall-normal grid.

The exception to the above discussion are streamwise constant modes (kx = 0). For such modes the wave speed c is
not well-defined and a different, for now empirical, approach is needed to determine an appropriate frequency vector.
The amplification of streamwise constant modes peaks at ω = 0 and drops off very quickly and symmetrically as ω
moves away from the origin. For example, the maximum σ1 across all kz drops from σ1 = 696 at ω = 0 to σ1 = 34 at
ω = ±0.4 and σ1 = 2 at ω = ±3.5 and further decreases as |ω| increases (data not shown in the interests of brevity).
Recall that the Reynolds stress contribution depends on the square of the singular value and therefore contributions
beyond ω = ±3.5 can be neglected. We thus restrict the temporal frequency vector of kx = 0 to −3.5 ≤ ω ≤ 3.5 and
sample densely around the origin (∆ω = 0.01 for −0.25 ≤ ω ≤ 0.25) and more coarsely away from it (∆ω = 0.05 for
0.3 ≤ |ω| ≤ 0.5 and ∆ω = 0.25 for 0.75 ≤ |ω| ≤ 3.5).

It was verified that the results presented in this study do not depend on the particular choice of ω: across all kx the
DR obtained for various ∠Âd varies only minimally if the bandwidth of ω is increased or if the sampling frequency
∆ω is changed. For reasons that will become more clear in §II C we will refer to resolvent model runs with the above
parameter settings as model baseline. Also, for future reference it is worth mentioning that one model baseline run
costs around 160 core hours at the time of writing (i.e. the evaluation of the model baseline and DNS is similarly
expensive at this Reτ ).

The Reynolds stress profile predicted by the model baseline for an uncontrolled channel flow at Reτ = 180 is shown
as dash-dotted blue line in Fig. 1b. The model baseline resolves all dynamically relevant spatial and temporal scales
and can therefore be considered a resolvent model prediction at DNS resolution. However, it is apparent from the
figure that the model profile does not match the DNS Reynolds stress: the model overpredicts the peak magnitude
(compare the y-axes of Fig. 1a and 1b) and the modeled profile peaks closer to the wall than the real one and exhibits
a plateau between −0.75 ≤ y/h < −0.4 instead of a near-linear decrease. Recall that the model is not constrained
to satisfy the mean momentum equation, since we neglected the latter in the model development. However, it is
interesting to note that the modeled Reynolds stress still exhibits a near-linear decrease in the outer flow, as indicated
by the gray line in Fig. 1b. In agreement with the overpredicted magnitude of the Reynolds stress, the slope is steeper
than what one would expect from an analysis of the mean momentum equation. These observations are in agreement
with previous results from a similar study of a turbulent pipe flow by Luhar et al. [13]. The only difference to the pipe
flow result is the heavier tail in the outer channel (y/h > −0.5), which can be ascribed to the streamwise constant
(kx = 0) modes with zero temporal frequency and low spanwise wavenumbers: these dominant streamwise constant
modes peak close to the channel center and have the largest singular values of all resolved wavenumbers. Under the
broadband forcing assumption their contributions have a strong footprint on the integrated Reynolds stress profile
and therefore give rise to the observed heavy tail. The role of the kx = 0 modes within the resolvent framework
remains to be fully understood and an in-depth analysis is beyond the scope of this investigation, but we would like
to point out that largest amplification occurring for streamwise constant modes is reminiscent of transient growth,
where streamwise constant vortices are well-known to be the optimal perturbations [32].

Given that the resolvent model is not constrained to satisfy the mean momentum equation and the numerous model
assumptions, in particular the broadband forcing, the observed deviations between model and DNS profile may not
be surprising. But in view of recent work on more complex forcing models that approximate the correct flow statistics
[10–12] one may ask whether a rank-1 model with broadband forcing is still adequate. However, the key point not to
forget in a control context is this: a useful control-oriented model mainly needs to capture the relation between inputs
and outputs, it needn’t produce the correct flow statistics of the system [33]. In this spirit the goal should be to find
the simplest possible model that is able to approximate the response of the full nonlinear system to control and in this
sense the broadband forcing assumption is preferred over the aforementioned more complex models. Furthermore,
unlike the other models, the broadband forcing assumption does not require flow data as input, which minimizes the
dependency on empirical data.

C. Subsampling in wavenumber space

While the model baseline is the appropriate starting point for comparison with DNS, its evaluation is computation-
ally too expensive for practical purposes like parameter studies or controller design at higher Reτ . An analysis of the
mean Reynolds stress contribution of individual resolvent modes reveals that their contribution varies smoothly in
at least parts of the wavenumber space. This observation suggests that the resolvent model could take advantage of
subsampling across wavenumber space to reduce the number of resolved scales compared to the DNS. This approach
has already been used in previous studies (for example [8, 13]), but without formal justification. The goal of this
section is to demonstrate that subsampling is indeed appropriate.

As can be seen from Fig. 2a, the mean Reynolds stress contribution of a single mode is localized around the critical
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(a) kx = 5.5, kz = 2, c+ = {8, 10, 12, 14} (b) kx = {5, 5.5, 6, 6.5}, kz = 2, c+ = 10

FIG. 2: Effect of wave speed and streamwise wavenumber on the mean Reynolds stress contribution of individual
resolvent modes. Figure (a): effect of wave speed c, darker colors indicate faster wave speeds. Figure (b): effect of

streamwise wavenumber kx, darker colors indicate smaller streamwise wavenumbers.

layer yc and therefore its wall-normal profile is mainly determined by the wave speed c. The wall-normal profiles
for different c look very similar and the location of their peak moves slowly away from the wall as the wave speed
is increased. This suggests that not all the wave speeds resolved in the model baseline are required to capture the
wall-normal shape of the mean Reynolds stress profile, since resolvent modes with similar wave speeds largely overlap
in y. Fig. 2b further shows the mean Reynolds stress contribution for modes with various kx at fixed kz and c. It
is again apparent that the wall-normal localization of the modes is fixed by the wave speed. Furthermore, it can be
seen that the wall-normal profiles look very similar for various kx and that the peak magnitude slowly decreases as
kx increases. This observation holds for all sufficiently large streamwise and spanwise wavenumbers (kx ' 5, kz ' 10)
and suggests that the spatial wavenumbers can be subsampled as well as the wave speeds.

Based on these insights, the wavenumber space is subsampled as follows to evaluate the mean Reynolds stress (the
contributions of negative frequencies can be obtained from the symmetries discussed next): kx = [0, 0.5, . . . , 5, 7.5, 10,
20, 31, 42], kz = [0, 1, . . . , 10, 12, 14, 16, 20, 25, 30, 40, 50, 60, 70, 84] and only every other value of u(y) is used to populate
c. This corresponds to a reduction from 85×85×86 (baseline) to 16×22×44 (subsampled model) resolved wavenumbers.
The missing wavenumbers are linearly interpolated and ω is not subsampled if kx = 0.

The resulting Reynolds stress profile of the uncontrolled flow is shown as solid black line in Fig. 1b. The good
agreement with the model baseline (dash-dotted blue line) confirms that the wavenumber space can indeed be sampled
very sparsely. The subsampled model only resolves about 2% of the wavenumbers of the baseline, which reduces the
computational time to 2 core hours. This is cheap enough to allow, for example, extensive parameter searches for
controller design. Furthermore, the memory requirements and operation count of the subsampled model are small
enough so that it can be run on an off-the-shelf laptop and no high-performance computing facilities are required to
evaluate it.

Motivated by the results of this section, we will use the subsampled model for all resolvent predictions hereafter
and we will make all comparisons between subsampled resolvent model and DNS.

D. Wavenumber symmetries

Before moving on to the description of the control scheme we take a closer look at the wavenumber symmetries
of the DNS and the resolvent model. The different symmetries present in the two frameworks will have a bearing
on the formulation of the control scheme and, generally speaking, are an important constraint to keep in mind when
linking the resolvent model and DNS. The first wavenumber symmetry, which is present in both the DNS and the
resolvent model, follows from the properties of the Fourier transform: the Fourier coefficients of the velocity and
pressure fluctuations are Hermitian symmetric, because the underlying physical quantities are real-valued functions.
For example, the Fourier coefficients of the velocity field satisfy û(−kx,−kz, t, y) = û∗(kx, kz, t, y) (DNS) respectively
û(−k, y) = û∗(k, y) (resolvent model). A second symmetry, which is present in the resolvent model but not in the DNS,
follows from the structure of the resolvent operator H(k) and the broadband forcing assumption: evaluating Eq. (2) at

k̃ = [kx,−kz, ω]T instead of k = [kx, kz, ω]T only changes the sign of two off-diagonal terms in the resolvent operator.
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The sign change can be absorbed into the coefficient vectors by making the substitutions û†(k̃, y) = [û, v̂,−ŵ, p̂]T and

f̂†(k̃, y) = [f̂u, f̂v,−f̂w, 0], so that û†(k̃, y) = H(k)f̂†(k̃, y). The broadband forcing assumption sets f̂†(k̃, y) = f̂(k, y)

and thus imposes the additional symmetry û†(k̃, y) = û(k, y).
As a consequence of these two symmetries the phase of a resolvent mode has a clear interpretation in physical domain.

To see this, we consider the example of the wall-normal velocity component and write the rank-1 approximation as
v̂1(k, y) = v̂1(k̃, y) = A1e

iφ1 where {A1, φ1} ∈ R. Evaluating the inverse Fourier transform (1) of only v̂1(k, y),

v̂1(k̃, y) and their complex conjugates gives a structure vRES
k in physical domain

vRES
k (x, y, z, t) = 4A1 cos(kxx− ωt+ φ1) cos(kzz), (7)

where the factor 4 results from Hermitian symmetry and the trigonometric sum-to-product identity. Due to the
symmetries, the phase φ1 only enters the first term and a nonzero φ1 can be interpreted as a streamwise or temporal
shift of the structure. Conversely, it is apparent that the spanwise position of the structure is unaffected by a change
in φ1.

With regard to the DNS, the situation is more complex: even though the DNS Fourier coefficients are symmetric
in kz in a statistical sense, their instantaneous values are unrelated, i.e. û(kx,−kz, t, y) 6= û(kx, kz, t, y), and the
missing symmetry in kz complicates the interpretation of the phase in physical domain. To see this we consider again
the wall-normal velocity component and introduce the notation v̂(kx, kz, t, y) = A1e

iφ1 and v̂(kx,−kz, t, y) = A2e
iφ2 ,

where {A1, A2, φ1, φ2} ∈ R. Evaluating the inverse Fourier transform (1) of only v̂(kx, kz, t, y), v̂(kx,−kz, t, y) and
their complex conjugates gives again a structure vDNS

[kx,kz ] in physical domain

vDNS
[kx,kz ](x, y, z, t) = 4A1 cos

(
kxx+

φ1 + φ2

2

)
cos

(
kzz +

φ1 − φ2

2

)
+ 2(A2 −A1) cos(kxx− kzz + φ2) , (8)

where we can assume A1 < A2 without loss of generality. The first summand, in which x and z factor into different
terms, is the equivalent of vRES

k . The phase of the Fourier coefficients, φ1 and φ2, have a clear physical interpretation
for this structure: if the mean of the two phases changes, the structure is shifted in streamwise direction and if their
difference changes, the structure is shifted in spanwise direction. Due to the missing symmetry in kz, an additional
term with mixed arguments in x and z appears which has no counterpart in the resolvent model. For this structure
there is no clear interpretation of the phase either: since the argument is mixed, a change in φ2 can correspond to a
streamwise or spanwise shift.

Note that Eq. (8) is a generalization of vRES
k and the latter can be recovered by setting A2 = A1 and φ2 = φ1.

Whenever the (broadband forcing) resolvent model and DNS are linked, it should therefore be kept in mind that the
model only represents a subset of the real physics and caution is required to ensure that the same problem is studied
in both frameworks.

III. CONTROL LAW

After characterizing the two frameworks to be compared, we formally introduce the varying-phase opposition control
law and the DR measure in this section.

A. Varying-phase opposition control

As mentioned in §I B, Luhar et al. [13] studied varying-phase opposition control in a pipe flow by means of the

resolvent model. They defined the control law as v̂(k, yw) = −Âdv̂(k, yd) with Âd = eiφ for all k and one may think
that the same control law can be incorporated directly in DNS. However, the control law is a good example for the
importance of the wavenumber symmetries discussed in §II D and due to the different symmetries present in the DNS
and resolvent model, additional care is required to ensure that both frameworks incorporate the same physics.

The previous discussion about symmetries shows that a phase shift ∠Âd = φ in the resolvent model has a clear
physical interpretation: Eq. (7) implies that multiplying the Fourier coefficient with a nonzero phase corresponds
to a streamwise or temporal shift of the mode. A phase shift between actuator and sensor in Fourier domain can
therefore be thought of as streamwise/temporal lead or lag of the actuation in physical domain. However, this physical
interpretation is lost when applying the same control law in the DNS, due to the missing symmetry in kz: in addition
to the streamwise shift, the mixed-argument term in Eq. (8) introduces a spanwise shift between the sensor and the
actuator, which cannot be captured by the resolvent model. In order to guarantee a streamwise-only shift in the DNS,
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so that the same physics is studied in both frameworks, the varying-phase opposition control law has to be modified
slightly

v̂(k, yw) = −ÂRES
d v̂(k, yd) v̂(kx, kz, t, yw) = −ÂDNS

d v̂(kx, kz, t−∆t, yd)

ÂRES
d =


0 if kx = kz = 0

1 if kx = 0, kz 6= 0

eiφ otherwise

ÂDNS
d =


0 if kx = kz = 0

1 if kx = 0, kz 6= 0 ,

eiφ if kx 6= 0, kz = 0
min(|v̂(kx,kz,t−∆t,yd)|,|v̂(kx,−kz,t−∆t,yd)|)

|v̂(kx,kz,t−∆t,yd)| eiφ otherwise

(9)

where the formulation for the resolvent model (RES) is shown on the left and the equivalent formulation for the DNS
on the right.

The particular values for Âd are explained as follows: in order to ensure that control doesn’t change the net mass
flux of the flow we have to set Âd = 0 if kx = kz = 0. No phase shift, i.e. Âd = 1, is applied to the remaining
streamwise constant modes (kx = 0, kz 6= 0), since a nonzero phase would by definition lead to a spanwise shift (at

least in the DNS). The values of Âd for kx 6= 0 are chosen such that a streamwise shift is guaranteed: a streamwise

shift is ensured for the spanwise constant modes (kx 6= 0, kz = 0) of the DNS and we can therefore set ÂDNS
d = eiφ

for those modes. The last value of ÂDNS
d requires some more explanation: spanwise shifts can be prevented if the

control input only generates the first term of Eq. (8). This can be achieved by setting A2 = A1, i.e. enforcing
|v̂(kx, kz, yw, t)| = |v̂(kx,−kz, yw, t)|. While either amplitude would be a valid choice, it is desirable from a control
perspective to pick the smaller of the two in order to ensure a minimal controller input. The particular choice of
Âd ensures just that and sets A2 = A1 = min (|v̂(kx, kz, yd, t)|, |v̂(kx,−kz, yd, t)|) in Eq. (8). Note that this choice

leaves the mixed-argument term uncontrolled, but ensures a streamwise-only shift. The value of Âd for the kx 6= 0
resolvent modes is simpler to explain: recall from Eq. (7) that the additional symmetry of the resolvent modes ensures

a streamwise shift, so that we can set ÂRES
d = eiφ for all kx 6= 0 modes.

Two comments are important to mention before moving on to the DR measure: First, following [13] the potential
changes in the mean velocity profile and nonlinear forcing due to control are, for simplicity, not incorporated in
the resolvent model. In other words, the uncontrolled mean velocity profile and broadband forcing assumption are
also used in the controlled cases and the controlled and uncontrolled resolvent model only differ in the boundary
conditions on v. Second, note that there is a time delay of one time step between the sensor measurement and the
actuator response in the DNS, because the actuation is implemented as Dirichlet boundary condition. The time delay
is equivalent to an additional frequency-dependent phase eiω∆t in Fourier domain, which is not represented in the
resolvent model. The timestep varies subject to a CFL condition, but is of the order ∆t = O(1e−3). The phase error
introduced to the structures of the near-wall cycle, which are expected to dominate the control signal and can be
characterized by λ+

x ≈ 1000, c+ ≈ 10 − 12 [13], is ω∆t ≈ π/450. This is two orders of magnitude smaller than the
phase shifts induced by the controller and it can therefore be expected that the phase error due to the time delay is
negligible. Simulations with smaller ∆t and therefore smaller phase errors were performed to validate this assumption
and it was indeed confirmed that the drag reduction obtained for smaller ∆t was nearly the same.

B. Drag Reduction Measure

Following previous DNS studies [14, 16], we quantify the DR in terms of change in mean wall shear stress. For a
constant mass flux channel flow, we can use the FIK identity [34] (adjusted to the coordinate system and nondimen-
sionalization of the present manuscript) to express the change in mean wall shear stress as

∆τ =
(τw)u − (τw)c

(τw)u
=

∫ 1

−1
y
[
(u′v′)u − (u′v′)c

]
dy

Reb
(Re2τ )u

+
∫ 1

−1
y (u′v′)u dy

, (10)

where we used the friction velocity of the uncontrolled flow (uτ )u to nondimensionalize all velocities (the subscript u
and c label quantities of the uncontrolled and controlled flow, respectively) and where Reb = 2Ubh/ν is the Reynolds
number based on twice the bulk velocity Ub. As explained in [34], the denominator of Eq. (10) is a sum of a laminar
contribution (first term), fully determined by the mean velocity profile, and a turbulent contribution (second term),
fully determined by the weighted integral of the Reynolds stresses.

The discussion in §II B underpinned that the resolvent model does not satisfy the mean momentum equation and
Fig. 1 in particular demonstrated that the modeled Reynolds stress does not match the true one. As a consequence,
the resolvent model doesn’t predict the correct relative magnitude of the laminar and turbulent drag contribution and
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it would therefore not be meaningful to evaluate the DR according to Eq. (10). Instead, we use the mean momentum
equation to recast Eq. (10) into a more appropriate form for the purpose of the present study

∆τ =

∫ 1

−1
y
[
(u′v′)u − (u′v′)c

]
dy∫ 1

−1
y (u′v′)u dy︸ ︷︷ ︸

=T1(yd,∠Âd)

(
1− 3

2

Reb

(Re2
τ )u

)
︸ ︷︷ ︸

=T2

∫ 1

−1
y
[
(u′v′)DNS

u − (u′v′)DNS
c

]
dy∫ 1

−1
y
[
(u′v′)u − (u′v′)c

]
dy︸ ︷︷ ︸

=T3(yd,∠Âd)

∫ 1

−1
y (u′v′)u dy∫ 1

−1
y (u′v′)DNS

u dy︸ ︷︷ ︸
=T4

, (11)

where the superscript DNS labels a quantity that is obtained from DNS and which therefore satisfies the mean
momentum equation. This is in contrast to quantities without superscript label which, depending on the context,
originate from DNS or the resolvent model. The term T1(yd,∠Âd) represents the turbulent DR predicted by the
model under consideration (resolvent or DNS) and as such depends on the sensor location yd and the phase shift

∠Âd. The second term T2 is the ratio of the turbulent drag to the total drag in the real uncontrolled flow, which is a
constant for fixed Reb. The product T1(yd,∠Âd)T2 represents the total change in wall shear stress, possibly subject to

model errors represented by the last two terms: T3(yd,∠Âd) is the model error in turbulent DR, which is a function
of the control parameters, and the constant T4 is the model error in the uncontrolled profile. Note that for DNS data
T3(yd,∠Âd) = T4 = 1, so that the usual definition for DR is recovered.

With DNS data we can evaluate all terms of Eq. (11), while with the resolvent model we can evaluate T1(yd,∠Âd),
which solely depends on model data, and T2, which can be obtained from the input (Reτ )u and the corresponding

mean profile. The model errors, T3(yd,∠Âd) and T4, cannot be obtained from the resolvent model alone. In other
words, with the resolvent model we can estimate the change in mean wall shear stress up to a model error

DR = T1(yd,∠Âd)T2 =
∆τ

T3(yd,∠Âd)T4

. (12)

From here on, the term ‘drag reduction’ will be used to denote the quantity in Eq. (12). When comparing different
control configurations, as will be done in §IV, it is advantageous to normalize the DR by a reference value, for example
the maximum DR (max DR for short) obtained over the parameter space considered

ξ =
DR

max DR
=

∆τ

max ∆τ

T3(yd,max,∠Âd,max)

T3(yd,∠Âd)
. (13)

This allows the elimination of T4, the model error in the uncontrolled profile.

IV. RESULTS AND DISCUSSION

A. Comparison between rank-1 resolvent model and DNS

The varying-phase opposition control scheme (9) introduced in the previous section is used as a test to evaluate
the capabilities of the resolvent model for controller design. To this end, a total of 50 varying-phase opposition
control runs covering a parameter range of five sensor locations, y+

d = [5, 10, 15, 20, 25], and ten phase shifts, ∠Âd =
[−3π/4,−π/2,−3π/8,−π/4,−π/8, 0, π/8, π/4, π/2, 3π/4], were performed in the subsampled resolvent model and the
DNS. The raw DR data was subsequently interpolated using bilinear splines and normalized with the respective
maximum DR to generate the two contour maps of ξ shown in Fig. 3. The capabilities of the resolvent model will be
judged based on the overall agreement between the two maps.

It should be mentioned that the largest drag increase among all DNS runs was observed for ∠Âd = 3π/4 and
y+
d = [20, 25]. Reτ of these runs increased by more than a factor of two and the simulations developed numerical

instabilities due to insufficient grid resolution before a statistically steady state was reached. The two runs were not
repeated with higher resolution, first because the DR trend could already be estimated from the partially completed
runs and second because the exact flow statistics of parameter combinations leading to high drag increase are not of
particular interest to this study. Instead, the maximum drag increase observed in all successfully completed runs was
assigned to these two control cases (which is a lower bound for the effective drag increase) and the saved computational

time was used towards additional runs in the parameter region of most interest (note the higher resolution in ∠Âd
within the range −π/2 ≤ ∠Âd ≤ π/4).

The resulting map of ξ as a function of yd and ∠Âd is shown in Fig. 3, where Fig. 3a on the left is the resolvent
model prediction and Fig. 3b on the right shows the DNS results. Recall from Eq. (13) that each map is normalized by
its maximum DR, which corresponds to 5% (resolvent model, Fig. 3a) and 21% (DNS, Fig. 3b), respectively. Bright
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FIG. 3: (Color online) Contour map showing the normalized drag reduction ξ as a function of sensor location y+
d

and phase shift ∠Âd. Figure (a) shows the prediction of the resolvent model, figure (b) displays DNS data. Note
that the colorscale is nonlinear in order to highlight the region of drag reduction. The vertical dashed black line

denotes ∠Âd = 0, which is closely related to opposition control, and the contour lines of figure (a) are replotted as
dotted blue lines in figure (b). Nondimensionalization to inner units is based on (uτ )u of the uncontrolled flow and

the maximum DR used to normalize the contour maps is (a) resolvent model: max DR = 5% and (b) DNS:
max DR = 21%, respectively.

shading (positive numbers) represent drag reduction, while dark colors (negative numbers) indicate drag increase.
The solid black lines outline a few selected contour levels and the contour lines of Fig. 3a are replotted as dotted blue
lines in Fig. 3b to facilitate comparison between resolvent model and DNS. Note that the contour levels of both plots
are identical.

Fig. 3 shows that the resolvent model is able to capture the trend observed in DNS over a wide range of parameters:
in both frameworks, the effect of the controller strongly depends on the phase shift ∠Âd and generally speaking a
small negative shift (e.g. ∠Âd = −π/4) leads to improved drag reduction, while a positive phase shift deteriorates
the control performance and eventually leads to drag increase. Furthermore, both frameworks show that for a fixed
positive phase shift ∠Âd > 0 the control performance decreases as yd increases, while for a fixed negative phase shift
−π/2 ≤ ∠Âd < 0 the control performance initially increases, reaches a maximum and then decreases as the sensor
moves away from the wall. The qualitative agreement between resolvent model and DNS can be made more clear
by comparing the overlaid contour lines in Fig. 3b: it is apparent that the contours of ξ of the resolvent model and
the DNS collapse for ∠Âd > 0 over the entire range of yd. This suggests that the model error in turbulent DR,
T3(yd,max,∠Âd,max)/T3(yd,∠Âd), is constant and approximately equal to unity for positive phase shifts. Further note

that T3(yd,max,∠Âd,max) is a constant and therefore T3(yd,∠Âd) ≈ const for all positive shifts. The agreement between

resolvent model and DNS is reduced for negative phase shifts: the contour levels do not overlap for ∠Âd < −π/4
and the model error in turbulent DR increases for more negative ∠Âd. However, the resolvent model is still able to
capture the trend of the DNS reasonably well and also the parameter combination leading to maximum drag reduction
is similar in both frameworks and corresponds to y+

d ≈ 10− 15 and ∠Âd ≈ −π/4.

The explanation of the optimal sensor location and phase shift is subject of an ongoing research effort, as is a
more complete understanding of the physics of the phase-shifts. The multimode nature of the problem complicates
signaling time (ballistic) arguments, which would attempt to explain the optimal sensor location and phase shift by
relating the time the control signal requires to travel from the wall to the sensor location to the time a dominant flow
structure requires to travel the streamwise shift between sensor and actuator. Yet it can currently not be ruled out
that control mainly acts on the near-wall modes and a more detailed analysis of the optimal phase shift and sensor
location is subject of ongoing work.

While the resolvent model is able to capture the qualitative trend of the DNS, it underestimates the absolute DR
values observed in the real flow. For example, the resolvent model predicts a maximum DR of 5% at the aforementioned
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(a) DNS
(b) resolvent model

FIG. 4: (Color online) Reynolds stress profiles of the uncontrolled and an example controlled flow

(y+
d = 10,∠Âd = −π/4) from DNS and the resolvent model. Figure (a): present DNS (uncontrolled flow),

present DNS (controlled flow). Figure (b): subsampled model (no-slip boundary conditions (b.c.) with
uncontrolled mean), subsampled model (control b.c. with uncontrolled mean), subsampled model (no-slip b.c.

with controlled mean), subsampled model (control b.c. with controlled mean). The vertical line indicates the
sensor location y+

d , where (uτ )u of the uncontrolled flow is used to nondimensionalize to inner units.

optimal parameter combination y+
d = 15,∠Âd = −π/4, while a 21% DR is observed in the DNS. In combination with

Fig. 3b, which shows that the resolvent model underpredicts |ξ|, it follows that the model underpredicts the drag
reduction over the entire parameter range. We can therefore conclude from Eq. (12) that the model error terms

T3(y+
d ,∠Âd)T4 > 1 for all phase shifts considered. These error terms have a geometric interpretation in the Reynolds

stress profiles shown in Fig. 4: the model error in the uncontrolled profile (T4) is ratio of the weighted area under
the black lines (model area in the numerator) in Figs. 4a and 4b, respectively, while the error in turbulent DR (T3)
is the ration of the weighted area between the black and gray line (model area in the denominator). The Reynolds
stress profiles can therefore be used to estimate the magnitude of both terms: as can be seen from the definition in
Eq. (11) and a comparison of the y-axis scale in Fig. 4a and 4b, the magnitude of the model error in the uncontrolled

profile is T4 � 1. Since T3(y+
d ,∠Âd)T4 = O(1), it further follows that the magnitude of the model error in turbulent

DR satisfies T3(yd,∠Âd) � 1. Both terms are dominated by the model contribution, which in T3 appears in the
denominator and in T4 in the numerator. This suggests that the broadband forcing could be rescaled by a constant
factor, which would cancel out in the DR measure (12) and bring both terms closer to order one.

The lesser agreement between model prediction and DNS for more negative shifts further indicates that T3 increases
as ∠Âd decreases. This allows to draw another conclusion regarding the interplay between control effect in spectral
space and forcing model: the good agreement between resolvent model, which uses the simplistic broadband forcing,
and the DNS for ∠Âd > 0 suggests that a positive phase amplifies all modes across spectral space. In this scenario,
the error arising from the broadband forcing assumption cancels in the ratio T3(yd,max,∠Âd,max)/T3(yd,∠Âd) and

the contour levels collapse as observed. On the other hand, the disagreement for ∠Âd < 0 suggests that the control
effect for negative phases is mixed in spectral space, so that the model error from the broadband forcing assumption
does not cancel. Instead, the broadband forcing puts too much weight on modes which are further suppressed by a
negative phase shift, which leads to the observed discrepancy between model and DNS. This interpretation of Fig. 3
is further confirmed by earlier findings of Luhar et al. [13] who show that from a resolvent model perspective, the
effect of varying-phase opposition control in spectral space is indeed mixed. Therefore, the more mixed the effect of
control in spectral space, the more careful one has to be with the selection of forcing model. However, in this regard
the resolvent model with broadband forcing (4) can always be used as a first order design to estimate the relation
between k and DR and a more refined forcing model can be added in a second step if needed.

It is worth mentioning briefly that Fig. 4 shows another interesting feature of the flow: the controlled Reynolds
stress profile of both, the DNS and the resolvent model (gray lines) have a local maximum close to the wall, which
is not observed in the uncontrolled case (black lines). The potential link between this feature and drag reduction is
subject of an ongoing research effort.

Before moving on to analyzing the role of the mean velocity profile, we would like to link and compare the DNS
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data with results reported in the literature. We first note that the controller with ∠Âd = 0 is related to the original
opposition control scheme of Choi et al. [14]: the two schemes are identical except for the mixed-argument term in
Eq. (8), which is controlled in the original scheme, but left uncontrolled under the formulation here. The qualitative
behavior of the present and the original scheme are indeed very similar, as can be seen by comparing Fig. 3b along
∠Âd = 0 to results reported in [14, 16]: the DR initially increases as the sensor moves away from the wall and a
maximum DR is reached at around y+

d = 15. The DR decreases as yd is increased further and the control scheme

increases drag for sensors located above y+
d = 23. However, the achievable DR is quite different: for example, the

present controller achieves 17% DR for (y+
d = 15,∠Âd = 0), while the original controller reduced drag by 25% with

sensors located at the same location. This indicates that the mixed-argument term in Eq. (8) plays an important role
in the drag characteristics of the flow. It is also interesting to compare the effect of the phase shift to related studies
in the literature: Kim & Choi [18] found that the maximum drag reduction of opposition control can be increased
by adding an integral term to the control law. Integration in time domain corresponds to a frequency-dependent
phase shift in Fourier domain and our finding that a nonzero ∠Âd can increase the maximum drag reduction therefore
agrees with their result. Lee [17] further showed that using upstream sensor information increases the maximum DR

of opposition control, while using downstream sensor information decreases it. As explained in §II D, a nonzero ∠Âd
can be interpreted as streamwise shift of the actuation and our results in Fig. 3b indeed confirm that using upstream
sensor information can increase the maximum DR, while using downstream sensor information reduces it.

B. Role of the mean velocity profile

Fig. 4 further provides an interesting insight into the role of the mean velocity profile in the controlled flow: the
resolvent model prediction of the controlled Reynolds stress profile is shown as solid gray line in Fig. 4b.

It is apparent from the figure that the effect of control on the modeled Reynolds stress profile is localized around
the sensor position (y+

d ≈ 10), where an attenuation as well as a slight outward shift of the peak can be observed.
The profile remains unchanged above y ≈ −0.8, as can be seen by comparing the uncontrolled (solid black line) and
the controlled (solid gray line) Reynolds stresses. From the perspective of the resolvent model, the Reynolds stress
in the outer flow is produced by fast moving modes with no velocity signature close to the wall [13], so that these
modes cannot be detected by the sensor and therefore remain uncontrolled. Furthermore, recall from §III A that we
used the uncontrolled mean velocity profile to construct the resolvent operator, so that the outer flow feels the same
τw as in the uncontrolled case. From the resolvent perspective there is therefore really no difference in the outer flow
between the uncontrolled and the controlled case and it is no surprise that the two profiles coincide.

The DNS (Fig. 4a) on the other hand draws a different picture: a comparison of the uncontrolled (solid black line)
and the controlled (solid gray line) profile shows that the Reynolds stress decreases throughout the channel, similar
to the results reported by Choi et al. [14]. It can be shown from the mean momentum equation that the tilting of the
profile in the outer flow is due to a change in uτ under control. This line of thought cannot be applied to the resolvent
model (recall that the model does not satisfy the mean momentum equation), but other ideas, like Townsend’s outer-
layer similarity hypothesis [35], also suggest that changes in the outer flow are mainly due to changes in uτ , without
relying on the mean momentum equation. One therefore may speculate that the change in the outer flow can be
captured in the resolvent model if a controlled mean with different uτ is used in the resolvent operator. To test this
hypothesis we constructed the resolvent operator with the controlled DNS mean velocity profile and repeated the
model prediction for the example controlled flow (y+

d = 10,∠Âd = −π/4).
The resulting Reynolds stress profile is shown as dotted orange line in Fig. 4b. We also plot the Reynolds stress

profile with controlled mean but no-slip boundary conditions in Fig. 4b to illustrate which changes are due to the
change in mean and which ones are due to control at the boundary. It is apparent from the figure that the controlled
mean alters the shape of the mean Reynolds stress profile throughout the channel: the near-wall peak is further
increased and the Reynolds stresses decrease above y = −0.8. The effect of control is again limited to the sensor
location. When comparing the uncontrolled profile with uncontrolled mean (black line) to the controlled profile with
controlled mean (orange dotted line) it is apparent that the profile is different throughout the channel. This supports
the hypothesis that the change in the outer flow is indeed mainly due to the change in uτ . Also, the predicted DR
increases from 5% (uncontrolled mean) to 10% (controlled mean), which is closer to the DNS value of 21%. This

suggests that the modeling errors T3(y+
d ,∠Âd)T4 also decrease when the controlled mean is used.

C. Extension of the model for controller design at high Reynolds numbers

The results thus far showed how and validated that the resolvent model can be used to design control schemes for
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(a) Reτ = 180 (b) Reτ = 6000

(c) Reτ = 30000
(d) rescaled profiles at

Reτ = {180, 6000, 30000}

FIG. 5: (Color online) Figures (a)-(c): Mean Reynolds stress contribution of an example resolvent mode
characterized by λ+

x = 1000, λ+
z = 100 and c+ = 10 at Reτ = 180 (Figure (a), ), 6000 (Figure (b), ), 30000

(Figure (c), ). In all figures, the solid line ( ) shows the profile of the uncontrolled flow, while the dotted line

( ) displays the profile of an example controlled flow (y+
d = 10,∠Âd = −π/4). Figure (d) shows the same profiles

rescaled according to the Reynolds number scaling law introduced in Moarref et al. [8].

internal flows at Reτ = 180. The results show that at these low Reynolds numbers the (subsampled) resolvent model
is almost two orders of magnitude cheaper to evaluate than DNS, while still capturing the trend observed in the full
nonlinear system and therefore making it a valuable design tool in this range of Reτ . However, DNS is still feasible
and relatively cheap at these low Reynolds numbers, so that the value of the resolvent model may not be immediately
apparent. As mentioned in the introduction, the ultimate goal is to develop tools that allow controller design for
internal flows at technologically relevant Reynolds numbers. DNS is currently limited to relatively low Reτ , while the
resolvent model is not and this is really where the model unlocks its full potential.

Two aspects of the model are crucial for its utility in high Reynolds number flows: first, the smoothness of the
Reynolds stress profile in at least parts of the wavenumber space, which allows to subsample the model as described
in §II C. As was shown for the Reτ = 180 case, the contributions of high wavenumbers decay quickly, which makes the
incorporation of additional high wavenumbers cheap as Reτ increases. The results presented here and in Moarref et
al. [8] show that this approach is well justified and allows to easily handle flows at Reτ = O(104) with the model, at
least. In a naive approach, one could use the subsampling and proceed at high Reynolds number as outlined in §II B:
use the eddy viscosity to obtain an approximation of the mean velocity profile, construct the resolvent operator and
compute the resolvent modes. Enough resolution is still required in the wall-normal direction to resolve all features
of the resolvent modes and this is particularly challenging in the near-wall region where structures scale with viscous
units. While the resolution requirements may still be practical at moderate Reynolds number, they become prohibitive
at large Reτ and a different approach is required.

This is where the second aspect of the resolvent model comes in: Moarref et al. [8] derived scaling laws for different
classes of resolvent modes (categorized based on their wave speed) from the properties of the resolvent operator
alone. This allows to compute resolvent modes at a low Reynolds number, where resolution requirements in y are
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mild, and use the scaling laws to obtain the singular values and vectors at arbitrary high Reynolds numbers. Here
we explore whether the scaling laws also apply to controlled flows by making predictions at two higher Reynolds
numbers: Reτ = 6000, which is approximately the upper end of available experimental [36] and DNS [28, 37] data,
and Reτ = 30000, which is well above current DNS and experimental capabilities and at the lower end of the
technologically relevant Reynolds numbers [38]. To illustrate our point, we select the so-called inner class of resolvent
modes, which scales in viscous units [8] and is therefore the most challenging to calculate with the naive approach
described above. It has been verified that the scaling laws apply to the other classes of modes as well.

Figs. 5a - 5c show the mean Reynolds stress contribution of a single resolvent mode characterized by λ+
x = 1000,

λ+
z = 100 and c+ = 10, where the solid and dotted line represent the uncontrolled and an example controlled flow

(y+
d = 10,∠Âd = −π/4), respectively. Note that this mode belongs to the inner class according to the classification

by Moarref et al. [8]. These resolvent modes are computed using the naive approach, i.e. we computed the resolvent
modes directly at the indicated Reynolds numbers. To obtain DNS resolution, one would require Ny = 172, 1700
and 8500 grid points in the wall-normal direction (with an appropriate grid stretching factor in the high Re cases),
respectively. However, the singular values are already converged for Ny = 90, 130 and 300, respectively. We therefore
used somewhat coarser grids with Ny = 172, 800, 1230 (without grid stretching to ensure sufficient resolution in the
near-wall region) to produce the results shown in Figs. 5a - 5c. It can first be observed that the energy content of
the near-wall structure decreases as the Reynolds number increases. Moreover, the plots suggest that the shape of
the structure remains unchanged with increasing Reynolds number. In fact, the mean Reynolds stress contributions
follow the scaling law proposed by Moarref et al.: as shown in the last panel (Fig. 5d) the profiles across all Reynolds
numbers collapse when scaled appropriately. The scaling does therefore not only hold in the uncontrolled flow, which
was already shown in [8], but also in the controlled flow. This is a key property of the model that allows the naive
approach to be superseded by far: there is no need to compute the resolvent modes at high Reτ . All one has to do is
compute the resolvent modes at low Reynolds number, which is cheap, and then use the known scaling laws to obtain
their contribution at an arbitrary high Reτ .

We close this section with two comments: first, it should be noted that the scaling laws assume the presence of
a logarithmic region in the mean velocity profile [8]. The empirical results of Fig. 5 show good agreement between
all the profiles, but strictly speaking at least Reτ = 180 is too low to argue for the existence of a logarithmic region.
In fact, there is a slight deviation between the Reτ = 180 profile and the two other ones which may be a Reynolds
number effect, even if small. One may therefore consider a slightly higher Reynolds number when generating the
profiles for scaling. Second, there is a small subset of wavenumber combinations that do not belong to any similarity
class (see Moarref et al. [8] for details). Depending on their significance in the resolvent model, these modes may
have to be computed explicitly at high Reynolds numbers. Note, however, that when combined with the subsampling
strategy, this is only required for very few modes.

V. CONCLUSIONS

This study analyzed the drag reduction of varying-phase opposition control by means of a low-order resolvent model
and a DNS. Great care was taken to ensure that both frameworks represent the same flow, resolve the same range of
scales and implement an equivalent flow control law.

The first part of this study concerned the review of a resolvent model, which was derived from the incompressible
Navier-Stokes equations using the simplest assumptions possible: formulation of the resolvent operator based on an
uncontrolled mean velocity profile, rank-1 approximation and broadband forcing assumption. The resolution of the
model baseline was chosen to match the DNS, so that model errors due to resolution discrepancies could be ruled out.
A mode-by-mode analysis of the Reynolds stress profile suggested that the wavenumber space can be subsampled
when evaluating the resolvent model. The good agreement between model baseline and the subsampled model, which
only resolves 2% of the baseline wavenumbers, confirmed the validity of this hypothesis (see Fig. 1) and suggests
that for this flow the resolvent model is lower-dimensional than the DNS. However, this could only be confirmed once
the model baseline provided an adequate benchmark for comparison with DNS. While similar subsampling strategies
were already used in the past (see, for example, [8, 13]), the present study is the first to systematically confirm the
accuracy of the subsampled model and thus provides a formal justification for this approach. Why one gets away
with sampling such a small subset of wavenumbers is yet to be fully understood and is subject of an ongoing research
effort. Further progress on this question may help guiding the development of novel simulation techniques which in
the spirit of the subsampled resolvent model do not resolve all scales, but only the dynamically most relevant ones.

The subsequent formulation of the varying-phase opposition control law highlighted the importance of understanding
the assumptions and resulting limitations of the resolvent model. With the current assumptions the model framework
only captures a subset of the physics of the full nonlinear system and a naive implementation of the controller
would have led to different control effects in the resolvent model and the DNS. A separate control law for the
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streamwise constant modes was sufficient to reconcile both frameworks in the present case, but studies concerned
with different flows or control objectives may need to relax more fundamental assumptions if the relevant physics
are not represented in the model. For example, Rosenberg et al. [39] recently outlined conditions (more commonly
encountered in bluff body flows) under which the rank-1 approximation employed here may be insufficient to capture
the essential flow physics. The FIK identity and mean momentum equation were used to derive an analytical expression
for the conventional drag reduction measure as a product of four terms with clear physical interpretation (ratio of
turbulent drag to total drag, modeled turbulent drag reduction, model error in turbulent drag reduction, model error
in uncontrolled profile). Using this expression, it was shown that the model is not only able to approximate the
turbulent drag reduction, but also the change in mean wall shear stress. The expression further allows to quantify
the two model error sources (error in the uncontrolled profile and error in the turbulent DR) if higher fidelity data is
available for comparison.

The centerpiece of this study was based on varying-phase opposition control: the normalized DR predicted by the
resolvent model for various sensor locations yd and phase shifts ∠Âd was compared with DNS data. Even though the
model was formulated with very strong assumptions (see above), the normalized DR maps of the resolvent model and
the DNS agreed remarkably well (see Fig. 3). The present work is believed to be the first DNS study of opposition

control with ∠Âd 6= 0 and the DNS data confirmed the resolvent model prediction that the attainable drag reduction
strongly depends on the relative phase between sensor measurement and actuator response. This raises interesting
questions about the role of the phase in the flow, which are subject of an ongoing research effort. The large parameter
space explored in this study by means of the resolvent model and DNS provides a much richer database than previous
studies to evaluate the capabilities of the resolvent model and thus allows to draw much stonger conclusions. The
degree of agreement reveals that resolvent analysis, which at its heart is a linear technique, can approximate the
response of the full nonlinear system to control and allays doubts that may have persisted thus far. As a consequence,
one of the questions posed at the beginning of this study can be answered in the affirmative: the results suggest that
the resolvent model is indeed a suitable low-order flow model to design active flow control schemes for drag reduction
in internal flows. This gives a formal foundation to recent studies which already use the resolvent model for controller
design, such as [23], and provides a tool to systematically design future controllers. Since there is nothing particular
about the choice of varying-phase opposition control, we expect that the resolvent model is able to approximate
the DR trend of any control scheme with linear control law as long as the controlled mean velocity profile is not
too drastically different from the uncontrolled one. The study also outlined limitations of the model: the simplistic
broadband forcing may be inappropriate if the effect of control is mixed in spectral space. To what degree the control
effect varies in wavenumber space can be estimated from the resolvent model presented here and more sophisticated
forcing models can be incorporated in a second step, if needed. Furthermore, if the mean velocity profile is modified
substantially, for example due to large-scale changes of the flow structure in any part of the flow, then it is not likely
that the resolvent operator derived from the uncontrolled mean can correctly identify DR trends. There is currently
no rigorous measure for when resolvent analysis based on the uncontrolled mean is not applicable, but the present
study suggests that the restrictions on the change in mean velocity profile are not as stringent as one may think: for
example, the Reynolds number varies by more than a factor of two over the parameter space shown in Fig. 3 and
yet the resolvent model is able to capture the DR trend of the full nonlinear system. The effect of a relatively small
change in mean velocity profile on the resolvent prediction was further shown in Fig 4b: the model suggests that
while the change in boundary condition leads to a localized decrease in Reynolds stress around the sensor location,
the change in mean velocity profile is responsible for the attenuation further away from the wall.

At low Reynolds number, the resolvent model was shown to be almost two orders of magnitude cheaper to evaluate
than a DNS. However, the model unlocks its full potential at high Reynolds numbers, which are currently not feasible
with DNS. The last part of this study showed that the known Reynolds number scaling of resolvent modes also holds
in the controlled case. This allows to do resolvent analysis at low Reτ , which is cheap, and use the scaling laws
to obtain the singular values and vectors at arbitrary high Reynolds numbers, essentially for free. Luhar et al. [13]
further showed that the resolvent model presented here is able to capture Reynolds number trends previously observed
in DNS of controlled flows. Their result combined with the scaling laws suggest that the second point raised in the
introduction can also be answered in the affirmative: it can be expected that the resolvent model can be used to
design controllers at technologically relevant Reynolds numbers, which are currently not feasible with DNS.

Future work may explore whether a hierarchy of models can be used to further reduce the computational cost of
controller design: for a first-order design, one may not have to evaluate the resolvent model at all the subsampled
DNS wavenumbers, but only at an even smaller subset like, for example, the wavenumbers representing the near-wall
cycle. The first-order controller design can subsequently be refined using the resolvent model presented here and
finally be validated in a DNS or experiment. Future studies may also explore control design at high Reynolds numbers
using the resolvent model in combination with the presented scaling laws. In this context, it would be interesting to
explore if the broadband forcing assumption is still a good model, or if the weights should be scaled with Reynolds
number as well, similar to previous work by Moarref et al. [8].
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